ON THE COMPLEXITY OF EVENT ORDERING
FOR SHARED-MEMORY PARALLEL
PROGRAM EXECUTIONS

by
Robert H.B. Netzer

and
Barton P. Miller

Computer Sciences Technical Report #908
January 1990

TR 908 January 19, 1990

On the Complexity of Event Ordering for Shared-Memory

Parallel Program Executions

Robert H. B. Netzer

netzer@cs.wisc.edu

Barton P. Miller

bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin—Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

Abstract

This paper presents results on the complexity of computing event orderings for shared-
memory parallel program executions. Given a program execution, we formally define the prob-
lem of computing orderings that the execution must have exhibited or could have exhibited, and
prove that computing such orderings is an intractable problem.

We present a formal model of a shared-memory parallel program execution on a sequen-
tially consistent processor, and discuss event orderings in terms of this model. Programs are con-
sidered that use fork/join and either counting semaphores or event style synchronization. We
define a feasible program execution to be an execution of the program that performs the same
events as an observed execution, but which may exhibit different orderings among those events.
Any program execution exhibiting the same data dependences among the shared data as the
observed execution is feasible. We define several relations that capture the orderings present in
all (or some) of these feasible program executions. The happened-before, concurrent-with, and
ordered-with relations are defined to show events that execute in a certain order, that exccute con-
currently, or that execute in either order but not concurrently, Each of these ordering relations is
defined in two ways. In the must-have sense they show the orderings that are guaranteed to be
present in all feasible program executions, and in the could-have sense they show the orderings
that could potentially occur in at least one feasible program execution due to timing variations.
We prove that computing any of the must-have ordering relations is a co-NP-hard problem and
that computing any of the could-have ordering relations is an NP-hard problem.

Research supported in part by National Science Foundation grant CCR-8815928, Office of Naval Research grant NO00O14-89-J-1222, and a
Digital Equipment Corporation External Research Grant.
Copyright © 1990 Robert H. B. Netzer, Barton P. Miller.

IR 908 January 19, 1990

1. Introduction

In an execution of a shared-memory parallel program, the order in which some evenis execute may not be
enforced by (explicit or implicit) synchronization, but instead may occur by chance. Even if two events are expli-
citly synchronized to force a certain order during one execution, the same events may occur in a different order
during another execution. Due to nondeterministic timing variations, the program may, on different occasions,
execule exactly the same events but exhibit different orderings among those events. We [ormally define several
relations that capture the orderings present in all (or some) such alternate executions, and prove that computing
these relations is an intractable problem. We consider programs executing on sequentially consistent processors

that use fork/join and either counting semaphores or event variables.

We present a formal model of a shared-memory parallel program execution, and define event orderings in
terms of this model. Given a program execution, P, we characterize other program cxecutions that execule
exactly the same events as P but which may exhibit dilferent event orderings. Any program cxecution exhibiting
the same data dependences among the shared data as P will execute the same events as P. The set of all such
alternate program executions, called feasible program executions, is defined by considering all the different order-
ings that could allow the data dependences exhibited by P to occur. The various orderings that must have been
exhibited (or could have been exhibited) by all such feasible program executions are captured by defining several
ordering relations: happened-before, concurrent-with, and ordered-with. Each of these relations is defined in the
must-have sense and in the could-have sense. The must-have relations show orderings that are guaranteed to
occur in all feasible program executions, while the could-have relations show orderings that could potentially
occur due to timing variations. We prove that computing the must-have relations is a ¢co-NP-hard problem, and
that computing the could-have relations is an NP-hard problem. These results are shown to hold for programs that
use fork/join and either counting semaphores or event style synchronization (using the Post, Wait, and Clear prim-
itives). We also show that these results hold when computing the orderings occurring in a/l program executions

exhibiting the same events as a given execution, regardless of whether the original shared-data dependences occur.

2. Program Execution Model

In this section, we briefly present a formal model of shared-memory parallel program executions. The
model contains the objects that represent a program execution (such as which stalements were execuled and in
what order), and axioms that characterize properties those objects can possess. In subsequent sections, we use the
model to characterize behavior that an execution might have exhibited (such as alternalc event orderings) and

behavior that an execution must have exhibited (such as obeying the semantics of its synchronization operations).

Our model® provides a formalism for reasoning about shared-memory parallel program exccutions that does

+ This section is a brief presentation of the model that was first presented by us in an earlier paper[10], and is based on Lamport’s theory

of concurrent systems|[8].

