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Abstract

Let F(z,t,A) count those integers < z that algorithm A can completely factor with
probability at least 1/2 using at most ¢ arithmetic operations. We give estimates of this
function for integer factoring algorithms based on cyclotomic polynomials. Setting ¢ to
a polynomial in logz tells us how many integers these methods can completely factor in
random polynomial time.

We give fully rigorous bounds on this function for the p = 1 methods, which are the
simplest cyclotomic algorithms. Our results show that F(z,t, A) for these methods falls
properly between that of trial division and Lenstra’s elliptic curve method, both of which
were analyzed previously by Hafner and McCurley. Using reasonable heuristics, we improve
our upper and lower bounds so that they fall within a small constant multiple of one another.

We also give a heuristic upper bound on F(z,t, A) for Bach and Shallit’s ®4(p) integer
factoring algorithm. This algorithm is the most general method known based on cyclotomic
polynomials, and choosing k£ = 1,2 gives the p & 1 methods as special cases.
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1 Introduction.

Given a positive integer n, the complete factorization problem is to write n as a product of
primes. In this paper, we estimate how many integers can be completely factored in random
polynomial time using Pollard’s p — 1 factoring algorithm, the p+ 1 factoring algorithm, and
Bach and Shallit’s cyclotomic polynomial factoring algorithm. This continues the work of

Hafner and McCurley, who analyzed the trial division algorithm and Lenstra’s elliptic curve
method.

The Problem

To date, there are no known factoring algorithms, even probabilistic ones, which run in time
bounded by a polynomial in the length of the input. As a result, integer factoring is believed
to be intractable, and this belief is often used as the basis for cryptographic protocols.

The fastest known algorithms to factor a positive integer n in the general case have
running times of the form L(n)°, where L(n) = exp[yIognloglogn(l + o(1))] and c is a
small constant. The list of such algorithms has grown quite long, and includes Morrison
and Brillhart’s continued fraction algorithm [MB75], Pomerance’s quadratic sieve [Pom85],
Seysen’s algorithm based on quadratic forms [Sey87], and Lenstra’s elliptic curve method
[Len87]. The new number field sieve [LLMP89] factors integers of the form n = r° + s in
expected time exp|(logn)1/3+e(V)],

Since we are a long way from a random polynomial time factoring algorithm, the question
we ask is:

How many integers can we completely factor in random polynomial time?

Another version of this question asks if the set of integers which are completely factorable
in random polynomial time has positive relative density [AMS87].

To address this question, Hafner and McCurley [HM89] defined the function F(z,t, A),
the number of integers < z that algorithm A can factor completely with probability at least
1/2 using at most ¢ arithmetic operations. If we have a good approximation for F(z,t, A),
then F(z,(logz)°M), A) tells us how many integers algorithm A can factor in random poly-
nomial time. Our goal, then, is to approximate this function for several different factoring
algorithms.

For some algorithms, however, estimating F(z,t, A) tells us nothing new. Consider a
factoring algorithm A that takes the same amount of time for all inputs of a given length.
Unless A runs in random polynomial time, it cannot factor any integers whatsoever in
random polynomial time. Clearly F(z,t, A) for such an algorithm is not very interesting for
our purposes. Aside from Lenstra’s elliptic curve method, all of the algorithms mentioned
above have this property.

The factoring algorithms for which F(z,t, A) is worth considering are ones which adapt
to their inputs in some fashion. Such algorithms have running times which vary for different
inputs of the same length, and as we just argued, only ones of this type have a chance to
factor integers in random polynomial time. Some examples of adaptive integer factoring
algorithms are:



Trial division,

The Pollard-Strassen FFT method [Str76],

The Pollard-p method (whose analysis is only heuristic) [Pol75],
The p & 1 methods [Pol74, Wil82],

Bach and Shallit’s ®(p) methods [BS89a],

Lenstra’s elliptic curve method [Len87].

Previous Work

Knuth and Trabb Pardo [KTP76] were the first to analyze the statistical behavior of the
running time of trial division. They gave estimates for F(z,z!/* T D) where u > 1 is fixed
and where T'D denotes the standard trial division algorithm.

Let TDSS denote a trial division algorithm enhanced with the Solovay-Strassen proba-
bilistic primality test [SS77]. Hafner and McCurley [HM89] proved the following asymp-
totic estimate on the number of integers factorable by TDSS. If logt = o(logz) and
t/log” zloglog & — oo, then

F(z,t,TDSS) ~ e'—

og T

logt. (1)

So, in random polynomial time, TDSS can completely factor O(z loglogz/log z) integers
< z. Using the Miller-Rabin prime test instead of Solovay-Strassen leads to the same result
[Mil76, Rab80].

The analysis for the Pollard-Strassen method and the (heuristic) Pollard-p method would
resemble that of trial division.

Let ECM denote Lenstra’s elliptic curve method with an initial trial division phase
and a probabilistic primality test. Hafner and McCurley also proved the followmg lower
bound on the number of integers factorable by ECM. For any C < 6/5, if t > log* z and
logt = o(log x)'/°, then

T
T h > €
F(z,t, ECM) > e fog 2 (log

ng) (1-+ o(1)). @)

This leads to the lower bound of Q(z(loglog )¢/ log &) on the number of integers factorable

in random polynomial time, which is the best one known. Heuristic arguments imply that
(2) holds for any C < 2.

New Results

We continue this work by analyzing integer factoring algorithms based on cyclotomic poly-
nomials. Bach and Shallit’s cyclotomic polynomial factoring algorithm, the ®4(p) method,
generalizes a number of algorithms, including the p + 1 methods [Pol74, Wil82], Williams
and Judd’s p? + 1 and p* + p + 1 methods [WJ76a, WJ76b], and Bach, Miller, and Shallit’s
sums of divisors method [BMS86]. We focus our attention on the p & 1 methods since they
are the simplest ones and probably the only ones used regularly in practice. If we make use
of some heuristics, our techniques generalize to the ®4(p) method.



Let PM denote Pollard’s p—1 factoring algorithm and PP the p+1 factoring algorithm,
both modified by adding an initial trial division phase and a probabilistic primality test. We
prove the following upper and lower bounds on the number of integers factorable by the PM
and PP algorithms. For every ¢ > 0,

z t loglogt
- < Y
F(z,t,PM or PP) < (3+¢)e gz <log log:v) Tog log logt(l +o0(1)) and (3)

z t
: > 1. e’
F(z,t,PM or PP) > 1.07446 ¢ gz (log logm) (1 + 0(1)) (4)

if t > (logz)?* and logt < (log z)'~% for § > 0. We also require that ¢, viewed as a function
of =, be “nice” in the sense that \/logz/logt either tend to infinity or be bounded.

By making a reasonable heuristic assumption, we can improve both of these bounds.
Let II(z,y) count those primes p < z such that p + ¢ has no prime divisors larger than
y, where a # 0 is a fixed integer. Assuming that II(z,y) ~ 7 (z)p(u) for all u such that
1 <u < (3+c¢€)loglogy/logloglogy, where u = logz/logy, ¢ > 0, and p is Dickman’s
function, we show that

F(z,t,PM or PP) < 1.78108-¢"— <1og

g ) (14 o(1)) and (5)

log z

F(z,t,PM or PP) > 1.30685 - ¢"— <log

- ) @+ ota). )

log z

Our rigorous results prove the widely-held belief that the p 4= 1 methods factor more
integers than trial division but fewer than the elliptic curve method. To be more specific,

(1), (2), (3), and (4) imply that
r F(z,t,PM or PP)
sne0 F(z,t, TDSS)

Lo Fle,t, ECM)
smw0 F(z,1, PM or PP)

> 1 and 00

hold when ¢ > (log z)'*%, logt = o(log )%/¢, and \/log z/logt is either bounded or tends to
infinity with z. Using (6), we can drop the lower bound on ¢ to (log z)*?¢,

Let C) denote the ®,(p) method, where ®,(z) is the kth cyclotomic polynomial. As-
suming that an integer of the form ®,(p) for p a prime has all small prime divisors with
probability no greater than a randomly chosen number near ®4(p), we show that

k T ¢
F(z,t,Cy) < (1 + p((f((]»)))) . ewlogw (log logm) (14 0(1)) (7)
where p is Dickman’s function and ¢ is Euler’s function.

Suppose we construct an algorithm which tries the ®(p) methods for all values of k& up
to some bound [. Does such an algorithm factor a significantly larger number of integers?
Our answer is no. Let MC(l) denote this algorithm. Making the same assumptions as in
(7), we prove that

Fla,t, MC(l)) = o(ﬁfg’gﬂ:) (8)
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This bound is independent of [ and holds even if | — co.

Let us summarize our results. Using reasonable heuristic assumptions, any known cy-
clotomic polynomial based algorithm will factor ©(z loglog z/log ) integers < z in random
polynomial time. If we restrict ourselves to fully rigorous arguments, we have shown that
the p+ 1 methods factor at most O(z(loglog z)'+°()/log ) and at least Q(z loglog z/ log z)
integers < z in random polynomial time.

Our heuristic assumptions ignore the many known algebraic properties of cyclotomic
polynomials. To partially justify this, we give some computational evidence that supports
our heuristics.

Organization

After giving some definitions and notation in section 2, we cover the p—1, p+ 1, and ®,(p)
methods in sections 3, 4, and 5. We conclude in section 6 with computational results to
support our heuristic assumptions.



2 Notation.

In this section we go over our use of notation and some definitions. This is meant to be used
as a reference by the reader. Most of these definitions also occur in other parts of this paper.

