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Abstract

The absence of powerful control structures and processes that synchronize, coordi-
nate, switch between, choose among, regulate, direct, modulate interactions between, and
combine distinct yet interdependent modules of large connectionist networks (CN) is
probably one of the most important reasons why such networks have not yet succeeded at
handling difficult tasks (e.g. complex object recognition and description, complex
problem-solving, planning).

In this paper we examine how CN built from large numbers of relatively simple
neuron-like units can be given the ability to handle problems that in typical multi-
computer networks and artificial intelligence programs - along with all other types of
programs - are always handled using extremely elaborate and precisely worked out cen-
tral control (coordination, synchronization, switching, etc.). We point out the several
mechanisms for central control of this un-brain-like sort that CN already have built into
them - albeit in hidden, often overlooked, ways.

We examine the kinds of control mechanisms found in computers, programs, fetal
development, cellular function and the immune system, evolution, social organizations,
and especially brains, that might be of use in CN. Particularly intriguing suggestions are
found in the pacemakers, oscillators, and other local sources of the brain’s complex par-
tial synchronies; the diffuse, global effects of slow electrical waves and neurohormones;
the developmental program that guides fetal development; communication and coordina-
tion within and among living cells; the working of the immune system; the evolutionary
processes that operate on large populations of organisms; and the great variety of par-
tially competing partially cooperating controls found in small groups, organizations, and
larger societies. All these systems are rich in control - but typically control that emerges
from complex interactions of many local and diffuse sources. We explore how several
different kinds of plausible control mechanisms might be incorporated into CN, and
assess their potential benefits with respect to their cost.

Introduction

Conventional von Neumann computers, programming languages, computer pro-
grams, and artificial intelligence systems have powerful centralized control structures
built into them. But it is difficult to identify control structures in many systems because
they are often inextricably linked with structures that serve other functions. Furthermore,
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such identification often depends on the larger context in which the particular structure
interacts with the rest of the system. However, the broadest sense of the term control
suggests such functions as synchronizing, switching between, choosing among, regulat-
ing, directing, modulating or influencing interactions between, selectively combining
(e.g., to create new structures from), and coordinating different yet interdependent struc-
tural or functional modules, at different levels of organization in natural or synthetic sys-
tems.

As we move from rigid, centralized information processing systems like conven-
tional computers to robust, flexible, distributed, adaptive information processing systems
like CN, it becomes increasingly difficult to conceptualize the sort of control structures
and processes that might be used effectively in the latter. Lyapunov (1963) characterized
the evolution of living nature (and hence, one might suggest, that of intelligent behavior)
as a process of proliferation of, and selection among, control systems of various types.
Similar considerations motivated the early work in cybernetics (Wiener, 1961).

The lack of appropriate control structures and processes is a major reason - possibly
the most important reason - why CN of large numbers of simple units have not yet suc-
ceeded at handling difficult tasks (e.g., complex object recognition and description, com-
plex problem-solving, planning). It is often asserted (but for no special reason, and in
most cases incorrectly), that CN do not need such control. Whatever control mechanisms
might be necessary are largely expected to emerge as a function of interactions among
very simple individual units, and of learning.

Motivations for Using CN for Perception and Thought

There are several reasons why CN offer a very attractive approach toward develop-
ing intelligent systems that perceive and think:

*  They are loosely brain-like, with their extremely large numbers of very simple
primitive units, and the many links between them that build into the total structure.

*  They have the potential of being made far more brain-like, by making the primitive
units more neuron-like (Shepherd, 1989), and by introducing micro-circuits and suc-
cessively larger assemblies that incorporate more brain-like structures and processes
(Uhr, 1989; Honavar & Uhr, 1990a).

*  They are general-purpose in the sense of Turing machines, Post productions, and
other equivalent universal computers (McCulloch & Pitts, 1943; Pollack, 1987).
This means that anything that is describable, and therefore can (with enough work
to analyze and develop a clear description) be programmed for a more conventional
computer can therefore be handled by some CN.

*  They lend themselves to learning, since their micro-modularity means that they can
change themselves a little bit at a time, potentially in a way that moves gradually
toward adequate behavior (e.g., Hinton, 1987a; Honavar & Uhr, 1989b).

But today’s networks can handle only very simple examples of very simple prob-
lems. Most have only a few hundred nodes organized into 1- or 2-layer nets. A few
much larger networks have been built (chiefly for vision); these are given appropriate
larger structures - e.g., local connectivity within and between layers, array connectivity
within a layer, converging tree connectivity between layers (Honavar & Uhr, 1987; 1988:;
1989a; 1989b; Uhr, 1987) - structures that play major roles in organizing and controlling.




Control: Global, Local, and Distributed in Various Ways

Very carefully worked out and precisely coordinated control is absolutely essential
to today’s conventional computers, and to the programs that are coded for them. CN
have virtually none of the large armamentoria of traditional control mechanisms. What-
ever control structures that might be necessary are largely expected to emerge as a func-
tion of interactions among individual units, and of learning. But with many independent
units and little overall structure, there can be little control unless evolution and learning
together manage to discover and carve out such control structures, or elaborate and
sufficiently powerful control structures are built into individual units and sub-networks,
wherever necessary, supplemented by more global control structures that infest the struc-
tures primarily involved with the processing of information.

Traditional techniques for control could actually be incorporated directly into CN.
But these simple solutions are often quite costly in terms of complexity, and violate (or
appear to violate) what is generally regarded as the spirit of connectionism: Total
behavior emerges from the ways that large numbers of individual units behave;
processes, memories, and control are distributed and implicit, they should not be pre-
cisely hard-wired. CN are generally regarded as parallel, distributed information-
processing systems. However, what exactly this means is a matter of considerable debate
and discussion. Processing functions and memory, as well as control processes, can
each be distributed in space as well as time to various degrees and in various ways. The
interactions between each of these aspects of the system can be complex, and can occur
on different spatial and temporal scales.

The idea of a single controller, as in the conventional stored-program serial
computer’s Central Processing Unit (CPU) with a central controller that sends out all the
commands and allocates all the rescources for executing a program (e.g., "fetch the next
instruction from the location indicated; decode it; fetch its operands from the locations
indicated; execute this instruction on these data; store the result in the location indi-
cated;" and so on, repeating until the program is finished) seems to violate the spirit of
connectionist models. Furthermore, systems are extremely susceptible to complete
breakdown if the central controller malfunctions.

The next sections do the following:
*  Define what CN are, and what the particular CN that are used today look like.

*  Examine the fact that CN already have several crucially important precise control
mechanisms, ones that are largely overlooked because they are handled by the
larger system in which the CN is embedded (this is usually a conventional computer
program that actually executes the CN, since CN are almost always simulated on a
digital computer).

*  Examine how control is handled in other types of systems, including: Those - like
conventional parallel and serial computers and programming languages - that exer-
cise carefully worked out, detailed, precise, perfect, total control; Those - like ner-
vous systems, fetal development, social organizations, and simple organisms and
cells - that have, or appear to have, intricately interlocking sets of local and succes-
sively more global controls - but controls that are far more flexible, much looser,
and far from perfect; Those - like evolution - where control appears to emerge pri-
marily from individual behavior and local conditions.



*  Examine how CN can fruitfully be given various control capabilities of these sorts,
and the projected benefits with respect to tha actual added complexities.

Connectionist Networks (CN) Defined and Described:
Structures, Processes, Evolve-Learn Rules

A connectionist network (e.g., Rosenblatt, 1962; Feldman, 1982; Rumelhart, Hinton
& McClelland, 1986) consists entirely of a directed graph, whose nodes, N, send the
results of their simple functions (often reminiscent of neurons) over its links, L, into
nodes into which they fire.

