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ABSTRACT

This thesis addresses issues surrounding nondeterminism in parallel computation.
By quantifying and limiting the amount of nondeterminism available to various parallel
computing devices, new complexity classes are developed that could potentially
separate NC from NP. Let NNC(polylog) denote the class of languages accepted by an
NC circuit family with a polylogarithmic number of nondeterministic gates. This class
contains a version of.the quasigroup (Latin square) isomorphism problem. We also
show that NNC(polylog) < DSPACE(polylog). This leads to a previously unknown
space bound for the quasigroup isomorphism problem, namely that the quasigroup iso-
morphism problem, the Latin square isotopism problem and the Latin square graph iso-
morphism problem are all in DSPACE(log? n). The only other known bound for these
problems is Miller’s time bound of n'°82”*9 M Our results generalize Lipton, Snyder

and Zalcstein’s DSPACE(log? n) algorithm for the group isomorphism problem.

Let NACO(f (n)) denote the class of languages accepted by an AC? circuit family
with f (n) nondeterministic gates on n bit inputs. We show that Parity is not accepted

by NACO(f (n)) circuits when f (n) is at most polynomial in log n. Our results partially

locate NAC®(f (n)) within NP, namely, AC® SNAC(n®) c NP for all € >0 and AC?

< NAC’(polylog) & NAC?(nlog n)  NP.
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A nondeterministic NC hierarchy is also developed through the use of bounded
quantification. It shares many properties of the well-known polynomial time hierarchy.
One difference, however, is the apparent lack of an equivalent definition in terms of

oracles.
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CHAPTER 1

INTRODUCTION

1.1. Motivation and Overview

Nondeterminism was first introduced in a computational setting in 1959. Rabin
and Scott, in their seminal paper on finite state machines, noted that requiring all finite
state machines to be described with deterministic transition functions leads to cumber-
some descriptions for even some elementary operations [RS59]. Their motivation,
therefore, for introducing nondeterminism was quite benign. They wanted to describe
finite state machines as simply as possible, and since they showed that deterministic
finite automata accept the same languages as nondeterministic ones, there was no harm

in introducing the concept.

As time passed, however, the concept of nondeterminism began to take on special
importance in computation theory. Many have undertaken research to try to answer the
question, ‘‘Does nondeterminism help?’” for various computing devices when consid-
ering different resources. There are three results that answer this question in slightly
different ways. Savitch has shown that when considering space bounds on Turing
machines, nondeterminism only helps a little. In other words, he proved that a deter-

ministic Turing machine can simulate a nondeterministic Turing machine with at most



squaring the amount of space used [Sa]. (Definitions of unfamiliar terms can be found

in Section 1.2.)

Paul, Pippenger, Szemerédi and Trotter showed that in the case of linear time on a
Turing machine nondeterminism does help [PPST]. In other words, there is a language
accepted by a nondeterministic multi-tape Turing machine in linear time that is not
accepted by a deterministic multi-tape Turing machine in linear time, regardless of the

number of tapes.

The other signiﬁcént answer to the question of ‘‘Does nondeterminism help?”
was for polynomially time-bounded Turing machines (the P =? NP question). Even
though there is strong evidence that P is different than NP, Baker, Gill and Solovay
gave strong technical evidence that answering the P =? NP question is going to be quite

difficult and will require developing new proof techniques [BGS].

Many have chipped away at the P =? NP question, and much has been learned
about the potentially rich structure of the problems and complexity classes lying
between P and NP. Kintala developed a different approach to the P=?NP question by
considering what happens when the nondeterministicA Turing machine is allowed to
make a bounded number of nondeterministic moves. His approach, however, failed to
yield much insight into the P =? NP question. The notion of limited nondeterminism
did provide some information about other types of computing devices such as real-time
Turing machines. We will look at many of his results in Chapter 2, as well as the

results of others’ studies of limited nondeterminism.




Encouraged by some of the positive results of Kintala, we begin a study of res-
tricted nondeterminism in circuit models of parallel computation. In Chapter 3 we for-
mally define restricted nondeterministic parallel models of computation. We show that
certain parallel models with the ability to make just a few nondeterministic choices
accept some languages not known to be in P. In Chapter 4 we look at some of these
languages. As a result of the study of the nondeterministic parallel complexity of the
quasigroup or Latin square isomorphism problem, we develop previously unknown
space bounds for the problem. (Throughout this thesis we use the terms ‘‘problem’’
and ‘‘language’’ interchangeably.) The space bound we develop matches that
developed by Lipton, Snyder, and Zalcstein for the less general group isomorphism

problem in [L.SZ].

In Chapter 5 we look at constant depth, polynomial size, unbounded fan-in cir-
cuits, also known as AC? circuits. (AC0 is formally defined in Section 1.2.)
Unbounded fan in circuits of constant depth are one of the simplest parallel computing

models. They are very weak; for example, they are unable to compute the Parity func-
tion. Because Parity cannot be computed with an AC? circuit, AC° S NP. Furthermore,

AC? is, in some sense, the most powerful complexity class known to be strictly con-
tained in NP. We improve this result by showing that adding a restricted amount of
nondeterminism to an ACP circuit does not allow it to compute the Parity function. We
also give an upper bound on the least powerful nondeterministic ACP class that ACY is

contained in.



In Chapter 6 we develop a restricted nondeterministic version of the polynomial
time hierarchy. We show that our new hierarchy shares some properties of the polyno-

mial time hierarchy, although not all.

Finally, in Chapter 7 we present some interesting open questions and suggest pos-

sible extensions of this work.

Before continuing we give definitions of many of the basic computing devices and

complexity classes we will be referring to throughout this paper.

1.2. Definitions

Our Turing machine models are the usual ones, and we assume the reader is fami-
liar with Turing machines as described in Chapters 7 and 12 of Hopcroft and Ullman
[HU]. Briefly, a Turing machine is a finite state machine with some fixed number of
infinite work tapes, one of which contains the input. For a deterministic machine, M,
we say that a language L is accepted in time T(n) by M if and only if on all inputs w of
length n, M makes no more than T(n) moves and halts in an accepting state if and only
ifwe L. Lis said to be in DTIME(T(n)). If M is nondeterministic, then L is said to be
in NTIME(T(n)). When considering deterministic space bounds, we are often con-
cerned with bounds that are less than linear. In this case we adopt the ‘‘random access
input’’ Turing machine. This type of Turing machine has no head for the input tape.
Instead, it has a special index tape on which it writes some number i in binary, which
takes log i time, and whenever the machine enters a read state, the contents of the index

tape is erased and replaced with the i** bit of the input. If the Turing machine is to be




used to compute a function, it also has an output tape which upon which the result is
‘written. This tape is not counted when determining space bounds. For a deterministic
machine M, we say that a language L is accepted in space S(n) by M if and only if on
all inputs w e L of length n there is a valid computation leading to an accepting state

that uses no more than S(n) work tape cells. Then L is said to be in DSPACE(S(n)).

We are also interested in other important complexity classes associated with the

Turing machine. We letP=U DTIME(n’) and NP=\J, | NTIME(n‘). There are
two space complexity classes of interest. They are PSPACE = Ui21 DSPACE(n’) and
DSPACE (polylog) = Ui21 DSPACE(log’ n). (In general, we will use the term polylog
to denote UiZI log' n.) We also mention a class with simultaneous resource bounds.

A set is in the class SC if there is a Turing machine running simultaneously in polyno-
mial time and polylog space that accepts it. To denote the complement of a class, we
attach the prefix "co-" to the name of the class. For example, the complement of NP is

denoted co-NP.

We also study deterministic parallel complexity classes developed from boolean
circuits. A boolean circuit is a finite directed acyclic graph with labeled nodes (called
gates). Each gates is labeled as either an input gate, a NOT gate, an AND gate, Or an OR
gate. The AND, OR, and NOT gates are allowed to get inputs from any other gate or their
inputs may be forced to be either the constant 1 or the constant 0. One gate is dis-
tinguished as the output gate. The depth of the circuit is the length of the longest path

between any input node and the output node. The size of a circuit is the number of



nodes in the circuit. Consider a family of circuits Cg, Cy, - - - where each C, denotes
a circuit with n inputs. Furthermore, suppose that a description of C,, can be generated
by a deterministic Turing machine in DSPACE(log n). A description of C, is a list of
gates, that for each gate includes its type and which gates it gets its inputs from. This
family of circuits is said to be LOGSPACE uniform. There are other, more restrictive
types of uniformity discussed by Cook in [Co] and Ruzzo in [Ru81], but for the types
of problems we consider, LOGSPACE uniformity suffices. A circuit family accepts a
language if for each n there is a circuit C,, that accepts strings in the language of length

n.

We distinguish whether or not the number of inputs to each gate is bounded by an
independent constant. NCF is defined as the set of languages accepted by
LOGSPACE-uniform circuit families where each gate has a constant number of inputs,
the depth bounded by log* n and the size is bounded by n/ for some j on inputs of size

n. We define NC to be \U 20 NCF. In the case that the number of inputs to each gate is

unbounded we define AC* as the set of languages accepted by a LOGSPACE-uniform
circuit families with depth bounded by log n and size bounded by n/ for some j on

inputs of length n. We define ACto be \J, ACk.




CHAPTER 2

THE HISTORY OF BOUNDED NONDETERMINISM

Traditionally, nondeterministic machines have been allowed to make a nondeter-
ministic move at each step of a computation. Kintala and Fischer were the first to con-
sider the effects of limiting the number of nondeterministic moves a machine makes.
They observe in [KF77].F that algorithms computing most NP-complete problems use
only a linear number of nondeterministic moves even though the algorithm may make
a polynomial number of steps. They contrast this with the fact that at that time the best
known nondeterministic algorithm for recognizing primes required O(n?) nondeter-
ministic moves even though the recognition of primes is not known to be NP-complete.
(This was later improved to O(n) nondeterministic moves by Pomerance [Pol.)
Motivated by this peculiar situation, Kintala in conjunction with others studied the
effect of limiting the amount of nondeterminism available to various models of compu-

tation.

In the first three sections of this chapter we explore some of the results obtained
by Kintala and his colleagues. First we present Kintala and Fischer’s result that for
real-time Turing machines there is an infinite proper hierarchy based on restricted
amounts of nondeterminism. In Section 2 we present Kintala and Fischer’s work on

oracle Turing machines with a restricted number of nondeterministic moves, as well as
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look at more recent work done by Alvarez, Diaz, and Toran that shows the existence of
complete sets for the complexity classes introduced by Kintala and Fischer. In the third
section we present some of the work done by Kintala and later by Nasyrov on restricted
nondeterminism in context-free languages, as well as look at the economy of descrip-
tion offered by the presence of nondeterminism in finite state automata. In the fourth
section we discuss work done by others in the area of applying nondeterminism, both

limited and unlimited, to various parallel models of computation.

2.1. Bounded Nondeterminism in Real-Time Computations

Perhaps one of the most appealing results involving bounded nondeterminism was
first presented by Kintala and Fischer in [KF77] and later in [FK]. They show the
existence of an infinite proper hierarchy based on amount of nondeterminism available

to a special class of Turing machines called real-time Turing machines.

A real-time Turing machine behaves like a standard Turing machine except that it
is required to read a new input symbol at every step. Thus, a real-time machine never
takes more than n steps to accept or reject an input of length n. This also implies the
obvious upper bound on the number of nondeterministic moves the machine can make.
Languages accepted by deterministic real-time Turing machines are called real-time
languages and languages accepted by nondeterministic real-time Turing machines are

called quasi-real-time languages.

In order to develop the infinite hierarchy, it is necessary to establish a notion of

real-time constructible functions. Real-time constructible functions are defined in




terms of real-time countable functions, a notion introduced by Yamada [Ya62]. If
h(n)=n is a strictly monotone function, we associate an infinite binary string
ol .-:og{;a’{ocg .+ with the function h. To define of*, let oy =1 if m=h(n) for some
n>1 and O otherwise. If a deterministic Turing machine can produce one bit of of at
each step for a strictly monotone function h(n)2n then h(n) is real-time countable.
h~1(n), the inverse of such an & (n), is defined to be the largest m such that A(m)<n. A
function g (n) Sn s real-time constructible if there exists a real-time countable function
h(n) such that g (m)=h"1(n). Qg (ny denotes the class of languages accepted by real-

time multitape Turing machines making at most g (n) nondeterministic moves.

Intuitively, let A(n)2n be a real-time countable function and let g(n)=h”l (n).
Then there is some Turing machine, M, that produces one bit of o’ at every step. We
modify M}, to yield a new machine, M,, such that on inputs of length n, M, generates a
list of all of the positions of o that contain a 1. Thus, M, computes the range of h up

to the given input.

Let g(n) be o(n) and let yR denote the reversal of y. We define the language
Lg(ny- Astring wis in Lg ) if the following hold:
() |wl=n2l,

(2)  w=x12x92 - 2x,3yR where r=g (n)+1and forall j, x;e {0,1}%;
(3) Forall i and j, l 11— 11| <13

(4)  There is an s such that y =x;.
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Lemma 2.1.1: [FK] For any given real-time constructible g (n), such that g (n) is o (n),
Lg(n) € Q-

This result is not difficult to show since g (n) is real-time constructible. The real-
time Turing machine accepting L,() performs two actions concurrently. First, it
verifies that the input is of the correct form, and secondly at every 2 in the input, it
guesses whether to write down the following x;. Thus, the machine makes only g (n)

guesses.
To demonstrate a proper, infinite nondeterminism hierarchy, Kintala and Fischer

go on to show that if 2™ is o (g (n)), then Qpn) T Qg (n)-

Lemma 2.1.2: [FK] If g (n) and h(n) are any two real-time constructible functions

such that g (n)log(g (n)) is o(n) and h(n) is o(log (g(n))), then Ly(n) € Oh(n), thus
Qhny T Qg (-

The proof of this lemma is quite technical and involves information counting
arguments. Essentially, it relies on the fact that a real-time machine making only a few
nondeterministic moves cannot distinguish between all of the possible configurations of

a real-time machine making more nondeterministic moves.

