E:
A Persistent Systems .
Implementation Language ™

by
Joel Edward Richardson

Computer Sciences Technical Report #8368
August 1989

E:
A PERSISTENT SYSTEMS
IMPLEMENTATION LANGUAGE

by

JOEL EDWARD RICHARDSON

A Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON

1989

ABSTRACT

This thesis presents the design and implementation of the E.programming language. E is an extension of C++
designed for building systems that manage persistent objects, e.g. a database management system. Several aspects
of this programming domain cause difficulty in conventional languages. For example, one must usually write the
system code without knowing the types of entities to be manipulated. In addition, the entities themselves are
persistent, outlasting the program that creates them. E addresses these and other problems through a judicious
choice of language constructs that significantly ease the programmer’s task. Being based on C++, E provides
classes and inheritance. It then adds generator classes for defining generic container types, iterators for processing
streams of values, and a persistent storage class for declaring a database as a collection of language objects.

Through a series of refinements to an example program, we illustrate each of these language features.

One important benefit of having persistence in a language is that I/O is transparent to the programmer; a
central problem in the implementation of such a language, therefore, is in designing techniques to manage /O
automatically and efficiently. This thesis presents a new technique called Compiled Item Faulting (CIF) that
addresses the 1/0 problem. CIF combines static analysis and a minimum of run-time support to produce E programs

that can access physical storage efficiently.

Finally, we present the results of an initial performance study. These results demonstrate that CIF can be very
effective in producing high quality code. The study also points out certain areas where CIF’s effectiveness is more

limited. In the conclusions, we suggest several avenues for further performance improvements.

iii

ACKNOWLEDGEMENTS

It has been my great honor and good fortune to have had Mike Carey as an advisor these past five years. I
believe that he is a model of what a Ph.D. advisor should be: imaginative, compassionate, exacting. He has my
deepest appreciation and respect.

David DeWitt has also been central in helping me to complete this degree. He opened many doors that mere

mortals could not, and he always had time to listen.

Thanks also go to the other members of my committee: Raghu Ramakrishnan, John Beetem, and especially,
Marvin Solomon. Several discussions with Prof. Solomon contributed greatly to improving the design of E. T am

grateful for his insightful comments, both as a member of the committee, and as one of the first E users.

Special thanks go to Larry Rowe for his early critiques (and encouragement) and for suggesting a unified
design for the syntax of iterate loops.

Thanks also to the whole EXODUS group (past and present): Beau Shekita, Goetz Graefe, Dan Schuh, Todd
Proebsting, Mike Zwilling, Scott Vandenberg, Srinivas, David Haight, Dave Martin, Dan Lieuwen, and Paul Bober.
They have provided a fun, stimulating environment in which to discuss and develop ideas. I would like especially
to thank Dan Schuh. He implemented iterators and generators in the E compiler, fixed innumerable bugs, and

generally kept things running that otherwise wouldn’t.

Sheryl Pomraning has, for many years, not only helped to make the CS Department run, she has made it a
brighter place to work. Thanks, Sheryl.

Many friends have also helped to make Madison home over the years. Thank you Toby and Jane, Sandy and
Gene, Lee and Bob, Tom and Denise, and of course, Mike and Carol.

I would like to thank my parents for years of guidance, encouragement and love. They never forced me to

choose one path or another, but they always insisted that I give my best effort.
My appreciation and love go also to Betty and Lyman Farrar. Thank you both for the lesson of "moments.”

Finally, I would like to thank my wife, Helen. While she was given the life of a "dissertator’s widow," she
gave in return her loving support, ready encouragement, deep understanding, and a beautiful daughter. Without
Helen, this work would not have been completed; without Emily, this work might have been completed sooner, but
life would have been far less delightful. Thanks also to P., L., I, E, M,, and L. for being ever-ready with
suggestions and offers to help.

