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A simple but very effective method for parallelizing Lemke’s algorithm for the
solution of linear complementarity problems is presented. Implementation details
on a 32-node Intel iPSC/2 hypercube for problems of dimension up to 1000 are
discussed. A speedup efficiency as high as 76% is achieved with 32 processing nodes
for a problem with 500 variables and 250,000 nonzero elements. By combining the
effects of concurrency and vectorization the computing time on the Intel iPSC/2 in

some cases is reduced by a factor of 100.

In this paper we study the effectiveness of parallel implementations of the Lemke’s algorithm (also called the

Complementary Pivot Algorithm) [5, 2] for the linear complementarity problem (LCP):
w=Mz4+¢>0, 2>0, zlw=0 (1)

where M is a real n-dimensional matrix and ¢ is a given vector in R™. A parallel version of the algorithm was
first proposed by Thompson [8] and near linear speedup was achieved by her implementation on the CRYSTAL
multicomputer [3]. The intent of this paper is to report on new experience on the Intel iPSC/2 and on how the

multi-processor architecture and vector capabilities of the machine were beneficial to the algorithm. Both the
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CRYSTAL multiprocessor and the Intel iPSC/2 are distributed memory machines that utilize message passing for
interprocessor communication. However, the topologies of the two networks are substantially different.

For the problem considered here, the number of variables ranges between 100 and 1,000. For this class of
problems the efciency of our parallel implementation increases monotonically with problem size and near linear
speedup is achieved for the larger problems. The use of vector routines also substantially decreases solution time
and in many cases the time{reduction factor from vectorization is more than one order of magnitude. Combining
these two effects (vectorization and concurrency) we are able to decrease the computing time, in some cases, by
almost a factor of 100.

The paper is organized as follows. In Section 1. we will discuss briey Lemke’s algorithm. In Section 2., the
parallel algorithm is introduced. Computational results utilizing the scalar and vector processing capabilities are
discussed in detail in Section 3.. Three different sets of randomly generated linear complementarity problems are
solved and solution time and efciency are reported using the scalar and vector versions of the algorithm.

In our notation, a superscript T will denote the transpose and the inner product of two vectors z and w in R"
will be denoted by 2Tw. For an mxn real matrix A, A; will denote the 7** row of 4, 4; ; the element of A in row 1
and column 7, and for any nonempty I C {1,...,n}, Ay will denote the submatrix of A obtained by removing all

columns ¢ of A such that ¢ ¢ I. Finally, e is a vector of ones of arbitrary dimension.

1. Lemke's Algorithm for solving the LCP

The initial step of Lemke’s Algorithm enlarges the space of the linear complementarity problem (1) by adding an

articial variable z ¢. An augmented linear complementarity problem(equivalent to the original one) is obtained:
w=Mz+exn+q>0, wy=2, (2,2)>0, (z2) (w,w)=0 (2)

For this problem a basic feasible point, that is a basic vector such that (w, wo, 2, 20) > 0, is immediately available.
A solution (z, zp), (w, wp) is said to be almost complementary if it is feasible and z;w; = O forall ¢ = 0,...,n
except for at most one 7. The complementary pivot algorithm moves (at every nondegenerate step) from a basic
vector’for (2) to a new one maintaining the property of almost complementarity between (z, z9) and (w, wp) until
either a complementary basic feasible solution for (2) is obtained or an unbounded ray is detected (see [6] for
the denition of basic vectors and a more detailed explanation of the algorithm). At every step of the algorithm,

a Gauss-Jordan elimination pivot operation is performed on a reduced tableau. The current basis is modied by
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bringing into the basis a new variable and dropping a variable from the current set. The new entering variable
is uniquely determined by the complementary pivot rule (that is pick the variable which is complementary to the
variable that just left the basis). Dropping a variable from the basis is determined by the minimum ratio test of the
simplex algorithm.

We refer the reader to [6] for questions regarding the convergence of the algorithm. Sufce it here to say that
the method terminates in a nite number of steps for important classes of matrices such as positive semidenite

matrices and matrices with positive entries.

2. Implementation of Parallel Lemke’s Algorithm

An examination of Lemke’s algorithm indicates that it possesses many options for parallelism. In particular,
updating of the columns of the matrix can be done concurrently, provided that the pivot column is available.
Following [8] we decided to partition the matrix M among the nodes by columns, i.e. each node receives a subset
of the columns of the matrix M. Thereafter, the node is responsible for updating this portion of the matrix. In order
to minimize idle time for the processors, the matrix is partitioned in such a way that, given any two nodes, the
number of columns residing in their respective memory differs by at most one. A copy of the right-hand-side vector
¢ is also made available to all nodes and a list of current basic and nonbasic variables is maintained.