Kintala and Fischer make an important observation about nondeterministic
guesses. The next result demonstrates that careful analysis of the choices made by any

nondeterministic Turing machine leads to an economy of guesses in the right situations.
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Lemma 2.1.3: [FK] If g(n) is any real-time constructible function with g (n) = o (n),
then Lg (n) € Qiogg (n)-

The important step in the proof of this lemma requires noting that in any correct
computation all but one of the nondeterministic choices made by the machine in
Lemma 2.1.1 are the same. In all but one instance the machine decides not to write
down the subsequent x;. We generalize this observation for nondeterministic Turing

machines in the following lemma.

Lemma 2.1.4: Let f(n) be some function that takes natural numbers to natural
numbers. Let L be a language accepted by M, a nondeterministic machine that at every
step has at most two possible choices. Also assume that for every input there exists an
n such that in any correct computation M makes 7 nondeterministic choices with all but
f (n) of the choices the same. If f (n) is o (n/log n), then there exists a Turing machine
M’ accepting L making fewer nondeterministic moves than M. Furthermore, M’

makes only f (n)log n nondeterministic moves.

Proof: Instead of making the guesses that M does, M’ guesses at which steps M
makes nonstandard choices. Thus, M ’ begins its simulation of M by guessing at which
steps M makes the nonstandard choices. Then it simulates M, and whenever M is sup-
posed to make a nondeterministic move, M ’ looks up whether it should make the stan-
dard or nonstandard choice. Since there are f (n) nonstandard choicqs, and to write
each of the step numbers takes O(log n) nondeterministic moves, the total number of

nondeterministic choices made by M " is o (n). O
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The proof of Lemma 2.1.3 is based on the fact that only one of the g (n) guesses
made by the machine in Lemma 2.1.1 is nonstandard. Thué, an application of Lemma
2.1.4 coupled with the fact that g (n) is real-time constructible gives the general idea of

the proof.
Let log®¥n denote k applications of the log function to n. Then
Q0% " GOQugk+1n T Qiog®n G *** Qloglogn T Qlogn for sufficiently large n. This

follows from Lemmas 2.1.2 and 2.1.3 and is stated more generally in the following

theorem.

Theorem 2.1.5: [FK] If a real-time constructible function g (n) is o(log n) and another
real-time constructible function A(n) is o (g (n)), then there exists a language L such
that L € O, (ny — Oh(n)-

To prove this theorem, Kintala and Fischer show that L =L, ¢(n) is sufficient.

2.2. Relativizations with Bounded Nondeterminism

Baker, Gill, and Solovay give convincing evidence that settling the P =7 NP ques-
tion will be difficult [BGS]. They show that there exist oracles that cause the classes P
and NP to coincide and there exist oracles that cause P and NP to be distinct. In fact,
they believe their results ‘suggest that the study of natural, specific decision problems
offers a greater chance of success in showing P # NP than constructions of a more gen-
eral nature [BGS].”’ Even with this admonition, researchers have continued looking at

general approaches to solving the P =? NP problem.
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Kintala and Fischer developed a potential hierarchy of classes lying between P
and NP [KF80]. This potential hierarchy isvbased on the number of nondeterministic
moves available during computation. They proved results with respect to this potential
hierarchy similar to those of Baker, Gill and Solovay. Later, Alvarez, Diaz, and Toran
in [ADT] showed the existence of complete sets for some of the classes introduced in
[KF80]. We will present some results from both Kintala and Fischer’s paper and
Alvarez, Diaz and Toran’s paper and it will be apparent from the discussion that all of
the classes lying between P and NP introduced by Kintala and Fischer have complete

sets.

The classes studied by Kintala and Fischer are defined in terms of nondeterminis-

tic Turing machines. Let

Pony={L|L < {0,1}*and L is accepted by a polynomial-time bounded
Turing machine making O(g (n)) nondeterministic moves. }

The basic NP-complete problems given in Garey and Johnson are solvable with a linear
number of nondeterministic moves. And since it seems that most other NP-complete
problems are also solvable with a linear number of nondeterministic moves the limited
nondeterminism classes of most interest are those with fewer than a linear number of
nondeterministic moves. The specific classes studied by Kintala and Fischer are of the
form Pjgek . Since enumerating all 2¢1087 possibilities of a machine making O(log n)

nondeterministic moves results in only a polynomial increase in running time, we have

P = Pig,. Thus, determining that Pigk ,GPiogk+1, for any k21 would imply that P =
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NP. The relativized results obtained by Kintala and Fischer, like the results of Baker,
Gill and Solovay, suggest that showing this proper containment (or equality) is

difficult.

To show relativized results we present a notion of an oracle Turing machine. A
Turing machine with oracle X is a Turing machine with an additional work tape called
a query tape. The oracle Turing machine also has three special states, the query state,
the no state and the yes state. Whenever the ‘query state is entered the action of the
machine at the next step is dictated by the oracle. The contents of the query tape are
treated as a single string, and if that string is in the set X, the machine is placed in the
“‘yes’’ state, otherwise it is placed in the “‘no’” state. This model applies to both deter-

ministic and nondeterministic Turing machines.

Thus, for any given function g () and any oracle X,

P’g{(n) = {L|L c {0,1}* and L is accepted by a polynomial-time bounded
oracle Turing machine with oracle X making at most
O(g (n)) nondeterministic moves.}

A nondecreasing function g (n) is time-constructible if there exists some constant
nq such that for all n > nq either g (n)2n and g (n) is real-time countable or g (n) <n
and g (n) is real-time constructible. Since Baker, Gill, and Solovay have demonstrated
that any PSPACE-complete set A ensures PA = NP4, it follows that if g(n) is a time-
constructible function then any such A will cause P?(,,) = P?(,,)Ms for all €20. Using
techniques similar to Baker, Gill and Solovay’s, Kintala and Fischer showed that there

is an oracle that separates two such classes as well.
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Theorem 2.2.1: [Ki77] For any time-constructible function g (n) and any €20 there is

a recursive oracle Bg depending on € such that p2e 2(n) # cpl g(n)+nE"

Of course this theorem can be applied to the Pjogk , Classes to obtain separation of
the various levels. Perhaps one of the more interesting results in [KF80] indicates that
there are questions about the Pjogk , hierarchy that are not equivalent to corresponding

questions about P and NP.

Theorem 2.2.2: [KF80] For every k 22 there is an oracle Dy such that

Dk =
Plogln #* Plog n ¢ Plogkn Plogk“'ln - NPDk'
Alvarez, Diaz, and Toran present problems complete for the Pk , classes [ADT].
These problems are generalizations of P-complete problems. Consider, for example,

this generalization of the circuit value problem. We define

CVP* = {<x,y>|x e {0,1}* and y encodes a boolean circuit with
|x | +[log® |x || input gates and there is a string x e
{0,1}* of length flog" | x ﬂ such that the circuit encoded
by y with input xz outputs a 1}

CVP* is obviously in Piogk » and the proof of completeness is almost identical to
the proof that the circuit value problem is hard for P. They also claim that similar
modifications of other P-complete problems give more problems complete for Piogk n.
Alvarez, Diaz, and Toran note that restrictions of NP-complete problems do not appear
to be complete for Piygk .. In fact, there is some strong evidence that this is the case.

Restrictions of NP-complete problems such as dominating set in a tournament and
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CNF-SAT(log* n) (for complete descriptions of these problems, see Section 4.2) all
have the property that after some initial guessing phase, the verification phase can be
done in NCL. In other words, these problems are in NNCl(log" n) (defined in Section
3.1), a nondeterministic version of NC! with log“n guessing inputs. Now
NNC! (log’c n) C Piogk, and we believe this containment is proper for the same reason

NC! is believed to be in P. Thus, the observation of Alvarez, Diaz, and Toran follows.

2.3. Bounded Nondeterminism in Other Models

In addition to Turing machines, other models of computation such as pushdown
automata and finite state machines have been used to study bounded nondeterminism.
Kintala studied restricted nondeterminism in pushdown automata and expressed his
results in terms of context-free languages, showing the existence of a proper infinite
hierarchy of context-free languages based on the number of nondeterministic moves
needed to accept them [Ki78]. In [Na], Nasyrov generalizes some of the work of Kin-
tala and arrives at some of the same conclusions. However, Nasyrov’s framework is
general enough to provide a classification for all context-free languages and establish

an additional infinite hierarchy within the context free languages.

When Rabin and Scott first introduced nondeterministic finite automata in [RS59],
they showed that nondeterministic finite automata are no more powerful with respect to
the languages they accept than are deterministic finite automata. The power set con-
struction they use to prove this equivalence suggests, however, that there is an econ-

omy in the size of nondeterministic machines over deterministic machines that accept
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the same languages. In fact, Meyer and Fischer have shown the existence of languages
L, < {0,1}* such that there is a k-state nondeterministic finite automaton that accepts
Ly and the minimal deterministic finite automaton accepting Ly has at least 2* states
[MF]. Kintala and Wotschke explore this economy and show that in certain cases a
nondeterministic finite automaton making fewer nondeterministic moves is somehow
less succinct [KW]. We will review some of their results and observations in the
second subsection of this section. First, however, we will look at the issue of restrict-

ing nondeterminism in context-free languages.

2.3.1. Bounded Nondeterminism in Context-Free Languages

Kintala observed that the obvious nondeterministic pushdown automaton accept-
ing the context-free language L = {wwR |we {0,1}*}, where wR is the reversal of w,
makes n/2 nondeterministic moves, while there is a nondeterministic pushdown auto-
maton accepting the context-free language Lo = {0"1" | n,m 20;m =n or m =2n} that
makes only one nondeterministic move. It is known that both L and L, are not deter-
ministic context-free languages. Armed with this observation, Kintala establishes a
proper infinite hierarchy of languages between the deterministic context-free languages
and the context-free languages. First, Ogden’s Pumping Lemma for context-free

languages (see [HU]) is used to show the following theorem.

Theorem 2.3.1.1: [Ki78] Let L, = {0"1°"|1<i <k)}. L, can be expressed as the union
of k deterministic context-free languages, but cannot be expressed as the union of fewer

than k deterministic context-free languages.
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To establish the hierarchy Kintala notes that a nondeterministic pushdown auto-
maton making a constant number of nondeterministic moves, where each move con-
sists of a fixed number of choices, can be simulated by another nondeterministic push-
down automaton that makes one initial nondeterministic move to choose the appropri-
ate state and then proceeds deterministically. If k-CFL denotes the class of languages
accepted by such a nondeterministic puchdown automaton making an initial k-ary non-
deterministic move, then L; € k-CFL. The following corollary to Theorem 2.3.1.1 is

immediate.
Corollary 2.3.1.2: [Ki78] 1-CFL g 2-CFL g— ce e ;: k-CFL g CFL.

Thus, as with real-time machines, Kintala has established a hierarchy of context-
free languages that is based on the amount of nondeterminism available to the

corresponding machine.

Nasyrov generalized the notion of nondeterminism available to pushdown auto-
mata. This was done by considering deterministic versions of context-free languages.
The deterministic version of a context-free language is defined by coding into the
language the nondeterministic moves of a pushdown automaton that accepts it. Let
L c(E\JA)*. Let Era(L) denote the homomorphic image of L, where for all o€ Z,
Er(c)=0 and for all € A, Er,(8)=A, where A is the empty word. The language we
are interested in is Er 5 (L), any context-free language with an alphabet Z. L is a deter-
ministic version of that language with characters from A representing the nondeter-

ministic moves of the pushdown automaton that accepts Era(L) EMNMA=D). Any
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context-free language is M (n) determinisable if there exists a deterministic context-
free language Ly < (X' A)* such that 1) Erpa(Lg) = L,and 2) forallwe Ly, (W] -
|Era(w)| <M (|Ers(w)|). Essentially, 1) says that if you remove the nondeterminis-
tic moves from L, you are left with L, and 2) says there is a bound on the number of

nondeterministic moves the machine can make.

Using this notion of determinism, Nasyrov partitions all of the context-free

languages into three types.

Type 1: Context-free languages L such that in the deterministic version Ly
there is only one nondeterministic marker at the beginning of each
word.

Type 2: Context-free languages L such that in the deterministic version Ly
there there are a constant number of nondeterministic markers in each
word.

Type 3: Context-free languages L such that in the deterministic version Ly
there are a linear number of nondeterministic markers in each word.

The Type 1 context-free languages are the same as those studied by Kintala. In
fact, Nasyrov goes on to show the same result as Kintala did for that class of
languages. Nasyrov also shows that a similar hierarchy exists for the Type 2 context-

free languages.
Theorem 2.3.1.3: [Na] If for all integers k£ >0, F denotes the class of all M(n)=k

determinisable context-free languages, then Fy g Fii-
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Nasyrov also shows the existence of context-free languages of Type 3 that are not
of Type 2. In addition, he shows that no nondeterminism hierarchy exists for context-

free languages of Type 3.

Theorem 2.3.1.4: [Na] For each context-free language L and each € >0 there exists a
pushdown automaton, A, such that L(A) =L and A is M (n) = ¢*n determinisable for all

c LE.

This result is not too surprising however. Having a linear number of nondeter-
ministic markers in a word is equivalent to a pushdown automaton having an exponen-
tial number of possible computations. Thus, even though there are rich nondetermin-
ism hierarchies for context-free languages that use only a little nondeterminism,
context-free languages that require a linear number of nondeterministic moves for

acceptance are all equivalent in some sense.
2.3.2. Bounded Nondeterminism in Finite Automata

In [KW], Kintala and Wotschke demonstrate that there is a “‘nondeterminism’’
hierarchy associated with finite automata as well. Their techniques and results parallel
some of the techniques and results Kintala and Fischer showed in relation to real-time
Turing machines. Consider any two functions r (k) and s (k) such that r (k) is o(log k)
and s (k) is o (r (k)). Kintala and Wotschke show that for any two such functions there
exists sequences of languages, L, =R, * * * ,Rp, - - and Ly=Sy,"*,Sp, -+ such that
the nondeterministic finite automaton (NFA) accepting the languages of L, make at

most r (k) nondeterministic moves and the NFA accepting the languages of L, make at




21

most s (k) nondeterministic moves, where k is the number of states in the automaton.
Thus, the NFA for L, are considerably more succinct relative to the minimal deter-
ministic finite automaton (DFA) that accept languages in L, than are the NFA for L;
relative to the minimal DFA that accept the languages of L;. Here succinctness is
measured as the ratio of the number of states of the nondeterministic automaton to the

number of states of the minimal deterministic automaton for a given language.