TABLE OF CONTENTS

ABSTRACT .eooeeeeeeveeeetersscsssesessssesesassesessnsensessansstsssssssssstossstessssssntss st sassessans saesset ssss matsnsesesssasstarstssasentasssessasesses
ACKNOWLEDGEMENTSorceemetiamsretssesersssssessssesssessssssscssesssos st e sessssososss st seass sestons sot e sesssssssssasssastassesesasessos
TABLE OF CONTENTS ...oovivetetseereseeisasssssesssssssssssssssssssssesossssassssssesssss sissssssarss sessess shosmssstsssasssssssssnssessssssnses
Chapter 1: INTRODUCTION ...c.ccoviiinemmreiraenrarssssisnissssssstssssetnssssssissasssnss s sssse s ssss s tsssississ st sosssnssesssenss
1.1 EXTENSIBLE DATABASE SYSTEMSovrvcnrrrsissiinrinsiissssssiessstsnsssostssssassssssssssesssnnsessesss

1.2 EXODUSovivriecrenne FeeerereseereeuseressesenEetsars ar b RS SR e R SRRSO R A SROER A SE SRR SR RS SA ST AR S SRR AR ST SR TS SH KRR SRS S8

13 THE ELANGUAGE ..c.oootiririreeerereeererrensssssnsesssssssssesestsnsssssess sessasssstssarsns sesssisess st shsssnssssassssanns sossssns

1.4 OUTLINE OF THESIS oot cooorecitcerteeresssessrsesassssssassssssestssssss sossssensssassansasasnasassssnsssssnsansssssssssenesses
Chapter 2: A SURVEY OF RELATED WORK ..ot issenss s consisisssesssnens
2.1 DATABASE PROGRAMMING LANGUAGESccoecmmrniminrienssinmensnissssis st ssmsssssesssses
2.1.1 PASCANR .oovrvevirecereeresismssessenssessssssesssssassssssssesessns sesssasassssassatess oot ssastsnonsesssssstsansssassssassanasanas

212 RIZEL 1urvcverunrermeeretsessemnmsanssasessss et se e s naseaes srse e sa e b s s R E S0 RS RETEE Se e b

2.13 PLAIN trivereeeireeressesescessesesssressossss sossenssesensensesssentasesesssnss sestonssssoses seabeseseassess srossessenssnsssssssnsosnases

2.14 TRESEUS +vevveeversrsseseeseresnsossessasesesssssssorsessosersassstessesssstsssatsensasssssassssasssonssssnesassiessasssstosmessasesssns

2.1.5 OLHEE DBPLS .vieeeeerieseeeseessesessaeesssssessesssnsssesensessestsasases ssseotssessrssatasasnsss sasasssssasscossasassessnes

2.2 CONCEPTUAL MODELLING LANGUAGES ..o sanesases
221 TTAXIS +.vnveeveeseseneeesesssssenesessnsnnesssessesessnsssessersssssassastststest st stosssesssseresss st suasansa sestonpsanencrsessssesenseres

2.2.2 DIAL oooooooeeoeeeeeteeessossesesseeesestessessesessssessasasssssesossssssensssenssesersssitese s ssatansastasssensassesessessarsresne

223 GALIEO woroeeereeeeeeeeeseresesnssesessessosssssneoresessonssrsnsrsatersassrssstasss assesssssss semsessssatessresssarssassstsussssesaes

2.3 PERSISTENT LANGUAGESceeervesrrererssesriesssssesssisisssmssssss sasssissssstss seesssssssmsmamssssss s sssssantossosss
231 PS-ALZOL ...oreevcvraisceusassmssessnssassasssssssssessssesssseses e asiss s R RS SR S S e b e

232 INADIEIBS ..vvvvvreersessrsseesscrsstsnssesessese s sssan st s s sbsse s s mm s RS RS R R SRR RS R s

233 AVBION/CHH curvreeceerneririeevereossssssssssressesenessesessstssssnsartsisn et sasssnsasssssscasssissosststseriassssessesssssenssnes

234 OHF oevveereeresssesessessasessessssosssseessasasasessssestessaesstesssssasatssssssas e tensesiarese et Iesag s AT O SOt SR s s R R0

24 OBJECT-ORIENTED DATABASE SYSTEMSoonimecnrnnnisnensessssssissssssssssmnsessessstsnssessnes
24.1 GIMNSIONE .ovevveeeeseceeasaseeseaseresssssseessissssasssssssssssssssuessserssssstsossrsesess ey smsrasssatssssasssasesbaratessiase

242 WBASE «veveeererreeesssesssressesessssssstsssesonentssensansseesssnsrass sostasassssrsasesssos saesesassnssentotsssssiestsessssssnssaren

243 OTIOM wvvveveeeeeeeeesssesessssssessasessssenersessasessasesaes st sessess sestresbassstemiesssnstasasstonsssssssostossssstsenssnsssnsenes