At the beginning of each iteration, the pivot column is determined by the complementary pivot rule and the node
in charge of this column broadcasts it (before updating) to the remaining nodes. Each node independently computes
the pivot row using the minimum ratio test and updates a portion of the matrix. This can be done in parallel, since
each processing element has an updated copy of the right-hand-side vector q and the current pivot column.

We are now ready to present our parallel version of Lemke’s algorithm.
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Parallel L.emke’s Algorithm

Let I1, I,..., I, be a partition of {1,...,n + 1} where r is the number of processors used. Each node ¢ performs

the following steps:

Receive M j, and the right-hand-side ¢.

While (complementarity condition is not satised) do

a) Determine if the pivot column index is in I;.
b) If the pivot column index is in I; then
send pivot column
else
receive pivot column
end if
¢) compute ratio test and determine pivot row.
d) update M j, and the right-hand-side gq.

end do

We observe that synchronization is needed between iterations and a vector of length n, must be broadcast at each
iteration.

Vector processing capabilities are also exploited in this implementation on the Intel iPSC/2. During each
iteration, the updated pivot column in the so-called \reduced tableau” is obtained by rescaling the current pivot
column. This can be achieved by calling the vector routine XSCAL. For a nonpivot column, if the elements
corresponding to the pivot row are not zero, the updated column can be obtained by subtracting from it a suitable
multiple of the pivot column. This is achieved by calling the vector routine xAXPY.

Two special features of vector nodes are also used in order to obtain higher performance. Each vector board
of the Intel iPSC/2 has, in addition to the 1M byte of dynamic memory, 16K bytes of static (fast) memory.
Approximately 5K bytes of fast memory are not used by the operating system but available to the user. In our

implementation the pivot column is copied into the static memory of the processor board. Since access time to static
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memory is less than half that of dynamic memory and the pivot column is repetitively used in updating nonpivot
columns, we were able to substantially decrease the time needed for the updating portion of the algorithm. Note
that, due to the 5K bytes limitation, when n > 640 the pivot column is not all contained in the static memory but
spills over into dynamic memory. Consequently, the biggest improvement from using this feature was observed for
problem of dimension 640 or smaller.

Next, in order to reduce the call overhead for vector routines, the asynchronous version of the xAXPY routine
is used. The asynchronous routines queue the vector operation on the vector board and return to the caller before
the operation itself is complete. Hence, while the vector board is still updating a column of the matrix, the scalar
processor proceeds to the next column that needs to be updated and queues also this new operation on the vector
board. Therefore the vector processor is always kept busy during this part of the algorithm. In the updating phase,
there is no data dependency between different columns. Thus, the vector board and the 386 microprocessor need to

be synchronized only at the end of this updating phase.

3. Computational Experience

Computational testing was carried out on a Intel iPSC/2 [4] with 32 nodes. Each node has a 32-bit Intel
microprocessor 80386 with a local memory of 8 MB. The nodes are connected together in a hypercube topology.
Each 80386 processor is accompanied by an 80387 numeric coprocessor and 16 of the 32 nodes have also a VX
vector board. Support for synchronous and asynchronous message-passing and broadcast routines is provided by
the Intel iPSC/2.

Three sets of randomly generated test problems were solved, corresponding to symmetric positive semidenite
linear complementarity problems, multi{commodity spatial equilibrium problems and linear complementarity
problems with diagonally dominant matrix M.

The rst set of problems is generated as follows. First, an mxn matrix A is generated with elements from a
uniform distribution in the interval [-10, 10]. In our test problems m is chosen to be 0.8 * n. Then, the matrix M =
AT « Ais computed and a vectorz is generated with elements from a uniform distribution in the interval [0,1] with
20% of these entries equal to zero. Finally the vector ¢ is created to ensure thatz solves the corresponding linear
complementarity problem. Problems in this form are very common and arise in least square estimate of nonnegative

parameters.
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Table I shows CPU time versus number of nodes for the scalar version of the algorithm for different values of n
ranging from 200 to 500. Five different test problems are generated for each value of », with different seeds for the

random number generator and the average running time for these 5 cases is presented. The efciency E ,, dened as

T
E, = - where S,(the speedup using 7 processors) = -,l-,—l-

where T is the CPU time with 7 nodes, is also reported in Table I. Table II shows CPU times for the vector version
of the algorithm. Hardware limitations did not allow us to 11 this table completely and we therefore show relative

efciency instead of efciency. Relative efciency RE ~ ,5(r > s) is dened as

T

RE-,-S = ‘T-T;

Relative efciency provides an indication of the improvement obtained by increasing the number of nodes from s
to 7. In Table II, relative efciency RE , is reported for s = 7/2 and different values of r. The time shown for
each value of n is the average running time for ve different cases, except for n = 800 where a single instance of
the problem is solved.