Let Ly, = {xly | x,ye {0,1}*%|x | <k=1;]y | =k; x has at most & 1’s in it}. Itis
this class of languages that gives the desired succinctness hierarchy. The following
lemma gives lower bounds on the number of states of the DFA accepting Ly , as well

as upper bounds on the number of nondeterministic moves made by certain NFA.
Z (k
Theorem 2.3.2.1: [KW] Any DFA accepting L ; must have at least 3, u distinct
i=0

states. Also, there is an O(k?)-state NFA accepting Ly, making at most log A non-

deterministic moves on any input.

Thus, by choosing r (k) to be o(log k) and by picking a sufficiently large £, there is
an h=2"® < k. Using this k and h, we pick L, ;. By choosing larger values for k we
obtain the sequence of languages L,. Now any function s (k), such that s (k) is o (r (k)),
yields the sequence L, and we have a hierarchy based on the economy of description

offered by the presence of nondeterministic states.
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2.4. Nondeterminism in Parallel Models

The idea of nondeterministic parallel computation is not new. Fortune and Wyllie
were among the first to study a parallel model of computation with the ability to make
nondeterministic choices [FW]. They studied parallel random access machines
(PRAMs), defined in Section 2.4.1, and showed that O(log n) time on a nondeterminis-
tic PRAM is equivalent to NP. They also showed that any problem in NP can be sped
up exponentially using nondeterministic parallelism. They point out that if such
exponential speedups ar;: not possible by applying deterministic parallelism to prob-
lems in P, one also shows that P # DSPACE(polylog).

Dymond studied the complexity classes obtained by giving two different versions
of nondeterministic hardware modification machines (NHMMs), defined in Section
2.4.2, the ability to make nondeterministic choices [Dy]. Nondeterministic hardware
modification machines are a weaker model than nondeterministic PRAMs. However,
depending on how an NHMM is allowed to make nondeterministic choices, Dymond
showed that nondeterministic HMMs obtain the same sort of exponential speed-up over
sequential time that Fortune and Wyllie showed ‘for nondeterministic PRAM:s.
Dymond also suggests definitions for nondeterministic NC (NNC) and nondeterministic

SC (NSC). He goes on to show, however, that his NNC is exactly the same as NP.

Moriya, Iwata, and Kasai show an intimate relationship between NSC and NNC
defined in terms of a more traditional computational device--the Turing machine. In

terms of Turing machines, NC is defined to be the class of sets accepted by Turing
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machines using polynomial time and a polylog number of read/write head reversals.
Moriya, Iwata, and Kasai show that a one tape NSC machine is equivalent in power to

a one tape NNC machine [MIK].

2.4.1. Nondeterministic PRAM’s

Fortune and Wyllie define a PRAM to be an unbounded set of synchronous num-
bered processors combined with an unbounded global memory, a set of input registers
and a finite program [FW]. Each of the processors has an accumulator, unbounded
local memory, and a program counter. A flag is associated with each processor that
indicates if it is running. The program consists of a number of (labeled) instructions,
where an instruction is one of LOAD, STORE, ADD, SUBTRACT, JUMP, JUMPONZERO,
READ, FORK, or HALT. The JUMP and JUMPONZERO operate on a label and change the
program counter to the associated label. A PRAM behaves nondeterministically if two
instructions have the same label. The FORK instruction allows a processor to start
another processor. The new processor’s memory is cleared and the contents of the exe-
cuting processor’s accumulator is copied into the new processor’s accumulator. The
new processor is started at the indicated label. The HALT instruction causes the proces-
sor to halt. The PRAM halts whenever two processors try to simultaneously write to
the same memory location or when the first processor executes the HALT instruction. In
the first case the PRAM rejects and in the second case the PRAM accepts only if there

is a 1 in the first processor’s accumulator.
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The three mair results of [FW] are given here without proof. The first one is
essentially the basis for the Parallel Computation Thesis which states that time on a
parallel machine is equivalent to space on a deterministic machine. The second one
demonstrates the exponential speedup obtained by nondeterministic parallelism. Cru-
cial to the proofs of both of these theorems is the fact that in ¢ steps a PRAM can start

up to 2 processors.

Theorem 2.4.1.1 [FW] A language L is accepted in polylog time on a deterministic
PRAM if and only if L is in DSPACE(polylog) and a language L’ is accepted in polyno-

mial time on a deterministic PRAM if and only if L is in PSPACE.

Theorem 2.4.1.2 [FW] A language L is accepted in O(log n) time on a nondeterminis-

tic PRAM if and only if L is in NP.

In the proof of these theorems, the PRAMs seemingly communicate an exponen-
tial amount of information through the global memory. However, Fortune and Wryllie
go on to prove that only a polynomial number of memory locations are needed to show
Theorem 2.4.1.2. Thus, restricting the amount of global storage does not yield a new
and interesting complexity class. However, in the deterministic case, restricting the
amount of global storage seems to limit what the PRAM can accept in polynomial time,

as they gave the following partial classification.

Theorem 2.4.1.3 [FW] Co-NP is contained in the class of sets accepted by determinis-

tic polynomial time-bounded, polynomial global storage-bounded PRAMs.
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Conversely, the best known upper bound for the class of sets accepted by polyno-
mial time-bounded, polynomial global storage-bounded deterministic PRAMs is

PSPACE.

The proof of Theorem 2.4.1.3 takes advantage of the fact that if two processors try
to write to the same global storage location the PRAM halts and rejects. If a PRAM
tries to accept the complement of an NP-complete problem such as Satisfiability, in
linear time it starts an exponential number of processors, each of which tries a unique
assignment of values to the variables of the given boolean formula. Since the PRAM
will halt and reject if two or more processors try to write to the same location, the
PRAM accepts sets in co-NP. If the PRAM does not halt due to conflicting simultane-
ous writes, the first processor inspects the global storage location and if something is

written there, it rejects, otherwise it accepts.

2.4.2. Nondeterministic HMM’s

In the study of nondeterministic parallel computing, Dymond has noted that for
most parallel models either the deterministic version of the machine can simulate the
nondeterministic with only a polynomial loss in time or the nondeterministic parallel
machine can achieve an exponential speed-up over a nondeterministic sequential com-
putation [Dy]. Dymond shows how two different versions of the Hardware
Modification Machine (HMM) can be used to obtain both types of results mentioned
above, thus offering a model that provides insight into why two such differing results

generally hold.
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A HMM is an infinite collection of synchronous finite state transducers, a finite
number of which are active at any given time. Each accepts k inputs, and based on
those inputs and its state, it computes an output symbol, enters a new state, and possi-
bly changes the origin of its inputs. In the deterministic case all units have the same
rransition function. As mentioned, each unit can change the source of its inputs. The
lines through which a unit gets its inputs are called “‘taps,”” and in each step a unit can
redirect any of its taps to a unit that it either already is tapping or a unit that one of its
neighbors is tapping. More precisely, unit U; can direct a tap to a unit U; if U; already
has a tap to U; or there exists another unit, Uy, such that U; has a tap to Uy and Uy has
a tap to Uj.

Initially, only one unit, Ug, is active. In one step, any active unit can activate
another unit by directing one of its taps to the inactive unit and specifying the initial
state and initial locations of the taps of the new unit. The taps of the new unit must be

placed on a unit within one of the activating unit.

Finally, a HMM has ‘‘random’” access to the input through a special fixed binary
tree structure of inactive units. This allows a unit to obtain any bit of the input in O(log
n) steps. Initially, Ug has one of its taps tapping the root of the input tree. The HMM

accepts an input if U ever enters a halting state.

Dymond defines two different nondeterministic HMM’s. The first is called
mono-NHMM since Uy is the only unit allowed to make nondeterministic moves.

These nondeterministic choices are then broadcast to other units through taps. The
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other nondeterministic HMM is called multi-NHMM since all of the units are allowed

to make independent nondeterministic moves.

An HMM, mono-NHMM, or multi-NHMM accepts a given input in time z if Up
enters a halting state before it has made ¢ transitions. Similarly, any of the machines
accepts a given input in hardware & if U enters a halting state without there ever hav-
ing been more than A units active. An HMM, H, accepts a language L < {0,1}* in time
T (n) (in hardware H (n)v) if for every w, |w | =n, H enters a halting state in time T (n)
(respectively, in hardware H (n)) and accepts if and only if w € L. This definition can
be applied to mono-nondeterministic hardware modification machines and multi-
nondeterministic hardware modification machines by the appropriate choice of the
machine H. Thus, when describing complexity classes associated with the various
types of hardware modification machines, we list the type of the machine, the resources
we are considering and then the bound on those resources. For example, mono-
NHMM-HARDWARE-TIME(n?, log n) is the class of sets accepted by a mono-

nondeterministic hardware modification machine in hardware n? and in log n time.

Dymond shows that for most time bounded mono-NHMM’s the addition of non-
determinism does not allow the machine to accept more than in the deterministic case.
He also shows that a multi-NHMM is exponentially faster than a nondeterministic Tur-

ing machine. These results are expressed formally in the next two theorems.

Theorem 2.4.2.1 [Dy] For all T(n) € Q(log n), HMM-TIME(T) = mono-NHMM-

TIME(T).
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Theorem 2.4.2.2 [Dy] For all T(n) € Q(log n), U NTIME(kT) = multi-NHMM-
k>0

TIME(T).

In the proof of Theorem 2.4.2.1, the amount of hardware grows exponentially.
Essentially the deterministic HMM makes an exponential number of copies of the non-
deterministic HMM and each copy simulates behavior on one of the possible guesses.
The proof of Theorem 2.4.2.2 is similar to our proof in the next chapter that NNC(poly)

= NP.

Dymond also considers classes with simultaneous resource bounds. He gives
equivalent definitions of the classes NC and SC in terms of HMM’s, and then defines

nondeterministic versions of these classes with multi-NHMM’s.

Definitions:

NNC = U multi-NHMM-HARDWARE, TIME(r¥, log* n).
k>0

NSC = U multi-NHMM-HARDWARE, TIME(log n, n*).
k>0

It is not difficult to show that NNC = NP. The key fact is that the NHMM can
make a polynomial number of nondeterministic choices, giving it the ability to guess
the entire computation of an NP machine. It may seem reasonable to consider the
classes obtained by replacing the multi-nondeterministic hardware modification
machines in the above definitions by mono-nondeterministic hardware modification

machines. Dymond observes that the class NSC is the same regardless of the choice of
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machines. This suggests the inherent upper bound on the number of useful nondeter-
ministic moves made by a device is directly related to its ability to write them down or
keep track of them in some manner. Similarly, with PRAMs, a nondeterministic choice
is of little value, unless it is communicated to all of the computing elements. The class
“mono-NNC”’ seems to be weaker than ‘‘multi-NNC”’. In fact, in Chapter 3 we will
show that mono-NNC is the same as NNC(polylog), a class we define in terms of non-

deterministic NC circuits.

2.4.3. Nondeterministic SC and Nondeterministic NC

Moriya, Iwata, and Kasai consider the relationship between the nondeterministic
versions of SC and NC. Both SC and NC can be defined in terms of deterministic
multi-tape Turing machines with different simultaneous resource bounds. SC is
obtained by limiting the Turing machine to polylog space and polynomial time. NC is
obtained by limiting the Turing machine to polylog read/write head reversals and poly-
nomial time. Nondeterministic versions of these classes are defined using nondeter-
ministic Turing machines. It is well-known and easy to establish that nondeterministic
SC (NSC) is contained in nondeterministic NC (NNC), although the containment is not
known to be proper. In [MIK], Moriya, Iwata, and Kasai show that if both classes are
restricted to one work tape, they become equivalent. We let the subscript denote the

number of work tapes available to the Turing machine.

Theorem 2.4.3.1 [MIK] NNC; =NSC;.
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This result is further improved by an observation made by Parberry in [Pa]. He
. notes that by a well known result, which states that any k-tape Turing machine can be
simulated by a 1-tape Turing machine (see Theorem 7.2 of [HU]), all of NSC is con-

tained in NSC;. Thus, NSC =NNC,.




CHAPTER 3

NONDETERMINISTIC NC

Fortune and Wyllie [FW] and Dymond [Dy] both show that for different models
nondeterministic NC and NP are the same. Both models, however, allow a supply of
nondeterministic choices that is limited only by the running time of the given device.
Our idea is to limit the number of nondeterministic choices a priori. We use the circuit
model as a natural means to apply Kintala’s idea of limiting nondeterminism and

develop new and interesting complexity classes.

3.1. Motivation and Definitions

By giving NC circuits a limited amount of nondeterminism, we develop poten-
tially interesting complexity classes between NC and NP as well as demonstrate their
relationship to well known DSPACE classes. Nondeterministic NC (NNC) circuits are
developed by uniformly adding ‘‘guessing gates’’ to families of LOGSPACE uniform
NC circuits. We define NNC(f (n)) to be the class of sets accepted by LOGSPACE
uniform families of NC circuits with at most O( f (n)) nondeterministic gates or guess
gates, where n is the length of the input. We will refer to a circuit from such a family

as a uniform NNC circuit, and say that such a circuit accepts an input if it outputs a 1.

