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ABSTRACT

In computer Systems using paged virtual memories, the virtual to real page mapping can have an
effect on the performance of large, real-indexed caches. We will show the effect on cache miss fre-
quency is significant and examine implementable schemes to produce page mappings which will
eliminate many misses in these caches. A simple model is developed to indicate the performance
improvement potential of careful mapping. Alternative schemes to implement careful mapping are
described and compared via trace-driven simulation. The results indicate that careful page mapping
can significantly reduce the frequency of cache misses and is an important technique for high-
performance memory management systems with real-indexed caches.

1. Introduction

Most general purpose computer systems support both virtual and real (physical) address spaces SO as (o
facilitate efficient memory management policies and to maintain the appearance of large memory availability.
The translation from virtual addresses to real memory locations provided by many paged virtual memories allows
for considerable flexibility in the actual correspondence of the memory space of executing processes to the physi-

cal memory available in the system.

CPU caches are essential in many high-performance computing systems since they provide the access times
of a small, fast memory while the storage capabilities of the slower, larger main memories is retained. With both

virtual and real address spaces available, CPU cache designers have the option of supporting either virtual-
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indexed or real-indexed caches. In a virtually-indexed cache memory locations are associatively mapped to phy-
sical cache frames using virtual addresses; with a real-indexed cache the locations are associatively mapped using

the real addresses of the locations.

Even though virtual-indexed caches can have faster access times than real-indexed caches (since virtual to
real address translation is not required), real-indexed caches are more common [SMIT82]. Virtually-indexed
caches suffer from the synonym problem: multiple virtual addresses which should reference the same memory can
reside in different cache locations. Consistency problems can also result when I/O devices or cache coherence
mechanisms access the memory locations contained in the cache, both of which normally use physical addresses.
Though these problems can be solved (see [GOOD87, HIEL86]), their severity can be a determining factor in the

choice of real over virtually-indexed caches.

Real-indexed caches are especially appropriate in secondary caches of a system with hierarchically organ-
ized CPU caches. Secondary caches service the misses of primary caches which directly service processor
memory references. Virtual address translation may be completed in parallel with primary cache access
[WABL89] (or may be done quickly since the TLB slice is all that is required [TADF90]), making real-indexed
caches as fast as virtual. Even when virtual address translation time must be included in the secondary cache
access time, it may not be too large of a burden since secondary caches are accessed less frequently than primary
caches.

1.1. Cache Mapping Improvements

The mapping from pages in the virtual address space to page frames in the real address space is often fully
associative: a virtual page can be mapped to any one of the page frames in the physical main memory. The cache
mapping from blocks to block frames is sometimes direct-mapped: a block can reside in only one block frame.
Set-associative mappings provide a spectrum of associativities ranging from the unrestrictive fully associative to
the most restrictive direct-mapping. Whereas the virtual page to real page frame mappings are near the fully asso-
ciative end of the spectrum, CPU cache mappings are usually near the opposite end due to implementation costs

and speed restrictions.

For large caches, the disparity between the unrestricted page map and a real-indexed CPU cache map
implies that both maps interact to determine the location where a block will reside in the CPU cache. Figure 1
indicates address translation stages used to map a virtually addressed memory location into a real-indexed cache.
The virtual address is first translated into a real address. The real address of the memory location is then used to

index into the cache. Any of the block frames in the set chosen by the set bits of the real address can contain the




block. The fag bits are used to differentiate among the blocks which map to a set.
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Figure 1. Cache Mapping Overlap with Page Mapping.

This figure shows translation stages which map a virtually addressed memory location into a large (its size divided by
its associativity is larger than the page size) set-associative real-indexed CPU cache. The virtual to real page mapping
together with the cache mapping determine the cached location of a block. Since the bottom bits of the real page frame
number are used to choose the cache set, the behavior of the real-indexed cache mapping is dependent on the virtual to
real address translation. Only bit-selection cache mappings [SMIT82] with block sizes not greater than the page size are

considered.

Figure 1 shows that the location of a cached page depends both on the page map and the cache map. A
cache bin' isa contiguous sequence of cache sets to which the contents of a page frame will map in a real-indexed

cache. Bins are created by the overlap of the page frame number and set fields. The bin is chosen by the bottom

1. Note that the superset of Goodman [Goop87] is not the same as a cache bin. Pieces of a superset span across all
bins,



bits of the page frame number, whose value depends on the virtual to real page map. Bins which consist of four
cache sets are depicted in Figure 1. Note that the bins properly partition the cache sets. A page frame is said to be
in a cache bin when it is one of the page frames which map to the bin. A (virtual) page is said tomap toabinina

real-indexed cache when it is mapped to a page frame (by the virtual to real page map) which is in the bin.

Since the set-associative mapping into a large real-indexed cache depends on the virtual to real page map, a
poor page mapping choice can result in a higher frequency of cache misses. Figure 2 shows two possible map-
pings of the code, data, and stack pages of an address space into real-indexed cache bins. The left portion of the
figure shows a mapping where some of the bins are utilized by many pages while others are unused, a poor map-
ping of this address space, particularly in a direct-mapped cache. The unused bins could be used to eliminate

some of the cache misses from the overutilized bins.
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Figure 2. Two Real-Indexed Cache Mappings.

This figure shows two mappings of the code, data, and stack pages of an address space into a real-indexed cache. Page
frames can map to arbitrary locations in the cache. This results in some cache bins being under or over utilized in the
left mapping, where the utilization of a bin is indicated by the number of pages in the bin. The right mapping is better
since the cache bins are evenly utilized.




The right portion of Figure 2 shows a better mapping of page frames into the real-indexed cache. This map-
ping would likely result in a lower frequency of misses for the application than would the left mapping since the

cache bins are more evenly utilized.

The purpose of this paper is to examine virtual page to real page frame mappings which improve overall
memory system performance by eliminating real-indexed cache misses. These mappings should be more like the
right mapping of Figure 2 than the left mapping. In order to produce good maps, the memory management sub-
system of an operating system should consider the differences among page frames, rather than just considering the
page frames as a single equivalence class of usable memory, particularly when there is the flexibility to choose
among alternate page frames to map a virtual page. A virtual page may only be mapped to a real page once dur-
ing the lifetime of the page. A poor mapping choice can result in poor performance each the time the mapped
memory is referenced. It may be worthwhile to expend effort during the mapping of a page in order to ensure
good performance throughout the usage of the page.

1.2. Previous Work

Many studies have considered the usefulness of optimizing program behavior for virtual memory. Ferrari
[FERR76] surveys many schemes to reduce the number of page faults by a program executing on a virtual memory
system. The placement of data in virtual memory can be modified so that programs will reference few pages at
the same time, resulting in fewer page faults. Stamos tries similarly to cluster objects and improve virtual memory
performance [STAM84]. Regarding CPU Caches, McFarling [McFA89] and Hwu and Chang [HWUC89] introduce
schemes to scatter commonly used instructions across direct-mapped caches in order to reduce instruction cache
misses and result in better memory system performance. Whereas all these program behavior optimizations
involve compiler (or user) modifications, the optimizations introduced in this study involve modifications to the
operating system memory management software. Though the behavior of the virtual memory references of the

application can not be modified by the memory management subsystem, physical memory reference behavior can.

Most CPU cache performance studies of cache performance do not differentiate between virtually-indexed
and real-indexed caches. An exception is the study by Sites and Agarwal [SITA88] in which the simulated real-
indexed caches perform worse than corresponding virtually-indexed caches (except in cases of frequent context

switching) on the same workloads.

A few current systems have been designed with the impact of the virtual to real page mapping on cache per-
formance in mind. In the Sun 4/110, instruction pages and data pages [KELL90] are mapped to even and odd page

frames to partition instruction and data entries in its SCRAM cache [GOOC84], giving some of the advantages of



split instruction and data caches. MIPS uses a variant of Page Coloring, described in Section 3, to improve and
stabilize its real-indexed cache performance [TADF90].

1.3. Contributions of This Work

Previous CPU cache performance studies have ignored the effect of operating system memory management
policies on cache performance. The performance of real-indexed caches is studied in this work assuming that
operating system policies may be modified to reduce the frequency of cache misses. It will be shown that changes
to the page mapping can substantially reduce the frequency of misses in real-indexed caches, resulting in better

memory system performance.

Various techniques to carefully produce good page maps are discussed in this study, ranging from very sim-
ple heuristic functions to more complex ones. The real-indexed cache performance resulting from the mappings
produced by these heuristics is compared over a range of large cache configurations. Important properties of each
of the heuristics are considered. Operating system design issues will be explored so as to develop high-

performance page mapping policies suitable for practical system implementations.