The following rather general definition (Uhr, 1990a) makes clear that many other
than today’s standard type of CN can be constructed; it also makes precise comparisons
possible.

A CN is a graph (of linked nodes) with a particular topology, where nodes compute
several different types of function (behave, evolve-learn, and control).

CN = {G,B,E,C} (G = graph topology, B = behave, E = evolve/learn, C = control)

The total graph is composed of sub-structures of ... sub-structures, down to and starting
with the smallest micro-circuits and the primitive units (individual nodes) from which
they are built.

Today’s CN are specified (typically only partially) as follows:

* The overall graph structure, Gy, of the sub-net that behaves (much of the total
graph, including the entire sub-graphs needed to handle learning and control - are
usually left unspecified).

*  The single function, B, that each individual primitive node computes during the
net’s behave cycle.

*  The single function, E, that is computed to determine what changes to make during
the evolution-learning cycle - but not the actual sub-net structures that are needed to
actually compute and make these changes.

A network’s behavior is typically initiated by sending values to the input sensing
nodes. Its resulting performance is the set of values sent by its output acting nodes. The
net’s behavior is completely determined by its topology, the values originally associated
with its links, and the functions computed by its nodes - plus any modifications made to
these by learning.

Behave, Evolve-Learn, and Control Functions

In today’s CN, only the function that each primitive behave unit, B, computes is
completely defined in terms of both the individual node involved and the global graph
structure over the total set of nodes. The processes that are used during the behave cycle
(B), culminating in output performance, usually add, or in other ways integrate, their
inputs, then threshold or transform the results with a logistic or other squashing function.
They are connected by directed links over which activation values are fired out, and mul-
tiplied by weights associated with these links.




There is no compelling reason to limit ourselves to the simple functions that the
individual nodes used in today’s CN compute. More generally, a large variety of micro-
circuits (Uhr, 1989; Honavar & Uhr, 1990a) can be used in their place whenever
appropriate.

Learning (E) is almost always handled as follows: After the network outputs, an
error signal (typically the difference between what should have been output and what
was actually output) is used to change the network. This is traditionally handled entirely
by slightly changing weights associated with links in the direction of reducing that error.

There is nothing sacred about these functions used for learning, and there are a
variety of potentially more powerful alternatives. More generally, learning might change
not only the weights, but also the behave functions, the evolve-learn rules, and/or the net-
work topology (e.g., by adding and deleting nodes and links (Honavar & Uhr, 1989a;
1989b)), or any combination of these.

Some aspects of control are usually assumed in today’s CN (see below): All nodes
fire in parallel, at discrete instants in time; The behave and learning cycles alternate.

Structures Used to Link Individual Units into Overall Topologies

Any graph topology might be chosen, but only a few have actually been used to
date: 1-layer nets where each node that receives inputs from the external environment
links directly to all, or to a sub-set (typically random), of nodes that output to the external
environment; Multi-layer feed-forward nets where each layer’s nodes link into all, or
some, of the next layer’s nodes; Cycling nets (1- or 2-layer) with complete, random, or
near-neighbor mesh connectivity within a layer of nodes. Other topologies are occasion-
ally used, including near-neighbor converging tree-like connectivity from one layer to
the next (Honavar & Uhr, 1987; 1988; 1989a; 1989b), structures that expedite the partic-
ular functions computed, e.g., Hough transforms (Ballard, 1984), and structures (e.g.,
arrays, trees, pipelines) that are built in because they appear to be appropriate for the par-
ticular type of problem being attacked.

When the nodes in CN are structured into arrays, pipelines, trees, pyramids, etc., the
connectivity thus established can serve important coordination and control functions. For
example, since all the units in an array receive input at the same time, they fire out results
at the same instant, and thus initiate an implicit synchrony. Trees can merge, fuse, or
combine different streams of information. Delays associated with processing stages of
pipelines can be used to re-synchronize the information flow in independent streams.

Control Mechanisms that Are Already Present in Today’s CN

Today’s CN already have several very powerful (albeit more or less hidden) control
mechanisms built in. Since these are almost always handled by the larger environment of
programs and computers that execute the CN they can easily be (and typically are) over-
looked.

A Central Clock that Exactly Synchronizes All Processors

First, CN almost always have all units fire in exact synchrony, as though they were
driven by a global clock. This is easily handled when a traditional computer program is
used to actually execute the CN (it is important to remember that today CN are almost



always simulated, using a program for a digital computer). Essentially, the serial proces-
sor creates a temporary store into which it puts each node’s output; finally, when the
entire cycle of parallel processes being simulated is completed it uses this store to up-
date the network so that it can start working on the next cycle.

To achieve exact synchrony in a multi-computer network, the conventional
computer’s hardware is clocked and controlled by a precise oscillator - e.g., a crystal
vibrating at nanosecond or gigasecond rates - plus a network of wires to every processor
gate in the entire computer over which these clock pulses are sent. Not only is this clock-
ing network large and precisely constructed, it must be handled with great care and preci-
sion. For example, the clocking network for a large network of serial computers must be
very carefully designed, so that no asynchrony is introduced by the slightly different dis-
tances the clock pulse must travel to different modules.

Switching Between Behaving-Performing and Learning

CN always receive input, behave, and output; then they are given feedback (typi-
cally the error signal from which they are to learn). This means that there is a precise
global switch that is thrown when the network outputs and stops behaving.

To handle that within the net itself, there would be a need for nodes that received
inputs from the output nodes, so that they were triggered to fire into additional nodes that
in turn initiated and carried out learning. Then, when the learning cycle was completed,
there would be a need for nodes that fired into whatever mechanism initiates firings into
the input nodes, so that a new problem could be input, and the next cycle begun. That is,
the conventional program that simulates the CN replaces the global switching circuitry
needed to alternate between behaving and learning.

Handling Input, Output, Generation of the Error Signal, and Learning from Feed-
back

This makes clear that two other control mechanisms are already built in: to handle
output and use it to generate the error signal to be fed back, and to handle input and gen-
erate new problems to present the system. These are almost always handled by programs
external to the net (or by humans), as follows:

*  They constantly watch and monitor, or are triggered by, the network.

*  When the network outputs they compare this with some information about what it
should have output (the desired output, often called the targer), and from this gen-
erate an error signal (this is usually simply a vector that is the difference between
the output and the target).

*  When the net finishes its learning half-cycle they produce the next input (e.g., from
a memory store, or using a keyboard, TV camera, or other input device).

In addition, all the processes executed during the entire learning half-cycle are actu-
ally handled by the perfectly-controlled larger simulation environment, rather than by the
CN itself.

Handling Particular Issues in Particular Simulations
Often, intricate control structures are instantiated in the program that simulates the




CN. For example, pattern recognition networks are sometimes constrained to learn a sin-
gle set of weights for a local mask at a large number of different locations, so as to be
able to detect a pattern independent of translation over the input layer (Rumelhart, Hin-
ton & Williams, 1986; Honavar & Uhr, 1988; 1989a). Gates control and coordinate the
flow of signals between different functional modules in CN implementations of produc-
tion systems (Touretzky & Hinton, 1988; Dolan & Smolensky, 1989).

Control and Coordination in Natural and Artificial Systems
Control can vary, from non-existent to complete.

Probably the purest examples of systems in which global control emerges from
completely dispersed local control are interacting molecules in gases and liquids. In oce-
ans and atmosphere, locally often there is uncontrolled turbulence and chaos. The rela-
tively regular winds and waves result from larger, more global forces that constrain and
to some extent impose order.