-31-
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The guessing gates give the circuit a set of guessing inputs, y, in addition to the
ordinary inputs, x. An NNC circuit is said to accept x if and only if there is some string
of guessing bits y that causes the circuit to output a 1. Thus, f (n) can be thought of as
the maximum number of guess bits used in computations on inputs of length n. The
classes we study here are of the form NNC(log’c n) and NNC(n ky. We will often abuse
notation and write NNC(class) where class is a class of functions. For example, we

define NNC(polylog) = U, NNC(log* n) and NNC(poly)= U, NNC(n*). We

can refine NNC classes to include an index that indicates the depth of the circuit. For
example, we let NNC* (logj n) denote the class of languages accepted by an NCF circuit
with O(logj n) guessing gates. This definition is consistent with the notation in Cook

[Co] in that the exponent of NC indicates the depth of the circuit.

Note that NNC complexity classes share an intimate relationship with RNC, a ran-
dom version of NC. RNC circuits and NNC circuits can be thought of as computing in
exactly the same manner, but with different acceptance criteria. An NNC circuit
accepts if and only if there is at least one string of guess bits that causes the circuit to
output a 1, whereas an RNC circuit accepts if and only if at least, say, ¥ of the possible
strings of random (or guess) bits cause the circuit to output a 1. Unfortunately, RNC
circuits may use a polynomial number of random bits, thus, we can only say that RNC
< NNC(poly). This is not surprising since in the next section we will show that
NNC(poly) = NP. On the other hand, we know that any problem that has an RNC algo-

rithm using O(f (n)) random bits is in NNC( f(n)).
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One of our first goals is to determine how much nondeterminism is needed by an
NC circuit in order for the associated complexity class to be new and ‘‘interesting.’” In
the next section we will see that NNC(polylog) lies between NC and NP with neither
containment known to be proper. We also characterize NNC(polylog) in terms of
Dymond’s nondeterministic hardware modification machines. In addition, we show

that certain NNC classes are contained in certain DSPACE classes.

3.2. Relationships with Well Known Classes

We would like to find a class of functions C such that NC & NNC(C) & NP. We

begin by considering the class NNC(poly). We will show that this class is too powerful
since NNC(poly) = NP. Fortune and Wyllie [FW] obtained a similar result using a
nondeterministic PRAM model for nondeterministic NC, as did Dymond [Dy] using a
multi-NHMM model for nondeterministic NC. The advantage of the NC circuit model
has over these previous models is the straightforward manner in which the amount of
nondeterminism used in computations can be quantified. Thus, next we consider the
function log n and find that NNC(log n) is too weak, since NNC(log n) = NC. The
most interesting case is when C is the class of functions that are bounded by polynomi-
als in log n. In Chapter 4 we show a form of quasigroup isomorphism is in
NNC(polylog). Since this problem is not known to be in P and this problem is not
known to be NP-complete, the class NNC(polylog) joins P, RP, ZPP and RNC as a can-

didate for a class to separate NC and NP.
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We begin by considering the class NNC(poly). It is not hard to see that

NNC(poly) c NP.
Lemma 3.2.1: NNC(poly) < NP.

Proof. Assume the set A is in NNC(poly). Then given x, an input of length n, it is
easy to construct an NP-machine to simulate the NNC circuit. First the NP machine
computes a description of the NNC circuit that accepts words in A of length n, then
guesses the outputs of the guess gates, and then since there are only a polynomial
number of gates in the circuit, the NP machine can compute the output of each gate

including the output gate in polynomial time. [

The next goal is to show NP < NNC(poly), which implies NNC(poly) = NP. To
show this we consider a nondetehninistic one-tape Turing machine, M, that accepts a
set in NP and construct an NNC(poly) circuit that accepts inputs of a given length. For
a given input, the circuit ‘‘guesses’’ an instantaneous descriptor (ID) for each move of
an accepting computation of M on that input. An ID is a string of bits representing the
contents of the tape, the position of the tape head (written in binary), and the current
state of the machine M. Then for each pair of adjacent ID’s a small circuit verifies that
the second follows from the first via a legal move of M, based on the head position and
the state of M. Furthermore, if each pair of adjacent ID’s represent legal moves and the

state of the last ID is an accepting state the circuit accepts, otherwise it rejects.

Theorem 3.2.2: NP = NNC(poly).




35

Proof. Lemma 3.2.1 shows one direction of the theorem. We now give more

_details of the argument outlined above.

Let M be a nondeterministic polynomial time bounded Turing machine accepting
a language L in NP. Without loss of generality, we assume M has only one tape and
that every computation on inputs of length n takes ¢ (n) steps, where g is some polyno-
mial. Now consider a computation of M on input x of length n to be a table of instan-
taneous descriptors, where each ID represents the string currently on the work tape, the
position on the tape of the read/write head written in binary, and the state of the
machine (also in binary). Also, for the table to represent an accepting computation,
ID | represents the initial state of the Turing machine, ID; must follow from ID;_, viaa
transition rule of M, and the last ID, ID(,), must represent a final state of M if and

onlyifx € L.

To simulate the computation of M on x, C, first guesses every ID of an accepting
computation of M. There are O(q (n)?) bits to guess since the length of each ID is
O(q (n)) and there are g (n) ID’s. Then for each pair of adjacent ID’s there is a small
circuit for testing whether ID; follows from ID;_; via a legal move of M. If IDy is
correct, each ID follows from the previous one, and the state of IDg(s) is 2 final state,

then the circuit accepts, otherwise it rejects.

The circuit used to verify that adjacent ID’s represent legal moves of M is easy to
construct as well. In parallel, it verifies that all the bits have remained the same from

ID;_; to ID; except those in the area of the read/write head. In the area of the
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read/write head, a constant size circuit verifies that the move from ID;_; to ID; is a

legal move of M by looking it up in a table. -

Verifying ID | represents the initial state of M and verifying the state of IDy ) isa

firnl state are straightforward.

Since these circuits can be uniformly constructed, we find that for each set in NP

there is a uniform family of NNC(poly) circuits that accepts it. [

Since NNC(poly) = NP, we need to consider guesses shorter than polynomial ones
to find a new and interesting nondeterministic version of NC. As the next theorem
indicates, allowing log n guess bits does not allow the circuit to compute anything not

in NC.
Theorem 3.2.3: NNC¥(log n) = NC*,

Proof. It is obvious that NCk < NNCk(log n). We now prove the other direction.
Since there are only 221°8™ (which is at most a polynomial in n) possible different
guesses that can be made by the guessing gates, the circuit enumerates all of the possi-
ble guesses, and with duplicate copies of the NC circuit computes in parallel on each
possible guess, accepting if at least one of the copies accepts. The circuit is still of
polynomial size (although considerably larger), and the depth of the circuit is increased

only by an additional O(log n). O

Since O(log n) guess bits are too weak and polynomially many guess bits are too
powerful, we settle on the class NNC(polylog) as potentially interesting, as it is easy to

see that NC ¢ NNC(polylog) ¢ NP. We fall short of our goal, though, since none of
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the containments are known to be proper.

Next we completely characterize NNC(polylog) in terms of Dymond’s nondeter-
ministic hardware modification machines [Dy] discussed in Section 2.4.3. Dymond

introduces the class mono-NNC = ) 0 mono-NHMM-

HARDWARE,TIME(n*, logF n) as a class that “‘appears to fall properly between NP
and NC”’ [Dy]. By characterizing mono-NNC in terms of nondeterministic circuits we
establish that the mono-NHMM’s ability to modify its interconnection pattern does not
allow it to take undue a.dvantage of the nondeterministic output of the one nondeter-
ministic finite state transducer. This lends some evidence to Dymond’s statement that
mono-NNC may lie properly between NC and NP. An NC machine makes no non-
deterministic moves, a mono-NNC machine makes a polylog number, and an NP
machine makes a polynomial number. First we show how a mono-NHMM efficiently

simulates a nondeterministic circuit.

Lemma 3.2.4:

NNC¥(log/ n) € mono-NHMM-HARDWARE, TIME(poly, log™* /) n).

Proof. First we make the following simplifying assumption about the NNC cir-
cuit. We will assume that the circuit consists of levels numbered 0, 1,2 - -, such
that level O contains all of the input and nondeterministic gates, the output gate is the
only gate at level ¢, and gates at any other level will receive inputs only from gates on

the previous level.
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LetL e NNCk(logf n). We will describe a mono-NHMM, M, that accepts L. The
idea of the proof is that for inputs of length n, M deterministically builds a copy of the
circuit C,, that accepts inputs of length n and then simulates the circuit. There will be a
unit in M corresponding to each gate in the circuit. In addition, the nondeterministic
unit of M will supply a nondeterministic input to each unit representing one of the non-
deterministic gates of the circuit. As a matter of convenience we will refer to a unit

that represents a specific gate simply by mentioning the gate.

Each level of the circuit in M will have a coordinator. The coordinator for level i
initiates construction of a binary tree that allows units from level i+1 to access the out-
put of gates at level i. This binary tree is similar in construction to the one that allows
access to the inputs of M, with the coordinator situated at the root of the tree. This tree
contains taps in both directions: from parent to child and from child to parent, thus,
allowing gates on level i to move their input taps through the coordinator out to level

i—1, and allowing gates in level i +1 to move their input taps to the gates at level i.

M begins its simulation by having its one active unit start another unit that will
represent the output node of the circuit which is at level «. Since there is only one node
at this level, this node acts as its own coordinator. In the next step, the coordinator for
level £—1 of the circuit is started by the output node. The output node attaches a tap to
the coordinator of level £—1, so that later it can attach its input taps to the correct gates

at level 1—1.
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Once a coordinator for any level i is started, it then takes on two tasks. First it
starts the coordinator at level i—1, then it begins building a binary tree such that the
leaf nodes of the tree will represent gates in the circuit. The tree is built in the manner
described by Dymond in [Dy]. Once the tree is built, the gates at level i+1 move their
input taps through the coordinator at level i+1 to the coordinator at level i and then
down through the tree to the appropriate gates. This process continues until construc-
tion of the entire circuit is completed, and then the HMM begins its simulation of the
circuit.

Dymond shows how to build a binary tree of depth d in O(d) time in [Dy]. Thus,
the tree at each level can be built in O(log n) time. Since the trees are all built simul-
taneously, the dominating cost is starting the O(log* n) coordinators. After the circuit
is built and before the simulation can begin the nondeterministic unit must generate a
nondeterministic input for each of the O(logj n) nondeterministic gates. Since the time
for the simulation of the circuit is 0(logk n), the total time taken is going to be the max-

imum of this value and the cost of generating the nondeterministic bits. [

The other direction involves a simulation that is not quite as efficient. There is a

log n factor slow down.
Lemma 3.2.5: Mono-NHMM-HARDWARE, TIME(poly, logk n) ¢ NNC**1(logh n).

Proof: let L e mono-NHMM-HARDWARE, TIME(poly,logt n), and let M be a
mono-NHMM that accepts L. We will show how to construct C,, an NNCk+1 (log" n)

circuit that determines membership in L for words of length n. In this simulation, for
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each finite state transducer of M we have one subcircuit that mimics its behavior.
Essentially the subcircuit will take as input a description of the transducer, which
includes the internal state and the identity of the units its taps are receiving input from,

and then broadcast its output and move to the new state.

The circuit that simulates M has a subcircuit, §;, for each unit U; started by M.
Each S; is divided into levels, one level corresponding to each step made by U;. As the
computation proceeds, each unit of M is either active or idle. Our circuit ignores output
generated by subcircuits representing idle units. If U; is active however, at each level
S; receives as input the new state of the unit, the location of its taps and the output of
all of the units from the previous step. After determining which inputs to discard and
which to keep, S; looks up in the transition table what state it will move to and where
each tap will be attached for the next step. If U; activates another unit U;, S; initializes
the state and tap information of S;. Once §; is activated S; broadcasts its output to the
subcircuits on the next level, and it passes along state and tap information to the next

level of subcircuit that will compute the next step for S;.

There will be one subcircuit §¢ computing for the nondeterministic unit. Sy may
be faced with more than one possible next move. Since the number of possible moves
from any state is bounded by a constant, using a constant number of nondeterministic
bits, S guesses which move to make, otherwise the behavior of this subcircuit is the

same.
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Since So may have to make a nondeterministic choice at every level, the circuit
needs O(log® n) guessing gates. Unneeded guesses are ignored. It takes constant time
to look up a move. Each level of a subcircuit must sift through a polynomial number of
outputs from the previous step, thus, deciding which values are needed for its taps takes
O(log n) time. Since this is done once on each of 0(log’c n) steps taken by M the total

depth of C, is O(log"**! n). O
Theorem 3.2.6: NNC(polylog) = mono-NHMM-HARDWARE,TIME(poly,polylog).

Proof: This follows directly from the definition of NNC(polylog) and Lemmas

3.2.4and 3.2.5. O

It is interesting to note that Theorem 3.2.6 does not seem to generalize to other
classes. For example, NNC*(n?) < mono-NHMM-HARDWARE,TIME(poly, n*) for
e<1. However, it is not clear that mono-NHMM-HARDWARE, TIME(poly, n) is
contained in NNC¥(n®) for any k and for some €, d<1. The first containment follows
since n® is much larger than logn and thus, initializing the nondeterministic gates
becomes the dominating cost. The strongest statement we are able to make about a

reverse containment is the following.

Lemma 3.2.7: mono-NHMM-HARDWARE,TTME(na,nE) c NNC!(n"Y) where 8,e<1

and y=9+¢€.

Proof: The proof of this lemma differs somewhat from the proof of Lemma 3.2.5.

It is similar, though, to the proof of Theorem 3.2.2.
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Let L € mono-NHMM-HARDWARE,TIME(n®,n®) be accepted by the mono-
NHMM machine M. We will build a circuit C,, that accepts words in L of length n.
Since M has a sublinear number of units and each makes a sublinear number of moves,
C, can simply guess the state and the values output by each unit at every step of the
computation. Then, in a manner similar to Theorem 3.2.2, C, can verify in O(log n)

depth that all of the moves are consistent.