The potential for improvement in real-indexed cache mappings is examined through a simple model
developed in Section 2. In Section 3, page mapping policies to reduce the frequency of misses in real-indexed
caches are described. Through trace-driven simulation in Section 4, these page mapping policies will be shown to
have substantial effects on the performance of large, real-indexed caches. Furthermore, the simple model will be
validated.

2. A Simple Page Conflict Analysis

A simple model is developed in this section to gauge the potential benefits of a virtual to real page mapping
algorithm tuned to increase the performance of a real-indexed set-associative cache. The metric used by the
model is conflicts, C, the number of page frames that can conflict with page frames already in the cache. A
conflict occurs when more than A page frames map to a given cache bin, where A is the associativity of the cache;
the number of conflicts for this bin is calculated as u —A where u is the number of application pages that map to
the bin. The correlation between page frame conflicts and cache conflicts (misses) is positive, so conflicts is a rea-
sonable measure of the goodness of a given cache mapping, as will be shown in Section 4.2.2. Assuming a
direct-mapped cache, the number of conflicts in the left mapping of Figure 2 is 6 and the right mapping of the
same figure is 4. Similarly, there are 3 and 0 conflicts in the mappings, respectively, for a 2-way set-associative

cache.




The U application pages are mapped to page frames by sampling (without replacement!) from a finite
population of page frames. There are P available page frames, and exactly %P (an integer number) page frames

are assumed to belong in each of the B bins. To calculate the average number of conflicts from a random map-
ping, the probability that exactly u of the U referenced application pages map to a page frame in a given bin is cal-

culated as a hypergeometric distribution [MILF77]:

C )( )

P(u inbin) = 1
U

The binomial coefficient

( ) (a- b)'b'

represents the number of ways to choose b elements from a elements (without replacement).
The numerator in Equation 1 represents the number of ways in which exactly u application pages map to the

given bin. It is the product of the number of ways that u out of the possible -é—P page frames from the bin can be

chosen and the number of ways the other U — u application pages can be chosen from the other LBB—{:-QP available

page frames. The denominator in Equation 1 represents the number of different ways the U application pages can
map to the P available page frames. The ratio of these terms gives the required probability that exactly u applica-
tion pages map to the given bin.

The expected number of conflicts of a mapping of U pages can be calculated using Equation 1 as:

. P
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by multiplying u A, the conflict page frames, times the probability of the occurrence of u page frames in a bin to
produce the expected number of conflict page frames in each bin. This is then multiplied by the number of bins,
B, to produce the expected number of conflict page frames.

One can also calculate the bounds on C. Figure 3 plots C,y, and its bounds for various application sizes.

C max is almost linear with the application size starting from the origin, U=0. The worst case occurs when the



pages map to the minimum number of bins (probably one). C ., remains equal to zero up to the point where the
application size equals the cache size (U =N), then the number of conflicts increases linearly with the application
size. The best case corresponds to even utilization of the cache and thus resuits in no conflicts until U > N. Since
Cavg must be between €, and C .., it also increases nearly linearly as U increases. It tends to remain closer to

C min than Cqx, particularly for small and large values of U.
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Figure 3. Cache Mapping Conflicts.

This figure indicates C,,, (as calculated by Equation 2), € ax» and C o for various application sizes (U). The modeled
system is a 1 megabyte direct-mapped cache (N =64) backed up by a 128 megabyte main memory, with a page size of
16 kilobytes.

Figure 4 illustrates the the difference between Cg,, and €y, more dramatically. It plots the conflicts due to
the random mapping, the mapping conflicts (Cayg = C min), for varying application sizes and multiple associativi-
ties. The mapping conflicts are an indicator of the potential cache miss reductions which could result from careful
virtual page to real page frame mappings. While a naive page mapping function would result in C,,, conflicts, a
careful page mapping function could result in close to C i, conflicts in a given mapping. The mapping conflicts,

Cavg =~ C min» then indicates the potential savings of a careful mapping function.

Figure 4 indicates that the mapping conflicts are maximized at the point where the application size equals
the cache size. There are few mapping conflicts for application sizes which are small relative to the cache size

since the probability of many collisions among few page frames is small. Cgyg— Cryq increases as the application
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Figure 4. Random Mapping Conflicts.

This figure shows the difference between the conflicts due to a random mapping and the minimum number of conflicts,
the mapping conflicts (C,yp — C min)» for different application sizes and cache associativities. The configuration is a 128
megabyte main memory in 16 kilobyte pages with a 1 megabyte cache (N =64).

size approaches the cache size since the C,,, increases while C g remains at 0. The mapping conflicts approach
0 as the application size increases beyond the cache size since Cpin increases linearly while C,,, increases at a
somewhat slower rate. Cgy, —Cmin is small for large application sizes since the cache is likely to be highly util-
ized regardless of the mapping scheme, and thus will result in close to the same number of conflicts. An inference
from this data is that the largest gain from careful mapping will come when the application size is approximately
the cache size. Other application sizes will also benefit from careful mapping, but this is the best case. When the
cache is underutilized or highly utilized, careful mapping becomes less useful and necessary.

Figure 4 also shows that Cg, —Cryn decreases as the associativity of the cache increases. This is not
surprising since, as an extreme case, there will be no mapping conflicts in a fully associative cache, regardless of
U. There is less need for careful mapping when the cache is associative. Careful mapping will be most useful

with a direct-mapped cache.



3. Implementing Careful Mapping

While the previous section attempted to gauge the potential real-indexed cache performance improvement
of careful virtual to real page mapping, it did not determine if the potentials were achievable. In this section, care-
ful page mapping implementations integrating important memory system aspects are presented. First, the goals
and implementation considerations of careful page mapping are outlined. Then implementation alternatives are
described.

3.1. Careful Mapping Goals and Assumptions

The purpose of a page mapping function is, given a virtual page, to find a page frame for use in mapping a
page. In choosing a location (page frame) to which the virtual page maps in main memory, the page mapping
function is also (implicitly) choosing the bin (location) to which the virtual page will map in the cache. Choosing
a page mapping function which produces good page maps is important to overall memory system performance
optimization. Considerations in the design of page mapping functions are discussed in this section.

3.1.1. Relationship of Page Mapping to Page Replacement

The mapping functions assume the availability of a pool of alternative page frames when mapping a virtual
page. Page mapping decisions are strictly performance optimization policies. A pool of available pages is not
required to ensure the correctness of the page mapping functions, only to improve their performance. The more
page frames that are available for mapping, the more freedom the page mapping function has to improve the map-

ping and thus improve CPU cache performance.

When main memory is underutilized, many page frames will naturally be available for page mapping. In
that case, the page mapping policy is independent of the page replacement policy since no page frames need be
replaced. However, when main memory is scarce, the page mapping policy is intricately related to the page
replacement policy. In steady state, it is either page replacement or the freeing of a page (due, for example, to the

execution completion of a process) which makes page frames available for mapping.

Careful page mapping is only one of several motivations for having an available pool of page frames. Such
a pool can smooth out large variations in memory demand, allowing the system to reduce response times during
periods of peak memory demands while not substantially increasing the activity to virtual (disk) storage since the
pages can be reclaimed while still in main memory [BABJ81]. A free page frame pool can be maintained regard-
less of the particular page replacement policy in use, replacement can occur often enough to maintain the size of

the pool, and its size can be tuned to optimize overall performance: too large of a pool may reduce virtual memory
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performance (by increasing the page fault frequency), and too small of a pool may increase CPU cache misses. It
is preferable for a page mapping policy to adjust to all situations, including when the pool of available page

frames is small.

For analysis, it is essential to consider the page mapping policy to be independent of the page replacement
policy. It is infeasible to analyze all page replacement policies that have been proposed, analyzed, or imple-
mented. Smith’s bibliography [SMIT78] includes references to some of the possibilities, and even more are avail-
able. In this study, the implementation of page mapping functions is considered independent of the page replace-
ment algorithm.

3.1.2. The Importance of Page Conflict Minimization

The page mapping functions attempt to minimize the (static) page conflicts of a given mapping into a
unified” cache: a mapping which minimizes conflicts is considered optimal. It is important to keep in mind, how-
ever, that minimizing page conflicts should not be the ultimate goal of a mapping. Most importantly, the mapping
function should produce mappings that minimize the mean and variance of the execution time of a given program,
preferably with a low overhead (in terms of space and time) in producing the mapping. When the frequency of
cache misses is reduced, the execution time of a program is reduced, as long as the cost of reducing the miss fre-
quency is no too great. The assumption made in considering careful mapping implementations, one which will
examined in Section 4.2.2, is that reducing the number of page conflicts also reduces the frequency of cache
misses. Efficient careful mapping functions to eliminate page conflicts are considered in this study.