The sub-atomic and chemical processes involved in the evolution of the universe,
stars, and planets are marvelous examples of how individual primitives (e.g., fields,
quarks, strings) can combine to exercise sufficient distributed control to build succes-
sively more complex structures, culminating in the most strking examples - living organ-
isms.

At the other extreme, human-made artifacts (e.g, automobiles, computers, etc.) are
examples of intricate designs that include precisely built-in mechanisms that execute vir-
tually complete control over everything.

The conventional single-CPU serial computer is an example of complete, un-
tolerant control over very large numbers of precisely architectured components such as
logic gates and flip-flops.

In contrast to the small amounts of control present in today’s CN, nature offers
many examples of more powerful control. These are almost always far more flexible,
adaptive, robust, and loose than the sort found in today’s conventional computers and
programs. Several such coordination and control structures found in natural and
human-made systems that can be potentially useful in CN are examined below.

Complete Control: Traditional Computers and Programs

Possibly the major lesson from all these examples is that rather than being absent
control is pervasive. Also of great importance are the facts that in nature control is rarely
if ever complete and rigid, and is typically exercised by a complexly interacting structure
of interlocking more or less local controls. This is often loosely hierarchical, culminating
with some very high level control and coordination - possibly it is better to think of them
as influences.

In addition to highlighting the crucial importance of (flexible, shared) control,
natural systems offer a number of control mechanisms that might fruitfully be incor-
porated into CN. At the other extreme, today’s computers are controlled in much
simpler, precise and global ways that also offer attractive possibilities. But it is interest-
ing to note how very different is the simple, complete, and unambiguous control that we
build into today’s computers from the complex, subtle, diffuse, partial, multi-determined
controls found in natural systems.



The traditional single-processor serial computer’s central controller effects perfect
and complete control and coordination. It fetches one instruction after another for execu-
tion by the processor, and shuttles data between memory and processor one word at a
time. The individual parts of a computer - its memories and processors, and the logic
gates from which they are built - are all precisely structured to execute their specific
functions without any error (See Hamacher, Vranesic & Zaky, 1984 for details). This
structure, plus the information they receive (clock pulses, instructions), completely con-
trol and determine behavior. Programs (which from the present perspective are simply
specifications of computers that the computers that execute them simulate) are similarly
completely controlled.

The kind of control structures and processes found in typical serial computers is
completely centralized, and does not seem appropriate for CN. Indeed one of the major
attractions of CN is that they move away from such rigid, inflexible control. To 1mple-
ment complete and perfect control, a precise clock must synchronize all operations in all
parts of the computer; a tree or other network of control links must carry the clocked
instructions to all parts of the computer, thus giving a global clock that completely syn-
chronizes. But all this dramatically illustrates how much in the way of dedicated
mechanisms and processes is devoted in computers and programs to ensure complete,
perfectly working, control.

As pointed out earlier, when all nodes have to fire at the same time, and when loop-
ing through behaving then learning half-cycles, CN depend upon a global clock. This
poses major problems: Without the single controller linked everywhere via a dedicated
control circuit that the computer on which we simulate a CN provides without our realiz-
ing it, how can completely synchronized, simultaneously firing units be handled? It
seems likely that the answer is that asynchronous CN should be developed that have no
global control mechanisms of this sort. Another alternative is to use one or more clocks
or their derivatives to realize the synchronization or coordination that is needed.

If we do indeed use such a central control mechanism, it can handle many other
functions at no additional cost - e.g., broadcasting contextual information, gathering glo-
bal information, triggering specific functions like choosing or outputting special symbols,
introducing precisely controlled delays, synchronizing arbitrary sub-sets of activations.

In addition to these kinds of global control, programs and computers have several
hierarchies of successively more local controls - e.g., the ways that individual procedures
are organized and linked to one another, and the precise ways that individual processors
like adders, floating-point multipliers, and high-speed registers are structured and linked
into the central processing unit. These offer a wide variety of suggestions for micro-
circuits, and for schemes for linking structures into larger structures, that might well
make CN more powerful. :

Multi-computers can no longer have a single central controller without major result-
ing limitations; but only a few relatively rigid types of shared control have been
developed to date (See Uhr, 1984; Almasi & Gottlieb, 1989 for details).

The most centrally controlled systems have almost always been built in the form of
a large 2-dimensional array of computers (SIMD arrays). There is no inherent reason
why the individual computers must be linked into a 2-dimensional array; it is simply that
only large array problems (e.g., vision, fluid dynamics) appear to obviously lend




themselves to this kind of completely synchronized processing. All processors execute
exactly the same instruction (which is typically broadcast from the central controller) but
each on the unique data stored in its own memory.

But although this kind of computer is designed to handle problems posed it (which
are almost always problems that fit such a 2-dimensional array), it cannot work without a
second "host" computer - one that typically is thought of as somehow separate, and not a
part of the multi-computer. The host does such essential things as interacting with users,
compiling programs, displaying results, and giving users an adequate programming-
debugging environment. Host and array are typically linked so that each can work
separately, executing its own processes on separate information; but each can interrupt
the other to receive or send.

Other than these single-controller arrays, virtually all the multi-computers that have
been designed to date have linked together separate conventional single-CPU serial com-
puters. This means that each has its own separate clock, separate controller, and separate
stored program.

The completely independent computers thus linked together typically each com-
pletely handle their own control. Each can work quite independently of the rest (once it
is given the segments of the larger program that it needs by human beings and/or the
operating system - which may perform some some of the global control functions that are
required ), - except when it must send or receive information to or from other computers.
Transmitting information and interacting with one another raise enormous problems,
since the several computers involved must now be re-synchronized and coordinated. One
processor must make a request, and at least one other respond. Without going into the
complexities involved, today’s computer networks need often need much more time to
send even the smallest unit of information between computers than the time required by
each computer in executing simple processes.

Pipelines organize otherwise independent computers so that each sends its result to
the next in the pipe, and all spend exactly the same amount of time (or sit idle until the
processor that needs the most time finishes). Pipeline stages can be used to introduce the
desired amounts of delay so that information flowing through multiple pipelines can be
synchronized or combined as necessary.

Relatively Loose, Dispersed Control: Biological Evolution

Many people think of biological evolution as a large number of independent indivi-
duals moving toward structured complexities (see Bonner, 1988 for an elaboration of this
view). It has been argued that evolution is a natural and necessary consegence of biologi-
cal information systems (e.g., genetic systems, chromosomal organization, cytoplasmic
organization) obeying the second law of thermodynamics (Brooks and Wiley, 1988).
Large numbers of separate individuals exercise an extremely dispersed control over one
another - by competing for resources, reproducing themselves, adapting to particular
habitats.

But control is by no means entirely dispersed, residing only in each individual. A
crucial component is the larger environment’s nurturing rewards, debilitating punish-
ments, and niches that invite filling (Bonner, 1988).



The generation of complex self-organizing populations requires mechanisms that
expand the combinatorial space in which genetic recombination and reproduction can
take place. Among the mechanisms known to produce genetic variation are: the intro-
duction of new DNA from outside the population by viral transmission or hybridization;
the change of existing DNA via mutations; the introduction of novel combinations by
recombination, chromosomal mutations, or jumping genes (Brooks & Wiley, 1988). The
individuals successful in a given environment reproduce. Both sexual and asexual repro-
duction increase the variety of the gene pool in a population.

