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CONVERGENCE OF ITERATES OF AN INEXACT MATRIX
SPLITTING ALGORITHM FOR THE SYMMETRIC MONOTONE
LINEAR COMPLEMENTARITY PROBLEM

O.L. MANGASARIANt

Abstract. Convergence of iterates is established for a symmetric regular matrix splitting
algorithm for the solution of the symmetric monotone linear complementarity problem where the
subproblems are solved inexactly. The notable iterate convergence recently established by Luo and
Tseng for exact subproblem solution is extended here to inexact subproblem solution for a symmetric
matrix splitting. A principal application of the present result is to iterate convergence for the inexact
block Jacobi method for which Pang and Yang established convergence of a subsequence of the
iterates.
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1. Introduction. We consider the classical symmetric linear complementarity
problem (LCP) of finding an z in the n-dimensional real space " such that

(1.1) Mz+q¢>0, >0, z(Mz+4q)=0

where M is a given n x n real symmetric positive semidefinite (spsd) matrix and g is
a given vector in R™. This problem is equivalent to

. .1
(1.2) rxnzz'(r)n flz):= TZZGL -é-a:M:c + gz

Many iterative methods for solving this problem [1,3,5,9,10,11,13] can be modeled as
follows. Split the matrix M [10] as follows

(1.3) M=B+C
and consider the sequence of (simpler) LCP’s
(1.4)  Baitl +Coi+q >0, o+l >0, o+1(Bzitl + Czi+¢) =0, i =0,1,...

Convergence of a subsequence of the iterates {z?} for a variety of iterative meth-
ods [1,3,4,5,9,10,11,13] can be established under the simple assumption of a regular
splitting, that is

(1.5) M =B+ C, B- ( positive definite

Recently Luo and Tseng [4] were the first to establish that the whole sequence {zi}
generated by (1.4) converges for a regular splitting (1.5) for a spsd M when f(z) is
bounded below on the nonnegative orthant R7. Their proof is rather complex and
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requires that the subproblems (1.4) be solved exactly. By contrast our Algorithm
2.1 below requires only the approximate solution of (1.4) in a precisely defined and
implementable way. However, our proof, which is considerably shorter, requires that
B be symmetric. It is unclear whether the symmetry of B is the inevitable price one
has to pay in order to allow inexactness in the solution of the subproblems (1.4). This
was the case also in [13] where convergence is established for a subsequence of the
iterates of a two stage procedure for solving the symmetric LCP and where the inner
iteration constituted an approximate solution of (1.4), with a symmetric B. An open
question therefore remains: Can the symmetry assumption on B be removed from
our principal result, Theorem 2.4, while maintaining inexactness of the subproblem
solution?

A word about our notation now. For a vector z in the n-dimensional real space R®,
24 will denote the vector in R® with components (z4)i: = maz{z;, 0}, i=1,...,n.
A symmetric posn;lve definite n x n real matrix induces an elliptic norm || - ||z on R"
defined by (¢Bz)? for z in R*. When B = I, we have the Euclidean or 2-norm (zz)?,

which we denote simply as || - ||. The one-norm of z, Z |z;| will be denoted by || - ||1.

For an m x n real matrix A signified by 4 € Rmx':, 1A,' denotes the ith row, while
A’ denotes the transpose. A vector of ones in a real space of any dimension will be
denoted by e without a superscript. The identity matrix of any order will be denoted
by I. The nonnegative orthant in R" will be denoted by R%}. The projection of a point
x in R™ on a closed convex S set in R» employing the norm || - ||p is defined as

e Bl &
av’gggg(p z)B(p - z)

and is denoted by p(z).

2. Iterate convergence of a symmetric matrix splitting.

Before stating our algorithm, it is useful to note that the linear complementarity
problem (1.1) with any matrix M is equivalent to

(2.1) z=(z-(Mz+q),

This equivalence can be easily checked component wise. Hence the subproblems (1.4)
are equivalent to

(2.2) zitl = (zi+! — (Bzi+! + Ca* + q))Jr

We shall assume that the associated quadratic function f is bounded below and hence
the LCP (1.1) is solvable. Let X* denote its closed convex solution set. Let X*NXq #
¢ where for a positive number «,

(2.3) Xo:={z|z € R}, ez < a}

We are now ready to state our algorithm.
2.1 ALGORITHM. Given z' determine zi+! such that for some “error” sequence
oo

{hi} C R" satisfying Z [1Ai]] < oo :

i=1

(2.4) zitl = (hit+! 4 gi+l — (Bri+l 4 Co' + q))+, 1=0,1,...
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where B+ C' s a regular splitting of M with B’ = B and

(2.5) D I (it - 2l + (|2 — pi]l) < oo,

=0

and p*: = p(z*) is the projection of z¥ on X* N X using the norm || -||5.
Note first that (2.4) which is equivalent to the LCP

(2.4a) Buzitl 4 Cazi+ ¢ — hi+l >0, 2i+l > 0, gi+1(Bzi+l 4+ Cai + ¢ — hitl) =0

is solvable for all values of z and A*+! in R™ because B is positive definite, which is
in the class of matrices @) for which the linear complementarity problem is solvable
for all values of problem data.