Asymptotics

If f and g are two real-valued functions, we write f = O(g) to mean that there exists ¢ > 0
such that |f(z)| < ¢|g(z)| for sufficiently large z. Similarly we write f = Q(g) to mean
|f(z)] > c|g(z)] for sufficiently large z. f = o(g) means lim,_,, f(z)/g(z) = 0. f ~ g means
limg oo f()/g(z) = 1, or equivalently, f(z) = g(z)(1 + o(1)). f < g means f = O(g).
f = ©(g) means f = O(g) and g = O(f). All these implied constants are absolute.

Let f be a real-valued function. We say f(z) is well-behaved if either f(z) — oo as
z — oo or f(z) is bounded.

Number Theoretic Functions

If S is a finite set, we write #S to denote its cardinality.

() is the kth cyclotomic polynomial, whose roots are precisely the kth primitive roots
of unity and has degree ¢(k), where ¢ is Euler’s function. 9(z) = (2% — 1)/®x(2).

Pr(n) denotes the kth largest prime divisor of n. If n has fewer than k prime divisors,
then Pi(n) =1, and if n is prime, P;(n) = n. An integer n is y-smooth if P;(n) < y.

Z/(n) is the ring of integers modulo n, (Z/(n))* is its multiplicative group of units, and
we have ¢(n) = #(Z/(n))*.

GF(q) is the finite field of ¢ elements, where ¢ is a prime power. GF(q)* is its multi-
plicative group, and we have #GF(q)* = ¢ — 1.

pr(w) is Dickman’s function; see Knuth and Trabb Pardo [KTP76).

n(z) = #{p<z : pisprime }
Up(z,y) = #{n<z : P(n) <y}
Hi(z,y) = #{p<az : pisprimeand P,(D(p)) <y}
#{n <z : Pi(n) = P(n)}
) = #{n<z: P(n)=p}
) = #{n<z : Py(n)=pand P3(n) <y}
) = #{n <z P(P(P(n))) <y and Ps(n) <z}
) = Ai(z, y7$)
A (z,y,l) = #{n <z : forsomek, 1 <k <, P(P(P(n))) <y}
)
)
)
)
)

n
VY
®
pa—e
Il

= e\/logxloglogm

- it
2 logt
= #{n < RE@RM) <)
= #{n <z : forsomek, 1 <k<I, P(Pr(Pi(n))) <y}

= ]: p <-z- - 1> p(p(k)u) du
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For all of the above functions, if the subscript & is omitted, assume it is 1. For example,
W(z,y) is B (z,y)

Af(w) = f(w) — f(w — 1), and for functions of two (or more) variables, we subscript A
according to the variable which differs: A, f(w,y) = f(w,y) — f(w —1,y).

Algorithms

C} is the ®¢(p) method. PM is the p—1 method, which is also C;. PP is the p+ 1 method,
which is also C3. MC(l) is the combined C} method, for all 1 < k < to the bound 1.

All of these algorithms are assumed to be enhanced with probabilistic primality tests,
such as Solovay-Strassen [SS77] or Miller-Rabin [Mil76, Rab80], which allows the algorithms
to determine with high probability whether or not they have completely factored an integer.
They also perform preliminary trial division, as would be done in practice.

All of these algorithms are assumed to have access to random bits. Define F(z,t, A) to be
the number of integers < z that, with probability at least 1/2, algorithm A can completely
factor in ¢ arithmetic operations. In other words, we define

F(z,t,A) = #{n <z : Pr( A can completely factor n in ¢ steps ) > 1/2}.

A more precise definition appears in Hafner and McCurley [HM89).

Our definition of arithmetic operation or step is one addition, subtraction, multiplication,
division, greatest common divisor, or assignment operation on O(log )-bit integers. Note
that using classical algorithms as found in Knuth [Knu81], these all have bitwise complexity

of O(log” ), and with the methods of Schénhage and Strassen [$S71], they have complexity
O((log z)*+e(),



3 Pollard’s p — 1 Integer Factoring Algorithm.

In this section we give our results on the Pollard p — 1 integer factoring algorithm, which we
will denote PM. The proof techniques we use here apply directly to the p + 1 method, and
what we prove on general cyclotomic algorithms uses the same approach.

An integer is smooth if all of its prime divisors are small. The central idea of the p — 1
algorithm is that it can find any prime divisor p of an integer if p — 1 is smooth. Since a
number is more likely to be smooth if it is small, the p — 1 method typically removes the
smallest prime divisors first, leaving the largest prime divisor for last. So we define a function
A that counts the integers whose behavior under the p — 1 method is “typical.” Our results
center around approximating this function asymptotically. We also must take care of the
“non-typical” cases: when the largest prime is not removed last, or when the largest and
second largest prime divisors are equal. We define the functions V and S to count these
cases, and show that they occur far less frequently than the “typical” case.

We start by reviewing Pollard’s p — 1 factoring algorithm and giving its arithmetic com-
plexity. We then define A(z,y,z). We then cover previous work on smooth numbers, and
use them to give upper bounds on S and V. We prove some upper and lower bounds on A
and apply them to F(z,t, PM) giving our main results. We finish this section with some
much tighter bounds using reasonable heuristic assumptions on smooth numbers of the form
p — 1 for p a prime.

3.1 The Algorithm.

Let n = p- g be the integer we wish to factor. Further suppose p < /n, p is prime, p — 1
factors completely over the primes below a bound B, and that ¢ is relatively prime to p. Let
P1,- .., Py be the primes below B, and let e; be the largest integer such that pf < /n.

Choose a € (Z/(n))* uniformly at random and compute b = af (modn) where E =

=1 pit. Since p—1| E, we have b= 1(mod p). If b # 1 (modq), then d := gcd(b—1,n) is

a proper divisor of n by the Chinese Remainder Theorem. If d is not prime, we know that
E is a multiple of the order of (Z/(d))*, so we can use Miller’s algorithm to factor d in at
most O(log E) expected arithmetic operations for each prime divisor of d [Mil76].

In addition, we add trial division, a probabilistic prime test such as Solovay-Strassen
[SS77] or Miller-Rabin [Mil76, Rab80], and one of the perfect power testing algorithms of
Bach and Sorenson [BS89b] to give us the following algorithm.

Algorithm PM
1. Find all the primes p; < B, and compute the e;.

2. Remove all primes factors below B from n with trial division. If n is now (probably)
a prime power, halt.

3. Repeat the following main loop for several choices of a. Use Miller’s factoring algorithm
to completely factor any composite divisors that are found.



Choose a € (Z/(n))*;
b:=a;
For : := 1 to r do:
vi=pi;
b := b” mod n;
If d := ged(b—1,n) > 1 Then:
n = n/d,
If n is probably prime or a prime power Then halt;
End if;
End for;

Complexity

Step 1.
All the primes below B can be found in O(B loglog B) arithmetic operations using the
Sieve of Eratosthenes. Since B < /n, this is only O(B loglogn) operations.

Step 2.
Trial Division will use at most O(B) arithmetic operations.

Step 8.

The main loop will use O(log F) operations. Sincelog E < 7(B)log\/n, thisis O(B logn)
operations.

Since n has at most logn divisors, we need execute only O(logn) prime tests, each of
which uses O(logn) operations. We will repeat these O(loglogn) times to insure a total
error probability of at most 1/2, giving a total of O(log? nloglogn) operations for prime
testing. A perfect power can be recognized in O(lognloglogn) arithmetic operations, and
the same time bound will produce the root as well. (See algorithm A using the modified
Newton’s method in [BS89b].)

Thus the total complexity of the algorithm is O(log?nloglogn + Blogn) arithmetic
operations. If we are allowed at most ¢ arithmetic operations, then we choose B = O(t/logn).

The p—1 factoring algorithm also has two extensions, the standard extension and the FF'T
extension. The FFT extension gives the algorithm a worst-case running time of OQ(n!/4*e)
(see [Pol74]). We do not consider either of these extensions here for the following reasons.
The FFT extension complicates the analysis, and its inclusion would only increase the upper
bounds on F(z,t, PM) by at most a factor of 2. The inclusion of the standard extension
would only effect lower order terms in our estimate of F(z,t, PM). For more details on these

extensions and on other improvements to the p — 1 factoring algorithm, see Montgomery
[Mon87], Montgomery and Silverman [MS88], and Pollard [Pol74].

3.2 The Function A(z,y, z).

As we mentioned earlier, we are going to estimate F'(z,t, PM) by first bounding it in terms
of the function A, which counts the “typical” numbers algorithm PM can factor, and the



functions S and V, which count the rest. We will now define these functions and prove a
simple but important lemma that correlates them with F(z,¢, PM).

Let P;(n) be the ith largest prime divisor of the integer n. If n has fewer than ¢ divisors,
we define Py(n) = 1, and also P;(0) = 0. When ¢ = 1, we will drop the subscript altogether
so that P(n) is the largest prime divisor of n. Thus, n =[I2; P;(n).

We say an integer n is y-smooth if P(n) < y.

We define

Alz,y,2) = #{n<z : P(Py(n)—1)<y and P3(n) < z}.

If we leave off the third argument z, assume it is equal to z, that is, A(z,y) = A(z,y, ).
For example, A(z,z) = z and A(z,1,1) = n(z) + 7(z/2) + 1 since P(n) =1 or 2.

We also define the functions S(z) and V(z,y) as follows. S(z) is the number of integers
below z whose largest prime divisor divides at least twice. In other words (or symbols),

S(z) = #{n<z : P(n)=PF(n)}.