3.1.3. Multiple Address Spaces

In most systems, there are multiple processes (accessing multiple address spaces) executing at the same
time, interleaving their use of the CPU. Multiple, concurrent, address spaces complicate the conflict minimization
process. In their presence, there are two (not necessarily conflicting) page conflict minimization goals to satisfy:
(1) minimize the conflicts within each address space, and (2) minimize the conflicts of all address spaces as a
whole. The conflicts that span multiple address spaces may have only a small effect on the frequency of misses.
Conflicts within an address space not currently in use, perhaps because a process is suspended, for example,

would not cause cache misses. With large numbers of memory references between context switches, conflicts

2. Mapping functions to minimize the number of misses in **split”’ caches are not considered in this study. An example
of split caches are split instruction and data caches [SmrT82]. With these caches, the mapping function may want to con-
currently minimize the conflicts of instruction pages in the instruction cache while minimizing the conflicts of the data
pages in the data cache.

-11-



within a single address space can have a dominant effect on cache performance, while conflicts across address
spaces will only cause misses in proportion to less frequent context switches. In general, minimizing conflicts
within a single address space is considered most important in this study, minimizing conflicts across address

spaces is a secondary consideration.

In addition to handling performance optimization with independent address spaces, a careful page mapping
function should adapt to sharing among the address spaces. Pages shared among different address spaces compli-
cate the conflict minimization process since their mapping effects more than one address space. A shared page
would preferably be placed in a page frame which minimizes the conflicts in all address spaces sharing the page.

3.1.4. Cache Size Independence

Rather than optimizing for a single cache configuration, it is desirable that a page mapping function produce
mappings to concurrently minimize page conflicts in a variety of cache configurations. This way, mappings pro-

duced for one cache configuration are also optimized for other configurations.

Size independence would simplify software management. For example, it would allow the same operating
system executable to be used on machines with different cache configurations, while eliminating conflicts in each
case. Another important reason to produce mappings which are cache size independent is that it allows conflicts
to be minimized in multiple caches simultaneously. This is very important with a hierarchy of real-indexed CPU
caches. A size independent mapping function could simultaneously reduce the number of conflicts in all caches in
the hierarchy. This is essential for optimum overall CPU cache performance. In addition to these implementation
advantages, size independence also allows a simulation advantage. Multiple cache configurations can be simul-
taneously simulated with the same heuristic function. One of the implementation alternatives considered in this
study, the Hierarchical Heuristic, produces mappings which are size independent. The usefulness of size indepen-
dence is demonstrated in the trace-driven simulation section of this study.

3.2. Careful Mapping Implementation Alternatives

The task of finding the performance-optimal page mapping policy is a difficult one. As is often the case
with difficult problems, heuristic solutions are appropriate. The heuristics correspond to simple optimization
goals which are extracted from a larger, more complicated optimization problem. A simple heuristic may be pre-
ferred over a more complex one, unless the more complex heuristic consistently makes superior decisions. With
these considerations in mind, two simple and two more complex heuristic algorithms will be discussed in this sec-

tion, Page Coloring, Bin Hopping, Sequential, and Hierarchical, respectively.
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3.2.1. The Page Coloring Heuristic

The mapping of a virtual address space into a virtually-indexed cache has the desirable property of even
cache utilization by the memory locations of the address space. Successive virtual pages will not conflict in the
cache and an application which is smaller than the cache size will often map into the cache without conflict. The
most straight-forward way for a mapping into a real-indexed cache to appear like a virtually-indexed mapping,
and thus obtain the advantages of virtually-indexed caches, is for the bin bits of each virtual page to be equivalent
to the bin bits of the page frame it maps to. This technique has been called page coloring. A variant of it is used

by MIPS [TADF90].

The simplicity of the page coloring heuristic is perhaps its main advantage. No state information is neces-
sary per address space. The task of the page mapping function is simply to try and (equality) match the bin bits of
the virtual page to a real page frame. When a page frame is not available in a bin corresponding to the virtual
page, any available page frame can be used to map the page, likely the first available. Simplicity is a very useful

property of Page Coloring, particularly given the complexity of current memory subsystems.

More sophisticated implementations of Page Coloring are possible and likely to be useful. As the imple-
mentation is described, commonly used virtual addresses (like the stack, for instance) from different address
spaces will be mapped to the same cache bins, leading to many inter-address space conflicts and cache misses.
Rather than requiring an exact equality between the bin bits of the virtual page and the page frame, the equality
could instead be offset by a different constant factor for each address space (or for each contiguous segment)
[TADF90]. As long as the offset factor were different across different address spaces, commonly used areas of
each virtual address space would not map to the same cache bins and these inter-address space conflicts would be
reduced. Two versions of Page Coloring were chosen for consideration in this study: (1) an exact match of bin
bits between the virtual page and real page frame, and (2) a match of bin bits exclusive-ored with a different PID
for each address space to ensure that commonly used virtual addresses do not map to the same spot. The precise
form of Page Coloring used by MIPS was not known.

3.2.2. The Bin Hopping Heuristic

Another simple way to ensure even cache bin utilization is to map application pages to page frames in suc-
cessive bins. This Bin Hopping is pictured in Figure 5. Mapping pages to successive bins ensures that conflicts
will not occur unless the application size is larger than the cache size. It also exploits temporal locality in that
pages which are mapped at the same time will tend to be placed so that they do not conflict in the cache. Assum-

ing these pages will tend to be referenced at the same time, pages which are referenced together will likely be
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placed in separate cache bins. Bin Hopping can be implemented by maintaining a bin pointer that is initialized to

a random value and incremented at the time each page is mapped.

Real

Cache —

Bins

~— Bin Pointer

Figure 5. Page Mapping By Bin Hopping.

This figure pictures a page mapping which could occur with the Bin Hopping heuristic algorithm. Pages are mapped to
page frames which map to successive cache bins.

The implementation of Bin Hopping is straight-forward. The bins can be traversed successively with the
bin pointer until one is found with an available page frame, saving the new bin pointer after it is used. The simpli-
city of the Bin Hopping heuristic, like Page Coloring, is its largest asset. A very small amount of state information
needs to be maintained per address space, just the bin pointer.

3.2.3. The Sequential Heuristic

One of the strengths of the Page Coloring and Bin Hopping heuristics is also one of their weaknesses. The
small amount of state information used limits the storage space required, but can reduce the effectiveness of the
mapping function. When there are not available pages in each bin, these heuristics can have problems producing

a good mapping. Information indicating the number of pages previously mapped to each cache bin by each
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address space could be used to advantage by a heuristic function. Of course, this mapping information is obtain-
able by examining the mapping of virtual pages to page frames, which could be a costly procedure. Since the
mapping function would more efficiently execute if the number of pages mapped to each bin were more readily

available, an implementation might want to store this information separately.

In searching for the “‘best’” bin, the state information used to determine the suitability of a given bin is the
pair <used, free>, where used is the number of pages previously mapped to the bin by the address space, and free
is the number of page frames available for mapping to this bin. A simple algorithm to map a page to a page frame
would be to sequentially look at the <used, free> pairs for each bin and choose the bin which best meets the stan-
dards of suitability. This algorithm is called the Sequential heuristic. The Sequential heuristic maintains system-
wide free information to indicate the number of available page frames in each bin, just as the Page Coloring and
Bin Hopping heuristics need. The added state of the Sequential Heuristic is the used information per active

address space (process).

The heuristic determining the ‘‘best’” bin is affected by the goals of the mapping: minimizing intra-address
conflicts is considered more important than minimizing inter-address conflicts. The parameters used in this bin
ranking are the <used, free> pairs for each bin. The specific rules used for the ranking, in priority order are: (1)
the bin must have at least one free page frame, (2) the bin should have the fewest pages used by this address
space, and (3) the bin should have the most page frames available. Rule (2) minimizes conflicts within the address
space while rule (3) minimizes conflicts between different address spaces since more available page frames
implies less of them are used. If these rules fail to produce a preferable bin, an arbitrary choice can be made, such

as a random choice.

An example of a choice made by the Sequential Heuristic is pictured in Figure 6. Of all the <used, free>
pairs, the <1, 3> bin is considered best since there are several available page frames and only one previously
mapped page frame. After choosing the <1, 3> bin, the page mapping function would extract one of the available
page frames from the bin and map the virtual page to the real page frame. The <1, 3> pair would be modified to
<2, 2> to indicate the changed system state.

3.2.4. The Hierarchical Heuristic

The O (B) time computational complexity required by the Sequential Heuristic to sequentially traverse the
bins could be too expensive when there is a large number of bins. Altemnatively, a bin can be chosen by the
Hierarchical Heuristic with the aid of a tree structure called a bin tree. The time complexity of the Hierarchical

Heuristic is O (log, B), considerably smaller than O (B) for large values of B. The cost of this time reduction is
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Figure 6. Page Mapping by the Sequential Heuristic.