Before establishing the convergence of the iterates generated by Algorithm 2.1
we make a few remarks. The assumption that X* N Xy # ¢ does not imply the
boundedness of X* but merely that its intersection with the simplex X, is nonempty.
The positive number « is some upper bound on the l-norm of a solution to the LCP
(1.1) with least 1-norm. In general « is unknown, but is chosen sufficiently large to
insure that X* N X4 # ¢. If o is not chosen large enough and nonconvergence of the
iterates {z¢} to a solution of the LCP (1.1) occurs, then this is easily detected and «
can be increased. Note also that if there exists an & > 0 which is not a solution of the
LCP such that M& + ¢ > 0, then [6, Theorem 2.2] X* is indeed bounded and o may
be taken as:

(2.6) a= x(M$+q)/1TSrizgn(Mka;+qk)

However, we do not asume the existence of such an &. The size of o enters Algorithm
2.1 only in ensuring that condition (2.5) is satisfied. This is discussed further in
Remark 2.5 below. Lemma 2.6 below gives a precise way for implementing (2.5). The
plausibility of (2.5) can be demonstrated as follows. Since B is positive definite, the
subproblem (2.4) is solvable for all values of hi+1. Denote the explicit dependence of
zi+l on hit! by writing zi+1(héit1). By [7, Theorem 3.3], *+1(hi+1) is Lipschitzian
in h*t! with a Lipschitz constant v depending on B only. Hence

2] [l (b4 ) = ] < w412+ 2] - 2542 (0) - o]

which ensures the smallness of the first term of (2.5) by picking ||hé+1]| sufficiently
small. The existence of an upper bound on ||z — p|| in terms of z* [8, Theorem 2.11]
ensures the smallness of the second term of (2.5). See Remark 2.5 and Lemma 2.6 for
details.

We shall need the following simple but useful two lemmas, the first due to Cheng
[1] which is a special case of a more general lemma [14, Lemma 2, p. 44].

LEMMA 2.2, [1, Lemma 2.1] Let {e*} and {c'} be two sequences of nonnegative
(o]

real numbers with Z gl < oo and 0 <eitl <ef+tel fori=0,1,... Then the sequence
=0
{et} converges.
LEMMA 2.3. [5, Lemma 2.2] For x € R* and y € R7 it follows that (z — x4 )(y —
z4) <0.
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We are ready now to state and prove our principal convergence result. We remark
that our proof is motivated by Polyak’s convergence proof of the gradient projection
algorithm [14, pp. 207-208). However, a number of new ideas were needed such
as introducing the inexactness hi+l and the manner in which it is introduced and
decreased, introducing the truncation X, and projecting on its intersection with the
solution set, and the use of the matrix B in the projection norm.

THEOREM 2.4. Let the LCP (1.1) be solvable for some symmetric positive semidef-
inite M. Then the iterates {zi} of Algorithm 2.1 converge to a solution z* of the LCP

(1.1).
Proof. By (2.4) z*+! is a projection on R%} and hence it follows by Lemma 2.3

above that
(h““ — (Bzitl + Czi + q))(pi —zitl) <0

Since (p* — z+1)(Mpt + ¢q) < 0 it follows that
(2.7) (P ~ &3 +1)(B(ai — witl) — M(zi - pi)) < hi+l(zi+l — pi)
From the identity
0= laf — pill} — [I(2* — &*+1) — (' — 2 1)l
and the symmetry of B we have
(28)  2(zf — 2 )B(p - aitl) = —[j¢ - pil|F + [lzf — G + [l — PR
From the symmetry and positive semidefiniteness of M we have for a, b € R®
aMa+bMa > —bMb/4

Hence

(5541 = )M (o — ) = (541 — )M (o = ) + (&% — p)M (& = ) 2

(2.9) — (zi+! — i) M (zit! — 2i)/4

Use of (2.8) and (2.9) in inequality (2.7) multiplied by 2 and invoking the positive
definiteness of B — C gives

(2.10) lzi+t = pillG < llaf - il + 2R+ (2iH! — pP)

or equivalently (adding and subtracting pi+! within the first term)

i1 — PG + 2(ai+1 — piH)BEH = pi) + 94 = Pl <

2.11 . . . . .
(®1) ot — piIE + 2hi+1 (241 - pf)