V(z,y) is the number of integers whose largest prime divisor p has the property that p — 1
is y-smooth, or

Viz,y) = #{n<z: A(A(r)-1)<y}.

Lemma 3.1 Let B = B(z,t) = O(t/logz) be the bound in algorithm PM as described

above. Then

F(z,t,PM) < A(z,B)+ S(z)+V(z,B) and
F(z,t,PM) > A(z,B,B).

Proof: To prove the upper bound, we must show that A(z, B)+S(z)+V(z, B) counts every
n < ¢ where n is completely factorable by PM with probability > 1/2. If the algorithm
removes Pj(n) before Pa(n), then n is counted by V(z,B). If Pi(n) = Py(n), then n is
counted by S(z). That leaves the case where Pj(n) > P,(n) and the algorithm removes
P2(n) before Py(n). Clearly it must have removed p = Py(n) either by trial division or in
the main loop of the algorithm. In either case we have P(p — 1) < B.

To prove the lower bound, we must show that any integer n counted by A(z, B, B) can
be completely factored by PM with probability at least 1/2. Since P3(n) < B, trial division
will remove all prime divisors from n except for possibly the two largest. (The main loop
could also remove them.) Since P(P2(n) — 1) < B, the main loop of the algorithm will
remove Py(n), unless Py(n) = Py(n) or P2(n) = Ps(n). In the first case, n is a prime power
after P3(n) was removed, and so n is completely factored anyway. In the second case, Po(n)
is removed during trial division, leaving n a prime after trial division. O

3.3 Smooth Numbers.

Generally speaking, a smooth number is one with small prime divisors. To give estimates
for the functions A, S, and V defined above, we make use of several functions that count
various kinds of smooth numbers. The results we quote below characterize the asymptotic
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growth of these functions. We will use these results frequently throughout the rest of this
paper.
First, we define the function

Ui(e,y) = #{n<z: B(n)<y}.

We are primarily interested in this function for £ = 1 or 2, and we often drop the subscript
when k = 1.

In 1930, Dickman [Dic30] proved that ¥(z,y) ~ zp(u) where u = log z/ log y is fixed and
p is Dickman’s function. This function is defined as the continuous solution to the equations

p(uy=1 for 0<u<1 and ~up'(u)=pu—1) for u>1. (9)

Note that p(u) is differentiable for 0 < v < 1 and uw > 1. De Bruijn [dB51a] gave the
asymptotic estimate

_ 1 log log u log log u 2
p(u) = exp{ u(logu—}-loglogu—~1- logu—]t log +O< log

= g w(te(), ' (10)

Knuth and Trabb Pardo [KTP76] generalized the p function to all values of k, showing that
Uiz, zt*) ~ zpi(u) for u fixed. For k = 2 they also showed that

) = S(140(3)) (11)

u u

for © — oo, where v is Euler’s constant, and e” = 1.78107241 - . ..

Many improvements to Dickman’s result have appeared over the years. De Bruijn [dB66]
showed that

U(z,y) < zp(u)(l+o(1)) (12)

where u = log z/logy, (logz)'** <y < z¢, and € > 0. Hildebrand [Hil86] showed that

Vo) = w140, (PECED) (13)

uniformly for @ > 3 and y > exp((loglog z)%/3+¢) where ¢ > 0 is fixed. If the Extended
Riemann Hypothesis holds, then the 5/3 above can be replaced by 1. For our purposes, any
exponent smaller than 2 suffices. See also de Bruijn [dB51b, dB66] and Canfield, Erdés, and
Pomerance [CEP83].

For WU,, Hafner and McCurley [HM89] proved that

Vo) = o) (140 () (14)

logy
for2<y <z

11



We also need the following identities involving p(u). For proofs, see Knuth and Trabb
Pardo [KTP76].

p(u) = 1l—logu for 1 <u<2 (15)

plu) < plu—=1)/u forall u>1 (16)

/a p(u)du = ap(a) foralla>1 (17)
a1
b

/ p(u)du < p(a)— p(b) fora>1 (18)

/Ooop(u)du = ¢ (19)

We conclude our review of smooth numbers by defining a function which counts smooth
numbers of the form p — 1 for p a prime:

O(z,y) = #{p<z : P(p—1)<y and pis prime }.

This function has a major role to play in our estimates of A, as we shall see.

3.4 Estimates for S(z) and V(z,y).

We now have the tools necessary to prove a crude upper bound for S(z). Then, after
introducing some more notation and discussing Stieltjes integrals, we give an upper bound
for V(z,y). The important point is that both of these are of much lower order than A,
allowing us to ignore them later. Chances are that tighter bounds can be found for both
functions, probably at the expense of more effort.

Let L(z) = exp[y/log z loglog z]. Notice that we can write (log z)°- L(z) = L(z)*°® for
¢ any fixed constant.

Theorem 3.2 S(z) < z/L(z)'+W

Proof: Using definitions only, we get the identity

S(z) = 1+ Z\Il(2,p)

P<VT

By allowing the sum to run over all integers and splitting the sum at y = | L(z)] gives

|L(z)]
y? v=|L(z)] v
= T1+T2.

First we estimate 77 using (13) and (10):

L@/, L@ & (los(z/L(z)?
T, < ;W(E,L(m)) < > --p(lmg-g-—/—l—;—(—w—ll) (14 o(1))

y=1 y2 1Og IJ(:I:)
logz x
< o ( loglogz 2) T L)t

12



And second we estimate T5:
Nz

z zlog z
T, < _ T g roEr T
P S 2 ) L(x) L(z)0

since ¥(w,y) <w. O
Since PM includes a prime test, we know that F'(z,t, PM) > n(z) ~ z/logz if t = Q(log z).
Thus Theorem 3.2 implies that the S(z) term in Lemma 3.1 is insignificant.

Frequently, we wish to evaluate or approximate a sum by rewriting it as a Stieltjes
integral. In other words, we use

b b
> 6)A6) = [ fw)dg(lw))
i=a+1

where Ag(z) = g(¢) — g(¢ — 1). Once in this form, we often want to either approximate g
asymptotically or bound it from above or below. The following lemma tells us how to do
this.

Lemma 3.3 Assume the integrals [° f(w)dg(w) and [° f(w)dh(w) exist. Then the follow-
ing are true:

1. If f is decreasing on [a,b] and g > h on [a,b], then

[ fw)dgw) > [ w)dh(w) + O (f(@)g(a) + FB)g(B)
2 Ifg~h and a, b— oo, then
[ 7wy dg(w) ~ [ 1) dhaw) +o(f(a)h(a) + FHHEG)).
Proof: Both are easy to prove by integrating by parts twice. (See Knuth and Greene

[GK81, chapter 4] and Apostol [Apo57, chapter 9] for more on Stieltjes integration.) O

Define Di(z) = [{ p(z/u—1)p(¢(k)u)du. For our upper bound on V(z,y), we need an upper
bound for D;(z). We generalized the definition because we need it later for the p + 1 and
®;(p) algorithms, and the proof of following lemma generalized easily.

Lemma 3.4 Ifz — oo, then Di(z) = O (p (\/qﬂ(k)z - 1))
Proof:

Diz) = [ plzfu=1)- p(6(k)u) du

NAT I |
= { / + P........Z/W)} p(z/u—1) - p($(k)u) du

< o(vowz 1) [V ptwydu

0 (o (o -1)).

13
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using (18) and (16). O
And now for our upper bound on V(z,y).
Lemma 3.5 Let 6 > 0. Iflogz/logy — oo and y > (logz)'+, then

V(z,y) = O(w(logy)p( i?)i;-—l))-

Further, if logy < (logz)'~%, then
V(z,y) < z-exp [—Q ((log z)*/?log log :c)] .
Proof: From the definition of V(z,y), we have

V(z,y) = U(z,y)+ > U(z/p,p)

y<p<Lz, P(p-1)<y

< Y(z,y)+ Zx: V(z/w, w)Ay¥(w —1,y)

w=y+1

where the subscript on A indicates that y is fixed: A,¥(w—1,y) = V(w—-1,y)—V(w-2,y).
Notice this is 1 when w— 1 has no prime divisors larger than y, and 0 otherwise. Now writing
this as a Stieltjes integral gives

U(z,y) + /x U(z/w,w)d¥(w—1,y).

Y

Approximating this asymptotically using Lemma 3.3 and (12) gives

Vo) ~ e+ [[ S (8% 1) o (727))
+ o(¥(z/y,y)¥(y — L,y) + ¥(1,w)¥(z - 1,y))
= /yx i—p (11:)):5) — 1) p (ﬁij) (14 0(1))dw
+ O(¥(z,y)+y-Y(z/y,y)).

The O(-) term is bounded by O(zp(logz/logy — 1)) using (12). By substituting v =
log w/ log y, the integral can be rewritten as

wogn)1-+ o) [ (EZ 1) ptutde = stogt ot 0 27)

ulogy logy
where Dy(z) = [{ p(z/u — 1)p(u)du. By Lemma 3.4 we have D;(z) = O(p(y/z — 1)), and
since p is a decreasing function, we arrive at V(z,y) = O (m(log y)p(y/logz/logy — 1)),

as desired. Substituting logy = (logz)'~% and using (10) completes the proof for when
logy < (log z)!~%. O

That completes the crude bounds for the “unusual” numbers factorable by the p — 1
method. The rest of this section is devoted to bounds on A(z,y, z).

