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Abstract. A Carmichael number is a composite number n such that for every a relatively prime
to n, a®~! = 1 modulo n. It is unknown whether infinitely many Carmichael numbers exist. The
analogous question for polynomials over a finite field with ¢ elements asks if there are infinitely

many reducible polynomials f such that if ¢« and f are coprime, then a?**®*’ =1 = 1 modulo f. We

show this is true, and that such polynomials are rare compared to irreducibles.
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1. Introduction.

Composite numbers n such that ¢! = 1 modulo n holds for all a relatively prime to n are
called Carmichael numbers, or absolute pseudoprimes. The smallest Carmichael number is 561,
and by now examples are known into the thousands of digits [3]. The existence of these numbers
implies that a naive primality test based only on the converse of Fermat’s theorem is doomed to
failure.

It is not known if there are infinitely many Carmichael numbers. Heuristics, however, suggest
that this should be the case. For example, if 6n + 1, 12n+ 1, and 18n + 1 are all prime, then their
product is a Carmichael number; a probabilistic argument suggests that this should occur infinitely

often.

The purpose of this note is to examine the corresponding question for polynomials over a finite
field. That is, when k is a finite field with ¢ elements, we ask if there are infinitely many reducible

deg f __
1 = 1 modulo

polynomials f in k[X] with the property that for all a relatively prime to f, a?
f. We characterize such polynomials, and use our characterization to show that they are infinite
in number, but rarer than irreducibles.

Our results give an example of an unsolved question about the integers whose analog in k[X]
is easy to settle. However, they seem to have no algorithmic applications whatsoever. Indeed, there
is already a fast deterministic algorithm to test whether a polynomial f in k[X] is irreducible [1],

. . . deg
requiring less computation than the evaluation of a? ! modulo f.

We are unaware of any previous work on this problem. Hellegouarch, however, has studied

analogs in k[X] to the Miller-Rabin and Solovay-Strassen primality tests [7].

2. Notation and Background.

We let k = IF, denote a finite field with ¢ elements, and k[X] the ring of polynomials in one
variable with coefficients in IF,. We let p denote the characteristic of ¢.

Following [7], if «, f € k[X], we call f a pseudoprime to base a if f is reducible, and @ "l=1
mod f. (Here n denotes the degree of f.) If f is a pseudoprime to all possible bases, that is, for

all @ relatively prime to f, we call f a. Carmichael function.

We let I,(n) denote the number of monic irreducible polynomials in £[X] of degree n. We have

1
Iy(n) = = u(n)g"'?,

din

1



where ;1 denotes the Mé&bius function (see [9], p. 84). This implies that

q" — qn/’.H—l "
—ee ] < —,
n - q(n) - n

from which it follows that I,(n)/¢™ ~ 1/n.
We let d(n) denote the number of positive divisors of n. Typically, d(n) is around logn. We

will need the following upper bound:

(l(?l) < 7ZO(l/l()glog.;:n)'
(see [8], p. 262). We will call a divisor d of n properif 1 <d < n.

3. Characterization.
We first characterize Carmichael functions, with the aid of the following lemma.
Lemma 3.1. ¢™ — 1 divides ¢™ — 1 iff m | n.
Proof. Write both numbers in base ¢ and apply long division. ®
Lemma 3.2. A reducible polynomial f is a Carmichael function if and only if: i) f is squarefree,
and ii) for every irreducible ¢ dividing f, deg(g) | deg(f).
Proof. The sufficiency of conditions i) and ii) follows from the Chinese remainder theorem, and
Lemma 3.1.

If f is not squarefree, then k[X]/(f)* is a group whose order is divisible by p, and hence
contains elements of order p. Therefore, f cannot be a Carmichael function. This shows that
condition i) is necessary.