The amount of information guessed for one step of one unit’s computation is con-
stant. For each unit O(n®) guesses are made. Thus, since there are O(ns) units,

v=39+¢ suffices. O

Next we establish a relationship between NNC classes and DSPACE classes that
is instrumental in our result of the next chapter that the quasigroup isomorphism ques-
tion is decidable in DSPACE(log2 n). Lemma 3.2.8 shows that NNC(polylog) circuits
that are deep and require little guessing and NNC(polylog) circuits that are shallow and
require much guessing can both be simulated by a deterministic polylog-space bounded
Turing machine. By virtue of Theorem 3.2.6, this result also shows that mono-
NHMM-HARDWARE, TIME(poly,polylog) is in DSPACE(polylog), an observation
not made in [Dy]. Using the more refined definitions of NNC complexity classes, this

result is stated more formally as the following lemma.
Lemma 3.2.8: For all £,/ > 1, NNC*(log/ n)  DSPACE(log™ n), where m = max{k, j}.

Proof. The deterministic Turing machine that simulates the NNC circuit begins

by counting the number, N, of nondeterministic gates in the circuit. The Turing
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machine then writes the lexicographically first bit string, B, of length N on a work tape.
Using a technique presented by Borodin [Bo] the Turing machine simulates the circuit
by recursively evaluating first the left input and then the right input of a given gate,
starting with the output gate. (I.e, the Turing machine does a depth first search of the
circuit starting at the output gate.) At any time the Turing machine need only keep
track of the status of each gate (which input is being computed and the value of the
other input if it is known) on a path from the output gate to an input gate or a nondeter-
ministic gate. If the name of a gate is ever needed, it can be recomputed using the
status of each gate on the path starting with the oﬁtput gate. Note that we store only a
constant amount of information for each gate on the path and that we have at most one
path active at any time. We continue this recursive procedure until a nondeterministic
gate is encountered, at which point the computation is temporarily stopped. The name
of this gate is written on a work tape, then M counts the number of gates, %, that pre-
cede it in the circuit description. Next M retrieves bit k£ + 1 of B and uses it as the out-
put of the current nondeterministic gate. If the circuit accepts, the Turing machine
accepts, otherwise the Turing machine increments B and repeats the process until all

the bit strings of length N have been tested.

For k=, the depth of the circuit is larger than the number of nondeterministic
bits, therefore the Turing machine is given enough space to simulate the circuit. For
j =k, the bit string requires more space than does the simulation of the circuit, so the

Turing machine is given enough space to write down the bit string. In both cases, the



Turing machine has enough space to complete both tasks. O

Corollary 3.2.9 is an obvious consequence of Lemma 3.2.8 since NNC(polylog) =
Uk21 szl NNCk(logj n).
Corollary 3.2.9: NNC(polylog) = DSPACE(polylog).

It would be desirable to show that either NNC(polylog) = DSPACE(polylog) or
that NNC(polylog) & DSPACE(polylog). With this goal in mind, we present the fol-

lowing lemma which begins to explore similar relationships between NNC(poly) and

DSPACE(poly).
Lemma 3.2.10: For all k&, NNC(n*) = DSPACE(n*).

Proof. Since n* grows much faster than any polylog function, use the construc-

tion of Lemma 3.2.8. ]

As in the polylog case it would be desirable to show that for somek,
DSPACE(rn*) c NNC(n*). However, this containment is unlikely as the next lemma

and theorem indicate.

Lemma 3.2.11: If there exist integers £ and j such that DSPACE(nk) c NNC(nj ) then

for all r there is an integer s such that DSPACE(n") < NNC(n®).
Proof. The proof of this claim is via the familiar translation technique (see [HU]).

Let L, be any language in DSPACE(n"), and let M ; be an n” space-bounded Tur-
ing machine accepting L;. Let # be a symbol not in the alphabet of L, and let L, =

(x#' | M 1 accepts x using (x| + i space}. Thus, we construct a Turing machine M,
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such that on input x#!, M, marks off (x| + ik tape cells and then simulates M. M,
accepts x#* if and only if M, accepts x, and it does so using (lx| + ik tape cells. Thus,
Ly is in DSPACE(n/‘), and by hypothesis L, is in NNC(nj). Let C, denote the

NNC(n/) circuit that accepts the input x#t e L.

Next we describe an NNC(rn*) circuit, C, that accepts words in L, of length n.
On input x of length n, Cy guesses an i. Next C simulates C, on x#, and C accepts
if and only if C, accepts. Since |i]is O(n") and C, guesses O((n +i)Y) = O(n") bits,
we let s = r-j. Also note that the depth of C is no more than that of C, and that the
number of gates in C, (and thus, C) is polynomial in jx|" and thus, polynomial in |x|.

Therefore we have an s such that DSPACE(n") € NNC(n*). J

Theorem 3.2.12 presents strong evidence that the containment in Lemma 3.2.10 is

proper.

Theorem 3.2.12: If there exist k and j such that DSPACE(n*) ¢ NNC(n/) then

PSPACE = NP.
Proof. From Theorem 3.2.2 we know that NP = NNC(poly) = Uk>1 NNC(n"),
and by definition PSPACE = Uk>1 DSPACE(n*). Since Lemma 3.2.11 under the

same hypothesis as this theorem states that for all r there is an s such that
DSPACE(n") ¢ NNC(n®), we have PSPACE ¢ NNC(poly) = NP, giving the desired

result. [J

Theorem 3.2.12 provides some information about whether NNC(n*) is properly

contained in any DSPACE(n/) class. It would be desirable to find similar information
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concerning the containment of NNC(log" n) classes in DSPACE(logj n) classes. Doing
so, however, seems unlikely since DSPACE(log n) € NC=NNC(log n). Thus, to
show a result such as ““If there exist k and j such that DSPACE(log* n) ¢ NNC(log/ n)
then an unlikely collapse’” would require developing a proof technique that forces the
unlikely collapse for & =2 but does not force the collapse for £ =1. Unfortunately, even
the need for such a peculiar proof technique gives us little insight into whether or not

NNC(polylog) is properly contained in DSPACE(polylog).




CHAPTER 4

PROBLEMS IN NNC CLASSES

In this chapter we show that NNC(polylog) contains some nontrivial and interest-
ing problems. These problems are all related in that the running time of their best
known sequential algorithms is n'°82"+*9()_ These algorithms have this time bound
because they enumerate the O(n'°8™) possible solutions and then determine if any are
correct. We take advantage of two traits shared by all of these problems. First, they all
have some short (polylog) guess that will lead to a correct solution, and second, for
each problem it can be determined quickly in parallel if a guess leads to the correct

solution.

We present three types of problems. The first group contains problems artificially
contrived from problems in NC. The second group consists of problems that are res-
tricted versions of NP-complete problems. And the final group contains the group and
quasigroup isomorphism problems and some related problems. The restricted NP-
complete problems seem to be easier to decide because the verification phase can be
done in NC!. This seems to be the case for all restrictions of NP-complete problems
where the restriction shrinks the solution search space since, as seen earlier,
NP < NNC!(poly). The problems related to the group isomorphism problem, however,

all seem to need an NC? verifier, and the verifier for a problem contrived from a

-47 -
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problem in NC depends on where in the NC hierarchy the problem lies.

4.1. Generalizations of Problems in NC

Adapting the approach of Alveraz, Diaz and Toran used to develop complete
problems for Pyygk , [ADT], we add a ‘‘guess’” part to a language in NC, thus, keeping
it in NNC(polylog) while making it seem likely that it is not in NC. This is a straight-
forward exercise, but it is useful since it demonstrates that the NNC classes are not
sparsely populated and furthermore suggests possible candidates for complete prob-

lems. We will look at one such extension here. Let

CFLf = {<G,w>| G is context free grammar and w € X*, where X is the

terminal alphabet for G, and there a string x such that
|x | <[logk |w || and the string wx is generated by G)

Theorem 4.1.1: CFL* is in NNC?(log n).

Proof: This follows since context free language recognition is in NC? [Ru80], and

the string x can be guessed by the nondeterministic gates. []

This technique can be applied to languages in NC* to obtain other languages that

are not likely to be in NC¥, but still are in NNC*(polylog).

4.2. Restrictions of NP-complete Problems

In this section we show that NNC! (polylog) contains natural nontrivial problems.
The first problem is a restriction of the maximum clique problem. It involves finding a

dominating set in a tournament.
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Definition: A rournament is a directed graph T =(V,E) where every two distinct ver-
tices u,v € V are connected by exactly one edge, that is, |E (M { (u,v),(v,u) }| = 1. If
the edge is (u,v) then we say that ¥ dominates v.

A dominating set, S, in a tournament is a set such that every node in V is either in

S or is dominated by a node in S. The following fact is attributed to Erdos by Megiddo

and Vishkin in [MV].

Fact: If T is a tournament with n 22 vertices, then the size of the minimum dominating

setin T is Sflogz nl.

Proof. Let d(v) denote the outdegree of v. Clearly Y d(v)= _’1_912:'_11 By the

veV

pigeon hole principle there must be at least one node that dominates fn;l] nodes.

Place this node in the dominating set. Now remove that node and all of the nodes it

. . n .
dominates from 7. The resulting tournament has no more than > nodes. This pro-

cedure can be applied at most [log, n] times, generating a dominating set of the

appropriate size. []
Thus, finding a dominating set in a tournament is in NNC! (log2 n).

Theorem 4.2.1: Given a tournament T and an integer k, the set {<T,k> | T has a dom-

inating set of size <k} is in NNC! (log2 n).

Proof. We will construct an NNC! (log2 n) circuit that accepts inputs of length n

in the set. It begins by guessing a dominating set. Once the dominating set is in hand,
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there is a small subcircuit for each vertex in the tournament that verifies that either the
 vertex is in the dominating set or one of the nodes that dominates it is in the dominating
set. This can be done easily with an NC! circuit since equality can be tested in NCt.
Now since the size of the smallest dominating set is no more than [logy nl and the
length of the name of each vertex in the tournament is O(log n), the circuit only guesses

0(log2 n) bits of information. [J

Megiddo and Vishkin show that by enumerating all of the possible dominating
sets it is easy to decide in n© 198" sequential time whether or not a tournament has a
dominating set of size less than or equal to k [MV]. No polynomial time algorithm is

known to exist for this problem.

Megiddo and Vishkin also study a restricted form of the satisfiability problem.

This version, defined next, also has a best known sequential running time of n O logn),

Definition: Let C be a fixed constant. A satisfiable formula ¢ is said to be in CNF-
SAT(log" n) if ¢ is in conjunctive normal form and the number of variables in the for-

mula is bounded by C-log* n, where n is the number of clauses.
Theorem 4.2.2; Forevery k21, CNF—SAT(log" n) is in NNC! (log" n).

Proof: Again we construct a circuit to accept inputs of length n. Since there are
O(log* n) variables, the circuit guesses a value for each. Then for each clause a subcir-
cuit verifies that at least one variable is true, and a final AND gate verifies that each
clause has at least one true variable. Since the subcircuits essentially test equality they

can easily be implemented in O(log n) depth. OO
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4.3. Quasigroup Isomorphism

Since Miller [Mi] has shown the quasigroup (Latin square) isomorphism problem

. . . 2 . .
logyn+0(1) sequential algorithm, and since n'°82" = 2982 " this problem is a

has an n
natural candidate for being in NNC(log? n). Lipton, Snyder and Zalcstein [LSZ] have
a DSPACE(log? n) algorithm for group isomorphism, but, as Miller [Mi] points out,
their technique relies on the associativity of groups and does not readily generalize to
quasigroups. Miller goes on to present a more general technique requiring 82" *+ ()
time for the quasigroup isomorphism problem. In this section we show that quasigroup
isomorphism, Latin square isotopism and Latin square graph isomorphism can all be
decided in NNCz(log2 n). As a result of the relationship between NNC(polylog) and
DSPACE(polylog) demonstrated in the previous chapter, we develop an
DSPACE(log:2 n) algorithm for the quasigroup (Latin square) isomorphism problem.
This is a previously unknown space bound for this problem (see [Mi]). We also show
that problems closely related to the quasigroup isomorphism problem are also in

NNC2(10g2 n), and, thus, in DSPACE(log2 n). For review we give the definitions of

Latin squares, groups and quasigroups.

Definition: A Latin square is an nxn grid with each of the integers 1,2, -, n

appearing exactly once in each row and column.

If each of the integers 1,2, -+, n appears as a label for exactly one row and
exactly one column then the Latin square can be viewed as a multiplication table of a

quasigroup. We formalize the definitions of groups and quasigroups by considering the
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following four properties of a set Q with an associated binary operation *.

Foralla, b, ce Q:
1. There is a unique x such that a*b = x.
2. There is a unique x such that a*x = b.

3. There is a unique x such that x*a = b.

4. (a*b)*c = a*(b*c).

Definition: Q is a quasigroup if * satisfies properties 1, 2 and 3.
Definition: Q is a group if * satisfies properties 1, 2, 3 and 4.

Thus, a quasigroup is more general than a group. In this section we view a quasi-
group of order n as a binary function on {1, 2, - - -, n}, so that the corresponding multi-

plication table is a Latin square.

Viewing Latin squares L and L’ as trinary relations <,, > and <,, >, L is iso-
morphic to L’ if there exists a permutation ¢ such that if <x,y,z> € L then
<0(x),6(y),0(z)>" € L’. Two quasigroups are isomorphic if their corresponding Latin
squares are isomorphic. A more general notion of an isomorphism is an isotopism. L
is isotopic to L’ if there exist permutations @, B,y such that if <x,y,z> € L then
<o(x),B(y),¥(z)>" € L’. Thus, an isomorphism simultaneously interchanges rows,
columns and values in L to get L', and an isotopism independently interchanges rows,
columns and values  ~ to get L’. Miller [Mi] showed that quasigroups of order n are

generated by at most ., n elements, and we take advantage of this fact to develop the
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circuit for quasigroup isomorphism testing, Latin square isotopism testing, and Latin
square graph isomorphism testing. Since quasigroups are more general than groups,
our construction also shows group isomorphism is also in NNC?(log? n). Note that we
assume that quasigroups are presented as their corresponding Cayley (multiplication)

tables.