This figure shows the bin which would be chosen as then best bin by the Sequential Heuristic. Pictured are the <used,
free> pairs for each bin. The heuristic will look at all bins and determine that the <1, 3> bin is best.

that the Hierarchical Heuristic may make an inferior decision to the Sequential Heuristic for a given cache, though

in most cases it will produce a good mapping.

In addition to its time complexity benefit, the Hierarchical Heuristic produces mappings that are cache size
independent. With the proper implementation, decisions made at the higher levels of the tree correspond to those
needed when mapping into a smaller cache. Decisions made at lower tree levels only refine those made at upper

levels and correspond to those needed when mapping into a larger cache. This will be subsequently shown.

A bin tree is a fully balanced binary tree with a number of leaf nodes equivalent to the number of bins in the
cache: each leaf is associated with exactly one bin. The value of a leaf node is the number of page frames in the
corresponding bin. The value of interior nodes is the sum of the values of its children. Separate bin trees are used
to maintain the used and free parameters corresponding to each bin. The value of the root node of a used (free)
bin tree is the number of used (free) page frames. The values at each node are used to determine the direction
when the tree is being traversed during the mapping of a page. A single free bin tree can be used system-wide,
but a used bin tree is needed by each address space (process), just as with the bin arrays of the Sequential Heuris-
tic. The use of binary trees is assumed throughout this study, higher branching factors could also be used but may

not maintain size independence for all cache configurations.

-
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When a new virtual page is mapped to a page frame, the bin trees are traversed from the root to one of the
bins (leaves) at the bottom of the trees. During a traversal, exactly log,(B) choices among alternative subtrees
determines the particular traversal path through the tree from the root to the leaf corresponding to a bin. The key
determinant of the goodness of the Hierarchical Heuristic is the goodness of these decisions. The decision at each
node is made based on the <used, free> pairs corresponding to the two children of the node. The traversal direc-
tion is determined by precisely the bin ranking heuristic function used by the Sequential Heuristic. The <used,
free> values passed to the bin ranking function are intermediate tree values rather than the final bin values as with
the Sequential heuristic. The same ranking function can be used by both since the goals of the decision are the

same in each case.

Figure 7 shows an application of the direction heuristic to a simple example. The value of each node in the
used and free trees are given within in the nodes. Traversal starts from the root of the bin trees. From there, a
decision is made based on the <3, 6> pair corresponding to the left subtree and the <3, 3> pair of the right subtree.
Since both subtrees have available page frames and the number used from each is equivalent, a decision to
traverse the left subtree is made since it has more available page frames. A decision must then be made based on
the <2, 5> and <1, 1> pairs of the nodes at the next level. The right subtree is chosen for traversal since less page
frames have been mapped to it. Bin tree traversal is then complete since a leaf node is reached. To update the
state to account for the page mapping, the values of the traversed nodes would be modified to <7, 8>, <4, 5>, and

<2, 0>, respectively, from top to bottom.

Figure 8 illustrates the labeling of tree nodes in a bit-reversed manor so that the Hierarchical Heuristic pro-
duces size independent mappings. Using the Hierarchical Heuristic with alternative labeling schemes may not
produce size independent mappings. The labels of the tree nodes are a bit-reversal of the bit strings obtained from
an increasing (binary) ordering of the nodes on a level from left to right. By definition, the value of a leaf node is
the number of used (free) page frames whose bottom bits maich the leaf node label. ‘With this labeling, it can
further be shown that the value of all tree nodes is the number of page frames whose bottom bits match the label

of the node, given that a parent node value is the sum of its children values.

The low-order (right) digit of the nodes on the left half of the bin tree are all 0 while the corresponding bit is
always 1 for the nodes on the right half. Since the first decision made by the Hierarchical Heuristic during map-
ping bin tree traversal is to further traverse either the right or left half of the tree, this decision corresponds to the
choice of the bottom bit of the page frame to map the page. This is exactly the conflict elimination decision

required for a cache with 2 bins, ensuring that the Hierarchical Heuristic reduces the conflicts in a cache with 2
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Traversing the Tree . ..

Free Tree

Figure 7. Bin Tree Traversal.

This figure shows an example of the choice of a bin to map a virtual page by used and free bin tree traversal with the
Hierarchical Heuristic. The values of the tree nodes are given. The values of the leaves of the used bin tree are the

number of pages already mapped to the corresponding bin. The leaves of the free bin tree represent the number of page
frames available for replacement in the corresponding bin.

Level 2

Level 3

Bit-Reversed Ordering

Figure 8. Mapping Tree Nodes to Bins.

This figure shows a relationship of bin numbers to tree nodes which allows the Hierarchical Heuristic to produce size
independent mappings. It is the bit-reversal of numbering the nodes with labels in increasing order from left to right.
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bins even though the tree in Figure 8 is specifically targeted for a cache with & bins (since there are 8 leaves). The
essence of cache size independence is that in eliminating conflicts in a cache with more bins, conflicts are
automatically eliminated in caches with less bins, as illustrated by this example. A more formal proof that the
Hierarchical Heuristic produces size independent mappings has been developed [KESS90]. Space limitations pre-
clude its presentation here.

4, Trace-Driven Simulation Performance Analysis

This section describes results of trace-driven simulation of real-indexed caches when using the heuristics
described in the previous section. Trace-driven simulation allows the usefulness of the careful page mapping
heuristics to be measured. While the simple analytic model outlined in Section 2 provided estimates of page
conflicts and potential conflict reductions that could occur with careful mapping into a real-indexed cache, the fre-
quency of cache block misses determine the goodness of a cache mapping. Trace-driven simulation can provide
an accurate measure of cache performance under the traced workloads.

4.1. Methodology

4.1.1. The Traces

The traces used in the study were collected at DEC Western Research Laboratory [BOKL.89, BOKW90] and
are more completely documented elsewhere [KESS90]. Each trace consists of the execution of 3 to 6 billion
instructions of very large workloads on a load/store architecture, referencing from 8 to over 100 megabytes over
the length of the traces. The length of these traces is sufficient to overcome the cold-start intervals of even these

large caches.

The traces of the multiprogrammed workloads represent the actual execution interleaving of the processes
on the traced system. The Mult2 trace includes a series of compiles, a printed circuit board router, a VLSI design
rule checker, and a series of simple UNIX commands, all executing in parallel (approximately 40 megabytes
active at any time) with an average of 134,000 instructions executed between each process switch. The Mult2.2
trace is the Mult2 workload with a switch interval of 214,000 instructions. The Multl trace includes the
processes in the Mult2 trace plus an execution of the system loader (the last phase of compilation) and a Scheme
(Lisp variant) program (75 megabytes active) and has a switch interval of 138,000 instructions. The Multl.2
trace is the Multl workload with a switch interval of 195,000 instructions. Sor is a uniprocessor successive over-
relaxation algorithm which uses very large, sparse matrices (62 megabytes). The Tv trace is of a VLSI timing
verifier (96 megabytes). Tree is Scheme program which searches a large tree data structure (64 megabytes). Lin

is a power supply analyzer working on a register file with sparse matrices (57 megabytes).
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4.1.2. The Simulator

Both hardware and software system components are simulated in order to determine the effects of operating
system policies on real-indexed cache performance. Previous trace-driven simulation results analyzing cache per-
formance have assumed that operating system policies are fixed and independent of the studied cache
configurations. This assumption is removed in the results presented in this paper. Since different virtual page to
physical page frame mapping policies are studied, the simulator incorporates memory management policies of the
operating system along with hardware cache management implementations. This gives the simulator the capabil-

ity to analyze the interaction of hardware and software system components.

A global least-recently-used (LRU) page replacement policy is used in this study. During the simulations,
an exact ordering of the page frames from most recently used to least recently used is maintained (an LRU list). A
virtual page is mapped to a corresponding page frame at the point when the page is first referenced. Though the
implementation of an exact LRU replacement policy may be infeasible in practice, it represents a replacement pol-
icy with desirable properties which is feasible to implement in a simulation environment. The page frame at the
bottom of the LRU list, the least recently used one, would normally be the best candidate page frame for use in the
mapping.

Rather than requiring that the last page on the LRU list must be chosen for mapping, the careful page map-
ping policies are given the freedom to choose among a number of page frames at the bottom of the LRU list. This
is shown in Figure 9. That is, the pool of available page frames are those at the bottom of the LRU list. During
each execution of the page mapping function in the simulations of this study, exactly the same number of page
frames are available for mapping, even at the beginning of the simulation when the entire main memory is con-
sidered unused. The default available page frame pool used in this study is 4 megabytes of the 128 megabytes of

main memory available in 16 kilobyte pages.