14



3.5 An Upper Bound.

Next, we give a rigorous upper bound for F(z,t, PM) by using the results proved above and
by giving an upper bound for A(z,y).
Let € > 0 be fixed. We define

loglog y
= —— 2
aﬁ(y) (3+€)10g10g10gy ( O)

Our choice for a.(y) is motivated by the following lemma.
Lemma 3.6 Let ¢ > 0. Ify — oo, then p(ac(y)) = o(1/log®y).
Proof: Follows from (10) and (20). O

Our upper bound for A is given by the following lemma.

Lemma 3.7 Lete, 6§ > 0. Iflogz/(ac(y)logy) — oo, y > (logz)'*?, and logz/logy is
well-behaved, then

Az,y) < evlo";xae(ynogy(l—l-o(l)).

We postpone the proof until after the following theorem, which gives an upper bound for
F(z,t, PM).

Theorem 3.8 Ife, § > 0, t/log’ zloglogz — oo, \/logz/logt is well-behaved, and logt <
(log z)'=%, then

x t loglogt
F(az,t < v 1 1)).
(2., PM) < (34 log z <og log :c) logloglogt(l +o(1))

Proof: Follows from Lemma 3.1, Lemma 3.7, Theorem 3.2, Lemma 3.5, and (20). O

This proves (3) for the p — 1 method.

Proof of Lemma 3.7: Our first step is to express A(z,y) in terms of simpler functions.
With this in mind, let us define G(z,p) to be the number of positive integers below & with
p as their second largest prime divisor, that is

G(z,p) = #{n<z : p=PFn)}.
Using definitions, we have the identity
G(z,p) = Va(z/p,p)— ¥(z/p,p-1). (21)

Of course, G(z,y) = 0 when y > 1 is not prime, and G(z,1) = n(z). We also have
y

> Glz,w) = w(@)+3 Gz,p) = Tafz,y). (22)

w=1 Py

15



This now allows us to write

Alz,y) = G(z,1)+ > G(z,p)
p<Vz, P(p-1)<y
= w(z)+ Y G(z,p)AM(p,y)
P<VT

since A,TI(p,y) = 1 precisely when P(p — 1) < y. Now we dissect the sum at y*(¥), giving

Az,y) = w(x)+ >, Gz,p)AMp,y)+ D,  G(z,p)A1(p,y)
p<yae(y) yeeW <p< /7
= T+ T,

with the = (z) grouped with 7.
For Ty, notice that A, II(w,y) < An(w), giving us Ty < Uy(z,y*<W)) by (22). Using (14)
and (11), this gives

T < e'——ady)(logy)(l +o(L).

It remains to show that T3 is small; we will show that T5 = o((z/log ) logy). Noticing
that A,Il(w,y) < A, ¥(w - 1,y), we have '

V=]
T, = ) Gpdlpy) < ) Glzw)d,%(w-1y)
yee(W<p< /T w=|yee(y) |
lylos ¥ ] Vel
< Yo Gz, w)A¥(w—1,9)+ >, Gz, w)A,¥(w-1,7)
w:[yaf(y)J w:[yIOE y]
= 51+ 5. (23)

We will show that S; = o(zlogy/logz) and S; = o(z/ log z).
First for Sy, the easier one. Since w > y'°8Y, we have

AU(w—1,9) < AU(w—1,w!/108),

giving us
L= iy
SZ S G r,w Aw\Il w — 1,w1/logy = G T, W d¥(w — 1,w1/l°gy
[ylo8 ] [ylogv]-1
w=|y'°

VT
~ /y,ogy G(z,w)d(w — 1)p(logy)
+ o (G(:v, ylBV) W (ylo8Y ) 4+ Gz, /z) ¥ (V/, ml/(Zlogy)))

= /y v G(z,w)p(log y)dw + o(zp(log y))

log y

16



using (13), (12), and Lemma 3.3. Since G(z,w) < ¥y(z/w,w) < z/w by (21), this gives us
S, < z(logz)p(logy). Using (10), p(logy) = (logy)~(esv)(1+o(1)) = y—Ooglogy) and since
y > log z, we have

Sy < x(loga)~OUeslosloes)  —  o(y/loga). (24)

Now for S;. We will split this into two cases; either logy = Q(y/logz) or logy =
o(y/log z). We are allowed to do this because /log z/logy is well-behaved.

Case 1: logy = Q(y/Tog z).
Using the same type of argument as we did for S; above, we deduce that
Sz < z(logz)p(ee(y)).

By Lemma 3.6, z(log z)p(c.(y)) = o(z(log z)(log y)~2), and by our assumption that logy =

Q(Vlog z), we have

Case 2: logy = o(v/log z).

This assumption allows us to estimate Uy, so using (21), (14), (11), and the fact that
log(z/w) > (1/2)log x, we have

G(z,w) < UYylz/w,w) < €

(log w)(1 + o(1)).

wlo

This gives us

FaEd ylos v

S Gz w)AU(w—1,y) = /L Gz, w) d¥(w — 1, )

we=|yae(®)] yeel)]-1

ylos Y T
< /05(9) w log %w(log w)d¥(w —1,9).

S1

Lemma 3.3 and (13) then gives

S < / T (log w)d | (w — 1)p [ 28¥
! ae(v) w log x g @ log y

+ (Bg”' (ere(w)(log y)p(ae(y)) + (log y)*p(log f‘/)))

T 6V logw [logw T
< logm/yae(y) w p(logy)dw+o(log:1:logy) (26)
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using Lemma 3.6. Substituting v = log w/ log y into the integral above gives

¥8¥ Jogw [logw logy logy
/y ~§-p( & )dw = (10gy)2f()up(U)du < (logy)e’/ p(u)du

acly)  w log y ae(y ae(y)
< (logy)’plex(y)) = o(1)

using Lemma 3.6 and (18). Plugging into (26) we have

Si = o(z/logz) = o(lozmlogy>. (27

Putting together (23), (24), (25), and (27), we have T, = o((z/ log =) log y), as desired, which
completes the proof. 01

Later on we show how to tighten this upper bound using heuristics.

3.6 A Lower Bound.

We now prove a lower bound for F(z,t, PM).

Our upper bound was based on two approximations for II(z,y); essentially, we used
II(z,y) < ¥U(z,y) and [I(z,y) < 7(z). To prove a lower bound for F', (which implies proving
a lower bound for A) we need a lower bound for II(z,y). We will use the following result by
Pomerance [Pom80]:

I(z,vz) 2 (1~ 4log(5/4)+ o(1))r(z) (28)
~ 0.10742 - n(x)

This result generalizes to counting smooth numbers of the form p + a where p is prime and
a # 0 is any fixed integer (see Goldfeld [Gol69] and Hooley [Hoo73]). In other words, if we
generalize our definition of II as follows,

(z,y,a) = #{p<z : p isprimeand P(p+a) <y},

then we have

M(z,Vz,a) > (1—4log(5/4) + o(1))m(z).

for a # 0 a fixed integer. We will use this later in our lower bound proof for the p+1 method.

As Pomerance points out [Pom88], many researchers have been working on lower bounds
of the form II(z,2'/%) > br(z), and it seems likely that improved results will appear in the
future. With this in mind, we will leave a and b as parameters in our lower bound results.

In using Pomerance’s result, notice that we are limiting our count of integers n to those
with their second largest prime divisor p with P(p—~1) < B and p < B?. Even though most
of the integers factorable by the p — 1 method have a small second largest prime divisor, we
would expect to get a much tighter lower bound by counting integers n with p ranging all
the way up to y/n. And yet, our crude estimate will be good enough to place F(z,t, PM)
higher than that of trial division.

Before we proceed to our lower bound for A, we state the following well-known theorem.
Let Li(z) = [; (logt)~dt.

18



Theorem 3.9 (Prime Number Theorem) n(z) ~ Li(z) ~ z/logz.

Proof: For a proof, see Davenport [Dav80, chapter 18]. O

Lemma 3.10 Let§ > 0, and a > 1, b > 0 such that T(z,z/*) > br(z). Iflogz/logy — oo
and y > (logz)'*® then

T

AMz,y,y) = (1+bloga+o(l))e’—logy.

log
Proof: Like in the proof of Lemma 3.7, we start by defining a new function H(z,y,p):
H(z,y,p) = #{n<z : P(n)=p and Ps(n) <y}.

H satisfies H(z,y,1) = n(z), H(z,z,p) = G(z,p), H(z,y,2) = 0 for z > 1 not prime, and

> Hiz,2) = Waley) (29)

Then by definition, for y < p we see that,

H(z,y,p) 2 ¥, (%y) - (%m) : (30)

Using the definition of A, by (29) and (30) we have

Az,yy) = olz,y)+ > H(z,y,p)

y<p<y®, P(p-1)<y

> U(z,y) + > 15 (an) - > )<y‘1’ (:’f’p)

y<p<y®, P(p-1)<y p y<p<ye, P(p-1)< p

T+ T, —Ts.

fl

Using (14) and (11) we have

T

Ty = Valz,y) = c'——(logy)(L+o(1)).

log z

For T5, we use (14) and (11) and noticing that logz > log(z/p) gives

T, > > e (logy)(1+ (1),

y<p<y®, P(p-1)<y og T

To evaluate this sum, we focus on the 1/p part, since the rest does not depend on p, the
index of summation. Using 7(w) > I(w,y) > H(w,w'/®) > br(w), Lemma 3.3, the prime
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number theorem, and the formula }°,<, 1/p = loglogz -+ C + o(1) where C' is constant (see
Hardy and Wright [HW79]), we have

-~ 1 vt 1
> - = /y ZU—dH(w,y)

y<p<y?, P(p—1)<y p

w
b
- 2ol
y<p5y"p logy

= b(loga) + o(1).