244 O oot R R R RS R e SEER S SRS RS R S R e

25 RELATIONSHIP TOE ..ooiviecenrerreereereorestssssssasenssssmsessssssessistessssssssssssasssossmssssssnssassasassestassssncosns
Chapter 3: THE DESIGN OF E ...t s ssssssisssss s sssssasc s sne s snssss s s
31 CHr REVIEW .ooviiiceiinsiecissesseserssssstsnsstescsssasssssisssnssmsass sasmassssasssasss st sbssssossamnnss osbsssassases searssssasesss
3.1.1 CIASSES +onvvevrseeererssssssseassessssseenssessessssosssessssnnasssstasesssssstssssstarsssssssssss sestssrsassssscassntsisssestuesesesases

3.1.2 AN EXAMPIE ..oocvetreniirenaseesssenscsimisnsessasssnssesasssssssssessssst st ssasssssnsss s asmasessssemssasostsssssinsnss s ores

iv

i
iii
iv

PSRV S oand

=,

—
— O O O WO 000NN

[e o o B e
N bbb R W W ON

17

17
17
18

3.1.3 INRETHLANICE oovoeeeeevievesieseetsssonsaseseesessesasans ssessrsassesosssossossassseesernnsnsstsrersssssssassinsbenssssesseastesnones

3.2 ITERATORS

..

3.2.1 TEETALOTS I E ooeeeeieevverreresessessssssassessesssssasesssesssessasssesssssstossasssssnsssssssssssssatsssssssnssssessassssssasesnans
3.2.2 FIOW OF CONOL 1veieveerreeesesesnresssessessssssssssesssssasaessssssesassssssstetossssrsesisssssssorssssssnsssssssossassasssrsssn
F2.2 T AQVANCE oeeeeeeevereeeareseeessssssssssssessntssesessatessesess srasssssssssss sesasssssassasasssasmnssssassessiossssnssensosansasasens

3.2.2.2 Break

..

...

323 A Recursive Iterator Example
3.3 GENERATOR CLASSES
33.1 Parameters to a Generator Class

..

..

..

3.3.1. 1 ClASS PALAIMICIETS vvevveeverersserssesssnesesssssssressesssosssasesssssessssssssssotssssssssssssarassasssassssssrnissessuessasansssss
3.3.1.2 Constraints on Class Parametersccuvenvriseessnne

3.3.1.3Function Parameters
3.3.1.4 Constant Parameters
33.2 Class Name Scoping
333 Nested Instantiations

34 DB TYPES AND PERSISTENCE
34.1 DaALADASE TYPES .vvvrercrcvissseissmisnissiossssessstosssasssssssassssssssissmosmoststansassssmsanasssssssssasassssssassassss

34.2 Persistent Objects
343 Collections

351 Orthogonality
352 Persistent Handles

Chapter 4: COMPILER ORGANIZATION

41 ARCHITECTURE OF THE COMPILER

..

...

.........................

...

...........................

...

...

..

..

...

......................................

......................................

..

...

..

3.4.3.1Creating Objects in a Collection
3.4.3.2 Scanning Collections
3.4.3.3 Destroying Objects and Collections

344 The Binary Tree Example Revisited
345 Implementing a Database Index

3.5 TWO LANGUAGE DESIGN ISSUES

..

..

...

...

...

...

..

...

42 PROCESSING DECLARATIONS

422 Type Declarations
423 Data Declarations

43.1 Two Machine Models
4.3.1.1 A Persistent Virtual Memory
4.3.1.2 A Load/Store Machine

432 The Storage Manager Interface

433 Overview of Code Generation

44 OTHER IMPLEMENTATION ISSUES

44.1 Constructors and Destructors

44.2 Virtual Functions

Chapter 5: CODE GENERATION

...

421 Representation of Objects and Pointers

...

.................................

..

...

...

...

...

..

4.3 GENERATING CODEooiciieecsininesmsmssosssssessinssrssanssssssssssess sesssessnomsmsnsossststsassssassssss shsesesisassssasesss

...

..

...

...

...

...

...

..

..

...

...

...

...

........................

.........................

22
23
23
25
25

27
29
29
29
30
31
32
33
33

35
35
36
37
37
38
38
42
43
43

46

46
48
48
50

b A &

B88xan

5.1

5.2

Chapter 6: COMPILED ITEM FAULTING

6.1

6.2

6.3

Chapter 7: AN INITIAL PERFORMANCE STUDY

7.1
7.2

13

Chapter 8: CONCLUSIONS

8.1
8.2

PHASE I: INITIAL PIN SCHEDULING

5.1.1 Identifying Common Subexpressions

5.1.2 4711 11RO
513 Initial Pin Schedulingcc..cccvvuencunenne
5.1.3.1 Detecting Items to Pinooverierenieinenne
5.1.3.2 Deciding Where to Pin Items

...