We make the following observations. Parallelization of the scalar version of the algorithm is very effective and
efciency as high as 76% was achieved with 32 nodes. The speedup monotonically increases with problem size
(Figure 1). Almost linear speedup is achieved for n sufciently large. The combined effect of parallelization and
vectorization substantially decreases the CPU time by a factor of almost 100 (Tables I and II). For example, on
one scalar node it takes about 1524 seconds (average CPU time) to solve a problem of dimension 500; only 16
seconds are needed when 16 vector nodes are used. The efciency of the vector version of the algorithm is worse
than that of the scalar version, although it still increases monotonically with problem size and a drastic reduction
in solution time can be observed (Figure 2). This is to be expected since the communication time among nodes
remains unchanged for both versions (the pivot column must be broadcast to all nodes) but the updating of the
matrix is performed in less time when vector nodes are used.

The second set of test problems consists of randomly generated multi { commodity spatial equilibrium problems.
It is well {known that, under assumption of linear supply and demand functions, spatial equilibrium point can be
formulated as a linear complementarity problem. We generated our problems as suggested in [7] (where a hybrid
method based on block successive overrelaxation method was proposed for the solution). In our examples, the

number of commodities varies from 1 to 3 and the number of supply and demand locations ranges from 5 to 25.
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Results are shown in Tables III to VI for the scalar and vector version of the algorithm. We note that for these
examples also (Figures 3 and 4), the speedup increases with problem size, and a reduction factor of 100 can be
achieved by combining concurrency and vectorization for sufciently large problems. However a reduction of
efciency for this set of problems with respect to the previous set is observed. The poorer efciency is due to the
large number of zero entries in the matrix M for the multi {commodity problems. The time needed for updating
the matrix is proportional to the size of the problem n and the number of nonzero entries in the pivot row. The
communication time, however, in our implementation depends only on the problem size (see [1] for more details
on communication measurements for the Intel iPSC/2). This implies that (for xed value of n) the ratio between
computation and communication time decreases if the matrix has many zeroes in the chosen pivot rows. This
explains the lower efciency for the latter set of problems.

The vector version of the algorithm was also tested on some larger symmetric linear complementarity problems.
This set of problems is generated as follows. First, the off-diagonal elements of the matrix A/ are generated with
entries from a uniform distribution on the interval [-10, 10]. Motivated by the above discussion on speedup of the
algorithm and sparsity, we decided to x 20% of the elements of M to 0. Then, foreach ¢ = 1,...,n, we set
M;; = a37;4; | M;;] where o is chosen to be 1 or 1.25. The vector ¢ is generated from a uniform distribution on
[-10, 10] with 20% of the entries equal to 0. Table VII shows CPU time for this set of randomly generated problems
with 7 ranging from 600 to 1,000. Each entry represents the average CPU time for 5 different problems generated

using different seeds. With 16 vector nodes, we are able to solve a problem of dimension 1, 000 in about 46 seconds.

4. Conclusions

Implementation of Lemke’s algorithm on the Intel iPSC/2 was carried out with a very high degree of efciency (an
efciency of 75% or more was reached for problems of size 500 and larger using 32 nodes). Speedup increased with
problem size. Nearly linear speedup was achieved for sufciently large problems. Vectorization and concurrency
were combined to reduce computing time by factors as high as 100. Linear complementarity problems of size

1,000x 1,000 were solved in less than 1 minute using 16 vector processors.
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Dimension 200 300 500

No. of Time Eff. Time Eff. Time Eff.
Proc. Sec. %% Sec. % Sec. Y4
1 130.726 | | 335453 | | 1524476 | |

2 67.036 | 97.50 | 170.641 | 98.29 | 770.816 | 98.89
4 35.155 | 92.96 | 88.165 | 95.12 | 393.002 | 96.98
8 19.675 | 83.05 | 46.275 | 90.62 | 203.471 | 93.65
16 11458 | 71.31 | 25.766 | 81.37 | 109.653 | 86.89
32 6.825 | 59.86 | 16.557 | 63.32 | 62.550 | 76.16

Ave. # of iter. 195.8 282.4 465.6

Table I. CPU time (in seconds) and efciency vs number of nodes for data set 1 (scalar version)

