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Abstract. A decision problem associated with a fundamental nonconvex model for linearly
inseparable pattern sets is shown to be NP-complete. Another nonconvex model that employs an co~
norm instead of the 2-norm, can be solved in polynomial time by solving 2n linear programs, where
n is the (usually small) dimensionality of the pattern space. An effective LP-based finite algorithm is
proposed for solving the latter model. The algorithm is employed to obtain a nonconvex piecewise-
linear function for separating points representing measurements made on fine needle aspirates taken
from benign and malignant human breasts. A computer program trained on 369 sarnples has correctly
diagnosed each of 45 new samples encountered and is currently in use at the University of Wisconsin
Hospitals.

Key words. Pattern recognition, medical diagnosis, linear programming, NP-.complete

1. Introduction. The fundamental problem we wish to address is that of dis-
tinguishing between elements of two distinct pattern sets. Mathematically we can
formulate the problem as follows. Given two disjoint finite points sets .4 and B in the
n-dimensional real space R®, construct a discriminant function f, from R" into the
real line R, such that f(A) > 0 and f(B) < 0. When the convex hulls of the two point
sets A and B do not intersect, a single linear program [6,7,9,2,3] can be used to obtain
a linear discriminant function of the following type

(1.1) flz)=cz+7

where ¢ is in R? and v is in R. Unfortunately in many real-life problems the convex
hulls of the sets A and B intersect and one must resort to a more complex discrimi-
nant function, such as a piecewise-linear function which is usually nonconvex. In the
multisurface method of 7] it was shown how to construct such a function by solving
a sequence of nonlinear programs, each containing a single nonconvex constraint. A
gradient approach for solving the same problem is given in Takayima [10]. One pur-
pose of this paper is to show that a decision problem associated with the nonlinear
program of the multisurface method is NP-complete (Theorem 3.1). Another purpose
is to show that by a change from a 2—norm to an co-norm, the nonconvex program can
be solved in polynomial time by solving 2n linear programs (Theorem 3.2). Solution
of a sequence of these co-norm nonconvex programs leads to an efficient algorithm for
obtaining a piecewise-linear discriminant function that will separate two disjoint point
sets, regardless of whether their convex hulls intersect or not. When applied to the
diagnosis of breast cancer the method completely separated 369 points in R? into 201
points belonging to a benign category and 168 points belonging to a malignant cate-
gory (Section 4). Other methods [11] had failed to achieve such complete separation
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on the same set of samples. By contrast, our discriminant function which consists of 4
pairs of parallel planes defined on R?, not only achieved complete separation of these
sample sets, but also correctly classified each of 45 new points subsequently obtained.

It is worthwhile to point out here, that for the linearly inseparable case (i.e. the
case of intersecting convex hulls), solution of any of the single linear programs proposed
in [6], [9] or [2,3] may not provide any useful information. We will demonstrate this
by means of small examples and by citing computational experience with the medical
diagnosis problem.

A brief word about the notation employed. For vectors = and y in the n-
dimensional real space K", ry will denote the scalar product, ||z|[; will denote the
p-norm, (3 i, ]a:;{)':7 for positive p with [|z]|le := mazi<i<n |zi|. For an m x n real
matrix signified by A € Rmxn, A4; denotes the i'# row, while At will denote the trans-
pose. A vector of ones of any dimension will be denoted by e. For an optimization
problem minzecx f(z), the set of its solutions will be denoted by argmingecx f(z).
Cardinality of a set denotes the number of elements in it.

2. Linearly separable pattern sets. Our primary concern is how to discrim-
inate between two disjoint point sets .4 and B in R®. We shall represent the sets A
and B by the matrices A € R™*" and B € R¥*" and we begin with the following
evident lemma.

LEmma 2.1. The convezr hulls of the sets A and B are disjoint if and only if there
ezists no u € R™ and v € R* such that

(2.1) vA—vB =0, —ue+ve=0, O#<Z)ZO

The dual of a linear program that attempts to solve the system (2.1) generates a
plane that separates the sets A and B when their convex hulls do not intersect. For
example, the system (2.1) having a solution is equivalent to the linear program

(2.2)  maz {——(r+s)e [ uA—-vB+r—s5=0~ue=—-1l,ve=1,(u,v,7,s)> O}

u,v,rs

having a zero maximum.