TR 908 January 19, 1990

not assume the existence of atomic operations. We consider the class of shared-memory parallel programs that
execute on sequentially consistent processors[7] and that use fork/join and either counting semaphores or event
style synchronization. A program execution is described by a collection of events and two relations over those
events. Each event represents an execution instance of a set of (consecutively executed) program statements. We
distinguish between two types of events: a syachronization event is an instance of some synchronization operation,
and a computation event is an instance of a group of statements belonging to the same process, none of which are
synchronization operations. The temporal ordering relation®, —r—é describes the temporal ordering among events
in the program execution; a L5 b means that a completes before H begins (in the sense that the last action of a
can affect the first action of), and a &> b means that @ and b execule concurrenltly (i.e., neither completes be-
fore the other begins). The shared-data dependence relation, L) indicates when onc event causally affects
another; a 25 b means that a accesses a shared variable that b later accesses, where at least one of the accesses is

a modification to the variable.*

We define a program execution, P, to be a triple, (&, -L—) —l—)—>>, where E is a finite set of events, and LN

D
and —> are the relations over E described above. The temporal ordering and shared-data dependence relations
must satisfy several axioms that describe properties a valid program execution must possess[10]. We omit these

axioms here as they are not required to prove our results.

3. Problem Statement

In a given program execution, the temporal ordering between some events is not always ‘‘guaranteed”.
Another execution of the program could perform exactly the same events, but due to nondeterministic timing vari-
ations, could exhibit a different temporal ordering among those events. In this section, we characterize program
executions exhibiting such alternate temporal orderings, and define several relations that capture the orderings
present in all (or some) of these program-executions. In subsequent sections, we prove thal compuling these rela-

tions is an intractable problem.

3.1. Feasible Program Executions

Given a program execution, P, a feasible program execution for P (or just a feasible program execution,
when P is implied) describes an execution of the program that performs exactly the same events as P, but which

may exhibit different temporal orderings. Any execution that exhibits the same shared-data dependences as P will

1 Throughout this paper we use superscripted arrows to denote relations, and wrile @ — b as a shorthand for —(@a — b), and @ ¢— b

as a shorthand for —(a —> b) A (b — a).

t This definition of data dependence is different from the standard ones{3, 6] in that our definition combines the notions of flow-, anti-,

and output-dependence, and does not explicitly state the variable involved.

TR 908 January 19, 1990

execute exactly the same events as PT This result can be proven by showing that the execution result of each state-
ment instance depends only upon the values of the variables it reads, and that the program’s input and the shared-
data dependences uniquely characterize these values for each step in the computation[9]. Therefore, a program

execution P’ ={(E’, —T—é, —-Di—>) is a feasible program execution for P = (E, —r—> —D—>) if

(F1) E'=E, and
(F2) P’ satisfies the axioms of the model{10], and
) aSb=a2>0.

These conditions state that any valid program execution (i.¢., a program execution obeying the axioms mentioned
in Section 2) possessing the same events and shared-data dependences as P describes an execution that is
guaranieed to have potentially occurred. This statement holds even if the program execules nondelerministic
statements, since P’ is still capable of executing the same events as P. We denole the set ol [easible program exe-

cutions for P, as characterized above, by £ (P) (or just F, when P is implied).

3.2. Ordering Relations

Given a program execution, P = (E, —T—> —9-3), and the set, F, of feasible program executions for P, we
define several relations (shown in Table 1) that summarize the temporal orderings present in the feasible program

executions in F.

Must-Have

Could-Have

Happened-Before

MHB
a—>bs

VE, —5, 25Ye F,a = b

d CHB b o

HE, L5, 2ye a5 b

Concurrent-With

PR ANy PN
V(E, -5, 25Ye F,a ¢ b

a2 b e
HE, >, 23Ye F, a > b

Ordered-With

aé—Mﬂv——)b@
YV(E, =, 25)e F, —(a ¢4+ b)

a ¢ b
HE, —>, =S F, —(a ¢+ b)

Table 1. Ordering Relations For A Set, F, Of Feasible Program Executions

Each relation type (happened-before, concurrent-with, or ordered-with)* is defined to capture both the must-have
and could-have orderings. The must-have relations describe orderings that are guaranteed to be present in all

feasible program executions in F, while the could-have relations describe orderings that could potentially occur in

T For this statement to hold, interactions with the external environment must be modeled as shared-data dependences.