Biological evolution has directly influenced the development of genetic or evolu-
tionary learning algorithms (Holland, 1975; Fogel, Owens & Walsh, 1966) in artificial
intelligence. In the context of CN that learn to perform complex tasks in a complex
environment, evolution-like processes provide an interesting experimental paradigm. For
example, several variants (phenotypes) belonging to a family of CN (specified by the
genotype) may inhabit the same environment, which presents tasks to be learned as well
as feedback to aid the leaming process. Each CN may be provided with a compact
encoding of its structure (general topological constraints on connectivity, e.g., connec-
tivity between layers, number of layers, receptive and projective field properties; types of
functions that its nodes compute, e.g., sigmoid, and so on). This encoding of CN struc-
ture may be subjected to processes akin to genetic recombination and reproduction (e.g.,
crossover, mutation, inversion), thereby yielding variant CN. Each variant CN is
evaluated in terms of how well it learns to perform the tasks presented to it by the
environment. The members of the CN population that are better adapted structurally and
functionally to interact successfully with the environment survive and proliferate. This
adaptation takes place on a much slower timescale than that of learning.

Major, But Flexible Control: Genes and Fetal Development

The developmental program is the basic information structure on which evolution-
ary processes operate. The many studies directed toward understanding the interaction
between the environment of the organism at each stage of development and the products
of gene expression offer an impressive array of control mechanisms that determine the
neural basis of behavior. The genome of the mammal is believed to consist of approxi-
mately 10° genes. Each gene is a chain of DNA that encodes information needed for
synthesis of a structural protein (e.g., that forms a particular ion channel in the neuron) or
enzyme. The cooperative relationship between DNA and proteins requires a 4-letter
DNA code into a 20-letter protein code. A single strand of DNA can act as a template for
assembling a copy of itself; a single strand of DNA can act as a template for assembling
RNA which itself can serve as a template elsewhere. RNA also translates the informa-
tion encoded by the DNA into the proper amino acid sequences to build the protein. The
base sequence is read off from the DNA in units of 3 at a time, each triplet being a codon
that specifies a particular amino acid. Messenger RNA (mRNA) reads specific lengths of
the DNA base code and brings it into the cytoplasm; transfer RNA (tRNA) brings the
individual amino acids named by the base code to be connected; ribosomal RNA (rRNA)
found in protein factories called ribosomes serves as the site of synthesis for the protein.

Fetal development exhibits an impressive array of precise yet flexible control. The
genes’ specifications are followed by a coordinated but flexible structure of mechanisms,
that realize the DNA-encoded design in terms of appropriate molecule building blocks




(e.g., proteins that fold to the needed 3-dimensional shape) that are used to build cells
and larger organs. At any given moment in the life of a cell, not all genes are transcribed
into messenger RNA and expressed as proteins. This entails complex interactions among
enzymes and the materials they recognize and assemble, as well as the larger chemical
environment.

The brain with its billions of neurons and synapses is derived from a single egg cell
with its two sets of chromosomes. The nature of cellular transformations that give rise to
neurons from egg cells is largely unknown. An embryonic cell behaves much like a self-
reproducing automaton described by von Neumann (1966). The state of cell differentia-
tion is described in principle, by the set of active genes. If the genome consists of say,
2x10° genes, and if 107 of them are active, at any time, this gives 1077® possible states
for each cell. The sequence of state transitions that actually take place is tightly con-
trolled by the so called control genes which can turn on or off other genes (even whole
sets of genes) through the action of gene activator proteins and gene repressor proteins
(Alberts, et al., 1983). Local DNA sequences may also be reversibly rearranged to turn
genes on and off producing alternating patterns of gene activity.

Generation of specialized cells from less specialized ancestors is a central feature of
development. Such differentiation is influenced by at least 3 types of control: instruc-
tions contained in the genes; instructions from the cytoplasm of the developing cell, and
instructions from other developing cells in the local extracellular environment (Purves &
Lichtman, 1985). The emerging view of cell differentiation is that it is the result of a
qualitative change in gene expression. Gene expression could be controlled in a number
of ways: Genes themselves may be altered by diminution, amplification, rearrangement,
or modification; or gene expression could be changed during transcription or translation.
It is hard to separate the relative contribution of each of these factors on any particular
aspect of cell differentiation (e.g., the choice of particular neurotransmitters in the case of
neurons). The prevailing view appears to be that the differentiating cells retain the entire
set of genetic instructions during development, and perhaps throughout life. However, a
gradual, controlled, restriction of gene expression causes cells to become more and more
specialized (Purves & Lichtman, 1985). This raises the possibility that events such as
damage to some part of the brain might revoke the restrictions on gene expression in the
surviving cells, allowing them to change their properties, so as to be able to take over
some of the functions originally performed by the damaged tissue.

Ultimately, all plastic changes in the structure of the brain require the expression of
particular genes at particular sites. What are the mechanisms that turn on particular
genes? How are the local changes caused by gene expression communicated, and coordi-
nated with changes in the rest of the system? Do encoding, transcribing, and decoding
mechanisms such as those found at the level of genes also operate at higher levels in the
system - at the level of neurons, local circuits of neurons, functional modules, etc.? Such
mechanisms offer a wide range of powerful control structures for CN. For example, in
CN that learn by generation of connections, nodes, or highly structured microcircuits
(Honavar & Uhr, 1989a; 1989b), there are forms of control that are extremely useful in
communicating structural changes taking place in one subnetwork to the rest of the net-
work. Such control is effected by subnetworks that encode the structural changes - e.g.,
the addition of links between a unit and its neighbors in the CN, that transmit the
encoded information to decoding subnetworks elsewhere in the CN, which then trigger



the appropriate structural changes locally in their regions of influence. An entire subnet-
work that is devoted to this and other similar control functions can be embedded in the
CN in a distributed fashion. -

Cellular Migration, Differentiation and Pattern Formation

Cells differentiate and form patterns in the embryo under the relatively local control
of chemical gradients that are themselves apparently subject to more global control (Gil-
bert, 1985). Examples ranging from simple one-dimensional animals such as algae to
complex three-dimensional structures such as hydra indicate that cells differentiate
according to their position in the organism. This suggests the existence of a means of
providing information about position, and cellular mechanisms that interpret, and act
upon the basis of, such information (Purves and Lichtman, 1985).

The accurate location of neurons and their processes is fundamental to the forma-
tion of correct patterns of neuronal connections. In vertebrates, the migration of neuronal
precursors from their sites of origin to the final locations is a crucial step in this process.
Some cortical neurons appear to make this journey by crawling along a particular class of
glial cells (radial glia), some others do so without help from such glia. Neuronal precur-
sors seem to be guided by cellular and extracellular cues in the matrix that they move
through. However, the nature of the map that they must read and interpret in this process
is not well-understood. Growing axons travel substantial distances enroute to their tar-
gets, apparently guided by a number of directional and positional cues (e.g., mechanical
guides, pathways of differential adhesiveness, electrical fields, tropic gradients emanating
from targets) that seem to act in concert.

Given the range of control that is needed to ensure the proper arrangement, differen-
tiation, and wiring of populations of neurons, the molecular mechanisms of cellular
recognition are of great interest. The prevailing view is that cell surface molecules
operate by regulating the changes in the probability of interactions between cells without
affecting the absolute limits of connectivity. One mechanism exerting macroscopic con-
trol over a developing ensemble of cells is the dynamic production of cell adhesion
molecules (CAMs) (Edelman, 1987). These molecules link cells into collectives whose
borders are defined by CAMs of different specificity. The binding properties of cells
linked by CAMs are dynamically controlled by the cells themselves as a result of signals
exchanged between collectives. CAMs regulate this binding via a series of cell surface
modulation mechanisms, including changes in the prevalence of CAM:s at the cell sur-
face, in their cellular position or polarity, and in their chemical structure as it affects
binding. Cell binding in turn regulates cell motion and further signaling, and thus the
resulting forms. Control of the expression of CAM genes by the specific biochemistry
affecting CAM regulatory genes at particular morphologic sites assures the constancy of
form in a species. However, since the CAMs do not specify the cellular addresses
exactly, variability is introduced during development. Extracellular matrix proteins (or
substrate adhesion molecules, SAMs) can also be expressed at particular times at particu-
lar sites and thus alter cellular morphology. These modulation events accompanied by
CAM and SAM expression appear to occur in relatively small cell populations in a
defined order. Perturbations in CAM binding can lead to altered morphogenesis and
altered morphogenesis can lead to changes in CAM expression and modulation patterns.
According to the regulator hypothesis proposed by Edelman (1987), CAMs and SAMs




link the genes and the chemical and mechanical requirements of cellular pattern forma-
tion.