Now, let f = fy...f, be the irreducible factorization of a squarefree polynomial of degree n,
and let n; be the degree of f;. Choose any index ¢ and let a be an element of £[X]/(f) whose
homomorphic image generates the multiplicative group k[X]/(f:)*. If a®"~' = 1 modulo f, then
a?" "1 = 1 modulo f;. Because a is a generator, g™ — 1 divides ¢" — 1. By Lemma 3.1, n; divides
n. This shows the necessity of condition ii). m
Theorem 3.3. If k is a finite field, then £[X] contains infinitely many Carmichael functions.
Proof. With one exception (namely, degree 2 for ¢ = 2), IF,[X] contains at least two different
irreducible polynomials of each degree. Therefore, for every even n > 6, there is a Carmichael
function of degree n in IFy[X]. m

We note that k[X] does not contain Carmichael functions of every degree, or even every

sufficiently large degree. Tor, let » be a prime larger than ¢. Then any polynomial of degree
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r satisfying condition ii) of Lemma 3.2 must be either irreducible or composed of linear factors,
which cannot all be distinct. Therefore there are no Carmichael functions of degree r.

Even though there is no deterministic polynomial time algorithm to factor polynomials over
finite fields, the set of Carmichael functions can be recognized in deterministic polynomial time,
by combining a test for repeated factors with distinct-degree factorization. (See [1] for descrip-
tions of these algorithms.) This is contrast with the situation for the integers; there is no known

deterministic polynomial-time algorithm to recognize Carmichael numbers.

4. Density.

In this section we consider the density of Carmichael functions of degree n; we show that as
n — 00, they are strictly rarer than irreducibles. We will use the idea, which goes back at least
to Frobenius [6], of comparing the factorization pattern of a polyomial to the cycle structure of a
permutation. For this reason, some preliminary remarks on permutations are necessary.

Let ¥, denote the group of permutations on {1,...,n}. Every element of ¥, can be written
in one and only one way as a product of disjoint cycles. Let 7 denote a partition of n containing
m; copies of n;, for i = 1,...,1. We let F, denote the fraction of permutations with m; cycles of
length n;. Then

.
Fe= || =
" E n;rim;!
We illustrate this with an example. Take n = 7, and let # = 3 4+ 2 + 2. We wish to count the

permutations of {1,...,7} whose cycle structure is

We can fill in the entries in 7! ways. Now we count the number of ways such an assignment gives
the same permutation. Without changing the permutation, we can cyclically permute elements in
the 3-cycle and in each of the 2-cycles; we can also swap the two 2-cycles. Therefore the number
of permutations with this cycle structure is 7!/(3-2% - 2!), so F, = 1/24.

For estimates involving the cycle lengths of permutations, it is useful to consider the following
“random bisection” process, which generates a random permutation of of {1,...,n}. Choose a
length ¢ uniformly with 1 < ¢ < n. Then write down 1, followed by ¢ — 1 distinct elements chosen
at random from {2,...,n}. This determines one of the cycles; recursively generate a random
permutation of the n — i numbers not appearing in that cycle. (This may be justified using known

facts about random permutations; see [4], p. 257.)
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With these preliminaries taken care of, we now turn to polynomials.
Lemma 4.1. Let n be a fixed positive integer, and let = be a partition of n, containing m; copies
of n; for i = 1,...,1. Let S, denote the fraction of monic squarefree polynomials in k[X] whose
factorization pattern conforms to . Then §, < F.

Proof. We have

Because I,(m) < ¢™/m, this is at most

l

: ™y

) §
gt AL iyt T
EEES B

We note that this estimate is very good when ¢ is large; in fact, the fraction of degree n
squarefree polynomials with factorization pattern conforming to 7 is asymptotic to F as ¢ — oo.
Furthermore, 1 — 1/¢ of the degree n polynomials in IF,[X] are squarefree; thus Fj, gives the
asymptotic fraction of polynomials whose factors match .

Theorem 4.2. Let ¢ be a prime power. Let Cy(n) denote the fraction of degree n Carmichael
functions in IF ;[ X]. Then

qu(',n,‘) < n-‘.H—O(l/loglog n)

Furthermore, if we restrict n to even numbers, then
, 9
Cy(n) = Q(n™"°).

Proof. By Lemma. 4.1, we have

Cyn) < 3 Fr,

where the sum is taken over all partitions of n composed entirely of proper divisors of n. This sum
is the probability that the random bisection process always chooses proper divisors of n for cycle
lengths; we estimate it as follows. Suppose that lengths I, m,... are chosen, which are all proper
divisors of n. Then the following two events must take place:

i) { < n/2,and | n; call this event A.

ii) 1] n; call this event B.