Dimension 300 500 600 800
No. of Time | Rel. | Time | Rel. | Time | Rel. | Time | Rel.
Proc. Sec. | Eff.% | Sec. | Eff.% | Sec. | Eff.% | Sec. | Eff.%
1 19.358 l l l l l I I
2 11.897 | 83.46 | 46.759 | | 1 I I I
4 7.926 | 75.05 | 28.827 | 81.10 | 46.734 l l I
8 6403 | 6190 | 20.380 | 70.72 | 31.879 | 73.30 | 67.940 | |
16 5.793 | 5526 | 16.700 | 61.02 | 25.057 | 63.61 | 50.267 | 67.58
Ave. # of iter. 282.5 465.6 559.7 783

Table II. CPU time (in seconds) and relative efciency vs number of nodes for data set 1 (vector version)
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Dimension 140 285 480 725
# Supply 10 15 20 25
# Demand 10 15 20 25
No. of Time | Eff. | Time | Eff. Time Eff. Time Eff.
Proc. Sec. % Sec. % Sec. % Sec. %
1 15713 | | 79.351 | | 409.510 | | 1368.764 | |
2 8.419 | 93.32 | 40.876 | 97.06 | 212.731 | 96.25 | 691.860 | 98.92
4 4753 | 82.65 | 21.727 | 91.30 | 111.938 | 91.46 | 353.503 | 96.80
8 2.965 | 66.24 | 12.078 | 82.12 | 59.009 | 86.75 | 183.563 | 93.21
16 3.269 | 30.04 | 7.050 | 70.35 | 32.450 | 78.87 | 98.442 | 86.90
32 2.826 | 17.39 | 5.713 | 4340 | 19990 | 64.02 | 56.126 | 76.21
Ave. # of iter. 88 111 186 267

11

Table III. CPU time and efciency vs number of nodes for data set 2, 1 commodity (scalar version)

Dimension 140 285 480 725
# Supply 10 15 20 25
# Demand 10 15 20 25
No. of Time | Rel. | Time | Rel. | Time | Rel. Time | Rel.
Proc. Sec. | Eff.% | Sec. | Eff.% | Sec. | Eff.% | Sec. | Eff.%
1 1.458 I 5659 | | | [ I I
2 1.057 | 68.97 | 3.601 | 78.58 | | I I |
4 0910 | 58.08 | 2.649 | 67.97 | 9350 | | I |
8 0.821 | 5542 | 2289 | 57.86 | 7.079 | 66.04 | 17.634 I
16 1.240 | 33.10 | 2.321 | 49.31 | 6.184 | 57.24 | 13.988 | 63.63
Ave. # of iter. 88 111 186 267

Table IV. CPU time and relative efciency vs number of nodes for data set 2, 1 commodity (vector version)
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Table V. CPU time and efciency vs number of nodes for data set 2, 3 commodities (scalar version)

Table VI. CPU time and relative efciency vs number of nodes for data set 2, 3 commodities (vector version)

Lemke’s Algorithm on the Hypercube

Dimension 135 420 855
# Supply 5 10 15
# Demand 5 10 15
No. of Time | Eff. Time Eff. Time Eff.
Proc. Sec. % Sec. %o Sec. %o
1 13.655 | | 315920 | | 2292.844 | |
2 7219 | 94.58 | 162.275 | 97.34 | 1162.387 | 98.63
4 4,080 | 83.67 | 84.574 | 93.39 | 593.511 | 96.58
8 2.625 | 65.02 | 45478 | 86.83 | 308.126 | 93.02
16 2.701 | 31.60 | 25.561 | 77.25 | 164.919 | 86.89
32 2.366 | 18.04 | 16.780 | 58.83 | 94.861 | 75.53
Ave. # of iter. 87 204 337

Dimension 135 420 855
# Supply 5 10 15
# Demand 5 10 15
No. of Time | Rel. | Time | Rel. | Time | Rel.
Proc. Sec. | Eff.% | Sec. | Eff.% | Sec. | Eff.%
1 1367 | | I l l l
2 1.016 | 67.27 | 12.099 | | [ l
4 0.890 | 57.08 | 8212 | 73.67 I l
8 0.808 | 55.07 | 6409 | 64.07 | 27906 | |
16 1.173 | 3444 | 5.677 | 5645 | 21.723 | 64.23
Ave. # of iter. 87 204 337

12
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Dimension 600 800 1000
No. of Time | Rel. Time | Rel. | Time Rel.
Proc. Sec. | Eff.% | Sec. | Eff.% | Sec. | Eff.%
4 26.752 | | l l I I
8 18.579 | 71.99 | 37.316 | | I |
16 14.844 | 62.58 | 28.408 | 63.32 | 46.659 | |
Ave. # of iter. 307.2 403.6 489.0

Table VII. CPU time (in seconds) and relative efciency vs number of nodes for data set 3 (vector version)