The dual of (2.2) leads to the following linear separability criterion for the pattern
sets A and B proposed in [6].

THEOREM 2.1. [6] The convex hulls of the sets A and B are disjoint if and only

if the linear program

(2.3) mi%{—-a—%ﬁ'.Ac~ea20,——Bc+eﬂ20,eZcZ-—e}

has a negative minimum in which case the plane zc = g%ﬁ_ separates the seis A and
B, where (¢, a, ) is any solution of (2.3). Thus

(a+8)
(2.4) {Ac28a>e 2

Be<eff< e(-‘%ﬂ
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By considering the dual of another linear program that attempts to solve (2.1),
we are led to the linear separability criterion of Smith [9]. Again, it is easy to see that
(2.1) having a solution is equivalent to the linear program

(2.5) mam{ue+ve I uA—vB=0,~uetve=0,e>u>0,e>v 20}

having a positive maximum. By considering the equivalence of (2.1) having no solution
and the dual of (2.5) having a zero minimnum, we obtain the following.

THEOREM 2.2. [9] The convez hulls of the sets A and B are disjoint if and only
if the linear program

(2.6) min {ey+ez | Ac—ey+y>e,~Bet+ey+z>e(yz2) > 0}
&Y,z
has a zero minimum in which case the plane zc = v separates the sets A and B, where
(¢c,7,y,2) is any solution of (2.6).
Finally consider the following less obvious linear program that attempts to solve
(2.1):

uA-vB—i—n(eA——eB):O,—ue+ve+n(~m+k):0,}

(2.7) Tﬁf{"(m + k) —ue —ve = —1,(u,v) > 0

Since (n = 0, u, v) is feasible for (2.7) for some u > 0,v > 0 such that eu = ev = 3,
when the convex hulls of A and B intersect, it follows that the maximum of (2.7) is
nonnegative for this case. Conversely, if the maximum of (2.7) is nonnegative, then
(sr-A) = (E3EB) is a point in the intersection of the convex hulls of A and
B. Employing this equivalence of the nonnegativity of the maximum of (2.7) and the
nonemptiness of the intersection of the convex hulls of 4 and B, we obtain Grinold’s
(2,3] separability criterion when we consider (2.8) below, the dual of (2.7).

THEOREM 2.3. [2,3] The convez hulls of the sets A and B are disjoint if and only

if the linear program

Ac—ey—~ep>0,—Bc+ey—ep >0,

(2:8) mzn{—up (eA—eBle+{(—-m+k)y=m+k

RN

has a negattve minimum, in which case the plane rc = v separaies the sets A and B,
where (¢, 7, p) is any solution of (2.8)

Our purpose in describing three different linear programs, (2.3), (2.6) and (2.8),
each of which generates a separating plane for sets with disjoint convex hulls, is to
point out the fact that contrary to previous claims, none of these linear programs
can be guaranteed to generate by itself a useful plane for the case when the convex
hulls of the sets A and B intersect. We note first that for the linearly inseparable
case, the linear program (2.3) is solved by ¢ = 0, = 0,8 = 0. This provides no
useful information for a plane that can possibly be utilized to separate subsets of A
and B from each other as required for example in the multisurface method [7]. In [9],
Smith claimed for the linear program (2.6), “the capability to compute weights for the
nonseparable as well as separable pattern sets”. This unfortunately may not always
be true as can be seen from the simple example
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(2.9) A:[;J,B:—. —(;)l

for which Smith’s LP (2.6)issolved by e =0,y =1,y1 = y2 =2and z; = 229 = 23 = (.
The solution ¢ = 0 is unique for this problem, and hence no useful plane is generated
that minimizes some error criterion. .

Similarly, Grinold stated [2, Theorem (7ii)] that if for a solution (c, v, p) of the
linear program (2.8), p < 0, then (c,v) “defines a hyperplane that minimizes the
maximum error”. Again this is not true in general as can be seen from the example

DD

(2.10) A= [H,B:

for which Grinold’s LP (2.8) is solved by ¢ = 0,y = 5,p = —5. Again the solution
component ¢ = 0 is unique, and hence it cannot provide a hyperplane that minimizes
a maximum error.