Before each real-indexed cache simulation is started, the LRU list is initialized in a different random order.
This is intended to reflect that after a system has been executing for some time, page frames are no longer in any
meaningful order. This will likely be the case in a system which does not differentiate among its page frames;
eventually the page frames get jumbled into an arbitrary order. Given this random ordering, the mapping algo-
rithms have a random sampling of page frames available for mapping at the beginning of a simulation. As execu-
tion continues, the available page frames are determined by the previous mapping choices and the memory refer-

ence pattern of the traces.
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Figure 9. LRU List Implementation With Available Page Frames.

This figure shows the global LRU list of page frames and the free page frame pool. An exact list of page frames from
most recently used to least recently used is maintained during real-indexed cache simulations. ‘When a virtual page is
mapped to a page frame, the bottom page frames on the list are made available for mapping.

The CPU cache configuration under consideration is is a two-level hierarchical system. The primary (level
one) caches are split direct-mapped write-back® instruction and data caches backed up by a unified secondary
(level two) write-back cache with a random replacement policy and 128 byte blocks. The primary caches are split
instruction and data caches of 32 kilobytes each with 32 byte blocks. Different secondary cache configurations
are simulated. The simulations in this paper are of multi-level caching systems which do not maintain inclusion
[BAEWS8S8]. Cold-start simulation results are given.

4.1.3. Randomness in The Simulator

Trace-driven simulation results are often presented without indication that there is randomness in the results
from a given trace. Although results vary across traces of different workloads, performance metrics from a trace
of a given workload are presented as exact, non-varying, values. This presentation of cache performance resuits is
appropriate if the process of analyzing the trace data is entirely deterministic. Trace-driven simulations are not
always deterministic, however. Simulations of caches with truly random replacement policies are inherently non-

deterministic, though the variations across different simulations are likely to be small.

In real computer systems there exists more potential for variability in cache performance than captured by a
given trace. Not only will different workloads result in different cache performance, multiple executions of the
same workload can also behave differently. The sources of system variability are eliminated within a single trace,
however, since trace data represents a single execution of a workload on the traced system. Variability is elim-

inated in real address traces since a single virtual to real page mapping has been used when gathering the trace

3. On a write miss, space is allocated and the cache block is read in (write-allocate). On a miss to the data cache which
requires a write of a dirty block, the write-back is executed followed by the block read.
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data.

In this simulation study, just as in real systems, the performance of a real-indexed cache under a given
workload is a random variable dependent upon the virtual to real page mapping. The traces used in this study are
virtual address traces of user program references, some of them are multiprogramming traces. Virtual address
traces allow the flexibility to simulate different virtual to real address mappings when determining real-indexed
cache performance. Trace-driven simulation results of real-indexed caches vary across different simulations, even
those using precisely the same trace data, due to the variability in the virtual to real address mappings used in the
simulations. Variability is introduced into a real address trace from a static virtual address trace by changing the

mapping to real addresses.

The variability in simulation results is addressed in this study by presenting mean, median, and confidence
intervals of random samples. A sample size of 4 has been found tw be sufficient in most cases in this study.
Larger sample sizes would be preferred, but, the length of the traces makes it difficult to gather a large number of
samples. Fortunately, the long traces averaged out much of the randomness, making 4 samples a reasonable

number.

Assuming the samples were taken from a normal distribution, the 90% confidence intervals used in this
study were can calculated utilizing the Student-t distribution [MILF77]. With this technique, confidence intervals
are expressed as an interval about the mean of the samples. The width of the confidence interval is directly pro-
portional to the standard deviation. Though the assumption that the random variables x; are normally distributed
can lead to inaccuracies for small numbers of samples (such as the 4 used here), this technique is a straightforward
way to gather confidence in the simulation results.

4.1.4, Miss Ratio Can Be Misleading

Most cache performance studies express results in terms of miss ratios, the number of cache misses divided
by the number of cache references. Miss ratio is not used in this study since it can be misleading when simulating
a hierarchy of CPU caches. The local miss ratio [PRHH89] of the secondary cache (on which the concentration of
this study is focused) depends on the frequency of misses from the primary caches. A mapping change which
decreases the frequency of misses in the primary caches and decreases the frequency of misses in the secondary
cache would actually increase the local miss ratio of the secondary cache if the miss frequency were decreased
more in the primary caches than the secondary cache. The increase in local miss ratio is misleading since memory

system performance will improve when the miss frequency from all caches is reduced.
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Cache performance is measured in this study by the frequency of misses, the misses per simulated instruc-
tion (MPI), to avoid these problems. MPI is closely related to the global miss ratio of Przybylski et. al.
[PRHHS9].

4.2. Results

4.2.1. The Usefulness of Careful Page Mapping

Variations in the virtual to real page mapping can result in substantial variations in the performance of real-
indexed caches. Figure 10 shows results of several trace-driven simulation runs of different mappings of the
Mult2.2 trace. 100 million instruction averages of the misses per instruction (MPI) are plotted for different simu-
lations and configurations for the length of the Mult2.2 trace. The results compare the Hierarchical Heuristic
mappings to random mappings for real-indexed secondary caches ranging from 1 megabyte (top) to 16 megabytes
(bottom). The Hierarchical Heuristic is used in comparing to random mapping in this section due to its good per-
formance and the simulation advantages of the size independent mappings it produces. Careful mapping imple-

mentation alternatives are compared in detail in a subsequent section.

Careful mappings are consistently better than random mappings for the Mult2.2 trace. This is shown in Fig-
ure 10 since the simulations of the random mapping (dotted lines) produce a higher frequency of misses than does
the mappings from the Hierarchical Heuristic (solid lines). The different simulations of careful mappings tend to
remain closely together and follow an outline which is largely dictated by the characteristics of the workload. The
simulations of random mappings show *‘spikes’’ in the results caused by page conflicts among heavily used pages
which result in bursts of cache misses. A substantial fraction of the misses from the random mappings can be
attributed to a poor mapping into the cache, rather than the workload behavior itself. Note that some of the spikes
appear in the random mappings of both the one and four megabyte cache simulations. This occurs since the simu-

lations of different cache sizes are of the same virtual to real page mapping, and the results are correlated.

Variability in cache behavior for different virtual to real mappings is undesirable. A substantial range of
behaviors are possible between the best and worst mappings of a workload into the caches of the system, resulting
in different execution times of the workload. Figure 10 shows evidence that the mappings produced by careful
mapping are less variable than the mappings produced randomly, a desirable trait. Even though careful mappings
remove much of the variability in cache performance, variability is not entirely removed. In more rare cir-

cumstances than with random mapping, a careful mapping implementation may also make a poor decision.

Table 1 shows the end-result statistics of simulations of the Mult2.2 trace, results from the data pictured in

Figure 10. It shows confidence intervals (mean * error) and median of four samples of simulation results from
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Figure 10. Mult2.2 Mapping Variability Effect.

This figure shows the effect of four different virtual to real mappings generated by the Hierarchical Heuristic (solid
lines) and generated randomly (dotted lines) on the misses of three real-indexed secondary caches. The average MPI
for the previous 100 million instructions of the Mult2.2 trace is shown for 1 megabyte (top), 4 megabyte (middle), and
16 megabyte (bottom) secondary direct-mapped caches. Note that the scales are different for each graph.

The mappings produced by the Hierarchical Heuristic result in consistently lower frequency of misses and also show
less variability.
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mappings produced randomly and by the Hierarchical Heuristic. The median is included in the results since it can

mitigate the effects of extreme sample values which can bias the mean for the small number of samples (4) used in

these statistics.
Level Two Cache MPIx1000 Confidence Intervals (Mult2.2)

Configuration Random Hierarchical Hierarchical
Size  Assoc. | 90% Confidence Median | 90% Confidence  Median Reduction

1 1.4953 £ 0.1264  1.4873 1.1858 + 0.0205 1.1884 20.7%
M 2 1.0480 £ 0.0186  1.0409 | 0.9805+0.0049  0.9824 6.4%

4 0.9593 £ 0.0038 09589 | 0.9289+0.0014 0.9291 3.2%

1 07121 £0.0428  0.7104 | 0.5982+0.0062 0.5976 16.0%
4M 2 0.5375+0.0091 0.5355 | 0.5101+£0.0027 05106 5.1%

4 0.5079 £ 0.0033  0.5088 | 0.4938+0.0009 0.4940 2.8%

1 0.3339+£0.0235 03254 | 0.2820%+0.0069  0.2824 15.6%
16M 2 02539+ 0.0034  0.2542 | 0.2326+0.0021  0.2333 8.4%

4 0.2371+0.0041 0.2369 | 0.2226 +0.0006  0.2225 6.1%

Table 1. Mult2.2 Secondary Cache Mapping Comparison.