Before getting to the main results of this section we develop a useful representa-
tion for elements of quasigroups in terms of generators. A generating set is a subset of
the quasigroup such that every element in the quasigroup can be expressed as a product
of elements from that set. Since quasigroups are not necessarily associative, when an
element g € Q is written as the product of generators from a particular generating set, it
must be fully parenthesized, for example, ¢ =(((g1*g2)* (g3*g2))*g3). We associate
with ¢ € Q the parse trees of all such expressions with internal nodes representing mul-
tiplications and leaves representing generators. If g is in the generating set, then g is
represented by a tree consisting of a single node labeled g. If ¢ is not in the generating
set and g =p*r, then q is represented by a tree where the root represents the multiplica-
tion between the element represented by the left subtree (p) and the element
represented by the right subtree (r). This definition gives infinitely many representa-

tions for each element in Q, necessarily including some very large representations. We

will show that every element in the quasigroup has a tree of small depth! that

! The depth of a node is the number of edges between it and the root. The depth of a tree is the
maximum depth of a node over all nodes in the tree.
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represents it, then the large representations will not hinder us.

Before showing that each element has a shallow representation we develop some
notation, establish some facts about quasigroups and their associated multiplication
tables, and state some assumptions. Let depth(q) be the depth of the shallowest tree
representing ¢ € Q. Note that the depth an element in the generating set is 0. Since Q
= (1,2, - -+, n} we assume that the elements are listed so that their depths are nonde-
creasing. Namely, for all i, j € Q, if i </ then depth (i) <depth (j). Let M denote the

multiplication table for Q, and let M denote the upper left hand kxk portion of Q.

There are two important facts to keep in mind about quasigroups with these pro-

perties.

Fact 1: If r is the maximum element of depth d, then no element s such that

depth (s)=d+2 appears in M,.

Fact 2: If depth (n)=d then for every depth between 1 and d there is at least one ele-

ment of that depth.

Fact 1 is true because if such an s did appear in M, the depth(s)<d+1. Fact 2
holds since an element of depth i >0 is the product of two elements at least one of

which has depth i - 1.

We introduce the following notation to help show that for certain elements there
is another element about twice as large that is only slightly deeper. Letby, ba, -+, bk
be the elements of depth d and ¢y, ¢4, - - -, ¢y, e the elements of depth d +1 arranged

in increasing order. As a notational convenience, we let M, refer to My, and M, refer
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to M,,. We also refer to elements up to by as “‘small”’ elements and elements strictly
larger than by as ‘‘big’’ elements.

For a fixed b, we use Diagram 1 to help clarify our argument.

We will show by some counting arguments that if there is an element / with

depth (1) <depth(b1)+2 then [ is about twice the size of b,. In order to show the

12 v blbz.-.bk clcz...cm o e n

—

R S T

Diagram 1. Subtables of M.
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existence of such an /, we show there exists a column in T\UW\UZ with many big ele-
ments. This happens only when there are a few small elements in TUW\UZ. It is easy
to give upper bounds on the number of small elements in W and Z. In order to show
that only a few small elements occur in T we prove that only a few big elements appear
in S. By Fact 1, we know that only the elements 1,2, - - -, ¢, can appear in R\US.
Furthermore, ¢y, c,, - **, C, cannot appear in R. To establish upper bounds on the
number of small elements in T, we show that there is at most one small element in T for
each big element in S. We then prove an upper bound on the number of big elements in

S to obtain an upper bound on the number of small elements in T.

The following lemma establishes an upper bound on the number of small elements

that occur in T\UWUZ.

Lemma 4.3.1: If the number of big elements in S is at most m'k. Then there are at

most 2m-k +m? small elements in T\UW'UZ.

Proof. First note that W is a kxm subtable. Thus W has at most m-k small ele-

ments. Similarly, Z is an mxm subtable and has at most m? small elements.

Next we consider the rows of R\US\UT. By Fact 1 all of the values in M), are no
larger than c,. If R\US were filled entirely with small values then none of the ele-
ments of T would be small. For each small element that does not appear in RUS there
must be some ¢; in S. (Recall that by Fact 1 no ¢; can appear in R.) Thus, each big ele-
ment in S causes at most one element in T to be small. Since there are at most m-k big

elements in S, there are at most mk small elements in T. Thus, the total number of
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small elements in T\UW'\UZ is no more than 2m-k +m2. O

The next lemma shows the existence of an [ that is not too much deeper than b,

yet it is about twice as large as b;.

Lemma 4.3.2: If there exists a column of T\UW\UZ that contains at most 2k +m small

elements then there exists an / such that [ 2 2b -2 and depth (I) <d+2.

Proof. Each column of T\UW\UZ has c,, elements. Assume that column c; of
T\UW\UZ has at most 2k+m small elements. Since T\UW'UZ is part of the multpli-
cation table for a quasigroup, each of the elements in column ¢ ; must be unique. The
remaining c,, —2k —m slots must be filled with elements of the quasigroup whose
values are at least ¢;. By simply counting we find that we are forced to place an
[>2c,+¢p—2k—m—1 into column ¢; in TUWUUZ. Note that ¢; = bi+k+i-1.
Thus / 22b, —2. Furthermore, since [ appears in M., depth(l) <depth(c;)+ 1=d+2.

O

Now we prove a lemma which implies that the depth of each element does not

grow too rapidly relative to its value.

Lemma 4.3.3: For all ¢ € Q such that ¢23 and depth(q) > depth(q—1) either

2g —2 > nor there exists an [ € Q such that depth (I) <depth(q)+2 and | 229 -2.
Proof: Pick any g =3 such that depth(q)>depth(q—1) and 2g—2<n. Let

bi=q, and let depth(b{)=d. If k+m=b; -3 then depth(k+m+1)<d+2. So

assume that k+m <b;—3. We will use the argument outlined above. We want to
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show there is a column in T\UW\UJZ with only a few small elements. First we show
that there are at most m-k big elements in S. By Fact 1, M, contains only elements up
t0 Cp, thus the big elements in S are between ¢ and c,,. Since each ¢; can appear at

most once in each column, a total of at most m-k big elements appear in S.

Now by an application of Lemma 4.3.1, we know that there are at most 2m-k +m?

small elements in T\UW\UZ. Since there are m columns in T\UWUZ, there is at least
one column that has no more than 2k +m small elements. An application of Lemma

4.3.2 gives the desired result. [

4

Unfortunately Lemma 4.3.3 does not apply to all elements in Q. Next we build a
series of elements g; with the property that depth(a;)=depth(a;—;)+1 and
depth (ag)=1. Each g; corresponds to a different b;. If G is the generating set for O
that is being used to build the trees and |G |=g, then Fact 2 tells us that
ag2g+1,a;2g+2, and a,2g+3, and by Lemma 4.3.3 a; 22a,_3—1. Next we

establish a lower bound for a;.
Lemma 4.34: Letag=2g+1,a,2g+2,a,2g+3, and g, 22a;,_3—1 for k=23. Then
for k23 and k=0(mod 3), @ 2g23+1, @ 2@+12¥3>+1, and
Arig 2 (g +2)2F3 +1.

Proof: The proof is by induction on k. For the base case let k£ =3.

a3 22ap-122g+1=g2' +1.

as22a;-122g+3=(g+ 12 +1.
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as22a,-122g+5=(g+2)21 +1.
For the inductive step assume the lemma holds for all k </ and that / =0 (mod 3).
By assumption a¢;_3 2g-2¢"3 +1. Since q;22q;3-12 2284y -1 =
g-2” 3 +1 we have the desired result for ;. A similar construction works for @;,; and

aryp. U
Next we show explicit upper bounds on the depths of the a;.
Lemma 4.3.5: If the g are as in Lemma 4.3.4 then depth (a;) < 301 log, a;;l +1.

Proof: We prove the result for £ =0 (mod 3). The proofs for the other two cases

are similar.
Since depth (ay) = depth (ay_1)+ 1 and depth(ag)=1, depth (a)=k + 1. Thus

Mogy ad +1=3[log, (823 + 1] +1
> 3[log, @3) +1
2k+1

= depth (a;).

We now come to the main result about representing elements of quasigroups in

terms of the generators.

Theorem 4.3.6: Let Q be a quasigroup of order n 24 with G = {g1, 82, * -, gk} gen-
erating Q. Assume that the elements of Q are ordered so that their depths are nonde-

creasing. Then for the generating set G depth (n) <3 flogp_ nl +1.
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Proof: We consider the series of g; described above. Let anax be the largest ele-
ment of this series. Obviously, @ . $n. Also, since apna is the largest element that

has depth exactly one more than its predecessor, depth (n)=depth (@ max). By Lemma

4.3.5, depth (n) = depth (@ max) < 3[1082 Amaxl +1<3(loga nl +1. O

With this shallow tree representation of elements of a quasigroup, we now can

show that quasigroup isomorphism can be accepted with an NN C?(log? n) circuit.

Theorem 4.3.6: Given two multiplication tables M| and M ,, representing the quasi-
groups Q1 and Q,, respectively, the set {(Q1,Q,) | Q is isomorphic to @3} is in

NNC?(log? n ), where n is the order of the two quasigroups.

Proof. We first give a general overview of the circuit that tests for the isomor-
phism, and later we give a more detailed construction. The circuit to test the isomor-
phism begins by guessing two sets of generators G for @ and G, for Q; in parallel.
We will assume that G and G, are ordered in some manner and that order determines
the isomorphism, i.e., the i element of G, is mapped to the i element of G,. Next
in parallel the circuit verifies that G generates Q, G, generates Q,, and that the
mapping guessed is an isomorphism. Verifying G; generates Q; involves two general
steps. First, elements that are known to be generated by the generators are marked as
being in the quasigroup, with the guessed generators marked initially. Second, in
parallel each marked element of the quasigroup is multiplied by every marked element
of the quasigroup, generating more elements known to be in the quasigroup. To verify

the guessed mapping is an isomorphism the circuit performs two tasks in parallel.
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First, in parallel for each pair of elements g, he G, the circuit tests whether g and A
are the same, and if so, it verifies that their images in G, are identical. Second, in
parallel for each pair of elements g, he G, the circuit tests whether g and k are the

same, and if so, it verifies that their preimages in G, are identical.

We now provide more details of the isomorphism testing circuit. Miller [Mi] has
shown that a quasigroup of size n has at most log, n generators, and we note that each
generator is log, n bits long, thus, the circuit has 2-log22 n guessing gates, half of which
are used to guess G 1, the set of generators of 01, and the rest are used to guess G, the

set of generators of Q5.

To verify that G; does generate Q; we use the following subcircuit with
3{log, nl +1 levels. An identical circuit will verify G, generates Q,. Each level of
the subcircuit corresponds to a copy of the multiplication table of O, and the i*h level,
level;, computes all the elements of Q; that can be expressed as the product of at most
2/ elements of G. In order to do this, level; receives from level;_; all of the elements
of @, that can be expressed as the product of at most 271 generators, and then in
parallel multiplies each of those elements by every element it received from the previ-
ous level by looking up the product in the input multiplication table. Instead of receiv-
ing inputs from the previous level, level receives inputs from the guessing gates, as
the generators are the only elements of 0 that can be expressed as the product of at
most one element of G ;. After the final level, a check is made to insure that all of the

elements of Q| have been generated.
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From Theorem 4.3.6 we know that each element in a quasigroup of order n has a
tree with depth no more than 3{log, nl +1 representing it. Thus, after 3{log, nl +1 lev-
els either all of the elements are generated or G; is not a generating set for Q;, and
therefore there are only O(log n) levels in the circuits that verify G; generates ;. At
each level, there are at most n2 multiplications taking place, with each multiplication
requiring an O(log n) depth circuit with polynomial size. Since there are O(log n) lev-

els, we have an overall depth of O(log? n), and the overall circuit size is polynomial.

To verify that the guessed mapping is an isomorphism the circuit checks that the
mapping between the from the elements of the first generating set to the elements of the
second generating set is well defined, namely both one-to-one and onto. If this map-
ping is well defined then the mapping implies an isomorphism between the two quasi-
groups since each element in a quasigroup can be written in terms of the corresponding
generators. Let G{ = (21,82, " ", &), and let G = {hy, ha, * -+, b}, The circuit
verifies for all 1<i,j <k if g; = g; then h; = hj, and if h; = h; then g; = g;. Since there
are log; n elements in each G;, there are log,? n pairs that must be tested. Each test can
be computed by an O(loglog n) depth and O(log n) size circuit. Thus, quasigroup iso-

morphism is in NNC?(log? n). O

If we let L be the Latin square associated with 0, and L’ be the Latin square asso-
ciated with Q, in the previous proof, then we can view the guessing of the generating
sets as the guessing of a permutation ¢ that for all x,y,z € G takes triples <x,y,z>€ L

to triples <o(x),0(y),0(z)>" € L’. Now © can also be applied to elements of 1 not in
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G if they first are written as the products of generators. To show Latin square isoto-
pism is in NNCz(log2 n) we guess three permutations o, B, y from three generating sets
of L to three generating sets of L’ and show that if <x,y,z> € L, then
<a(x),By),Yz)>"e L.

Theorem 4.3.7: Given two Latin squares L and L’ as lists of triples of the form
<a,b,c> and <x,y,z>’, respectively, then the set {(L, L") | L is isotopic to L'} is in

NNC? (log2 n), where n is the size of the two Latin squares.

Proof. To show two Latin squares are isotopic we need three surjective functions
between L and L. The circuit begins by guessing subsets A, B <L and subsets
A,B'cL. LetA=({aj,az - -,ac},B={by,bo, -+, b}, A ={a"y,a2, - ,ad%}
and B’ = (b'y, b, -+ +, b}, where k=[logy nl. Let C = {a *b,,az*ba, -+, a*by),
and C’ = {a@’1*'b"1, d'o*'Vy, - -+, a’y*' b}, where * and * are the appropriate binary
operators for the respective quasigroups. If we show that A, B and C each generate L
and that A’, B’ and C” each generate L', then we can find the surjective maps needed to

take L to L’ as follows:
o: ForxelL, if x=a; then alx)=4a’;.
Else if x =y*z then o(x) = o(y)* ou(z).