It is therefore important to have a scheme capable of generating a plane which,
in the least, provides partial separation for the linearly inseparable case. This enables
us to produce an algorithm for the construction of a discriminant function for this
case. It seems essential then to introduce some condition which ensures that ¢ # 0,
as was done in [7]. This leads to a problem with a single nonconvex constraint which
we shall discuss in the next section. Nonconvexity appears to be the inevitable price
paid for a method that is guaranteed to handle the linearly inseparable case.

3. Linearly inseparable pattern sets. When the convex hulls of the sets .4
and B intersect none of the linear programs of Section 2 are guaranteed to generate a
plane that partially separates 4 from B. To ensure the generation of such a plane, we
impose a nonzeroness condition on the vector ¢, the normal to the separating plane.
In [7] this was done in conjunction with the linear program (2.3) by imposing the
condition [[c|[|3 > ¢ for some § € (0,n]. This condition ensured the generation of 2
planes for the linearly inseparable case, z¢ = « and z¢ = 3, with minimum distance
apart, and such that the intersection of the convex hulls of 4 and B is contained
in the closed set between the 2 parallel planes. By repeating this procedure for the
subsets of 4 and B which are contained between and on the 2 planes, a piecewise-
linear discriminant function is obtained for separating the sets A and B [7]. Because a
decision problem associated with the linear program (2.3) augmented by a nonconvex
constraint ||¢]|3 > n is NP-complete (Theorem 3.1 below), we shall introduce another
means of imposing nonzeroness on ¢, namely by means of the nonconvex constraint
llclloo = 1. We will show that such a problem can be solved in polynomial time by
solving 2n linear programs (Theorem 3.2 below). Because in many applications, n is
relatively small compared to m and k, this is a viable formulation for generating a
piecewise-linear discriminant function (Algorithm 3.3 below).

We begin by showing the NP-completeness of a decision problem associated with
the linear program (2.3) augmented by the 2-norm condition ||c||2 > n as follows

(3.1) min{—-a—!—ﬁ | Ac—ea>0,—Bc+ef >0,e>c> —e,llc]lf > n}

c,o,f
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THEOREM 3.1. The following decision problem associated with the nonconvez
program (3.1) with rational entries for A and B is NP-complete:

(3.2) Is mir;{—a-%ﬂ | Ac —ea >0,—~Bc+ef >0,e>c> —elc}> n} <07

Proof. We first note that the constraints [[c[lec < 1 and ||c[|3 > n of (3.2) are
equivalent to ¢ being one of the vertices of the cube {c | ||c[lo = 1}. Therefore
problem (3.2) is in NP, because a correct guess of a vertex of the cube that gives the
minimum value of —a + § will answer the question of (3.2) in polynomial time by
evaluating o — 3, where

a= min Aic, [ = maz Bjc
1<i<m 1<i<k

and c is an optimum vertex. We now show that (3.2) is NP-hard by reducing to it the
partition problem [1] :

(3.3) Is dz =0 for some z € R® such that e >z > —e,||z||2 > n?

where (di,da, ..., dn), the components of d, are given positive integers. The partition
problem (3.3) is the following instance of (3.2) :

Isg’%gg{—a+ﬁ[ <f’d>m2 (Z) ) (_dd> z < ("g) e >z > —e, ||zl > n,} <07

If the minimum is less than or equal to zero, then since @ < 0 and 8 > 0 it follows
that o = 0, # = 0 and thus dz = 0. Hence (3.2) is NP-hard. Since it is also in NP, it
is NP-complete. @

We show now that if the nonzeroness condition ||c|[|c = 1 is imposed on the linear
program (2.3) instead of ||c||2 > n, then the resulting nonconvex program

(3.4) mi%{—a—{-ﬂl Ac—ea > 0,-Bc+ef 2 0,||clle = 1}
¢,

can be solved in polynomial time.
THEOREM 3.2. The nonconver program (3.4) with rational eniries for A and B
can be solved in polynomial time by solving the 2n linear programs fori=1,2,...,n :

(3.5) min{—a—{—ﬁ [ Ac—ea>0,~Be+e >0,e>c> —e, ¢ = :};1}

¢,a,p

and taking the solution with the least —a +  among the 2n solutions of (3.5) with
i=1,2,...,n.