> /yya ﬁdvr(w) +0 (i—ﬂ(y,y) + %H(’y“,yo

Thus, we have
x

T, > b(loga)e”

(logy)(1 + o(1)).

It remains to show that T3 is of lower order. Using the identity

log

Vo) = W)+ X ()

w<py

which holds for w > 2, we have

Ts < ¥(z,y*) < CCP(

L z

= o((z/logz)logy)
by (12), two applications of (16), and the hypothesis that log z/logy — oco. O
Note that 1+ (1 — 4log(5/4))(log2) = 1.07446 - - -.

Theorem 3.11 Let § >0 and a > 1, b > 0 such that I(z,2'/?) > br(z). Ift > (logz)**
and log z/logt — oo, then

F(z,t,PM) > (1+bloga+o(1)) z (l t).

o
¢ log z °8 log z
Proof: Follows immediately from Lemma 3.1 and Lemma 3.10. O

Applying Pomerance’s result (28) gives (4) for the p — 1 method.
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3.7 Heuristics.

Our results up to this point have relied on somewhat crude approximations of the asymptotic
behavior of the function II(z,y). Essentially, we use the inequalities Ti(z,y) < ¥(z,y),
[(z,y) < 7(z), and TI(z,z/*) > br(z) for a and b certain fixed constants. Although these
bounds are correct, they are not very tight. Suppose we had a much better approximation
for II. How much would this improve our results for F'(z,t, PM)? We will give a reasonable
heuristic estimate of the asymptotic behavior of II(z, y) that leads to upper and lower bounds
for F(z,t, PM) that are within a small (< 2) constant multiple of one another.

Since II(z,y) counts primes p such that p — 1 has all of its prime divisors less than y, and
U(z,y) counts all integers n such that all of n’s prime divisors are less than y, it makes sense
to approximate Il(z,y)/7n(z) as ¥(z,y)/z. In other words, let us assume the following.

Hypothesis 3.12 II(z,y) ~ 7(z)p(u), where u =logz/logy.

This was conjectured by Pomerance [Pom80, Pom88] and no doubt by others as well.

We show below that this heuristic leads to upper and lower bounds on F(z,t, PM) that
are within a small constant multiple of one another.

Actually, Hypothesis 3.12 is stronger than we need; we weaken it to the following.

Hypothesis 3.13 Let € > 0 be fivred. Then lI(z,y) ~ n(2)p(u) for 1 < u < ay), where
u=Ilogz/logy.

We use this to prove the following bounds on A.

Lemma 3.14 Lete, § > 0. Iflogz/(a.(y)logy) — oo, y > (logz)'**, and logz/logy is
well-behaved, then Hypothesis 3.18 implies

Alz,y) < ¥V

(logy)(1 + o(1)).

log
Proof: Similar to the proof of Lemma 3.7, we write A(z,y) = Ty + T, where
T = G(z,1)+ ). G(z,p)AI(p,y)

pSyae(y)

T, = Y. Glz,p)AII(p,y).

PROPRY:

By the proof of Lemma 3.7, we have T, = o((z/ log =) log y).
It remains to compute an upper bound for 7. By the prime number theorem, (z) ~
Li(z), and using Hypothesis 3.13, Lemma 3.3, and (22), we have

yo‘c(.’l)
/1 Gz, w)dI(w, y)

yae(y)
Uy, y) + / G(z, w)dT(w,y)

~ Ua(ey) + /y " Gy w)d (Lz'(w)ﬂ (Iogw))

Ty

logy
+ o ((y,y)G(z,y) + T(y*W,)G(x, g ).
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Since 7(w) > I(w,y) and G(z,w) < e"(z/wlog(z/w))log w(l + o(1)) using (21), (14), and
(11), the o(-) term is o(x/log ). This then gives us

x ye® z 1 log w
< oY . v . . d
I < e logx(logy)(1+0(1))+/y e wlogm(logw) (1+0(1)) logwp(logy) w
'Y T (l ) 1+‘/‘0’e(1/) ()d
~ e oz z ogy , p(u)du

z
~ Mo s
()¢ logy)
by substituting v = logw/logy and by (16), (19), and Lemma 3.6. O

Lemma 3.15 Let €,6 > 0. Ify > (logz)'*%, and logz/logy — oo, then Hypothesis 3.13
implies
T

Az,y,y) = (2—log2)e’——(logy)(1 + o(1)).

log

Proof: Let 3 be a positive, real-valued function such that (y) — oo as y — o0, 8 < o,
and B < (logz/log y)'/®. Following the proof of Lemma 3.10, we have

T T
A($7 y7y) 2 \Ilg(:l,',y) + Z (‘I}2 (_7y) . (“?p>>
y<p<yAW), P(p-1)<y P P
= T+ T, —Ts.
From the proof of Lemma 3.10, plugging in S(y) for a gives us both
x
— Y e
Ty = e log:v(log y)(1+0(1)) and

T3 = of(z/logz)logy),

allowing us to focus on T5.
Again, from the proof of Lemma 3.10, we have

T, > Y &——(logy)(1 +0o(1)). (31)

y<p<yP¥), P(p-1)<y plogz

We need to evaluate the sum on 1/p. Using Hypothesis 3.13 and Lemma 3.3, we have

2.

y<p<yP¥), P(p-1)<y

S e

¥ ] log w 1 1 5
~ —_— ) - Ty (y) .
/y wcl (Lz(w)p (logy )) + o (yII(y,y) + y,g(y)ﬂ(y ,Y)

Bounding II(w,y) with w(w), differentiating, using (9), and noticing that Li(w) =
O(w/ log w) gives

S /y”(”) 1 [p(log w/logy) (p(log w/logy — 1)
- Yy

w logw log? w

)|t + o/toen)
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Substituting u for logw/logy and using (18) gives

_ /lf’(”[m_()(g(_{t;}))}du + o(1/logy)

u u?logy
B(y)
- / ”ﬁ%‘ldu — 0(1/logy).
1

Since p(u)/u > p(u)/(u+1) = —p'(u + 1) by (9) and (16), this is

> p(2) = p(B(y)+1)—0(1/logy) ~ p(2)=1-log2.
Plugging back into (31) completes the proof. O

Notice that 2 —log2 = 1.30685- - -.
The above bounds on A give the following improved results for F'(z,¢, PM).

Theorem 3.16 Let ¢,6 > 0. Ift > (logz)**?, logt < (logz)'~%, and /logz/logt is well-
behaved, then Hypothesis 8.13 implies

T t
. < 1.78108 - ¢” '
F(z,t,PM) < 1.78108 -¢ gz (log logw) (14+0(1)) and

T t
> 1. s + 0(1)).
F(z,t,PM) > 1.30685 ¢ log (log logm) (1 + o(1))

Proof: Follows from Lemmas 3.1, 3.14, 3.15, Lemma 3.5, Theorem 3.2, and the fact that
e’ = 1.78107421--.. O

This proves (5) and (6) for the p — 1 method, and concludes our results for the p — 1 integer
factoring algorithm.
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4 The p+ 1 Integer Factoring Algorithm.

We now will prove results for the p + 1 factoring algorithm. Let PP denote this algorithm
with an initial trial division phase and a probabilistic primality test. We start by briefly
describing the algorithm and estimating its running time. Perhaps the most important
observation to make about the p + 1 algorithm, for our purposes, is that it removes prime
divisors p such that p + 1 is smooth.

We will use the same approach here as we did in section 3 for the p — 1 method; we
define functions Ax(z,y,2) and V(z,y), where A, counts the “typical” integers factorable
by the p+ 1 method, and S and V; count the rest (S is the same as before). As a result, the
work we did in section 3 on the p — 1 method carries over almost word-for-word, making our
proofs in this section quite short.

4.1 The Algorithm.

The following description of the p + 1 method in terms of finite fields is from Bach and
Shallit [BS89a]. Williams also gives a nice description of the p + 1 method, but in terms of
recurrences [Wil82]. Our goal here is to give a general idea of how this algorithm works, and
to point out the similarities between this method and the p — 1 method.

Let n be the integer we wish to factor, and assume that n = p-q where p < /n is prime
and ¢ is relatively prime to p. Choose a bound B, and let p; ...p, be the primes less than
B. Let e; be the largest integer such that pf < +/n. Let E =[]\, pf'.

If p+ 1] E, that is, if p+ 1 factors completely over the primes below B, the following
procedure is likely to split n:

Choose a, and b uniformly at random from Z/(n);
Choose d uniformly at random from (Z/(n))*;
8= qa - b\/gf;
By rationalizing the denominator, compute

w := §/s mod n;
Compute v and v such that

w? = u 4 vv/d (modn);
Try to split n with ged(u — 1, v,n);

Computation occurs within the ring Z[+/d]/(n). By the Chinese Remainder Theorem for
commutative rings, this is isomorphic to (Z[Vd]/(p)) ® (Z[Vd]/(q)). If d is a quadratic
nonresidue modulo p, then we have Z[v/d]/(p) ~ GF(p?), where GF(p?) is the finite field of
order r. Notice GF(p*)* has order p> — 1 = (p — 1)(p + 1). w is constructed so that w is
likely to have norm 1; this gives w?*! = 1 modulo p. Since p+ 1 | E and any power of 1 is
1, we have u = 1 and v = 0 modulo p. If nothing unusual happens modulo ¢, which is likely,
we split n.