This table compares simulation results of the Mult2.2 trace for random virtual to real mappings and mappings produced
by the Hierarchical Heuristic. Statistics are gathered for the number of misses per 1000 instructions (MPI). Four sam-
ples were used to produce the statistics above. The confidence intervals (mean & error) are given together with the
median of the four samples. The *‘Hierarchical Reduction’* column indicates the decrease in the mean of the samples
produced by the Hierarchical Heuristic from the mean produced by the random mappings.

The results in Table 1 show that the confidence intervals for the results obtained from the mappings of the
Hierarchical Heuristic are tighter than those for the random mappings. Since the width of the confidence intervals
are directly proportional to the standard deviation (because each set of statistics came from 4 samples), this indi-

cates the smaller variance of the cache performance with careful mapping.

Table 1 also shows that the confidence intervals tend to tighten as the associativity of the secondary cache is
increased. Associativity lessens the impact of the page mapping on cache performance, partly due to the fewer
number of page conflicts (as shown in Figure 4), and partly due to the smaller contribution of each conflict to the
frequency of misses. Appendix A presents results for the traces other than Mult2.2 and the same cache
configurations as in Table 1. For brevity, confidence intervals will not be shown in the rest of the text of this

paper. Mean values will be used.

The Hierarchical Reduction for direct-mapped caches is expanded in Table 2. This is the fraction of the
(mean) cache misses resulting from random mapping which were eliminated by the careful mapping of the

Hierarchical Heuristic.
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Hierarchical Reduction for Direct-Mapped Caches
Cache Size (Megabytes)

Trace 1 4 16
Multl 13% 10% 10%
Multl.2 7% 3% 30%
Mult2 19% 14% 13%
Mult2.2 21% 16% 16%
Tv 3% 2% 3%
Sor 1% 12% 34%
Tree 37% 25% 30%
Lin -1% 339, 55%

Table 2. Careful Mapping Miss Reduction for All Traces.

This figure shows, for different direct-mapped cache configurations and traces, the Hierarchical Reduction (in percent)
which is the fraction of the misses produced from random mapping which were eliminated by the careful mapping of
the Hierarchical Heuristic.

Comparing the (mean) frequency of misses shown in Table 2, the careful mappings reduced misses by up to
55%, while an average reduction 10-20% is possible in the direct-mapped caches. These results validate the use-
fulness of careful page mapping for a variety of workloads. Though there is wide variability among the results for
the different traces in Table 2, and in one instance the frequency of misses slightly increased, results reasonably
similar to those from the Mult2.2 trace are obtained. The Mult2.2 trace is examined in detail through the rest of
this study due to its ‘‘normal’’ behavior,

The mean MPI values for the Mult2.2 trace from Table 1 are shown graphically in Figure 11. Even though
the relative reduction to MPI is relatively constant and independent of cache size, the absolute value of the
improvement due to careful mapping decreases with increasing cache size, since MPI decreases with cache size.
The figure also shows that the largest gain from careful mapping comes when a direct-mapped cache is used,

caches of higher associativity are affected less by the virtual to real page mapping.

By interpolating between the simulation results for different cache sizes and associativities, the effect of
careful mapping relative to the effect of other cache design changes can be estimated. The dashed line in the left
graph in Figure 11 attempts to determine the equivalent associativity change of Hierarchical Heuristic mapping by
comparing its miss reduction on the 1 megabyte direct-mapped cache to that of changing the cache organization to
2-way. The comparison shows that careful mapping with the Hierarchical Heuristic eliminates a substantial por-
tion of the misses of the associativity increase, making a cache perform like one of higher associativity (equivalent
to a fictional associativity of 1.6). The dashed line in the right graph compares the miss reduction of careful map-

ping to the reduction from a cache size increase. Since careful mapping also eliminates a substantial portion of
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Figure 11. Mult2.2 Careful Mapping Improvement.

This figure shows graphically the (mean) Mult2.2 simulation data of the top table in Table 1. The misses per 1000 in-
structions for cache sizes plotted versus the cache associativity and size for random (dotted) page mappings and
Hierarchical Heuristic (solid) page mappings.

The dashed lines show that Hierarchical Heuristic gets a substantial portion of the gain of increasing associativity from
direct-mapped to 2-way or increasing the cache size from 1 megabyte to 4 megabytes.

the misses of a cache size increase (equivalent to a 1.7 megabyte cache), it can make a smaller cache perform like
a larger cache.

4.2.2. Page Conflict Minimization

To more fully understand the causes of the miss frequency improvement due to careful mapping, Figure 12
shows the differences in the number of page conflicts (within single address spaces) produced randomly and by
the Hierarchical Heuristic for the Mult2.2 trace. Each point indicates the mapping conflicts (C —C ;) from the
address space of one of the processes in the Mult2.2 trace for a 1 megabyte direct-mapped cache. The Mult2.2
trace contains the execution of hundreds of processes (since many of them completed), so many sample values
were available. The squares, the sampled values produced by a random mapping, follow very closely the

predicted outline shown in Figure 4, validating the accuracy of the simple conflict model.
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Conflicts in Random and Hierarchical Mappings
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Figure 12. Conflicts for Mult2.2.

This figure shows the number of page conflicts (16 kilobyte pages) in a 1 Megabyte direct-mapped cache (V = 64, 128
megabyte main memory) for various processes from the Mult2.2 trace for a random mapping (squares) and a mapping
using the Hierarchical Heuristic (triangles). The results show that the Hierarchical Heuristic eliminated all conflicts
within the address spaces of all processes while the random mappings perform very much like that predicted in Figure
4,

The sampled values clearly show that the Hierarchical Heuristic was successful in reducing the number of
conflicts in each mapping below that from random mappings. In fact, not a single address space had an unneces-
sary conflict from the Hierarchical Heuristic mapping, as shown in Figure 12. This is largely due to the number of
pagés available for mapping when each page is mapped (from the free page frame pool), four megabytes worth.
On the average, there were four pages available for mapping in each bin of the one megabyte cache. These exira

pages allowed the Hierarchical Heuristic sufficient freedom to obtain perfect conflict reduction in this cache.

Figure 13 establishes the relationship between the number of conflicts within an address space and the fre-
quency of misses caused by the process using the address space (with random mapping). The MPI of processes
referencing an amount of memory ranging from 0.5 to 1.0 megabytes are plotted versus the number of conflicts in

the address space. Processes were chosen with their memory sizes within a range to reduce the effect of changes
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in memory size on MPI and isolate the effect of the number of conflicts for a given size. The particular range
from 0.5 to 1.0 megabytes was chosen since there were a large number (58) of processes in this range and it is an
area where substantial reductions in the number of conflicts can occur, as indicated in Figure 12 and Figure 4.
The MPI for a process was calculated using the number of cache misses during the execution of a process. Note
that this assignment of MPI to a process includes cache interference from within the the process itself as well as

interference from other processes.

MPI vs Conflicts for 0.5-1.0 Megabyte Applications
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Figure 13. MPI vs. Conflicts for a Mult2.2 Random Mapping.

This figure shows the relationship between MPI and the number of conflicts C (in a 1 megabyte direct-mapped cache,
16 kilobyte pages) for the processes of size 0.5 to 1.0 Megabytes from the Mult2.2 trace with a random mapping. The
solid line is the least-squares best-fit of the sample values. Though the variability is quite large, the data shows a posi-
tive correlation between the number of page conflicts and MPI.

The solid line in Figure 13 is the least-squares best-fit line through the sampled values. Though the varia-
tions in the relationship between MPI and the number of conflicts are very large, there is a slight trend toward a
higher frequency of misses as the number of conflicts is increased, as evidenced by the positive slope of the best-

fit line.
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Together, Figure 12 and Figure 13 support the key hypothesis of this study, that techniques could be
developed to minimize the number of page conflicts in a real-indexed cache resulting in significant reductions in
the frequency of real-indexed cache misses.

4.2.3. Careful Mapping Alternatives

The goodness of the mappings produced by the careful mapping alternatives outlined in Section 3 depends
on the size of the pool of available page frames. In the previous results for Hierarchical Heuristic maps, the pool
of available page frames has been 4 megabytes. As an experiment to determine the effect of the size of the page
pools on the goodness of the mappings produced by the different heuristics, Table 3 compares results for trace
Mult2.2 with a 4 megabyte pool of available pages (Large Pool) and a 256 kilobyte pool (Small Pool). Shown are
the MPI results for a 4 megabyte direct-mapped cache, which means that on the average there was 1 available

page frame in each bin with the 4 megabyte pool, much less with the 256 kilobyte pool.