{ We use double arrows (¢——) to denote the concurrent-with and ordered-with relations to emphasize that they are symmetric.

TR 908 January 19, 1990

at least one of the feasible program executions in F. The happened-before relations show events that execute in a
specific order, the concurrent-with relations show events that execute concurrently, and the ordered-with relations

show events that execute in either order but not concurrently.

4, Related Work

The problem of computing event orderings has been previously addressed by several researchers[1,2, 5].
Given a program execution, Emrath, Ghosh, and Padua[2], and Helmbold, McDowell, and Wang[5] attempt to
compute orderings that are guaranteed to occur in any other execution exhibiting the same events, irrespective of
the original shared-data dependences. Callahan and Subhlok[1] consider event orderings in the context of static
analysis of parallel FORTRAN programs. Emrath, Ghosh, and Padua[2] attempt to compute a graph that shows
the must-have and could-have orderings for programs that use event style synchronization. However, since they
do not consider the ordering constraints imposed by the shared-data dependences, their method sometimes over-
looks some orderings. Helmbold, McDowell, and Wang[5] consider programs that use counting semaphores, and
present algorithms for computing only some of the must-have orderings. Callahan and Subhlok[1] prove that
computing orderings that are guaranteed to occur in all executions of a given program is a co-NP-hard problem,

and present a data-flow framework for computing some of these orderings.

Emrath, Ghosh, and Padua[2] describe a method for computing the ‘‘guaranteed run-time ordering’’
between events in program executions that use fork/join and event style synchronization (using Post, Wait, and
Clear operations). They construct a graph (called a task graph) that contains a single node for each synchroniza-
tion event in the program execution. Task Start and Task End edges are added to represent orderings imposed by
fork and join operations, and Machine edges are added to represent orderings of events belonging to the same pro-
cess. Synchronization edges are also added to represent guaranteed orderings imposed by synchronization. For
each Wait node, all Post nodes that might have triggered that Wait are identified. A Post might trigger a Wait if
there is no path from the Wait to the Post (which would indicate that the Wait must have preceded the Post), and
no path from the Post to the Wait that includes a Clear node. Synchronization edges are then added from the
closest common ancestors of these Posts to the Wait. The resulting graph is intended to show a guaranteed order-
ing between two events iff there is a path between the nodes representing those events. However, since their
method does not account for the orderings imposed by the shared-data dependences, the graph sometimes shows

no ordering when indeed an ordering is enforced by a shared-data dependence.

Consider the program fragment shown in Figure 1a. Its task graph, for the case when the first created task
completely executes before the other two created tasks, is shown in Figure 1b. In this exccution, there is a
shared-data dependence from the statement instance ‘X := 1°" to *‘if X=1 then”’. The dotted lines represent ord-
erings imposed by the fork operation, and the solid line represents a guaranteed ordering (drawn from the closest
common ancestor of the two Post nodes to the Wait node). In this graph, there is no path between the two Post
nodes. However, the two Posts cannot execute in either order. Due to the shared-data dependence from the state-

ment instance ‘X :=1"" to *‘if X=1 then, it is not possible for the right-most Post to execute before the left-most

TR 908 January 19, 1990

X:=0

fork
Post A
Xi=1
Wait A

if X=1 then
Post A
else

"""" Task Start edge

Wait A

- Sychronization edge
join

(a) (b)

Figure 1. Example Program Fragment and a Task Graph

Post. If this shared-data dependence does not occur, the else clause will execute, causing a Wait to be issued in-
stead of the right-most Post. This example illustrates that even if the programmer does not intentionally introduce
synchronization with shared variables, some events are nevertheless ordered by the shared-data dependences.
Any method that attempts to compute could-have orderings must therefore consider these dependences. We prove
in the next section that exhaustively compuling the orderings for program executions that use event style syn-

chronization (with Clear operations) is an intractable problem.

Given a trace of a program that uses counting semaphores, Helmbold, McDowell, and Wang[5] present an
algorithm to compute some of the must-have orderings by computing safe orderings. A ordering is safe if the ord-
erings it contains are guaranteed to occur in all executions that exhibit the same events (regardless of the shared-
data dependences). Their algorithm operates in three phases. First, for each semaphore, they order the i™ V event
before the i™ P event in the trace. The transitive closure of the union of this ordering with the intra-process order-
ings defines their happened before relation. This relation is unsafe because another execution {performing the
same events) might exhibit a different pairing among the semaphore operations. In the second phase, their hap-
pened before relation is altered so that each V event is ordered before all P events on the same semaphore. The
resulting relation is safe, but overly conservative. To sharpen the relation, the third phase adds additional safe ord-

erings by considering that only some P events can actually execute after certain V events. Their algorithms run in

TR 908 January 19, 1990

polynomial time since they compute only some of the must-have-happened-before orderings. The resulting order-
ing relation is therefore a subset of our 225 relation. In the next section we prove that computing the entire
M2 5 relation is a co-NP-hard problem.