As we did with the p — 1 method, we will precede this procedure with trial division up to
B, incorporate probabilistic primality tests and perfect power tests. We also place the last
two steps above in a loop as follows:

24



For z := 1 to r Do:
w:=wP in Z[Vd]/(n);
Compute v and v such that
w = u + vvd (modn);
If d := ged(u — 1,v,n) is a proper divisor n,
n :=n/d, and output d;

The main loop of the algorithm will take O(Blogn) operations, since logE =
O(n(B)logn) and computing w® mod n dominates the running time. As in the p — 1 algo-
rithm, the total number of operations spent in trial division is O(B), in finding the primes
is O(Bloglogn), and in prime tests and perfect power tests is O(log® nloglogn). Thus, the
total expected number of arithmetic operations used by PP is O(Blogn + log® nloglogn).
If we are limited to ¢ operations, we choose B = O(t/logn), just as in the p — 1 method.

Again, the p+ 1 method has two extensions, a standard extension, which is described by
Williams [Wil82], and an FFT extension which is described by Montgomery and Silverman
[MS88]. We do not consider these extensions for the same reasons as in the case of the
p — 1 algorithm. For more details on the p + 1 method of factorization, see Guy [Guy75],
Montgomery [Mon87], Montgomery and Silverman [MS88], Bach and Shallit [BS89a], and
Williams [Wil82]. For more on finite fields, see Lang [Lan71, chapter VII §5].

4.2 Upper and Lower Bounds for F(z,t, PP).

We now define
Ay(z,y,2) = #{n<z: P(P(n)+1)<y and Ps(n) < z}.

If we leave off the third argument z, assume it is equal to z, that is, Ax(z,y) := As(z,y, 2).
Also, we define

Va(z,y) = #{n<ez: P(P(n)+1)<y}.

In other words, V,(2,y) denotes how many integers n below & have the property that the
p + 1 algorithm can remove n’s largest prime divisor.

Lemma 4.1 Let B = B(z,t) = O(t/logz) be the bound in algorithm PP. Then
F(z,t,PP) < Ay(z,B)+ S(z)+ Va(z,B) and
F(z,t,PP) > A(z,B,B)

Proof: Identical to the proof of Lemma 3.1. O

We now define Il;(z,y) to be the number of integers of the form p + 1 for p a prime, all
of whose prime divisors are at most y:

Oy(z,y) = #{p<z : pisprime,and P(p+1) <y}.

As we mentioned in section 3, Pomerance’s result (28) applies to II;(z,y), and we make
use of that below. There does not seem to be any special reason for Ily(z,y) to differ from
II(z,y) by very much asymptotically. This also seems to be the case in practice, as our
computational results show in section 6. So, we make the following heuristic assumption.
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Hypothesis 4.2 Let € > 0 be fired. Then Ily(z,y) ~ m(z)p(u), where u = logz/logy with
1 <u<Ladly).

Lemma 4.3 Let ¢,6 > 0 be fired and let a > 1, b > 0 such that Iy(z,2'/%) > br(z). If
log z/(ae(y)logy) — oo, y > (logz)'*+, and logz/logy is well-behaved, then

hae,y) S (+e)e' —adly)llogy)(1+ (1)) and

(log y)(1 + o(1)).

x

Ao(z,y,y) = (1+bloga)e”

log

Further, if Hypothesis {.2 holds, then

< e
Ax(z,y) < e 1ng(logy)(l~‘r0(1)) and
M
> (2 — v T D).
Ao(z,y,y) = (2 —log2)e 1Ogm(logy)(l+0(1))

Proof: Using definitions, we have the following identities:
Moz,y) = Gle,1)+ 3 Glz,p),
p<V/E, P(p+1)<y

Ao(z,y,y) = H(z,y,1)+ > H(z,y,p).
p</, Pp+1)<y

We substitute IIz(z,y) in for II(z,y) in the proofs of Lemmas 3.7, 3.10, 3.14, and 3.15, and
substitute Hypothesis 4.2 for Hypothesis 3.13. The results follow. O

Lemma 4.4 Let § > 0. Iflogz/logy — oo and y > (logz)'*®, then

V(e = 0 (sliogn)e ({22 -1)).

logy
Further, if logy < (logz)!~, then

Va(z,y) < z-exp {—Q ((log z)*/?log log a:)] .

Proof: The proof is essentially the same as the proof of Lemma 3.5. O

Theorem 4.5 Let €,6 > 0 be fized, and let a > 1, b > 0 such that Iy(z,2*/*) > br(z). If
t > (logz)**8, logt < (log z)'~¢, and \/log z/logt is well-behaved, then

t loglogt
(log log:c) log log logt(1 +o(l)) and

T
< (e v
F(z,t,PP) < (3+¢)e og 2

z t
> e ,
F(z,t,PP) > (1+bloga)-e oz (log logw> (14 o(1))

Further, Hypothesis 4.2 implies

x t
F(z,t,PP) < 1. -e¥ ]
(z,t,PP) < 1.78108-¢ log (og loga:) (14 0(1)) and

T 1
t,PP) > 1. e .
F(z,t, ) > 1.30685-€ oz (log log:c> (1+ 0(1))
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Proof: Follows from Lemmas 4.1 and 4.3, Lemma 4.4, and Theorem 3.2. O

Using (28), this proves (3), (4), (5), and (6) for the p + 1 integer factoring algorithm.
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5 Bach and Shallit’s ®,(p) Integer Factoring Algo-
rithm.

In this section we will prove an upper bound on F(z,t,C}), where C} is the kth cyclotomic
polynomial integer factoring algorithm, or the ®;(p) method. The kth cyclotomic polynomial
®;(z) is the unique monic polynomial with integer coefficients whose roots are precisely the
kth primitive roots of 1 in the complex numbers. Perhaps the most important thing to note
is that the ®(p) method removes prime divisors p from an integer n with high probability
if ®4(p), the kth cyclotomic polynomial evaluated at p, is smooth.

As we mentioned in the introduction, Bach and Shallit’s algorithm is a generalization of
many other factoring algorithms. For example, since ®1(z) = ¢ — 1 and ®3(z) =z + 1, C;
corresponds to the p—1 method and C to the p+1 method; in previous sections we analyzed
both of these methods. Williams and Judd’s algorithms [WJ76a, WJ76b] correspond to
k = 3,4,6. Bach, Miller, and Shallit’s sums of divisors algorithm [BMS86] corresponds to
k a prime power. Because the ®;(p) method is a generalization of the p + 1 methods, we
can generalize our techniques from previous sections to give a heuristic upper bound for
F(z,t,Ct). So we will introduce the functions A(z,y,2) and Vi(z,y) as before, and bound
them by the use of a function IIx(z,y) which counts primes below z such that ®;(p) is
y-smooth.

Suppose we construct an algorithm that factors integers by trying the Cj; method for
all values of k£ up to a bound /. Call this the MC(l) algorithm for the multiple cyclotomic
polynomial method. Bach and Shallit [BS89a] called integers susceptible to factorization by
MC(1) vulnerable numbers. We also give a heuristic upper bound on F(z,t, MC(l)), the
number of vulnerable numbers. For this bound, we use the functions A*(z,y, ), V*(z,y,1),
and IT*(z,y,1).

We start by giving the general idea of how the ®x(p) factoring algorithm works. This
method is quite complicated, so we do not attempt to describe it in complete detail. For
that, we refer the reader to Bach and Shallit’s paper [BS89a]. We then prove our upper
bound for F(z,t,C}). We conclude with our result on the multiple cyclotomic polynomial
method.

5.1 The Algorithm.

The following description of the ®;(p) method is not meant to be complete or rigorous. Qur
goal is to give the reader an idea of how the algorithm works and to show the similarities
between this algorithm and those discussed in previous sections. For complete details, see
Bach and Shallit [BS89a].

Let n be the integer we wish to factor, and for simplicity assume that n = p - ¢ where
p and ¢ are prime with p < ¢q. Choose a bound B, and let p; ...p, be the primes less than
B. Let e; be the largest integer such that pf* < ®x(y/n) ~ n®®/2, Let E = [T’_, p*. Notice
that log E = O(w(B)¢(k)logn).

Before giving a pseudocode description, we must make a few definitions.

For a prime m, m = 1 (mod k), we define the ring R,, as follows. Let K,, be the extension
field of degree k over Q, the rationals, inside the mth cyclotomic extension field of degree
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m — 1 over Q. Let O,, be the ring of integers in K,,. Then R,, is O, /(n). We omit the
details on how to represent R,, for computation.

Let 1y, be the polynomial defined by ¥;(z) := (zF — 1)/®x(z).

We use u/(?) to denote a symbolic power; for example u®” ! = u°” Ju.

Also, if o € R,,, define ged* (e, n) to be the greatest common divisor of pairs of coefficients
from a basis representation of « in R,,.

If ®,(p) | E, that is, if ®4(p) factors completely over the primes below B, then the
following procedure is likely to split n.

Repeat:
Choose m a prime, with m = 1 (mod k);
Construct the ring R,, with automorphism o,
were o is a generator for the Galois group Gal(K,,/Q), pulled down to R,
Choose s € R, at random;

w = SE;

For ¢ € (Z/(k))* Do:
T =o'
v = w"/’k(T);

d:= gcd*(v — 1,n);
Check to see if d is a proper divisor of n;
End for;
Until n splits (or time runs out);

We hope that p remains prime in O,, and that ¢ splits completely. If this happens, then
R, mod p is the finite field GF(p*), and some power 7 of ¢ is the Frobenius automorphism
on GF(p*), giving

wE () = 1,2k (P)k(p)(E/®i(P)) = w(P"'U'(E/‘I’k(P)) = 1B/%() = 1

allowing gcd*(v — 1,n) to split n. A form of the generalized Riemann hypothesis (GRH)
guarantees the existence of a small prime m with the required properties.