B: Forx eL, if x =b; then B(x)=b;.
Else if x =y*z then B(x)=Py)*'B(2).

v: Forx €L, if x =a;*b; then y(x)=a’;*b’;.
Else if x =y*z then Y(x) =Yy )*"Y(2).
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Thus, we need only test that each of o, P and y is well defined on A and A’, B and
B’, and C and C’, respectively. Using a circuit similar to the one used in deciding
quasigroup isomorphism we find that Latin square isotopism can be decided by a cir-
cuit with O(log? n) guessing gates and O(log? n) depth. Thus, Latin square isotopism is

in NNC2(log? n). O

Latin squares give rise to a special class of graphs called Latin square graphs. A
Latin square graph consists of n? nodes, one corresponding to each of the triples of the
Latin square. Two nodes <x,y,z> and <u,v,w> are adjacent if x=u, y=v or z=w.
Namely, two nodes are adjacent if they are in the same row or column of the Latin
square or if they share the same value. Thus, Latin square graphs of size n consist of
3-n n-cliques.

To show Latin square graph isomorphism is in NNC%(log? n) we need another
notion of isotopism. Two Latin squares L and L’ are conjugate if <xq,x9,x3>€ L
implies <X 1y, Xo(2)» Xa3)> € L', where aLis a permutation in S3. L and L’ are main
class isotopic if we can get from L to L’ by a conjugation and an isotopic map. Since
there are only six permutations in S3, main class isotopism can be decided in
NNCz(log2 n) by giving the circuit that decides isotopism the ability to guess which
one of the six permutations in S3 to use. The next result from Miller [Mi] gives the

relationship between Latin squares and Latin square graphs.

Lemma 4.3.8: [Mi] Let L and L’ be two Latin squares and G(L) and G(L") be the asso-

ciated Latin square graphs. L is main class isotopic to L if and only if G(L) is iso-
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morphic to G(L").

In Lemma 4.3.9 we give a means to retrieve the Latin square from a Latin square
graph with a circuit with depth no more than O(log® n) depth. The algorithm given is
the obvious parallelization of Miller’s sequential algorithm that does the same thing in
O(n3) sequential time.

Lemma 4.3.9: We can retrieve the Latin square from the Latin square graph with a

polynomial sized circuit with depth less than O(log? n).
Proof. Let L(l;;) be an nxn matrix used to store the Latin square.
(1)  Pick two adjacent nodes x; and x5.

(2) In parallel find the n nodes adjacent to both x; and x3. All but two of the nodes
form an n-clique with x; and x,. In parallel, label each node in the clique
X3, ", X,. Onenode not adjacent to any of x3, * * -, X, is labeled y 5.

(3)  Associate m1; with x;, and in parallel set m; to J-
(4) Inparallel find the clique associated with x; and y,, {x1,y2,¥3, """ Ynl

(5) Each x; shares an edge with some y;, 2<i,j<n. Order the y;’s so that x; shares
an edge with y;.

(6) Associate m;; withy;, and in parallel set m;; to jfor2<j<n.
J J J

(7) In parallel for each of the (n ~1)? remaining nodes z of the graph:

a) If z is adjacent to x; then z is adjacent to a unique y; and a unique X;,
2<i,j<n. Setm,-j to 1.

b) Else z is not adjacent to x1, and there are unique integers i, j and k such
that z is adjacent to x;, y;, X, and y. Set m;; to k.
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Each of the steps can be computed by an O(log n) depth circuit with a polynomial
number of gates, thus, the Latin square can be easily retrieved from the Latin square
graph. [J
Theorem 4.3.10: Given two Latin square graphs G; and G, the set
((G1,G4) | G is isomorphic to G,} is in NNC?(log? n), where n is the size of the
associated Latin squares.

Proof. This follows directly from Theorem 4.3.7, Lemma 4.3.8, Lemma 4.3.9 and

the definition of main class isotopism. (J
We now reach the main result of this section.

Theorem 4.3.11: Quasigroup isomorphism, Latin square isotopism and Latin square
graph isomorphism are in DSIPACE(log2 n).
Proof. This follows directly from Theorem 4.3.6, Theorem 4.3.7, Theorem 4.3.10

and Lemma 3.2.8. [




CHAPTER 5§

NONDETERMINISTIC AC

Perhaps the central question in complexity theory is, ‘‘Does nondeterminism
| help?”’ Kintala and Fischer showed that in the case of real-time Turing machines it
does help [KF]. In this chapter we answer this question positively for constant depth
circuits. We do this by applying some powerful lower bound results developed by
Ajtai [Aj), Furst, Saxe, and Sipser [FSS], Hastad [Ha], and Fagin, Klawe, Pippenger,

and Stockmeyer [FKPS].

5.1. Definitions

We begin by defining a nondeterministic version of ACF. Recall that ACF is the
class of languages accepted by LOGSPACE uniform families of polynomial size,
1ogj‘n depth circuits with unbounded fan-in ‘‘AND’’, and ‘‘OR’’ gates. We define
NAC¥ to be the class of sets accepted by LOGSPACE uniform families of ACF circuits
with O(f (n)) nondeterministic gates, where n is the length of the input. A circuit from
such a family is called a uniform NACF circuit and such a circuit accepts an input if
and only if it outputs a 1 on that input. As is the case with nondeterministic NC cir-
cuits, the guessing gates give an NAC circuit a guessing input, y, in addition to the

ordinary input, x. An NAC circuit accepts x if and only if there is at least one string of

-67 -
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guessing bits y that causes the circuit to output a 1. All circuits are considered

LOGSPACE uniform.

It is well known that AC*™! ¢ NC* ¢ AC* for all k21, and thus, AC = NC.
Essentially, the proof of the first containment relies on the fact that each gate with
unbounded fan-in of k can be replaced by a tree of bounded fan-in gates of depth at
most O (log k). Since k can be no bigger than the number of gates in the circuit, the

depth of the circuit is increased by no more than a factor of O (log n).

It is easy to show that the nondeterministic version of these containments holds as
well. Namely, for all k=1 and for all f (n) we have NACk-1( fn)c NC"( f@)c
ACH(f ().

Let

Parity = {w|w e {0,1}*, the number of 1’s in is wodd}.

Ajtai [Aj] and Furst, Saxe and Sipser [FSS] independently established that Parity is not
in AC® and, thus, AC’ & NC'. In the next section we will show that Parity ¢

NAC(polylog). Therefore, NACO(polylog);tNCl. Looking at the proofs that the
dominating set in a tournament problem and the CNF-SAT(log* n) problem (problems
discussed in Section 4.2) are in NNCl(polylog), we find that after the guessing phase,
the circuit essentially only tests equality. Since equality can be tested in constant
depth, we have a peculiar situation where some seemingly hard to compute problems

are in NAC?(polylog), yet the simple Parity prob 1 is not. This suggests that some
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problems are made difficult only because exhaustive search is required to find a solu-
tion, while for other problems, verification that a given solution is correct is the
difficult part. Thus, when studying the parallel complexity of problems it may be use-
ful to separate out the complexity of the two phases. The parallel nondeterministic

complexity classes NAC and NNC are useful tools for the study of this separation.
Finally we show that AC? is strictly different from a number of new classes. It
was previously known that AC® SNP. We show that AC” SNAC(n®) c NP for all

O<ex<]l1.

5.2. Separation Results

To show that Parity could not be computed by polynomial size, constant depth
unbounded fan-in circuits, Ajtai [Aj] and Furst, Saxe, and Sipser [FSS] independently
showed that any constant depth unbounded fan-in circuit computing Parity required at
least superpolynomial size. Later Hastad improved this result and showed that such a
circuit would require at least exponential size [Ha], and by a result of Yao this bound is

close to optimal [Ya85). In this section we apply Hastad’s construction to the non-
deterministic case and prove that NAC%(polylog) S NNC! (polylog).

Theorem §.2.1: [Ha] There exists an absolute constant ng such that for all &, there are
no depth k parity circuits of size <2™ where m=(1/10)¥%*"Dp /&= an4 5 > n'é.

We make the following general observation about NACY( f (n)) circuits.
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Lemma 5.2.2: Every NACY(f (n)) circuit of size p (n) can be simulated by a constant

depth, unbounded fan-in deterministic circuit of size at most O(p (n)2f ™).

Proof: Fix k and let C denote some NACY( f (n)) circuit with size p (n). We con-
vert C to a constant depth, unbounded fan-in deterministic circuit by making 2f
copies of C, removing the nondeterministic gates, and hardwiring in each of the possi-
ble guesses in their place. We then add an OR gate that takes an input from each of
copies of C, for the new circuit accepts if and only if one of the copies of C accepts.
Thus, the size of the circuit is O(p (n)2f (n)), and the depth of the circuit is at most one

more than that of C. O

Using Theorem 5.2.1 and Lemma 5.2.2 with f (n) = log® n we have the following

result.
Theorem 5.2.3: For all k 20, Parity is not in NAC(log n).

Since Parity can be readily computed with an NC! circuit, the next two corollaries
are immediate.

Corollary 5.2.4: For all k, j 21, NAC®(log* n) G NNC! (log/ n).

Corollary 5.2.5: For all k21, NAC?(log* n) # NC!.

Of course, this also implies that NAC? (1og" n) is different from P and NP. Thus,
Parity, a problem easy to solve both sequentially and in parallel, is not in a class that
contains some problems that are probably not solvable in polynomial time (such as

dominating set in a tournament). This suggests that we, as researchers, have blindly
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assumed that there is some linear ordering on the difficulty of various problems—
problems in NP are more difficult than those in P, problems in P are more difficult than
those in NC, and so on. By treating nondeterminism as a limited resource in parallel
computation we have been able to develop another ordering on the difficulty of the
solutions to various problems. Perhaps by considering other resource bounds we can
gain insight into what features make certain problems difficult to solve and gain a

better understanding of the relative difficulties of solutions to various problems.

Now we give improved upper bounds on how much nondeterminism is needed to

allow an NAC? circuit to accept some language not accepted by an AC? circuit. The
obvious upper bound is that AC? g NAC? (nlog n). Parity is obviously in NAC? (nlogn)

since a circuit could guess the output of each of the bounded input gates used by an

NC! parity circuit and then verify that each bit is correct. We will show that
AC? gNACO(nE) for any £ >0. Before getting to that result, however, we present a

result of Fagin, Klawe, Pippenger and Stockmeyer that is an important part of our

proof.

We will define a complexity measure that approximates how close a symmetric
function f approximates the constant function. A symmetric function is any function
whose value does not depend on the order of the input bits. Thus, f is symmerric if and
only if f(xy,x2, " ,%) = fXray»Xn2)» """+ Xn(n)) for all permutations 7 of
n+1’

{1,2, -, n}. The spectrum of such an n-place function fis a word w € {0, 1}

where for 0<i<n, w;, the i** character of w, equals the value of f when exactly i
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variables are set to 1 and the remaining variables are set to 0. Since f is symmetric, w

completely characterizes f.

The complexity measure we are interested in is a function of the longest run of all
0’s or all 1’s in w=wqw - - - wye (0, 1)**1. Let ['(w) denote the longest such run.
For w, the spectrum of f, let the measure of f be defined as Mw)=n+1-T(w). In
other words, M(w) is the length of w minus the longest run of all 0’s or all 1’s. M(w) is
the minimum number of variables that must be set to constant values in order for the
resulting function to compute the constant function. Consider for example, the Parity
function. For the Parity function, w = 01010101..., so M(w) = n. In other words, all of
the variables need to be set before the Parity function can be forced to mimic the con-

stant function.

Let F = (fy,f2, -} be a family of symmetric functions, where f, has n vari-
ables. Then W, the measure of the family F, is defined by pg(n) = M(w) where w is

the spectrum of f,.

The following result, due to Fagin, Klawe, Pippenger and Stockmeyer, says func-
tions that do not closely approximate the constant function do not have small sized con-

stant depth circuits.

Lemma 5.2.6: [FKPS] Let £ >0 be such that pg (n) 2 n® for infinitely many n. Then F

is not computable by a family of AC? circuits.

Theorem 5.2.7: AC® S NAC®(n®) for any &> 0.
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Proof. Pick any € > 0. For any 6 < € consider the language

L ={ x| exactly rlx Ia] bits of x are set to-1}.

L is clearly in NAC®(n®). An NAC? circuit accepting L M {0,1}" guesses the location
of the bits that are set to one, and then a small subcircuit for each bit of input verifies
that it is a 1 if it is one of the guessed locations and a O otherwise. This takes

Q(nslog n) = Q(n®) guess bits, and the circuit is of polynomial size and constant depth.

Now consider the family, F, of functions f, each of which computes membership
in L on strings of length n. Certainly each function in F is a symmetric function. Thus,
we can compute Wy . For sufficiently large n, it is not hard to see that if we set [nf]
variables to 1, the function becomes identically 0. Thus, py is Q(n®). By Lemma

5.2.6, L is not in AC?, and we have the desired result. O

Theorems 5.2.3 and 5.2.7 shed more light on the relationship between AC? and
NP. It was previously known that AC S NP, and that ACY is the most powerful class
known to be distinct from NP. Theorem 5.2.3 helps strengthen this result to

NAC?(polylog). We now have AC® cNAC(polylog) & NAC (polylog) < NP. We
also have AC® G NAC(n®) ¢ NAC? < NP.
There are two desirable extensions of Theorem 5.2.7. The first would be to show

that AC? %NACO(polylog). One way to do this would be to improve the result of

Fagin, Klawe, Pippenger and Stockmeyer. Unfortunately, they have already shown

that it may not be possible to improve their result much.
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Lemma 5.2.8: [FKPS] If for sufficiently large n, Uz (1) <log* n for some k, then F has
non-uniform ACY circuits.