Level Two Cache MPIx1000 (Mult2.2)

Heuristic Large Pool | Small Pool
Random 0.71 (19%) | 0.71 (8%)
Page Coloring (equal) | 0.69 (15%) | 0.85 (30%)
Page Coloring (hash) | 0.64 (8%) | 0.71 (7%)

Bin Hopping 0.60 (0%) | 0.67 (1%)
Sequential 0.60 (0%) | 0.61 (-8%)
Hierarchical 0.60 (0%) | 0.66 (0%)

Table 3. Careful Mapping Comparison.

This table compares results of the different mapping heuristics outlined in Section 3 for different page frame pool sizes
for the Mult2.2 trace. Results are shown for 4 megabytes of available page frames (Large Pool) and 256 kilobytes of
available page frames (Small Pool) and are given relative to the Hierarchical Heuristic for each pool size. The results
shown are for a 4 megabyte direct-mapped cache.

The equality Page Coloring Heuristic performs very poorly in the results presented in Table 3 for the
Mult2.2 trace since commonly used virtual addresses map to the same area in the cache. MIPS does not use strict
equality match Page Coloring simulated here, likely because of this problem. The Page Coloring implementation
with PID hashed matching performs better since it eliminates the problem, yet still performs poorly relative to the
other careful mapping schemes. The reason for this poor performance is the limited flexibility in the Page Color-
ing: if an available page frame is not found in the matching bin, the search is abandoned and any arbitrary page
frame is chosen. The other careful mapping schemes are more adaptable to situations with limited numbers of

available page frames.
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With the 4 megabyte pool of available page frames in Table 3, the Bin Hopping, Sequential, and Hierarchi-
cal Heuristics performed nearly equivalently. Each of them found it easy to eliminate conflicts when there aver-
aged 1 available page frame in each bin. The frequency of cache misses for the mappings produced by the
Sequential Heuristic is relatively independent of the page frame pool size down to 256 kilobytes (a very small
amount of memory compared to the 128 megabytes of usable memory), showing the Sequential Heuristic to pro-
duce superior maps overall. The other heuristic mapping functions are negatively affected by the reduction in
page pool size. The Sequential Heuristic produces the best maps, whether there is a small or large pool of avail-

able page frames.

A free page frame pool with approximately one available page per bin seems to be equivalently sufficient
for conflict minimization by any of the Bin Hopping, Sequential, or Hierarchical Heuristics. This may be a good
target size for the free page frame pool: maintain a number of available page frames equal to the number of cache
bins.

Table 4 compares the performance of the different careful mappings on the Mult2.2 trace for a variety of
cache configurations. The pool of available page frames is 4 megabytes. The Page Coloring, Bin Hopping, and
Sequential heuristics produced page mappings which were optimized only for the 4 megabyte direct-mapped
cache (or the 16 megabyte 4-way set-associative cache), shown in Bold. The Hierarchical Heuristic mappings
were optimized for all configurations, making some of the entries in Table 4 an ‘‘unfair’’ comparison. The
Hierarchical Heuristic performed substantially better than the other careful mapping schemes for the other (non-
optimized) configurations, indicating the usefulness of its size independent mappings.

5. Discussion

It is important for an implementation of careful mapping to meet all the goals outlined in Section 3.1. The
trace-driven simulation section has shown that implementations of careful mapping can reduce the frequency of
cache misses and the variability of the cache misses for different runs. That is the most essential requirement of a

careful mapping scheme.

Another important goal of a careful mapping function is that it should be low overhead, both in terms of
execution time and the space required by the function. The Page Coloring and Bin Hopping Heuristics have the
lowest overhead. The Sequential and Hierarchical Heuristics have more overhead, both space and time. The

Sequential Heuristic could be particularly costly when the number of cache bins is large.
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Level Two Cache MPIx1000 (Mult2.2)
Si(;;mﬁg A Pa(geeqlCl?:ll;t)yr;ng sz%cagﬁzr}glg Bin Hopping | Sequential | Hierarchical
1 1.37 (15%) 1.32 (11%) 1.33 (12%) 1.38 (16%) 1.19 (0%)
M 2 1.03 (5%) 1.02 (4%) 1.00 (2%) 1.03 (5%) 0.98 (0%)
4 0.94 ( 2%) 0.94 ( 2%) 0.94 (1%) 0.95 (2%) 0.93 (0%)
1 0.69 (15%) 0.64 (8%) 0.60 (0%) 0.60 (0%) 0.60 (0%)
M 2 0.53 (3%) 0.53 (3%) 0.52(1%) 0.52 (2%) 0.51 (0%)
4 0.50 ( 2%) 0.50 (2%) 0.50 (0%) 0.50 (1%) 0.49 (0%)
1 0.31 (12%) 0.31 (10%) 0.30 ( 6%) 0.29 (4%) 0.28 (0%)
16M 2 0.25 (9%) 0.25 (7%) 0.24 (4%) 0.24 (2%) 0.23 (0%)
4 0.24 (6%) 0.23 (4%) 0.23(2%) 022 (0%) 0.22 (0%)

Table 4. Performance of Mapping Schemes for Mult2.2.

This table compares the cache performance of mappings produced by the careful mapping heuristics for the Mul2.2
trace. The MPI resulting from each scheme is given relative the Hierarchical Heuristic for each configuration. The
Page Coloring, Bin Hopping, and Sequential page mappings were optimized for the 4 megabyte direct-mapped
configuration (and the 16 megabyte 4-way associative configuration). These configurations are shown in bold.

The careful mapping implementations should adapt to the features of virtual memory systems, including
sharing among different virtual address spaces. The Bin Hopping Heuristic may not adapt well to sharing of
pages. The problem is that each mapping function will attempt to map shared pages to bins according to the local
copy of the bin pointer. Since a bin pointer is maintained per address space, each address space would map a page
according to the value of its bin pointer, which is not necessarily related to the bin pointer of the other address

spaces. Thus, the mapping is optimized for one address space and may cause conflicts in another.

The strict equality match implementation of the Page Coloring Heuristic adapts well to sharing when the
shared pages are mapped to the same virtual address in all address spaces. In this case, the preferred bin for a vir-
tual page is the same for each address space. More sophisticated versions of the Page Coloring Heuristic, such as
the PID hash implementation considered in this study, may not adapt well to sharing for the same reason that Bin
Hopping will not: the bin to which the virtual page is preferably mapped depends on the PID used to map the
page. A Page Coloring implementation which, instead, maintains an offset for each sharable unit (a collection of
pages, such as a shared code segment), could be better adaptable to sharing. All address spaces would then

attempt to map pages similarly since the same offset is used by each address space for each sharable unit.

With the Sequential and Hierarchical Heuristic implementations of careful mapping, the used state informa-
tion may be maintained per sharable unit to better adapt to sharing. The used state of an address space can then be
calculated as the sum of the used states of each sharable unit referenced within the address space. Mapping deci-

sions can be based on this accumulated used information. Otherwise, if state information is maintained only per
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address space, the used state of all address spaces accessing a page should be updated when the page is added or
removed, which may be both difficult and time consuming. When the used information is maintained per sharable
unit, mapping decisions for shared pages will still only be optimized with respect to the address space for which
the page was mapped, but, all subsequent mapping decisions (for all address spaces referencing the page) can
adjust to the positioning of the page through the updated used state. Note that the summation of used state for
multiple sharable units can make the mapping process more time consuming, proving the efficiency of the

Hierarchical Heuristic even more essential for good performance.

The last goal of a mapping function was to produce size independent mappings. The Hierarchical Heuristic
is the only careful mapping function which achieves this goal.

6. Conclusions

The need for and implementation of careful virtual to real page mapping policies has been shown in this
paper. When the size of a real-indexed cache is large, the virtual to real page mapping function and the cache
mapping function interact to determine the cache performance. This gives the page mapping policy the opportun-
ity to optimize cache performance by carefully choosing the virtual to real page mapping of an address space. Itis
likely to be worthwhile to expend a little effort to carefully map a page since it can improve the performance of all

subsequent accesses to the page.

A simple model analyzed the potential improvement of careful mappings over random mappings. This
model indicated that mapping conflicts in real-indexed caches were maximized when the size of the address space
is approximately the size of the cache. In a direct-mapped cache, 30% of the address space can be unnecessarily
in conflict in the cache at this point. The model also predicted that the cache is very small or very large compared

to the address space size, careful mapping will be less useful and necessary.