Major, but Dispersed Control: Cellular Functions-
Metabolism, Cell-to-Cell Communication, Inmune System

A variety of proteins found on the surface of cell membranes play a crucial role in
cell to cell recognition and adhesion (Alberts et al., 1983). Other proteins that lie within
or across the membrane serve as carriers of chemical messages, and receptors for neuro-
transmitter molecules (and hence recognizers of messages), among other things. Micro-
tubules - long, unbranched tubules that are found within the cell bodies of neurons as
well as axons and dendrites - are suspected to be involved in the transport of material
between the cell body and the outlying processes of the neuron. Two general types of
axonal transport have been identified: a slow transport (at the rate of about 1lmm per
day) and a fast transport (at the rate of several hundred mm per day). The potential for
powerful signalling built into these transport mechanisms is quite enormous.

Cells of the immune system are sophisticated recognizers of chemical messages
(Alberts et al., 1983). These cells, called the lymphocytes, serve to defend the animal
against foreign microorganisms that may have invaded it. The lymphocytes produce
specific antibodies that selectively bind to particular molecules on the surface of the
invading microorganisms or on the toxic molecules that they produce. The invaders thus
branded as foreign are destroyed by being swallowed by phagocytes. To recognize a new
type of invader, a new antibody needs to be produced. On the other hand, the system
must not produce antibodies that bind to its own cells. The vast diversity of antibodies is
believed to be generated by random changes in the DNA coding for specific binding sites
on the antibody molecules. In this way, through a specialized form of mutation, millions
of genetically different lymphocytes are created, each able to proliferate and form a clone
whose members all produce the same distinctive antibody. Of these clones, the ones that
react with self molecules are destroyed or suppressed while those that make antibodies
against foreign molecules are selected to survive and multiply. Thus the genesis of the
individual animal’s immune system has clear parallels in the evolutionary processes. If
the nature of the combinatorial space to be explored by an adaptive system is highly
non-linear (and hence not amenable to the use of typical gradient-descent strategies), this
sort of adaptive production of appropriate templates that recognize contingencies in a
changing environment are likely to be very useful in CN.

Many thousands of distinct chemical reactions carried out concurrently in a cell are
closely coordinated (Alberts et al., 1983). A variety of control mechanisms regulate the
activities of key enzymes in response to the changing conditions in the cell. One very
common form of regulation is a rapidly reversible feedback inhibition exerted on the first
enzyme of the pathway by the final product of the pathway. A longer-lasting form of
regulation involves the chemical modification of one enzyme by another. Combinations
of regulatory mechanisms are known to produce long-lasting changes in the metabolism
of the cell.

The wide range of predominantly chemical communication taking place at the cel-
lular level in biological systems outlined above suggest corresponding coordination and
control processes that might be useful in CN. They can be instantiated in CN by the use
of distributed code-book-like mechanisms (Uhr, 1990b) or by marker-passing networks



(Hendler, 1989) that encode, transmit, and decode messages in which the markers or
tokens play roles analogous to those of the proteins and neurotransmitters that carry
chemically encoded messages in living systems. This requires generalizing most of
today’s CN to handle multiple types of signals (in place of a single scalar valued activa-
tion) on multiple time-scales.

Dispersed But Highly Organized Control:
The Brain and Its Attendant Nervous System

Brains have a variety of interacting control mechanisms that offer intriguing possi—
bilities for CN. These are especially appropnatc, since handling brain-like processes is a
major thrust of CN.

Brains do not appear to have simple, centralized controls of the sort found in con-
ventional computers. Instead, there appear to be a great variety of both local and global
control mechanisms that compete and cooperate with one another.

Neuromodulators, and Relatively Diffuse, Global Controls

The organization of many neuromodulator systems, as they are presently under-
stood, makes them strong candidates for diffuse global control over large areas of the
brain. Forebrain in general, and neocortex in particular, are innervated extrinsically by
several separate, widely projecting pathways, each of which is associated with a particu-
lar neurotransmitter.

These systems are quite distinct from the classical sensory projections to the cortex
via the thalamus. For example, cortical norepinephrine originates in the locus coeruleus,
which contains only several hundred cells that send slow-conducting axonal connections
to almost every region in the central nervous system (Shepherd, 1988), including the
amygdala and the hippocampus - both of which have been implicated in memory and
learning in higher mammals. Similar separate systems have been identified for several
other neurotransmitters, e.g., dopamine, serotonin, acetylcholine, and GABA (See
Shepherd, 1988, for details). These projections offer a number of different ways in
which discrete subcortical regions can affect the activity of cortical neurons.

One interesting example of the effect of neuromodulators comes from recent studies
of the hippocampal formation: Modulation from a subcortical area can actually alter the
functional wiring of the hippocampus, making its operation optimally appropriate for a
particular behavioral state of the animal. For example, neuronal transmission from the
perforant pathway through the dentate gyrus is more effective during slow-wave sleep
than when the animal is quiet and alert. This change in transmission is modulated by
norepinephrine and serotonin innervation of the dentate gyrus (Squire, 1987).

The activity of neurons in the locus coeruleus is correlated with the level of vigi-
lance of the animal. It has been suggested that locus coeruleus activity prepares the fore-
brain for processing important stimuli, and as a consequence, that increased vigilance, or
attention, leads to more effective learning (Squire, 1987).

Hormones have significant modulatery effects on memory as well. An example is
the action of epinephrine (released in the adrenal medulla), which ordinarily influences
the degree of retention after a learning experience. Endogenous opioid peptides (the
endorphins and enkephalins) and their antagonists have been implicated in the




modulation of memory and learning. The opiate antagonist naloxone improves selective
attention thereby facilitating better learning (Squire, 1987).

In the context of CN, mechanisms analogous to that of neuromodulators and hor-
mones that operate on a much slower time-scale than the timescales associated with the
firing of individual neurons can be instantiated by additional control subnetworks that are
embedded in the CN. These can be used to serve as a basis for a variety of functions -
e.g., to focus attention, to selectively enhance signals, to initiate, regulate, and to ter-
minate plastic changes in the network structures, to change behave (B) and learn (E)
functions in specific network modules, and so on.

Pacemaker Cells, and Relatively Regular Oscillators and Synchronizers

Periodic oscillations or rhythms form the basis for various forms of cyclic activity
in animal life (e.g., locomotion, sleep, etc). Circadian rhythms, that are entrained by the
periodic changes in illumination during the 24-hour period appear to govern the timing of
specific activities of animals (including mammals) during the day-night cycle. Based on
a large body of experimental work, the concept has emerged that circadian systems are
composed of multiple oscillators, each with properties to some extent specific and dis-
tinct from others (Shepherd, 1988).

Individual pacemaker neurons, that spontaneously fire in a regular, repeated rhythm,
appear to serve as local pulsers, or clocks. In the sea slug (Aplysia), such pacemaker
neurons are found at the base of the eye. Although the period of the rhythm is main-
tained close to 24 hours even in the absence of external stimulation, exposure to normal
dark-light cycles appears to help regulate, making more precise, the exact period of the
rhythm.