As we did for the p£1 methods, we make some modifications to the procedure above. We
incorporate a preliminary trial division step, add perfect power and probabilistic primality
tests after divisors are found, and we break down the computation of w¥ into a loop that,
on the ith iteration, raises w to the power p{* and then checks for a divisor.

Bach and Shallit [BS89a] analyzed the complexity of this algorithm. They showed that
one pass through the main repeat loop above uses a number of arithmetic operations bounded
by a polynomial in m, &, logn, and log .

We are concerned with an upper bound on F(z,t,Cy). So it suffices to find an upper
bound on B in terms of ¢, the number of arithmetic operations allowed in running the

algorithm. It is not difficult to see that O(¢/logn) is an overestimate for B, so this is the
bound we will use.

5.2 Results for F(z,t,Cy).
Following the same pattern as in previous sections, we define

Ap(z,y,2) = #{n <z : P(®r(P:(n))) <y and Ps(n) < 2z}
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and we if we omit z, we assume it is z: Ap(z,y) := Ax(z,y, z). Similarly, we define
Vi(z,y,2) = #{n <z : P(®(P(n))) <y}.

Note that for k = 1,2, these definitions reduce to our definitions of A and A,, and V and V,
from previous sections. The following lemma bounds F(z,t,C}) in terms of A, S, and V4.

Lemma 5.1 Let B = B(z,t,k) = O(t/logn) be the bound in algorithm Cy. Then
F(z,t,Cy) < Ai(z,B)+ S(z) + Vi(z, B).

Proof: Follows from the discussion above and the proof of Lemma 3.1. O

We also generalize our definition for II(z,y) as follows:

Hi(z,y) = #{p <z : pisprime, and P(D;(p)) < y}.

Little is known about the order of magnitude of IIx(z,y). In order to derive anything, we
must make some sort of an assumption in this area. It seems reasonable to assume that @, (p)
has all small prime divisors with probability no greater than a randomly chosen integer of
the same size. Since the degree of the polynomial ®(z) is ¢(k), ®x(p) is roughly p?*) in
magnitude. This leads us to the following hypothesis.

Hypothesis 5.2 Hi(z,y) < n(2)p((k) - uw)(1 + o(1)), where u = logz/logy.

Now this heuristic for II; ignores many of the special properties of cyclotomic polynomials.
For example, if a prime ¢ | ®x(p) and ¢ > k, then ¢ = 1 (mod k). However, computations
made by the author indicate that Hypothesis 5.2 is probably correct. We discuss the results
of these computations in section 6.

We now use this heuristic to bound Vi(z,y,1).

Lemma 5.3 Let § > 0. Iflogz/logy — oo and y > (logz)'*®, then Hypothesis 5.2 implies
Vi(z,y) < O(y¥(z/y,y)) + z(logy) Di(log z/logy) - (1 + o(1))

= 0 {aptioga/togy — 1)+ alog)p 1 (1) 222 - 1)

Further, if logy < (logz)'~° and ¢(k) <logz/logy then Hypothesis 5.2 implies

Vi(z,y) = z-exp [—-—Q( $(k)(log £)*/? log log a:>] :
Proof: The proof follows from the proof of Lemma 3.5 by the appropriate substitution of
II; for ¥ and the application of Hypothesis 5.2, and Lemma 3.4. O

We now give our bound for Ax(z,y).

Lemma 5.4 Let ¢,6 > 0. Ify > (logz)'*?, logz/(ac(y)logy) — oo, and /logz/logy is
well-behaved, then Hypothesis 5.2 implies

M) < (14 2D iogy) + o),
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Proof: By our hypothesis and (12), since ¢(k) > 1, we have IIy(z,y) < ¥(z,y)(1 + o(1))
and i(z,y) < n(z). By definition, (22), and Lemma 3.3 this gives

Ak(m7 y) = G(IL‘, 1) + Z G(.’E,p)
<V, P(®k(p))<y

yac(y) \/5
< Uyt [0 Gl wdliwy) + [ Olew)dbw,y)

+ 0(G(z,v2)¥(v/z,y) + G(z,y> )P (g0, y))
= N +To+ T3+ E.
From the proof of Lemma 3.7 E = O(z/log z). Using (14) and (11) we have

iy
T1 ~ e

logy.
log x ey

By the proof of Lemma 3.7, we also have T35 = o((z/log z)logy). It remains to bound T5.
By approximating G(z,w) < e¥(z/(wlogz))(logw)(1 + o(1)) using (21), (14), and (11)

gives

T

T2 S e’
log =

We then evaluate the integral using Hypothesis 5.2, the prime number theorem, Lemma 3.3,
differentiating, and using (18):

ae(y) ae(y)
e [ ) 380
Yy K]

wlogy logy | wlogy logy
Lioll) (se) o p(d(k)

o(k)  Jak) plujeu = W(1+0(1)).

That completes the proof. O

Using the previous two lemmas, we arrive at the following upper bound for F(z,t, Cy).

Theorem 5.5 Let ¢,6 > 0. Ift > (logz)?*, logz/(ac(t)logt) — oo, and \/logz/logt is
well-behave then Hypothesis 5.2 implies

F(e,t,C) < (1+p(¢¢((kk))))alo; (10g10;m>(1+0(1)).

Proof: The results follows from Lemmas 5.1,5.4, Lemma 5.3, and Theorem 3.2. O

This proves (7).

5.3 A Multiple Cyclotomic Polynomial Method.

Finally, we consider an algorithm which performs trial division and then each ®(p) method
for 1 <k <Itoabound!l. Aswe mentioned at the beginning of this section, we will call this
algorithm M C(l) for the multiple cyclotomic polynomial method. We will show that MC(!)
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factors at most a constant multiple more integers than a method based on one cyclotomic
polynomial.

Following our standard approach, we start by defining A*(z,y,!) and V*(z,y, ) as follows.
A*(z,y,l) = #{n<z : forsomek, 1<k <I, P(®(P:(n))) <y}
V¥z,y,1) = #{n<z : forsomek, 1 <k<I, P(®(Pi(n))) <y}

Correlating A* and F(z,t, MC(l)) is done with the following lemma.

Lemma 5.6 Let B = B(z,t,l) = O(t/log =) be the bound for the multiple cyclotomic poly-
nomial algorithm MC(l). Then

F(z,t,MC(l)) < A*(z,B,l)+ S(z)+ V*(z, B,1).
Proof: Follows from the definitions above and the proof of Lemma 3.1. O
We also define IT*(z,y, ) as follows.
*(z,y,l) = #{p<z : pisprime, and P(®x(p)) <y for some k, 1 <k < I}.

The important thing to note at this point is that A,II*(w,y,l) < Aum(w) and
AT (w,y, ) < Th_, Aylli(w,y). We will use these two upper bounds, along with Hy-
pothesis 5.2 to give upper bounds for V* and A*.

Before we proceed to give an upper bound for V*, we need the following lemma.

Lemma 5.7
2 Di(2) = p(QV7))
k=1
The proof is rather technical, so we postpone it to the end of this section.

And now for V*.
Lemma 5.8 Let 6 > 0. Iflogz/logy — oo and y > (logz)'*% then Hypothesis 5.2 implies

V(o) = allogy) - p (loge/logy)).

Further, if logy < (logz)'~°, then Hypothesis 5.2 implies
V*(z,y,l) = z-exp [-——Q ((log z)%/?log log :1:)] .
Both are independent of I, and hold even if | — oo.
Proof: Again, following the proof of Lemma 3.5 and using Hypothesis 5.2, we have
Vi(eul) < Uoy)+ S Uo/w,w)A T (w,y,])

w=y+1

z l
< Y(oy)+ X U(z/w,w) Y0 AL (w,y)

w=y+1 k=1

!
= ¥(z,y) +O(zlogy) - ) Di(logz/logy).
k=1
Lemma 5.7 and (12) gives the result. O

The following is our upper bound for A*.
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Lemma 5.9 Let €,6 > 0. Ify > (logz)'*®, logz/(a.(y)logy) — oo, and /logz/logy is
well-behaved, then Hypothesis 5.2 implies

zlogy
* ) = et I
KD = 0(5R8)
Further, this bound holds for | — oo.

Proof: Recall that A, IT*(w,y,!) is smaller than A,7(w) and Yk_; ATl (w,y). By defi-
nition, (22), and Lemma 3.3, we have

JE
A (z,y,1) = G(z,1)+ Y G(z,p) + Y Gz, w)A,T*(w,y,!)

p<y w=y
< z,y) + Z/ G(z,w)di(w,y)
= T1 + Tz.
Then by (14) and (11) we have
T, ~ €
1 e 10ga}logy

It remains to estimate T5.
By Hypothesis 5.2 and Lemma 3.3, we have

Z/f Glo‘”; ;") ( (A)%%%%) dw - (1 + o(1))

+ 0(G(z,v2),7(vz)) + G(z,y)7(y)) -

At this point we must break up the sum into three pieces; Ty = S; + 53 + S3 where S; covers
the interval [y, y*<®)], S, the interval [y*<®), y!°8¥] and S the interval [y'°8¥, \/z]. Using the
fact that \/log z/ log y is well-behaved, we use the same techniques as in the proof of Lemma
3.7. The only interval which makes a significant contribution is S;, so we will prove the
upper bound for that one, and leave the intervals covered by S, and S3 to the reader.