Callahan and Subhlok{1] consider the problem of static analysis of FORTRAN programs without loops that
use parallel DO and CASE and event style synchronization (without Clear operations). They prove that the prob-
lem of determining the orderings that are guaranteed to occur in all executions of such a program is a co-NP-hard

problem. They also present a data-flow framework for computing some of these guaranteed orderings.

5. Complexity of Computing Ordering Relations

In this section, we describe the complexity of computing the ordering relations defined in Section 3. We
MiB MCW MOW

prove that the problem of computing any of the must-have ordering relations (i.e., , ,or >)
is co-NP-hard and that the problem of computing any of the could-have ordering relations (i.e., ﬂ) sy

cow . .
or ¢———>) is NP-hard. These results are shown to hold for programs that use counting semaphores, and for

programs that use event style synchronization (using the Post, Wait, and Clear primitives). Finally, we briefly
comment on intractability results for computing the ordering relations when the shared-data dependences are not

considered.

5.1. Counting Semaphores

Theorem 1. Given a program execution, P = (£, —I% 19), that uses counting semaphores, the problem of decid-

. MHB MCW W
ing whether a > b, a bora ¢« 5 p (i.e., any of the must-have ordering relations) is co-NP-

hard.

Proof. We present a proof only for the must-have-happened-before relation (L); proofs for the other rela-
tions are analogous. We give a reduction’ from 3CNFSAT[4] such that any Boolean formula is not satisfiable iff
a 25 b for two events, a and b, defined in the reduction. Let an arbitrary instance of 3CNFSAT be given by a
set of n variables, V = {X{,X,, - - - ,X,}, and a Boolean formula B consisting of m clauses, C; A Co A -+ AC,,
where each clause is a disjunction of three literals (a literal is any variable or its negation, from V). From such an
instance of 3CNFSAT, we construct a program consisting of 3n+3m+2 processes that uses 3n+m-+1 semaphores
(all semaphores are assumed to be initialized to zero). The execution of this program simulates a nondeterministic
evaluation of the Boolean formula B. Semaphores are used to represent the truth values of each variable and

clause. As we will show, the execution exhibits certain orderings iff B is not satisfiable.

For each variable, X, construct the following three processes:

t This reduction was motivated by the ones Taylor[11] constructed to prove that certain static analysis problems are NP-complete.

6

TR 908 January 19, 1990

P(A)) P(A) V(4)
V(X)) VX)) P(Pass?2)
V(A)

V) | VD

where ‘‘ -+ - ** indicates as many V(X,) (or V(}?L-)) operations as occurrences of the literal X; (or X ;) in the formula
B. The semaphores X; and X ; are used to represent the truth value of variable X;; a signaling of semaphore X; (or
fi) represents the assignment of True (or False) to variable X;. The above processes operale in two passes. The
first pass is a nondeterministic guessing phase in which each variable used in the Boolean formula is assigned a
unique truth value. This assignment is accomplished by allowing either the V(X;) operations or the V(X,) opera-
tions to proceed, but not both. The second pass, which begins after semaphore Pass?2 is signaled, is used only to
ensure that the program does not deadlock; the semaphore operations that were not allowed to exccute during the

first pass are allowed to proceed.
For each clause, C;, construct the following three processes:

P(L1) P(L,) P(L3)
V(C)) V(C)) V(C)

where Ly, L, and L4 are the semaphores corresponding to the literals in clause C;. The semaphore C; represents
the truth value of clause C;. This semaphore will be signaled if the truth assignments guessed during the first pass

cause clause C; to evaluate (o True.

Finally, create the following two processes:

a: skip
P(C) V(Pass?2)
P(C,) V(Pass?2)
b: skip

where there are n V(Pass2) operations (one for each variable). Event b is reached only after semaphore C;, for

each clause j, has been signaled.

Since the program contains no conditional statements or shared variables, every execution of the program executes

the same events and exhibits the same shared-data dependences (i.e., none). For any execution, we claim that ¢

22 5 piff B is not satisfiable.