Even in the absence of obvious sensory stimulation, and even during sleep, the cere-
bral cortex shows intense electrical activity, many neurons exhibiting regular spontane-
ous firing. The activity of these impulse generators shows enough temporal regularity to
be attributed to oscillators. For example, in Aplysia, bursts of 10 to 20 impulses can be
recorded every 5 to 10 seconds from the so called bursting neuron. Each burst of
impulses is superimposed on an oscillation generating mechanism, a basic oscillator or a
pacemaker whose potential oscillates between two extreme values on either side of the
threshold for the nerve impulse. The timescale of changes in the potential of the neuron
is about an order of magnitude slower than the timescale of individual impulses. A vol-
ley of impulses is fired when the potential is over the threshold and the burst ceases when
the potential falls below the threshold. Oscillators using similar principles have been
found wherever they have been looked for in a wide variety of nervous systems, from sea
slugs to mammals (Changeux, 1984).

Transitions between oscillating and non-oscillating states are quite common in phy-
siological systems (Glass & Mackey, 1988). Such systems have two stable states - oscil-
lating and non-oscillating - and the transition between the two states can be effected by
signals extrinsic to the system.

Given one relatively stable primary clock (e.g., the circadian rhythm), other clocks
whose periods are multiples or submultiples of the primary clock can easily be derived
by means of neuronal or connectionist networks analogous to the frequency
multiplier/divider circuits (Kohavi, 1970) used in digital computers. Such networks of



clocks can potentially perform elaborate control functions in CN. Such functions include
synchronizing large populations of units as the resulting waves propagate in space; ini-
tiating complex information processing operations during the oscillating state - the pulses
generated serving as control signals that may gate other network modules; effectively
instantiating the equivalent of an iterative while loop of the sort used in conventional pro-
gramming languages (a set of processes are active as long as the oscillor pulses are avail-
able and are turned off when the oscillator goes into its resting state), and so on. Interact-
ing networks of several such oscillator systems oscillating at different frequencies can
effect coordination between information processes at different time-scales.

Global Electrical Waves

It has been known for a long time that EEG waves of electrical activity can be
recorded from the brains of animals (including human subjects). The dominant rhythm
in the resting subject is at a frequency of 8-13 Hz (termed the alpha rhythm), and is most
prominent when the recording leads are over the occipetal lobe of the brain (where the
primary visual cortex is located). The largest amplitude synchronous waves are present
during the deepest sleep (called the slow-wave or S sleep). A desynchronized EEG sig-
nals light sleep (called the D sleep), or a state of arousal or waking. The EEG rhythm is
believed to arise mainly in the thalamus, as a result of the intrinsic pacemaker property of
cells and the properties of synaptic circuits within the thalamus. In the cortex, the
thalamic input causes rhythmic synaptic depolarization of the apical dendrites of the cort-
ical pyramidal cells (see Shepherd, 1988, for details).

Arousal (and sleep) are behaviors that affect the entire animal. Arousal seems to be
mediated by the reticular activating system, stimulated by sensory collaterals, and
activated through thalamic nuclei.

Global slow waves may also synchronize, and even serve to spread information and
coordinate different functions (e.g., neuron firing, or synaptic changes involved in learn-
ing). Certain activity patterns in brain structures have for a long time been suspected to
play a role in triggering the synaptic plasticity necessary for learning. Recent studies
have found evidence for at least one class of mechanisms that trigger one form of synap-
tic plasticity - Long-term potentiation (LTP). Cells in the hippocampus often fire in very
short bursts of about 4 spikes - with the bursts occuring in phase with a 4-7 Hz EEG
rhythm (the so-called theta rhythm) while an animal (rat) is engaged in learning. Electri-
cal stimulation that mimics the theta thythm - i.e., bursts that are separated by approxi-
mately 200 msec - induce a robust LTP effect provided other conditions for LTP (e.g.,
nearly simultaneous pre and postsynaptic activity) are met (Lynch & Larson, 1989). The
theta thythm in the hippocampus as well as olfactory cortex is synchronized with the rate
at which the rats sample olfactory stimuli by sniffing. It has been suggested that behavior
(e.g., sniffing) itself transmits control signals to the structures involved in learning to
prepare them for long-term changes in memory.

Synchronized sampling of sensory inputs of the sort described above can potentially
be used in CN to integrate information from different sensory modalities. The same
clock-like mechanisms may be used to control and coordinate the various network micro-
modules involved in behaving and learning (e.g., computing the error for updating the
weights).




Control and Coordination of Multiple Information Sources
In Brains and Computers

The brain is constantly combining diverse types of information, in what appear to
be loosely coordinated yet precise and very effective ways. Thus whole regions of local
information are combined by retinal processes involved in detecting spots on contrasting
backgrounds, and by cortical processes involved in detecting oriented edges and other
features (Kuffler, Nicholls, & Martin, 1984; Shepherd, 1988).

In addition, information is combined from the two eyes, the two ears, and at higher
levels the eyes and ears plus other sensory and motor systems. Information from adja-
cent and more distant parts of a single retinal input is combined as different higher-level
features are detected, as is information from the many different processing areas (e.g., in
the separate visual pathways of areas that appear to be specialized to process shape, or
motion, or color). All these are precisely enough controlled to combine and re-combine
with great precision - apparently with mechanisms that, as necessary, adapt to particular
situations. But all this takes place without any evidence of the kind of simple central
control that is built into today’s computers.

Precisely controlled dynamic routing of information (e.g., between processor and
memory, between different processors and different memories, between the processor
and I/O devices) is essential to the normal functioning of conventional digital computers.
The possibility of dynamic switching processes has been suggested in the context of
several different aspects of visual perceptual processes in the brain - for example, atten-
tion and stereopsis (e.g., Julesz, 1984). But since the complete separation between a con-
ventional computer’s stored-program memory, its serial processor, and its various input
and output devices is not found in CN (or in brains), switching functions must be highly
distributed.

Dynamic switching can easily be accomplished by neurons that are selectively inhi-
bited or de-inhibited (or, alternately, excited) so as to drive their potential below (or
above) the threshold of firing, or by dynamically altering the threshold itself.

A shifter circuit (Rashevsky, 1960; Anderson & Van Essen, 1987) has been sug-
gested as a means of linking a layer of neurons (e.g., the retinal ganglion cells) with
another layer of neurons (say in cortical area V1, via the LGN) in a manner that allows
for dynamic shifts in the relative alignment of the two arrays of neurons, but without loss
of local spatial relationships. The shifts are produced in increments along a succession of
relay stages that are linked by diverging excitatory links. The direction of shift is con-
trolled at each stage by inhibitory neurons that selectively suppress appropriate sets of
ascending inputs. (To keep the explanation simple, consider an one-dimensional array of
values that get shifted to the left or right by a certain amount. At each level [ (I = 1, 2,..),
the left branch of the ascending axon contacts the right dendrite of a cell [ steps to its left
at the next layer, and the right branch of the ascending axon contacts the left dendrite of a
cell [ steps to its right at the next layer. At all levels, a given inhibitory cell contacts
exclusively left side dendrites or exclusively right side dendrites of the excitatory cells at
the same level. Thus, depending on which inhibitory neurons are active and which are
inactive, the input array of values gets shifted to the left or right, but will automatically
be kept in register for the whole array. (The extension to two dimensions is rather
straightforward.) The inhibitory neurons can, in turn, be controlled by top-down feed-
back as a function of some assessed properties of the input. The proposed shifter



mechanism is consistent with the known anatomy and physiology of the primate visual
pathway, and offers a possible explanation for the existence of the surprisingly large
number of cells in the geniculo-recipient layers of the primary visual cortex (V1).