Several heuristics were discussed to implement a careful mapping policy. These ranged from the simple
Page Coloring and Bin Hopping Heuristics to the more sophisticated Sequential and Hierarchical Heuristics. The
Bin Hopping, Sequential, and Hierarchical heuristics were shown to perform well under the conditions studied,
with the Sequential Heuristic shown to produce the best mappings, particularly when the pool of available pages
was small. The equality match Page Coloring Heuristic performed poorly with a multiprogramming workload
since frequently used areas of the virtual memory space were mapped to the same cache bin. A more sophisti-
cated version of Page Coloring that overcame this common mapping problem still did not perform as well as the
other careful mapping schemes. The Hierarchical Heuristic has a number of desirable properties, especially its

good computational efficiency and cache size independent mappings.
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These careful mapping schemes can be very useful to reduce the frequency of misses in large real-indexed
caches. Simulation results from a number of workloads were presented in this paper. The improvement of careful
mapping is very dependent on the workload, but, 10-20% of direct-mapped cache misses can be eliminated by
careful mapping. This is a substantial portion of the reduction achievable by doubling either the associativity or
cache size. Careful virtual to real page mapping can be a very useful technique to improve the performance of
large, real-indexed CPU caches.
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Appendix A

This appendix shows more *‘raw’’ MPI results like those shown in Table 1 for each of the traces considered

in this study.
Level Two Cache MPIx1000 Confidence Intervals (Multl)
Configuration Random Hierarchical Hierarchical
Size  Assoc. | 90% Confidence Median | 90% Confidence  Median Reduction
1 1.8199 £ 0.1879 1.7851 1.5827 + 0.0258 1.5891 13.0%
M 2 1.2648 £ 0.0236 1.2561 1.2093 + 0.0089 1.2110 4.4%
4 1.1173£0.0302  1.1061 1.0746 £ 0.0101 1.0772 3.8%
1 0.8083 £0.0401 0.7995 | 0.7299+0.0221  0.7367 9.7%
4M 2 05757+ 0.0087 0.5747 | 05526+ 0.0052 0.5534 4.0%
4 0.5289+ 0.0033  0.5282 | 0.5162+0.0007 0.5163 2.4%
1 0.3807 £ 0.0178 03782 | 0.3442+0.0063  0.3433 9.6%
16M 2 0.2893 + 0.0024  0.2895 | 0.2730+£0.0020 0.2725 5.6%
4 02716+£0.0021 0.2718 | 0.2619+0.0008 0.2620 3.5%
Level Two Cache MPIx1000 Confidence Intervals (Multl.2)
Configuration Random Hierarchical Hierarchical
Size  Assoc. | 90% Confidence Median | 90% Confidence = Median Reduction
1 1.7477 £0.1878 1.6843 1.6305 + 0.3856 1.4797 6.7%
M 2 1.2540 £ 0.0106 1.2521 1.2035 £ 0.0108 1.2002 4.0%
4 1.1343 £ 0.0091 1.1362 | 1.1102+£0.0061 1.1103 2.1%
1 0.8880 £ 0.1837 0.8471 | 0.8596+0.3898  0.6952 32%
4M 2 0.5873+0.0082 0.5863 | 0.5615+0.0023 0.5617 4.4%
4 0.5405 + 0.0026  0.5403 | 0.5302+0.0014  0.5303 1.9%
-1 04753+ 0.1925 04043 | 03343+£0.0173 03362 29.7%
16M 2 0.2966 +0.0033  0.2954 | 0.2788 £0.0051  0.2797 6.0%
4 0.2797+0.0015 0.2792 | 0.2703£0.0012  0.2705 3.4%
Level Two Cache MPIx1000 Confidence Intervals (Mult2)
Configuration Random Hierarchical Hierarchical
Size  Assoc. | 90% Confidence Median | 90% Confidence  Median Reduction
1 1.5687 + 0.1535 1.5419 12742 £0.0224  1.2707 18.8%
M 2 1.0944 + 0.0217 1.0969 1.0076 £ 0.0036 1.0077 7.9%
4 0.9749 + 0.0047 09761 | 0.9417+£0.0022 09412 3.4%
1 0.7360 £ 0.1067 0.6967 | 0.6314+0.0230  0.6284 14.2%
4M 2 0.5462 + 0.0056  0.5476 | 0.5212+0.0022 0.5215 4.6%
4 0.5152 £ 0.0021 0.5153 | 0.5018+0.0005 0.5018 2.6%
1 03352+ 0.0109  0.3329 | 0.2931£0.0047  0.2941 12.6%
16M 2 0.2599 + 0.0015  0.2597 | 0.2392+0.0010 0.2350 8.0%
4 02427 +£0.0022  0.2423 | 0.2294+0.0003  0.2293 55%
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Level Two Cache MPIx1000 Confidence Intervals (Tv)
Configuration Random Hierarchical Hierarchical
Size  Assoc. | 90% Confidence Median | 90% Confidence = Median Reduction
1 3.3632 + 0.1861 33093 | 32713+0.1084  3.2610 2.7%
M 2 24658 +0.0214 24633 | 24919+0.0536  2.4900 -1.1%
4 23055+ 0,0094 23017 | 2.2997+£0.0052  2.3006 0.2%
1 21151 + 0.0549  2.1263 | 2.0682+0.0268  2.0684 2.2%
4M 2 1.8294 + 0.0079 1.8271 1.8108 £ 0.0067 1.8103 1.0%
4 1.7800 + 0.0037 1.7802 | 1.7772 £ 0.0045 1.7764 0.2%
1 1.1899 + 0.0062 1.1888 1.1589 + 0.0293 1.1513 2.6%
16M 2 1.0337 £ 0.0043 1.0337 1.0171 £ 0.0051 1.0170 1.6%
4 0.9910+0.0027 09910 | 09779+0.0031  0.9768 13%
Level Two Cache MPIx1000 Confidence Intervals (Sor)
Configuration Random Hierarchical Hierarchical
Size  Assoc. | 90% Confidence Median 90% Confidence Median Reduction
1 14.0794 = 0.0211 149757 | 14.8567 £0.0284  14.8627 0.8%
M 2 14.7033 +0.0299  14.6937 | 14.6402 £0.0053  14.6401 0.4%
4 14.5816 £0.0152  14.5774 | 14.5507 £0.0040 14.5496 0.2%
1 94718 £0.0983 9.4729 8.3389+0.1115 8.3545 12.0%
4M 2 8.6826 + 0.0581 8.6821 8.0557 £ 0.1145 8.0312 7.2%
4 8.3524 £ 0.0291 8.3509 8.0611£0.0323 8.0529 3.5%
1 4.2208 £ 0.3183 4.1976 2.7843 £ 0.1638 2.7574 34.0%
16M 2 2.8435 £0.1069 2.8471 2.1481 £ 0.0824 2.1383 24.5%
4 24179 £0.1447 2.3788 2.0743 £ 0.0197 2.0754 14.2%
Level Two Cache MPIx1000 Confidence Intervals (Tree)
Configuration Random Hierarchical Hierarchical
Size  Assoc. | 90% Confidence  Median | 90% Confidence  Median Reduction
1 30061 + 2.0853  3.3053 | 24720+ 0.0573 24855 36.7%
M 2 2.0930+0.0580  2.1085 1.9738 £ 0.0516 1.9561 5.7%
4 1.8580+£0.0494 1.8476 | 1.8573+0.0584 1.8392 0.0%
1 1.2112 £ 0.2466 1.1478 | 09124 £0.0286 09174 24.7%
4aM 2 0.7179+£0.0292 07124 | 0.5934+0.0284  0.5848 17.3%
4 0.5292 + 0.0218  0.5260 | 0.4932+£0.0119  0.4897 6.8%
1 05416 + 0.2284 04682 | 03771+£0.0292  0.3805 30.4%
16M 2 0.2914 + 0.0194 02859 | 0.2706+£0.0047  0.2707 7.1%
4 02579+ 0.0008 02578 | 0.2545+0.0002 02544 1.3%
Level Two Cache MPIx1000 Confidence Intervals (Lin)
Configuration Random Hierarchical Hierarchical
Size  Assoc. | 90% Confidence Median | 90% Confidence = Median Reduction
1 1.1481 £ 0.0107 1.1511 1.1609 + 0.0021 1.1616 -1.1%
M 2 1.0806 £ 0.0037 1.0800 | 1.0938+0.0010  1.0935 -1.2%
4 1.0611+£0.0030 1.0613 1.0766 £ 0.0005 1.0766 -1.5%
1 057277 £ 0.0263 05264 | 0.3564+0.0283  0.3488 32.5%
4M 2 03103 +0.0392 03054 | 0.1307+£0.0234  0.1230 57.9%
4 0.1557 £ 0.0275 0.1567 | 0.0494+0.0108  0.0452 68.2%
1 0.1532 + 0.0230  0.1529 | 0.0689 £ 0.0063  0.0692 55.0%
16M 2 0.0416 £ 0.0101 0.0438 | 0.0217+£0.0038 0.0204 47.8%
4 0.0179+0.0006 0.0178 | 0.0167+0.0000 0.0167 6.7%
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