This lemma could be strengthened (from our point of view) in two ways. The
first involves showing a similar result does not hold for uniform circuits. Possibly,

Lemma 5.2.8 does not hold in the case of uniform circuits. In this case we would have

AC'G NAC? (polylog).

A second way to improve this result would be to remove the requirement that F
be a set of symmetric functions and consider some other sort of measure. This would
essentially require developing a new technique for showing that languages in
NAC? (polylog), such as tournament isomorphism, are not in ACP. The only technique
known to show languages are not in AC? is to reduce problems to Parity. Unfor-
tunately, those techniques are also powerful enough to show that Parity and problems

related to Parity are not in NAC%(polylog) as well.

A second interesting result would be to show that NAC? (polylog) <;,&-—-NACO(n’E)

for all € > 0. Intuitively, this result seems to be the most likely of the three mentioned
since n® seems to grow much faster than logk n. But we have no means of attacking

this problem yet.




CHAPTER 6

THE NNC HIERARCHY

In some sense, PSPACE, NP, and P capture the essence of what can be computed
sequentially without costing too much in terms of space, nondeterministic time, and
deterministic time, respectively. Similarly, DSPACE(polylog), NNC(polylog), and NC
capture the essence of what can be computed in parallel without costing too much in
terms of space, nondeterministic parallel time, and deterministic parallel time. This
suggests that contrasting the two groups of classes will offer insight into why P-
complete problems are inherently sequential, as well as aid in deciding which parts of
NP-complete problems are inherently sequential. The similarities between PSPACE
and DSPACE(polylog), NP and NNC(polylog), and P and NC also suggest the possibil-
ity of developing a hierarchy at the NNC level similar to the polynomial time hierarchy

presented in Stockmeyer [St].

Let NNC denote NNC(polylog). We can alternately define NNC in terms of
languages definable by polylog bounded quantification over the variables of relations in

NC. We similarly define co-NNC.

Definition: A set A is in NNC if and only if there is an NC computable predicate P and

a number k such that x € A iff 3y such that [|y| <log® |x | and P(x, y) holds.

=75 -
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Definition: A set B is in co-NNC if and only if there is an NC computable predicate P

and a number & such that x € B iff Vy such that |y| .<_logk |x | and —P(x, y) holds.

We let Z’{’NC = NNC and II[{’N C = co-NNC. We recursively develop a hierarchy of

classes with the following definition.

Definition: § € E],Xflc if for some T € IIIZNC, x €8 iff 3y such that [y|_<.10g" |x | for
scme k and (x, y) € T. TIfNC is defined to be co-EQ’NC. We let the NNC hierarchy

NNC
(NNCH) be U, _ Z}NC.

As Stockmeyer [St] showed for the polynomial time hierarchy, if two levels of the

NNCH are equal, then the NNC hierarchy is finite and collapses to that level.

Theorem 6.1: If Z¥NC = $¥NC then Z¥NC =ZI}WC for all j 2k.

Proof. The proof is analogous to the proof of the corresponding theorem for the

polynomial time hierarchy. Let A € Zﬁ’g Then x € A if and only if there exists a y,

where |y| Slogj |x | for some j, such that for all z, where |z | Slogi |x | for some i, and

Py(x, y, z) holds where Py is a E’,}’NC predicate. Now the sentence

““for all z, where |z | Slogi |x | for some i, and Pi(x, y, z) holds™
isin I‘I’,ﬁ’ﬁ’f, and by hypothesis it is also in I'II,:’N C. Thus, by definition, the statement

“‘there exists a y, where |y] Slogj |x | for some j, such that for all z,
where |z | <log' | x | for some i, and P (x, y, 2) holds™

is in ZQ’Q’? and thus, ZI,Z”_,Yf = Zf}’fg Proceeding inductively, we get the desired result.

a
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Stockmeyer has also shown that the polynomial time hierarchy is contained in

PSPACE. We show an analogous result for the NNC hierarchy.
Theorem 6.2: NNCH < DSPACE(polylog).

Proof. Let P(x,y) be a DSPACE(polylog) computable predicate. Let Q(x) be
defined by 3y(ly| Slog" |x | and P(x, y)). Now Q is computable in DSPACE(polylog)
since we need only check all potential values of y. Since NC ¢ DSPACE(polylog) and

NNC c DSPACE(polylog) we have NNCH < DSPACE(polylog). O

One property of the polynomial time hierarchy the NNC hierarchy does not seem
to possess is an equivalent definition in terms of relativized complexity classes. The
difficulty is not in relativizing circuits, but in finding a relativization technique that
yields an equivalent definition. Wilson has explored the notion of oracle circuits and
issues involved in relativizing NC [Wi]. An oracle circuit behaves as any circuit except
that it may haye any number of ‘‘oracle gates.”’ An oracle gate takes k inputs and
treating those inputs as a string outputs a 1 if and only if that string is contained in the

oracle set. The depth incurred by such a query is log £.

Defining the NNC hierarchy in terms of the oracle circuits introduced by Wilson
seems to lead to a hierarchy more powerful than the one developed using

quantification. We use S NNC and PNMC to denote the relativized analogs of MC and

TIVNC | respectively.

Theorem 6.3: Let SYNC =PYNC = NC. Define SPIC = NNC(SR™©) and PINC = co-

NNC(PYNC), where the class listed in parenthesis is the type of oracle available. Then
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for all k21, ZWNC = S¥NC and TTINC < — PYNC,

Proof. We will show that ZQ’NC c SQ’NC. The proof that H’XNC c PQ’NC proceeds

analogously.

LetL e ZQ’NC. Thus, x € L iff 3y such that |y | <log’/n for some j and (x,y) € R
for some HNN ¢ computable predicate R, where n = |x |. We will proceed inductively

on k.

When k = 1, R is NC computable. An NNC circuit existentially guesses the

appropriate y since |y | <log’ n, and then verifies that (x,y) € R.

For k> 1, assume that Z{"r < § ch Note that since IINN(' is the complement of
TINC it follows that IINNC < S¥NC . Now an NNC circuit existentially guesses y since
{y | Slogj n and with one oracle query determines if (x,y) € R. Thus, EI,XNC c SQINC-

a

Now it is not clear that Z{NC = S¥NC and III,Z'NC = PQ’NC for £ > 1. This is because
the SYNC circuits are able to query the oracle about strings of polynomial length. Itis
also not clear that ZNNC and PNNC are contained in DSPACE(polylog). Since any ora-
cle gate can have a polynomial number of inputs, it may not be possible to simulate
such a circuit in DSPACE(polylog). The NNCH defined in terms of quantification is
more like the polynomial time hierarchy in that it is contained in the corresponding
space class. However, the NNC hierarchy defined in terms of oracle circuits may be an

interesting restriction of the polynomial time hierarchy worthy study.




CHAPTER 7

FUTURE WORK AND CONCLUSIONS

This work is an extended treatment of limiting nondeterminism in parallel models
of computation. After reviewing the main results of this thesis, we will suggest some

avenues for further research.

7.1. Summary

Circuits offer a convenient means for quantifying the amount of nondeterminism
used in parallel computation. By quantifying the amount of nondeterminism we

separated the search part of computation from the verification part.

We have seen that NNC(polylog) is contained in DSPACE(polylog). This con-
tainment, in conjunction with the representation for quasigroup elements in terms of
generators developed in Chapter 4 has yielded a new space bound for the Latin square
and quasigroup isomorphism problems. By artificially adding a guessing part to
languages in NC, as we did with context free language problem in Section 4.1, we have
shown that each of the NNC¥(polylog) classes is at least as rich in problems as the NCk
classes. We have also shown that restrictions of NP-complete problems lead to prob-
lems with solutions that have a polylog amount of guessing coupled with verification

phases in NC.
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In the case of constant depth, unbounded fan-in circuits we have shown that non-
determinism helps. There are languages an AC? circuit cannot accept, that NAC? cir-
cuits allowed to guess less than a linear amount of information can accept. Further-
more, NAC" circuits guessing less than a linear amount of information still cannot
compute the Parity function, thus, making them provably weaker than an NC! circuit

which can make no guesses.

7.2. Future Work

We present some ideas that have sprung from working on this thesis. These ideas

are quite varied in both difficulty and detail.

7.2.1. Circuit Definitions for NSC

Since NSC computations are restricted to polylog space, they are in a real sense a
form of restricted nondeterministic computation. Running in polynomial time, they
can make a nondeterministic move at every step. But the inability to write down the
outcome of every nondeterministic move, limits the value of such a move. In Section
2.4.3 we saw that NSC is completely characterized by Turing machines running in
polynomial time, with polylog head reversals on one work tape. Is a characterization
of NSC possible in terms of NNC circuits? It may be useful to know what in a circuit

corresponds to the number of tapes on a Turing machine.
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7.2.2. Refining the Complexity of NP-complete Problems

Using NNC circuits it may also be possible to refine the classification of NP-
complete problems. Stearns and Hunt [SH] develop the concept of a problem’s
“‘power index’” which is a measure of an NP-complete problem’s complexity relative
to the Satisfiability problem. They argued that the CLIQUE problem is easier that cer-
tain other NP-complete problems since they showed it to have a power index of 1/2,
while most other NP-complete problems they studied have power indices of 1. We let
G = (V, E) denote a graph with vertex set V and edge set E. Assume that G is

represented by an adjacency list. We define

CLIQUE = (<G, j>| jis a positive integer, j <[V|, and G contains a clique
of size j or more}

By considering NNC classes we hope to make distinctions among the complexi-
ties of NP-complete problems. For ease of presentation, we let NNC(n*) denote the
class NNC(n*log n), where the n* indicates the number of things guessed and the log n
denotes the size of each thing guessed. The following theorem may provide an initial
step in that direction, as it provides evidence consistent with Stearns and Hunt that

CLIQUE is easier than other NP-complete problems.
Theorem 7.2.1: CLIQUE is in NNC(n Y 2y, where n is the number of edges in the
graph.

Proof. First of all the circuit determines if there are enough edges in the graph to

support a clique of size j. If there are enough edges, the circuit guesses the j nodes in
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the clique and determines the (j Z _ j)/2 edges of the clique that must be in the graph.
Then by scanning the input the circuit verifies in parallel that each of the edges in the
clique is in the input. The circuit described is of polynomial size and polylog depth, so
we need only to verify that the amount of guessing is within the given bounds. Guess-
ing j nodes requires O(j-log| G |) bits, but since there are O/ 2y edges in the graph, the
number of bits guessed is O(|G |V 2log |G |). Thus, CLIQUE can be accepted by an

NNC(n''?) circuit. O

It may seem reasonable to assume that using reductions most NP-complete prob-
lems can now be shown to be in NNC(rn1/2) since most NP-complete problems have
LOGSPACE reductions to CLIQUE. Most reductions, however, cause at least a squar-
ing of the size of the problem, and thus, this technique cannot be used to show other
NP-complete problems are in NNC(n!?). This is true even for the close relatives of
the CLIQUE problem, VERTEX COVER and INDEPENDENT SET, since using the
CLIQUE circuit to accept either of these would require computing the complement of
the input graph. Thus, even though the CLIQUE problem falls into NNC(rn''?), it
seems most other NP-complete problems fall into NNC(n) and NNC(r?), suggesting
that using the exponent as a guide to relative complexities of NP-complete problems
leads to too coarse of a refinement. Changing the definition of NNC(nk) somewhat
may prove useful. If we let NNC(c'n*) be the class of languages accepted by NC cir-
cuits with ¢-n*log n + d guessing gates, we establish more accurately how much non-

determinism is needed to solve a given problem, and the leading coefficient of the poly-
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nomial, ¢, may be a useful measure of relative complexities of NP-complete problems.
For example, can the Hamiltonian circuit of a graph be computed quickly if half of the
edges in the circuit are guessed? Of course, studying such a measure of complexity

will require stringent definitions to prevent the masking guessing by a large alphabet.

7.2.3. Other Potential Problems in NNC(polylog)

One property of problems in NNC(polylog) is that they all have sequential run-
ning times of O(n'°8™). Babai and Luks have shown that tournament isomorphism
also has a sequential running time of O(n logn ) (BL]. However, the algorithm they give
is recursive with an O(n'°8™ ) depth of recursion. This algorithm is not the ‘‘search and
verify’’ type algorithm. Kannan has shown that a number of problems are polynomi-
ally equivalent to the tournament isomorphism problem [Ka]. None of these problems
seem solvable by an NNC(polylog) algorithm. There seems to be a sequential nature
about them. This suggests that there are two types of problems with O(n'°8™) running
times--those that are parallelizable (with some nondeterminism) and those that are
inherently sequential. It would be useful to develop a classification scheme that shows
that problems such as tournament isomorphism are all related (much like P-complete

problems are related) and probably harder than problems in NNC(polylog).

7.2.4. The Relationship Between RNC and NNC(polylog)

We suspect that RNC and NNC(polylog) are incomparable, although the evidence

is not clear. In some sense, RNC and NNC(polylog) are very different complexity
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classes. For a set to be in RNC there must be many (a polynomial number) polynomial
length witnesses for every string in the set. On the other hand, a string in an
NNC(polylog) set needs only one witness, and that witness can be short—it only needs
to be of polylog length. We do have some weak evidence that RNC # NNC(polylog).
We note that using the obvious approach, quasigroup isomorphism cannot be shown to
be in RNC. If the two input quasigroups are cyclic groups of order » it is not difficult
to show that fixing the mapping between one pair of generators fixes the mappings
between all of the remaining pairs of generators. This forces the probability of finding
a string that encodes an isomorphism between the two groups to be less than

1/0(n'°8 ™) which is certainly less than 1/p (n), where p is some polynomial.

Another open problem worth considering is determining the intersection of RNC
and NNC(polylog). In light of the recent result of Berger and Rompel [BR] that
(10g" n)-wise independence can be simulated in NC, it seems reasonable to suspect that

RNC M NNC(polylog) = NC.
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