Shifter circuits can serve a variety of functions including: to register inputs from
two eyes prior to binocular integration; to prevent motion blur (which would occur other-
wise when the images on the retina move constantly) by introducing a compensatory crit-
ical shift whose velocity is equal but opposite to the locally measured retinal velocity
field; to provide scaling and spatial blurring (e.g., by having shifter circuits hard-wired
for several different scales so that information at multiple scales is available for subse-
quent analysis, or by controlling the activation of inhibitory neurons at each stage
dynamically, so as to provide different degrees of spatial averaging); and possibly as a
basis for mechanisms that shift attention.

A pyramid-like hierarchy of such shifter circuits could exert very precise control
over the particular computations applied to particular segments of the sensory input.
Functionally equivalent control structures are used in many pipelined image processing
computer systems (e.g., the PIPE (Kent, Schneier & Lumia, 1985)) for programmer-
exerted control over the particular processes/transforms applied to particular segments of
the image.

Reciprocal connections between layers of neurons in the brain are rather ubiquitous.
Feedback links between layers can serve a number of subtle control functions: The feed-
back may selectively enhance, inhibit, or in some other way modulate the outputs of a
layer of neurons as a function of some assessment that is made at a higher layer. This
provides a means of conditional execution of several information processing functions as
well as subtle dynamic regulation of network parameters e.g., the amplification of the
signal that is being propagated. Another example of the control function that can be sub-
served by feedback inhibition is in attending to specific features in the input. We can
think of a mechanism through which the neurons contributing to the strongest feature
response get inhibited by the negative feedback that they receive from the neurons that
they excited strongly. This has the effect of gradually masking out the strongest features
in the input so that the weaker features get attended. This effect has been observed in
models of the olfactory cortex that learn to detect weak hidden odor signals even when
they are dominated by much stronger odors (Granger, Ambros-Ingerson, Staubli &
Lynch, 1989). A similar process can be used as a component of attentional mechanisms
which enable a CN to ignore or selectively mask out some aspects of its input while pre-
ferentially attending to some other aspects. (See Honavar & Uhr, 1990b for an examina-
tion of the role of feedback links in CN).

Variegated Controls: Social Organizations

Social organizations have a great variety of sizes and structures, from the smallest
2-individual groups of completely independent organisms, through families, herds,
schools, and societies, to the total ecosystem. Some (e.g., armies; assemblylines) have
central controllers (e.g., commanding generals, dictators, directors; the motors that drive
the line; and the accountants who determine its speed). Others have hierachies of con-
trollers (e.g., bureaucracies and large companies), sometimes with specialties (e.g., fore-
man, business manager, office manager). In human and animal organizations there are
usually additional informal controllers, and central control is not nearly so strong as it




appears. And often of great importance are links between friends and acquaintances
widely separated in terms of formal control.

Human society has developed the concept of several major different types of organ-
ization - from autocractic dictatorship to participatory democracy and anarchy, moving
from complete control (in theory - in fact most aspects of people’s lives are controlled by
many other local forces, or by themselves) to equally shared control, to no control (in
theory, since even in the most egalitarian societies individuals always seem to strive to
control).

It may well be that greater central control gives greater productivity - if everyone is
assigned appropriate complementary work and individuals are in agreement and fully
motivated. On the other hand, anarchy in theory maximizes each individual’s freedom -
including freedom to be productive and creative - although in fact it appears to need
completely unselfish members who do not try to pressure, control, or take advantage of
one another. But when cooperation is crucial (as when many people row a large boat or
work in a factory) things appear to work best when a clear-cut statement is made as to
what each person should do, everyone is motivated to do well and further the groups
goals, and there are supervisors who make sure things run well and decide how to modify
things if they do not.

A productive social group typically exercises the following kinds of interlocking
functions: Some members work - e.g., gather, grow, and process raw materials; or gather,
process and digest information; or make, sell, and distribute products; or think and work
up new things to do, and methods for doing them. Other members oversee, organize, and
decide what to do, and direct other members. All members exert a great deal of control
over what they do themselves, and varying amounts of control over members close to
them (both physically and in the group’s structure).

Occasionally decisions are made that trigger small or major changes - analogous to
shifts of attention in the individual brain. For example, an overseer decides to direct that
certain new or different types of information be gathered. Or a manager might decide to
change the layout of an assemblyline, or build a new factory. Thus individual units can
initiate processes that serve to synchronize and control other units - sometimes only a
few, sometimes many. Of course these human units are all highly intelligent, and their
processes and the information that they take into account are usually extremely complex.

Each individual is a member of many different interlocking groups. The total
society is a complex function of their interactions. The nominal highest-level structures -
e.g., the individual nations, treaty blocks, United Nations - are in many ways much less
important than much smaller structures like city, workplace, or family.

Control-and-coordination structures akin to those found in social organizations can
be useful between distinct but interacting modules of a CN, as well as collections of CN.
A framework for coordination and communication among a large number of agents of
differing degrees of intelligence has been explored in the Society of Mind paradigm for
the study of intelligent systems by Minsky (1986), and using the Ant Colony Metaphor
by Hofstadter (1979). Systematic studies of organizations might suggest mechanisms
that might be fruitfully incorporated into CN.



A Summary of the General Types and Loci of Possible
Coordination and Control Structures and Processes for CN

There are many different potential types and sources of complete or partial control,

including the following:

E

Controls can be (and often are) introduced into the user programs or operating sys-
tems that the computers that simulate the CN execute. All of today’s CN are com-
pletely synchronized by a global clock that fires all units in synchrony, and are
switched regularly between behaving and learning.

Control can be introduced by building in particular structures and processes as
needed - as in specifying particular micro-circuits like winner-take-all nets or
decision-trees that make choices and selecctively transmit the appropriate informa-
tion.

The simultaneous sensory input of whole fields of closely related or even identical
information can initiate a simultaneous flow through the CN that tends to control its
processes, and at least partially synchronize.

There can be a complete global controller built into the hardware or/and software -
as in the conventional stored-program computers of today - although this appears to
violate the spirit of CN (i.e., the distributed nature of control).

Partial control can be built in globally - e.g., a global clock that synchronizes time -
so that all processors execute one step at the same time, then send information to
one another, then execute the next step, and so on.

The topology of the network, sub-net, and local micro-circuits can exercise major
control functions - as when a tree of processors successively transforms, combines,
and reduces information, or a pipeline of arrays sequentially applies a series of
transformations to the input.

Subtle control can be built into either the simulation or into particular microcircuits
that instantiate desired constraints in any of the processes executed by the CN (e.g.,
pattern recognition networks are sometimes constrained to learn a single set of
weights for a local transform irrespective of where the transform is applied).

Complete (and, if desired, rigid) control of the sort found in conventional computers
and multi-computers (e.g., execution of instructions in order; controlled sequences
of state transitions) can be built in either centrally or locally at each node or small
sets of nodes in the CN.

A variety of coordination and control structures (e.g., message passing, blackboard
structures for messages, instruction broadcasting, multiplexing, conflict resolution)
used in multicomputer networks can be built into the CN.

A host of control mechanisms of the sort found in conventional programming
language constructs (conditional execution, loops, etc.) can be built into local or
global microcircuits embedded in the CN.

Completely dispersed control can be attempted, as in evolution. But to make this
work it would appear that a number of other (control) mechanisms are needed, like
mutations, sexual reproduction, and incentives tending toward cooperation.