Proof. Let
(cf,at, i) €
3.6
(3.6) argmirﬁz{—a+ﬂlAc—ecsz,—Bc+‘eﬂ20,eZ c> e e = 1}

Note that for a fixed ¢, (¢!, o, %) can be obtained by solving the two LP’s of (3.5)
and taking the solution with the lower value of —a + 3. Let (¢, &, 3) be a solution of
(3.4). Since [|¢}]loc = 1 it follows that
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(3.7 —&+f < min —ai + 4

1<i<n

Since |¢;| = 1 for some | and —1 < & < 1, it follows that

(3.8)

—ad+p < —a+p

Combining (3.7) and (3.8) gives

(3.9)

—a+f< min —ai+ i<+ p < -a+p
1<i<n

Hence (¢!, af, B') solves (3.4). Since 2n LP’s are needed to compute (¢!, &, 8'), and
each LP is solvable in polynomial time [5,4], it follows that (3.4) is solvable in poly-
nomial time by solving the 2n linear programs of (3.5). m

We outline now an algorithm based on Theorem (3.2) for discriminating between

two disjoint point sets A and B represented by the matrices A € Rmxn and B € Rkxn,

ALGORITHM 3.3. (0) Set j =0, A9 = 4, A0 = A, B0 = B, BY = B, and input an

integer jmaz. Solve the linear program (2.3). If the minimum of (2.3) is negative,
stop, the plane zc = %ﬁ separates A and 5.

()

()

(iii)

Solve the 2n LP’s of (3.5) with A = Al and B = Bi. Let (c*!, a*?, f%i) denote
the solution of each LP corresponding to ¢; = £1 and define

i(j) = arg 172.2'?" (cardinality{r | Arcti < pEi}
+cardina1ity{s | Bse*i > a-’h"}>

and let (¢'9), o), #()) be a solution of one of the pair of LP’s (3.5) correspond-
ing to i(j).
COMMENT. This step picks that LP of (3.5) for which the closed set between
the parallel planes zci(7) = oi(y) and zc!(5) = Bi(7) contains the least number of
points from both .47 and B7, while the remaining open half spaces outside this
closed set contain the remaining separated portions of A/ and B7.
Let

AP+l = (A, € A | Al < Bit))

Bi+l = {B, € Bi|B,¢(i) > aii)}
If Ai+1 £ Ai or Bi+l 2 Bi go 1o (iv).
Degeneracy Procedure : Find a row A, of A7 (Case a) or row B, of Bi (case
b) such that when the LP (2.3) is solved with A = A, and B = B (case a) or
A=Al and B = B, (case b), the minimum of the LP is negative. In either case

denote the solution of the LP by (¢, &, f). _
Case a : Define ¢t} = & ail) = —00, i) = 3

Ai+l ::{A,’ !A,’ € Af, Aie < ﬂ_}, Bi+l .= Bj
Case b : Define ¢ili) = ¢, ai(i) = &, #() = 0o

Aitl .= Ai, Bi+l:={B; | B; € Bi, B;c > &}
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COMMENT. This degeneracy procedure eliminates at least one point from .47
or B/ and thus ensures that either Ai+1 # Aj or Bi+1 # Bi. It is based on {7,
Lemma 2.11].
(iv) Save the planes
zci) = oi(f) and zcili) = ,Bi(j)

(v) If Ai+l = Bi+1 = @, replace jmaz by j and stop.

If j = jmaz stop, else increment j by 1 and go 1o (i). @

When A and B are not linearly separable, Algorithm 3.3 constructs a sequence
of parallel planes :

xci(j):ﬁi(j)’ q;ci(j):ai(j), j=0,...,jmaz

such that if jmaz is sufficiently large, the sets A and B are separated by the following
procedure :

PROCEDURE 3.4. Set j =0, input jmaz and a given pailern z € R".