TR 908 January 19, 1990

To show the ““if”” part, assume that B is not satisfiable. Then there is always some clause, C;, that is not satisfied
by the truth values guessed during the first pass. Therefore, no V(C;) operation is issued during the first pass.
Event b cannot execute until this V operation is issued, which can then only be done during the second pass. The

second pass does not occur until after event a executes, so event a must precede event b.

. i rrs MHB R
To show the “‘only if*’ part, assume that a M b That is, there is no execution in which b either precedes a or

executes concurrently with . For a contradiction, assume that B is satisfiable. Then some truth assignment can be
guessed during the first pass that satisfies all of the clauses. Event b can then execute before event a, contradicting

the assumption. Therefore, B cannot be satisfiable.

Since @ —=5 b iff B is not satisfiable, the problem of deciding a M5 b is co-NP-hard. By similar reductions,

. vye . ~ MCW
programs can be constructed such that the non-satisfiability of B can be determined from the s or

™™ 5 relations. The problem of deciding these relations is therefore also co-NP-hard. [

Theorem 2. Given a program execution, P = (&, —1—9 —‘—)—3), that uses counting semaphores, the problem of decid-

. CHB ccw Cow
ing whether a b, a > b, or a ¢—— b (i.e., any of the could-have ordering relations) is NP-hard.

. . . “ g CH .
Proof. The reduction used in the proof of Theorem 1 can be used o prove that deciding ——> is an NP-hard
. CHB . . P .
problem. Using the events defined in the above reduction, we can show that b ——> @ iff B is satis(iable, showing
g CHB . . . ¢ 9
that deciding —> is NP-hard. As above, similar reductions can be constructed o prove that deciding the

ccow cow . .
and relations is also NP-hard. [J

The above proofs do not make use of the general counting ability of counting semaphores, and therefore
also hold for programs that use binary semaphores. In addition, the above results can be shown 10 hold for a pro-
gram execution that uses a single counting semaphore by a reduction from the problem of sequencing to minimize

maximum cumulative cost[4].

5.2. Event Style Synchronization

Theorem 3. Given a program execution, P = (£, s, ——>), that uses event style synchronization (with Post, Wait,

and Clear primitives), the problem of deciding whether a M b,a< ey b,ora s (i.e., any of the

must-have ordering relations) is co-NP-hard.

Proof. The proof is similar to the proof of Theorem 1 (for programs that use semaphores), and hinges on the abili-
ly to implement two-process mutual exclusion using only synchronization operations (i.c., no shared variables).
We give a reduction from 3CNFSAT that produces a program operating in he same manner as described in

Theorem 1. For each variable, X;, construct the [ollowing process:

TR 908 January 19, 1990

Post(4;)
Post(B;)
fork

Clear(4;)
Wail(B;)
Post(X;)
Clear(B;)
Wait(4,;)
Post(}?)

join
Although these processes can deadlock, when they do not exactly one of Post(X;) or Post()? ;) will be issued.
For each clause, C;, construct the following three processes:

Wait(L,) Wait(L,) Wait(L 5)
Post(C}) Post(C}) Post(C})

where Ly, L,, and L are the event variables corresponding to the literals in clause ;.

Finally, create the following two processes:

a: skip
Wail(C) Post(A)
Post(B)
Wait(C,,)
b: skip Post(A,)
Post(B,,)

These processes operate in a manner analogous to those created using semaphores, described in Theorem 1. We

. MHB . -
claim that a —> b iff the Boolean formula is not satisfiable. The proof is analogous to the argument given in
Theorem 1.

Theorem 4. Given a program execution, P = (E, —T—>, 39), that uses event style synchronization, the problem of

deciding whether a o b,a ¢ sl byora ¢35 p (i.e., any of the could-have ordering relations) is NP-

hard.

Proof. The proof is analogous to the proof of Theorem 2 (for programs that use semaphores). The required reduc-

tions are similar to the reduction given in Theorem 3 above. O

The above proofs rely on the implementation of two-process mutual exclusion with only synchronization

primitives (i.e., no shared variables). Theorems 3 and 4 made use of the Clear primitive to implement two-process

TR 908 January 19, 1990

mutual exclusion. We are currently investigating the complexity of computing the ordering relations for program

executions that do not use the Clear primitive.