CNs may be provided with compact (gene-like) encodings of their structural and
functional properties (e.g., the sizes of receptive fields, general topological con-
straints on connectivity, etc.). Such encodings may be transformed through genetic
operators (e.g., crossover, mutation) to yield variant CN specifications. Environ-
mental rewards and punishments may be used as means of guiding whole CN popu-
lations to evolve so as to perform better at tasks presented to them by the environ-
ment.

DNA-like encodings can be incorporated, along with the capability to make copies,
linking networks over which these copies can be sent, and decoders to transform
these encodings into specifications for network structures and processes to be real-
ized. .

Gene-like information can be used to dynamically specify different types of func-
tional units in CN (analogous to the mechanisms of cellular differentiation). Con-
trols can activate or suppress the expression of different functional properties in CN
nodes or node ensembles.

Local interactions of the sort found on the surface ‘of cells that are bound by cell
adhesion molecules might be used to determine how to build single units and larger
micro-circuits into successively larger structures (e.g., through a specification of
how the microcircuits are to be assembled together).

The immune system’s rapid, evolution-like adaptations suggest the possibility of
triggering massive proliferations of a range of mutation-like variants, and then as a
function of local feedback, to trigger processes (that might probably de-generate
and discard the node(s) or microcircuits deemed useless for the system’s function)
to converge on a small subset of the population.

Independent entities like chemical markers and pilot cells can - guided by informa-
tion of the sort found in chemical gradients and lock-in-key-type templates - com-
bine to build well-organized wholes.

The complex interactions between chains of enzymes suggest the possibility of
whole strings, trees, feedback loops, and other structures of controls.

Multi-messenger pathways analogous to those supported by intra- as well as inter-
cellular communication (e.g., axonal transport mechanisms, membrane proteins)
can be built into and among individual CN units and microcircuits of units.

Several different types of global sub-nets can be used, tailored to and serving dif-
ferent purposes - much like the brain’s neurotransmitters, global electrical waves,
and chemical messenger systems. Such systems can be embedded in the CN using
token passing networks or codebook-like structures.

Neuromodulator-like influences can be achieved by incorporating linking sub-
networks that contain links with different amounts of delays, transmit information
that changes thresholds, and even switches between alternate possible functions.

Modulatory networks analogous to hormones can now have relatively diffuse,
slow-acting effects on such global processes e.g., making memories - or memories
of a certain type - more, or less, accessible to other processes.

Regulatory subnetworks can also be used to initiate, modulate, and terminate plasti-
city of specific CN modules in a controlled fashion during learning.



Specific control subnetworks can be embedded into the CN to instantiate processes
like attention - selectively enhancing or attenuating the relative contributions of dif-
ferent aspects of the environmental stimuli.

A variety of contextually driven switching mechanisms can be built into the CN to
alter, in a dynamic fashion, the functions of different CN modules or the interac-
tions among modules.

Pacemaker units that emit pulses regularly can serve to drive relatively local clocks
and build oscillators, which in turn trigger and synchronize larger sub-structures.
Several local clocking networks can overlap, and interact in such a way as to par-
tially or totally re-synchronize one another.

Oscillators can be used to handle a variety of important problems - e.g., to switch
between processes; to decide when to initiate, or to terminate, a process; to sample
the environmental input at a desired rate.

Clocks or networks of clocks can execute the equivalent of a while-loop in conven-
tional programming languages in CN. For example, information can cycle through
several interior layers until a decision net is triggered - which in turn fires into
nodes, switching them on so that they in turn fire out in synchrony to other regions
of the net.

Synchronized sampling of environmental stimuli in different sensory modalities can
be used as a means of multi-sensory integration.

Network structures that initiate, transmit and terminate global wave-like signals to
large regions of the network can instantiate arousal-like processes or help prepare
entire network modules to better process the incoming signals.

Multi-level shifter-like structures embedded in the CN can be used for a variety of
control functions (e.g., to register inputs from two visual sensors, to compensate for
the motion of objects in the scene, to dynamically control the degree of smoothing
to suppress the noise in the input).

Feedback pathways can be built into CN to subserve a number of subtle control
functions (e.g., selective modulation of the sensory signals as a function of some
assessments made at the higher levels, selective attention to specific aspects of the
environmental stimuli).

Specific subnetworks can be built into the CN that ensure a proper balance in the
allocation of different network resources (e.g., nodes, links, long-range communica-
tion networks) among different functions as the network learns and evolves.

Network controls can dynamically alter the incentives for CN units, microcircuits or
functional modules to cooperate (as opposed to compete) with each other.

Networks of partial and overlapping controls in a CN can be made to evolve over
time by having the sphere of influence of each control structure expand with success
and contract with failure (analogous to what takes place in societies). Then when
these inevitably overlapping controls conflict, additional local controllers must
resolve their differences. '




Summary and Concluding Remarks

CN built from sufficiently large numbers of relatively simple - and independent -
units are general-purpose, hence potentially capable of doing anything that any possible
artificial intelligence program can do. But without adequate control structures, CN - just
as a haphazardly-put-together sequence of instructions for a conventional computer - will
accomplish little.

There are several potential sources of control that can be given to the CN: the
processes carried out by the individual units, microcircuits of units, or entire subnetworks
dedicated to control; the larger structures that link and organize the units; and learning
plus evolution under environmental influence. We have examined some of the ways that
these can fruitfully be used to improve performance by adding the appropriate control
structures as necessary. In doing so, we have relied upon a variety of natural and
artificial systems for suggestions.

A priori, it is difficult to determine exactly which subsets of the suggested control
structures are appropriate for a given system, or which of them work well together in
practice. These questions can only be answered through extensive empirical investiga-
tions on a large number of increasingly challenging perceptual and cognitive tasks. To
do this effectively, appropriate network simulation environments and high-level network
specification languages need to be developed.

We have tried to give a picture of the great variety of global and local control
mechanisms that can be incorporated into CN. This picture is necessarily incomplete -
because brains and other natural systems are far from being completely understood. But
- at least until our understanding of CN has progressed to the point where we can achieve
nets that begin to mirror the brain in its complexity - only a very small subset of the con-
trols outlined here should probably be used in any particular CN. The range of possibili-
ties presented here should be considered as a source of suggestions for potentially useful
mechanisms. Even though brains and other natural systems make simultaneous use of
many of these, today’s CN are not yet in a position to do so.

But it is important to emphasize that any and all of these mechanisms can be real-
ized as sub-nets in CN, since CN are general-purpose. The added control structures at
worst, increase the size of the CN by a small constant factor. In practice, the potential
benefits in terms of power, flexibility, and adaptability may well far outweigh the costs.

Even the least plausible type of control - the conventional computer’s completely
dominant and dictatorial central controller that handles everything, including fetching
and interpreting a stored program - should be considered. In fact a good experimental
tactic might be to get the CN to adequately handle some non-trivial problem of interest -
that is, to exhibit as much power as possible - and then replace such control by succes-
sively less rigid and more plausible mechanisms, getting rid of undesirable built-in black
boxes. For some, extremely large, elaborate, and meticulously crafted networks appear to
be needed; whereas others can be handled with only minor changes and small additions
to today’s systems. When it is not known how to realize a particular mechanism with a
plausible net, it can be treated as a black box, and the task of compiling it into a net
might be attacked using techniques of linear and nonlinear control system synthesis
(Kailath, 1982; Nagrath & Gopal, 1982; Narendra & Annaswamy, 1988).



Whether the net is "plausible” or not is a subtle issue, tantamount to assessing the
goodness of a model. There is little reason to not embed the kinds of structures and
processes found in the brain, or in a host of natural and man-made systems in CN - espe-
cially if doing so adds to their flexibility, versatility, and power at modest additional cost.
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