We approximate G(z,w) < e7(z/(wlogz)logw)(l + o(1)), and substituting u =
#(k)log w/logy gives

xT ! ]_ ¢(k)ae(y)
S5 < 1 —_— du + O(z/1
: 1Og‘,,c( °gy)k§ 0 Ly P+ O/ log )

p (1» T oo s AR = 1)
< log:z: Z (k) < logm:(lgy)g::1 o(k)?

o)
log
which follows from (18), (16), and the sum converges using the fact that #(k) =

Q(k/loglog k) holds asymptotically (see Hardy and Wright [HW79]). O
Using the previous lemmas, we now have the following upper bound for F(z,t, MC(l)).
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Theorem 5.10 Let €,6 > 0. Ift > (logz)**, logt < (logz)'~%, and Iogz/logt is well-
behaved, then Hypothesis 5.2 implies

zlogt
F(z,t, MC(l)) = O(logz)'

Proof: The upper bound follows from Lemmas 5.6, 5.9, Lemma 5.8, and Theorem 3.2. The
lower bound follows from Theorem 3.11 and (28). O

This proves (8), and completes our results for cyclotomic polynomial based integer factoring
algorithms.

5.4 A Proof of Lemma 5.7.

We start by proving a simple lower bound on ¢(k).
Lemma 5.11 For k > 2, ¢(k) > Vk/2.

Proof: We break this down into several cases.

If £ = 2°, then ¢(k) = 2¢71 = k/2.

If £ = p° with p an odd prime, for e =1 we have ¢(k) = p—-1=k -1 > vk, and for
e>1, (k) =p=~l(p—1) > p! > V. |

If £ is not a prime power, factor k¥ = []; k; such that each k; is a prime power and

i # j = ged(ki, k;) =1, and ky.is even. Then ¢(k) = [1; #(k:) > (k1/2) [1; vVE > Vk/2. O

Proof of Lemma 5.7: Using the definition of Di(z) and the linearity of integrals, we have

!

S 0uz) = [ olafu=1)3 p(6(kyuin
k=1 k=1

< /1 “p(zfu—13 { /1 > p(¢(t)u)dt} du.

Focusing on the inner integral, using Lemma 5.11, the fact that p is a decreasing function,
and substituting s = v/tu/2, we have

[ et < [T p(Veus)ae

= 8/u? /u/z sp(s)ds.

Using (16) and (18) gives the bound 8/u?p(u/2 — 1). Plugging this in above and following
the same method as the in proof of Lemma 3.4 gives

g:Dk(Z) < /lz p(z/u —1)8/u?p(u/2 — 1)du

< 8o(yz/2-1) = AQUVZ)).
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6 Computations.

In previous sections we made heuristic assumptions about the factorization patterns of num-
bers of the form ®;(p) for p a prime. Our heuristic (Hypothesis 5.2) says that these numbers
are smooth with probability no greater than the probability numbers of the same size as
®:(p) are smooth. Although reasonable, this heuristic ignores many of the special properties
of cyclotomic polynomials, giving one reason to question the soundness of this heuristic. For
example, if p and ¢ are primes with ¢ > k, then ¢ | ®4(p) if and only if p has order k modulo
g and ¢ = 1(mod k). (See Washington [Was82, Lemma 2.9 and Proposition 2.10].)

In an effort to justify the heuristic, the author wrote a program to test it. In the rest of
this section, we describe the algorithm used, we give the results of the computations, and
we attempt to interpret these results.

6.1 The Algorithm.

The goal of the algorithm is to factor many values of cyclotomic polynomials and count
how many are smooth. This can be done efficiently using a sieve for each value of k. So,
the algorithm is based loosely on the segmented sieve of Eratosthenes. It performs several
sieves on segments of moderate size, and combining the results gives data for a much larger
interval.

First, the primes up to 32,768 were found. For each prime p, a generator of its multi-
plicative group was also found by factoring p — 1 using trial division, and then each prime,
starting with 2, was tested to see if it generated (Z/(p))*.

Then the program sieved 640 segments, each 16K long, giving an interval of length roughly
10 million. The midpoint of this interval was 2°° = 1073741824. The following algorithm
counted factorizations for one segment:

1. The current segment was sieved to give complete factorizations of all the integers in
the segment. From this, the primes were identified and counted, and the functions
U(z,y), Yao(z,y), i(z,y), and IIz(z,y) were tallied.

2. For k between 3 and 10, the following steps were performed:

(a) The segment was sieved again, but only the primes p with p < k or p = 1 (mod k)
were used. To do this, the roots of ®(z) modulo p were needed. Since these roots
are roots of unity, the generator was used to construct them.

(b) For each prime ¢ in the segment, the integer ®x(g) was computed using extended
precision arithmetic and then factored over the list of primes generated by the
sieve. If it factored completely, the prime ¢ was marked.

(c) Finally, the segment was passed over one more time to tally IIx(z,y) for the
marked primes.

This algorithm was implemented in Pascal and run on a VAXstation 3200, which has a
word size of 32 bits. During the debugging phase of the program several factorizations of

cyclotomic polynomials were checked using MACSYMA. The program took roughly 24 hours
to sieve the entire interval.
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6.2 Computational Results.

The table on the following page summarizes the information acquired from running the
program we just described. This table requires a bit of explanation:

For each function tallied by the program, there are two columns. The first gives the
actual count found by the program (Act), and the second gives a prediction based on the
heuristics and results quoted in earlier sections (Est). Let I be the interval that was sieved,
dz the length of I, and z the midpoint. Let u = logz/logy. If the interval I is equal to
[a, b], we abuse notation and write f(I) for f(b) — f(a). Then our predictions using results
and heuristics from previous sections are

U(l,y) = dz-p(u)
Uo(l,y) = dz- pa(u)
Ip(Ly) = =(I)- p(d(k)u).

To compute actual values, the functions p and p; were estimated using the methods of
van de Lune and Wattel [vdLW69] and Simpson’s rule. For m(I), we used the actual number
of primes found in the interval.

The functions ¥, and ¥, are included both because their counts came for free in the
program and because they give a perspective on the size of the difference to expect between
our estimates and the actual counts.

As can be seen, the results are quite interesting.

Notice that our heuristics for II; and II; (Hypotheses 3.13, 4.2) seem accurate. The
actual counts were within 15% of the estimates, and further the counts for II; and II, were
very close to each other.

However, for the quadratic polynomials (k = 3,4,6), our predictions give overestimates.
These numbers support Hypothesis 5.2. It seems our predictions are of the right order of
magnitude. Notice, however, that the actual counts differ from our predictions by around
50%, and further the counts for the different quadratics are not very close to one another.

Recall the heuristics ignore many of the special properties of cyclotomic polynomials. It
may be possible to develop better heuristics by taking these properties into account. Clearly
our results suggest that further study of the asymptotic behavior of II(z,y) is needed.
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Computational Results

y W(1,y) U2(1,y) IL(1,y) II2(1,y)
Act Est Act Est Act Est Act Est
2 1 0.000 1046231 644389 0 0.000 0 0.000
4 1 0.000 1617772 1337598 0 0.000 0 0.000
8 9 0.000 2464732 2089269 0 0.000 2 0.000
16 63 1.801 3025794 2913126 11 0.087 12 0.087
32 931 206.0 3997649 3829586 137 9.907 109 9.907
64 5453 3720 4855640 4857237 615 178.8 630 178.8
128 25608 24799 5885098 5965496 2527 1192 2493 1192
256 84285 94678 6928144 7092735 7285 4552 7169 4552
512 218241 249835 | 7939883 8115914 | 16975 12013 | 16796 12013
1024 | 441207 509696 | 8766741 8942039 | 31512 24508 | 31671 24508
2048 | 775057 884252 | 9412945 9556402 | 52077 42518 | 52080 42518
4096 | 1212328 1366500 | 9884372 9997016 | 77563 65706 | 77245 65706
8192 | 1722213 1914867 | 10201300 10277477 | 106406 92073 | 106216 92073
16384 | 2304206 2555103 | 10396239 10438790 | 138203 122858 | 137817 122858
32768 | 2932380 3217585 | 10485760 10485760 | 171663 154712 | 171357 154712
¥ H3(I> ?/) H‘l(I? y) H5(I7 y) HG(Iay)
Act Est Act Est Act Est Act BEst
64 0 0.000 0 0.000 0 0.000 0 0.000
128 0 0.002 0 0.002 0 0.000 0 0.002
256 0 0.087 0 0.087 0 0.000 0 0.087
512 1 1.259 0 1.259 0 0.000 1 1.259
1024 4 9.907 1 9.907 0 0.000 4 9.907
2048 21 50.11 22 50.11 0 0.000 21 50.11
4096 85 178.8 105 178.8 0 0.000 89 178.8
8192 285 502.6 337 502.6 0 0.000 263 502.6
16384 691 1192 821 1192 0 0.002 682 1192
32768 1492 2476 1781 2476 0 0.016 1532 2476
y II7(1,y) 1s(1,y) Is(1,y) io(1,y)
Act Est Act Est Act Est Act Est
4096 0 0.000 0 0.000 0 0.000 0 0.000
8192 0 0.000 0 0.000 0 0.000 0 0.000
16384 0 0.000 0 0.002 0 0.000 0 0.002
32768 0 0.000 0 0.016 0 0.000 0 0.016

Interval length = 16384 - 640 = 10485760

Midpoint of the interval = 2%¢ = 1073741824
Number of primes in the interval = = (I) = 504190
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