(i) If j = jmaz go to (iv).
(i1) If zcU) > BiG) then z € A, stop.
If zci@) < o) then z € B, stop.
(iit) Increment j by I and go to (7).
(v) If zci@) > gﬁ)—;ﬂ]—)- then z € A, stop

If z¢ili) < "—'E%'-E-(—Jl then = € B, stop

In most real problems that have been run using Algorithm 3.3, the degeneracy
procedure was not required. In fact if we make the following assumption, then the
Degeneracy Procedure (zii) in Algorithm 3.3 is not needed.

AssuMPTION 3.5. If the disjoint sets A and B are linearly inseparable, then for
at least one of the 2n linear programs of (8.5), 1 = 1,2,...,n whose solution is denoted
by (', o?, B),

{Ai | Aict > BiYU{B | Bici < ai} # 0

It is possible however to concoct examples that violate this assumption. Gary Schultz
provided one such example. The set .4 consists of the 4 vertices of the unit square
in R? and the set B consists of 8 points on the edges of the square, symmetrically
situated, each at distance 0.1 from a vertex.

4. An application to medical diagnosis. We describe now how the ideas of
the previous section were applied to generate a discriminant function, for the diag-
nosis of breast cancer {11}, which is currently in use at the University of Wisconsin
Hospitals. The discriminant function constructed is based on Algorithm 3.3 applied
to 369 points in the nine-dimensional real space R°. Each point represents nine mea-
surements made on a fine needle aspirate (fna) taken from a patient’s breast. These
nine measurements are : clump thickness, size uniformity, shape uniformity, marginal
adhesion, cell size, bare nuclei, bland chromatin, normal nucleoli and mitosis. Each
of the nine measurements is designated by an integer between 1 and 10, with larger
numbers indicating a greater likelihood of malignancy. Of the 369 points, 201 came
from patients with no breast malignancy, while 168 came from patients with confirmed
malignancy. By using Algorithm 3.3 we were able to construct four pairs of parallel
planes which completely separated the benign samples from the malignant ones. The
first pair of planes classified all but 88 of the samples, the second pair left 45 unclas-
sified points, the third pair left 16 unclassified points and the fourth pair classified
all the remaining points. The resulting discriminant function has been placed on a
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personal computer diskette and can instantly classify any sample point given to it in
RS. All 45 new sample points encountered after the construction of the discriminant
function were classified correctly, with 44 of the points being classified by the first pair
of parallel planes and the 45th point by the second pair of parallel planes.

In contrast to our approach, statistically based schemes [12] failed to obtain com-
plete separation of the 369 sample points. Similarly, the linear programming formu-
lation of Smith (2.6) can be employed in Step (¢) of Algorithm 3.3 as a replacement
for the 2n linear programs (3.5). In this case (cf(4), ai(i), Bi(4)) can be defined as

) =2, aild) := min A4;¢, B0U) = maz B;¢
AicAT B;eBs

where (Z,%, 7, %) is a solution of (2.6). When this was done, the method failed to obtain
a discriminant function because it required a degeneracy procedure like that of Step
(i77) of Algorithm 3.3 which was not performed. In fact the first pair of parallel planes
obtained by Smith’s linear program left 105 unclassified points, while the second pair
failed to separate any of these 105 points. When Grinold’s linear program (2.8) was
similarly employed in Step (7) of Algorithm 3.3, no degeneracy procedure was required,
however seven pair of parallel planes were needed, instead of our four, to completely
separate the 369 sample points. Specifically these seven pairs of planes left unclassified
82, 53, 32, 20, 19, 13 and 0 points respectively.

5. Conclusions. We have presented a fundamental model for pattern recog-
nition that can handle linearly inseparable pattern sets. A nonconvex optimization
problem (3.4) represents this model and can be solved in polynomial time by solving
the 2n linear programs (3.5). These linear programs are used to generate a sequence
of parallel planes which result in a piecewise-linear nonconvex discriminant function.
This procedure has been successfully used to generate a practical computer program
for breast cancer diagnosis. This program is now in use at the University of Wisconsin
Hospitals, and is superior to programs based on other linear programming or statisti-
cal formulations. It is hoped that further important applications of our approach will
be found.
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