5.3. Ordering Relations Ignoring Shared-Data Dependences

The related work outlined in Section 4 addresses the event ordering problem by using a different notion of
feasibility than we presented here. These methods attempt to compute some (or all) of the orderings exhibited by
all program executions exhibiting the same events as a given program execution, regardless of whether the origi-
nal shared-data dependences occur. The complexity results given in this section extend directly to this case.
Since the programs constructed by the various reductions contain no shared-data dependences, the proofs suffice
to show that even when the original shared-data dependences are ignored and all alternale program exccutions are
considered, computing the ordering relations is still an intractable problem. As we showed, these results hold for

programs that use counting semaphores or event style synchronization.

6. Conclusion

This paper has presented results showing that, given a program execution, computing event orderings that
the execution might have exhibited (or must have exhibited) is an intractable problem. Given a program execu-
tion, P, we defined a feasible program execution 10 be an execution of the program that performs the same events
as P but which may exhibit different temporal orderings among those events. Any program exccution that possess
the same shared-data dependences as P is a feasible program execution. To capture the orderings exhibited by all
(or some) of these program executions, we defined several ordering relations. The happened-before, concurrent-
with, and ordered-with relations were defined to show events that execute in a certain order, that execute con-
currently, or that execute in either order but not concurrently. Each of these ordering relations was defined in two
ways. In the must-have sense they show the orderings that are guaranteed to be present in all feasible program ex-
ecutions, and in the could-have sense they show the orderings that could potentially occur at least one feasible pro-

gram execution due to timing variations.

We proved that computing any of the must-have ordering relations is a co-NP-hard problem and that com-
puting any of the could-have ordering relations is an NP-hard problem. These results were shown (o hold for pro-
grams that use counting semaphores and for programs that use event style synchronization (using the Post, Wait,
and Clear primitives). In addition, these results also hold for programs that use only a single counting semaphore
or multiple binary semaphores. It is currently an open problem whether these results hold for program executions
that use only a single binary semaphore or event style synchronization without Clear operations. We also showed
that these results hold when computing the orderings occurring in all program executions exhibiting the same
events as a given execution, regardless of whether the original shared-data dependences occur. An implication of
these results is that exhaustively detecting all data races potentially exhibited by a given program execution[10] is

an intractable problem.

10

TR 908 January 19, 1990

References

[1] Callahan, David and Jaspal Subhlok, ‘‘Static Analysis of Low-Level Synchronization,”” Proceedings of the
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, Madison, W1, (May 1988).

2] Emrath, Perry A., Sanjoy Ghosh, and David A. Padua, *“Event Synchronization Analysis for Debugging
Parallel Programs,”” Supercomputing '89, pp. 580-588 Reno, NV, (November 1989).

[3] Ferrante, J., Karl J. Ottenstein, and Joe D. Warren, ‘‘The Program Dependence Graph and its Use in Op-
timization,”” ACM Transactions on Programming Languages and Systems 9(3) pp. 319-349 (1987).

[4] Garey, Michael R. and David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Co. (1979).

[5] Helmbold, David P., Charles E. McDowell, and Jian-Zhong Wang, ““Analyzing Traces with Anonymous
Synchronization,”” Univ. of California at Santa Cruz Technical Report UCSC-CRL-89-42, (October 1989).

[6] Kuck, D.J., R. H. Kuhn, B. Leasure, D. A. Padua, and M. Wolfe, ‘‘Dependence Graphs and Compiler Op-
timizations,” Conference Record of the Eighth ACM Symposium on Principles of Programming
Languages, pp. 207-218 Williamsburg, VA, (January 1981).

[7] Lamport, Leslie, ‘‘How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Pro-
grams,”” IEEE Transactions on Computers, pp. 690-691 (September 1979).

[8] Lamport, Leslie, ‘“The Mutual Exclusion Problem: Part I — A Theory of Interprocess Communication,”
Journal of the ACM 33(2) pp. 313-326 (April 1986).

9] Mellor-Crummey, John M., “‘Debugging and Analysis of Large-Scale Parallel Programs,”’ Univ. of Ro-
chester Computer Science Dept. Technical Report 312, (September 1989).

[10] Netzer, Robert H. B. and Barton P. Miller, ‘‘Detecting Data Races in Parallel Program Executions,”” Univ.
Wisconsin-Madison Computer Sciences Dept. Technical Report #894, (November 1989).

[11] Taylor, Richard N., *‘Complexity of Analyzing the Synchronization Structure of Concurrent Programs,”’

Acta Informaiica 19 pp. 57-84 (1983).

11