Since B
i+l ; — zitl)—(p — gi+l
P arg min (p—zit1)5(p — 1)
it follows by the Minimum Principle that

(p - p+)B(pi+! — 2i+1) >0  Yp€ X* N Xa
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Hence the second term in (2.11) is nonnegative and can be dropped. Dropping also
the third term in (2.11) which is also nonnegative gives

llei+t = pHtiif < llaf - pilIE + 2RI (llet+ — 2] + [leF - P]))

It follows from (2.5) of Algorithm 2.1 and Cheng’s Lemma that the sequence {||z* —
P*|lB} converges, and so does {||z* — pi||} converge to B3, say. Then for any 6§ > 0 we
have

=6 <|lzf - pill- B <6 Vizi(5)
and hence
=il <|lpfll+B+6  Vi>i(6)
Since {p*} C Xa, it follows that {pi} is bounded and so is {zi}. Now

f(a) = f(@H1) = —(Ma? + @) (2! — o) — [l — &3y
- ($i+1 + hi+l — [hi+1 + zitl — B(zit! — zi) — (Mzi + q)])
(2 = 2#*1) + [l2i+! — 2i{[c
2
> Bt (2~ 2t o - b

(By Lemma 2.3, because 2i*! is the projection on R}

of the term in the square bracket.)
> B4 [l — o] 4 i+ — a2
B-C

)

(where v is the smallest eigenvalue of

Hence
(2.12) F&) = F(@i+1) 2 yllait = oif]2 = [ 2+t — o]
Let £ € X*, then

0< fzi+1)—f(2) < yllettt —ai|]24 f(2+1) — £(2) < f(2) = f(@)+|[WH+1] [lei ! -z

o0
By (2.5) we have that Z [[Bit1]] - ||zi+! — 2] < oo and {||hi+1]] - ||zi+t — i} — 0.
i=0
Hence again by Cheng’s Lemma, the sequence {f(z?) — f(Z)} converges, and so does
the sequence {f(z#)}. It follows from (2.12) that

0= lim (f(a*) = f(&¥+1) + [|RH1] - [lai+t — 2i]]) > ylim ||2i+ — 2|2 2 0
100 3 OQ

Hence lim ||zi+! — zf|] = 0. Now, since B is positive definite, the single-valued
1—00
map zit! = T(x?, hi+!) defined by (2.4) or equivalently by (2.4a) is Lipschitzian [7,
Theorem 3.3], with Lipschitz constant dependent on B only. Thus lim ||T(z?, hit+1)—
1+ 00
z¢|| = 0. Since {hi+*1} — 0 and T is continuous, it follows that for an accumulation

point z* of the bounded sequence {z‘}, that {z'i} — z* and T(z*, 0) = z*. The
condition T'(z*, 0) = z* is equivalent to z* € X*.
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We now repeat the argument which begins this proof until we reach (2.10) but
with z* replacing pi. Thus replacing p* by z* in (2.10) gives

(2.13) 2+t — z=||f < llof — 2|15 + AR+ - [+ — 2]l

Now employing the Lipschitz continuity of the projection operator p with Lips-
chitz constant g and the fact that pi+! is in X» we have that

||mi+1 — :l?*“ — Hmi+1 o zi ___pi+l +pi + zi _pi + pi+1 — x*“ S

(2.14) . : o
(L+ p)llzitt = 2f|| + [|of = pil| + o + [|2=|]

We note that ;2 may be taken as the ratio of the largest to the smallest eigenvalues of

e
B. 1t follows then from (2.5), from Z ||Ri+1]] < oo and (2.14) that

1=0

o0
(2.15) Dl it — 2| < 0o

i=0

Hence by (2.13), (2.15) and Cheng’s Lemma we have that the sequence {||z* — z*||}
converges. We claim now that if {||zi — z*||} converges to a positive number 4, say, a
contradiction ensues. For

) . - -
—2->||m‘—z*||_—6>—-g Yi > ¢ for some 1%

But since {z%i} — z*

3> ||zii —z*||  for some i; >1
The last two inequalities are contradictory. Hence [|z¢ — z*|| — 0 and lim z' =z~ €
100
X*. o
We discuss now how the inexactness condition (2.5) of Algorithm 2.1 can be
implemented precisely.