Recall that d(n) denotes the number of divisors of n. There are d(n) — 1 proper divisors of n, so

_ d(n)—1

n

P1[A]
Now, if [ < n/2, there are at least n/2 choices for m, including all proper divisors of n. Therefore

T d(n) -1
PrB | A < =T

It now follows that

2(d(n) — 1)2'

Cq(n) < PrlAn B] = Pr[A]Pt[B | A] = n?

The first assertion follows from this and the estimate on d(n).

To prove the second assertion, we note that if n is even, then

Cu) > g_(fqm/z)) N

2
=" 2 9

[

By refining our proof, the upper bound of Theorem 4.2 can be sharpened, as follows. Let 7

denote the smallest prime divisor of n. Then we have

" Yd(n) - 1)"

Coln) < n"(r — 1)!

This reduces to the bound of Theorem 4.2 when r = 2, but is more accurate when n has no small
prime divisors. For example, if n is prime, it yields Cy(n) < 1/n!, which is the best possible
estimate.

It is of interest to compare our estimates with known results about the density of Carmichael
numbers. Let C'(2) denote the fraction of positive integers < z that are Carmichael numbers.

Pomerance [11] has shown that

C(z) < o~ Toctsgs=(1+o(1))

and conjectures a lower bound of the same type. Thus, C(z) is bounded by a function inversely

proportional to a slowly decreasing power of z. The lower bound of Theorem 4.2 shows that
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such an estimate cannot hold in k[X]; in this sense, Carmichael functions are more common than
Carmichael numbers.

The sum ) Fy, taken over all partitions with proper divisors of n for cycle lengths, is actually
the asymptotic fraction of Carmichael functions of degree n, as ¢ — oo. We will denote this
asymptotic fraction by Cuo(n). For moderate values of n, one can enumerate the partitions of n
(an algorithm using O(1) time per partition appears in [12]), and compute C'x(n). Table 1 gives
the results of this computation for n < 33, which displays the extreme irregularity of Co(n) as a

function of n.

Table 1. The asymptotic density of Carmichael functions.

n Ceoln) n Coo(n)

2 0.500000 18 0.042641

3 0.166667 19 8.2 x 10~18
4 0.416667 20 0.025069

5 0.008333 21 0.001241

6 0.383333 22 0.004214

7 0.000198 23 3.9 x 10-23
8 0.154365 24 0.043627

9 0.015898 25 0.000003
10 0.065950 26 0.002966
11 2.5% 108 27 0.000328
12 0.195361 28 0.006118
13 1.6 x 10~10 29 1.1x 1073
14 0.016807 30 0.015565
15 0.006673 31 1.2 x 10734
16 0.029023 32 0.003843
17 2.8 x1071® 33 0.000140

Our function C,(n) is connected with a classic problem in group theory; it is the fraction of
elements @ € ¥,, excluding n-cycles, that satisfy 2™ = 1. Because 1/n of the permutations on

{1,...,n} are n-cycles, our bound may be rephrased in group-theoretic terms as follows:
#{z e, 2" =1}/nl=1/n4+ O0(1/n*"¢),

for every € > 0. Many authors have investigated the solutions in finite groups of equations such as
2% = 1. (See [5] for a survey.) Although asymptotic formulas for the number of solutions to 2% = 1
in ¥,, are known (see [2], [10], [13], [14]), these formulas only apply when d is fixed and n — oco. We
are unaware of any analytic estimates that are applicable to problems such as ours, where d grows
with n. Although Table 1 indicates that any such results would need to take the factorization of n

into account, it would be of interest to find the generating function of Cx(n) and thereby obtain
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sharper estimates than those given here.

Although Coo(n) < 1/n for sufficiently large n, we note that this is not true of all n. In

particular, Coo(n) > 1/n for n = 2,4,6,12,24; we believe, but have not proved, that these are only

cases.

Another question of interest concerns the quality of the approximation Cy(n) = C(n). On

numerical grounds, we believe that Cy(n) is an increasing function of ¢, for every n. If this were

true, then one could obtain lower bounds on Cy(n) by computations similar to those that produced

Table 1.
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