Remark 2.5. Since M is positive semidefinite we can, by a slight modification of
[8, Theorem 2.7] replace ||zf — pi|| in (2.5) of Algorithm 2.1 by a computable error
bound multiplied by a constant u(M, B, ¢, ) as follows:

”xi "'pi“ S :U(M! B:Q»a) [“(mi(Mzi + Q)) _Mzi - g, emi - a)+”+
(@ (M2 + ), +I(-Mz —0)ell) ] = u(M, B,g, @)o(a?)

where o(xi) is defined by the term in the square bracket. Condition (2.5) is then
implied by

(2.50) YoM ([l — 2] + o () < o0

i=0

We give now a precise way of implementing (2.5a).
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LEMMA 2.6. Inequality (2.5a) and hence (2.5) hold by taking ||hi+1|] equal to the
largest element of {”%H, ul;—'ﬂ } such that

@50 Il = ol 4 o(e) < I (s a1 4 o)

Proof. All we need to show is that (2.5b) holds for ||h*+1|| sufficiently small. Since
B is positive definite we have that «i+! = gi+1(hi+1) is Lipschitzian [7, Theorem 3.3]
with constant v depending on B only. Hence

llzi+1(hi+1) — 241 (0)]] < vi[Ri+1]]

Hence (2.5b) is implied by

AR+ 125(0) — 28]+ 0() < L0 (s — =11 - o2i-1))

2
that is
(2.5¢) VAP 54 i+ (0) =7+ (2] - (11 ([ — i1 o (a-1))] < 0

Defining the terms in the first and second square brackets in (2.5¢) by v¢ and pf
respectively, we have that (2.5c) is satisfied, and hence also (2.5), if we take ||hi+1]| €
[0, pi+1] where
—vi + /i 4 dupd
2v

Remark 2.7. We note here that the sequence {zf} was determined as a function of
the error sequence {hi} by solving the subproblems (2.4) of Algorithm 2.1. This entails
then an exact solution of the equivalent linear complementarity problem (2.4a) with a
prescribed error term h**+1, and in a certain sense that is at cross purposes to solving
the original subproblems (1.4) inexactly. To avoid this we outline here a procedure
that does not require exact subproblem solution. Let {y*} be a sequence of points in
R» which are obtained in any way as approximate solutions to the subproblems (1.4)
with y replacing  in (1.4). We show now how the error sequence {h'} satisfying (2.4)
is computed from {y*}. For this purpose we first define the computable error bound
in satisfying (1.4) as follows. Let

(216) eitl = ei+1(y"+1); = min {yH‘l, Byi+1 + C’yi + q}
or equivalently
(2.16a) ei+l: = yi+l — (yi+l — (Byi+l 4 Cyi + q))+

By [12, Lemma 2], the error ||yi+! - y#+1(0)||, where yi+1(0) is the unique solution of
(1.4) with y replacing z, is bounded by the computable eit! as follows

(2.17) llyit? = g+ (0 < A(B)llet+1]

where

I—
(2.18) A(B:=1+ LE-EH, a := min eigenvalue (B) > 0
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Note that ei+! is easily computable from (2.16) and hence can be used as a simple
measure of how exactly yi+! satisfies (1.4). We now relate hi+! to ei*l. From (2.16a)
we have that yi+! solves the linear complementarity problem
(2.19) witl = Byi+l + Cyi 4 q — e+l > 0, yit+l — e+l > 0, (yit! — ei+l)witl =0
or equivalently

witl = B(yit! — eitl) + C(yi - €') + ¢ + (B — I)ei+! + Ce? > 0,

(2.19q) yitl — eitl > 0, (yitl — eitl)witl = 0
By defining
(2.20) pitli= i+l —eitl gi = yi — e hitl:= (] — B)eitl — (et

the subproblem (2.19a) reduces to (2.4a), and the error term hi*! can be computed
from the relation Ai+! = (I — B)ei+! — Cef in (2.20). Thus the smallness condition
(2.5a) on the sequence {||h?||} can be translated, through the relations (2.20), (2.16a)
and the nonexpansiveness of the plus function (-);., into a smallness condition on the
sequence {||e?||} as follows

(2.21) Y Ul I+ e (llyi+t = il + 1y = yi=tll + oy —ef)) < o0

i=0

3. Conclusions. We have established convergence of the iterates for a symmet-
ric regular splitting algorithm for the symmetric monotone linear complementarity
problem. The principal application is probably to an inexact block Jacobi method for
solving the symmetric LCP. In particular if we let

(3.1) M=L+D+1L

where D is some block diagonal of M and L + L’ is the remaining part of M, then
we can take

(3.2) B=AM+D,C=-M+L+L,B-C=2M+D)-M

This splitting is regular for
. M
(3.3) A > max eigenvalue (—é— - D)

The splitting (3.2) is useful in the parallel solution of linear programs where the
constraints of the problem are distributed among the processors and the objective
function is appropriately modified for each processor by Lagrangian and proximal
terms. This will be discussed in a forthcoming paper [2].
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