...

...

...

...

...

PHASE 1V: TRANSFORMING THE SYNTAX TREEcocccmmmremmmiarenmnnnnnieresismenosssscsnsnsnens
521 The Functions genSprigs() and mungeTree() .eceuvrsrmmnsscrssmsismmsimissnsitenssssnnnassnisssenseses

522 Generating Code Sprigscouveerevens
5.2.2.1 The Pinning SPrig ..c.cccovvvniviniinnncens
5.2.2.2 The Unpinning Sprigcceevvereesnnens
5.2.2.3 The Reading Sprigccoceemvevenvvevnrenns
5.2.2.4 The Writing SPrig ...ccccecvvevervirmnerininns

523 Grafting the Sprgscervverirerensecrenns

OVERVIEW ...coorvrimmirnininiieiersrasasensernsnnes
6.1.1 Considerationscecevecivensresesnns
6.1.2 Compiled Item Faultingccconvvrene.

IMPLEMENTATIONcccoovnnvrmrurmsnresnrannaanns
6.2.1 Phase I Revisitedccccevvenvrvernevencnnne
6.2.2 Phase II: Ensuring Path Safety

6.2.2.1 The Role of Alias Analysisccccouuu..

6.2.2.2 The Current Implementation
6.2.2.3 Handling Array Elementsccccee..

................

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

6.2.3 Phase III: Propagation and COaleSCINgcveverserrsesersececssiisisimsimessssss s isnecsses

6.2.3.1 CoalesCiNg ccorvvreeiverrerurerersesncveressanesens
6.2.3.2 Propagationeeensmersensesiinsens

6.24 Phase IV Revisitedcoveveecrnniseesacens

ORGANIZATIONcocvcirecmciecirecennensnennnns
THE EXPERIMENTScccoonvvunenncnmrurnisnsnnse
72.1 Test I: Graph Traversalcooersnes
72.2 Test II: Tree Traversalccooveenee
723 Test III: Relation Scanccoiveeneee

THESIS SUMMARYcovnvmnnnrrmrnninsesnases

RETROSPECTIVE AND FUTURE WORK

...

...

...

6.2.4.1 Entering a Pinning Regionce......
6.2.4.2 Grafting Pin and Unpin Operations ...
COPING WITH FINITE BUFFER SPACE ..

...

...

...

...

..

...

...

..

..

...

...

..

...

vi

2L

69
70
72
74
76
77
78
79
79
80
80

87

87
87
89
91
91
92
93
93
97
97
98
100
105
106
106
107

110

110
111
111
115
116
119

120

120
121

8.2.1 Language
8.2.1.1Db Types

DESIZN v.vucrvrrreriarenreessressssssasssssestssesssssssecssssossssesebessesnsssasastsessssasssnsssseasississssessanes
VErsus NON-AD TYPES cuevecererrereessisrsensemmisssmissssessssmesssssmsussssssssasssssmnsusssssssasssses

8.2.1.2 Strings and Other Variable Size TYPES .v.uuriiniininimnnsssomessescemsissenssnsieesssmees
8.2.1.3 Generalors and INKEMIANCEcoiiecrmiviniceiniinirieesniss e s sesesssessinesssessasassnsssssesssns
8.2.2 Compiler ImMpIEMENtAtiONciveessiiriiisisiissiisimsesetsssssnsanssssssssesssesssmststasssssssmsssasmanes
8.2.2.1 Alias Analysis and Other OpmIZAtONScoimrsmieiismisesesearsssssisssrssnssssssssssssossssnisismescanses
8.2.2.2 Other Performance Enhancementsc...eervenceenes reerrarsarssesastsanesassrnasessanseane

8.2.23 A Hybrid

APPIOACH et sesstes st ass shssesssrssssasssss s sstssessas e sen s srsne e e ass

B.2. 2.4 GENETALOTS ...v.evvverereresensrsesessesessnerssssssssearssssnsorsmsessssssnsssnsstststssssasensaenssasasssssassnseensssiat sescsasssasas
823 Programming Environment SUPPOTLceccccorensemimsisscimesssssnsssstssssisssssesisssssassssssasisssnsaasanas
8.2.3.1 ClASSES S OBJECLS ..vivveereereerrerereersssssssnssesecssseescsessesiasessssisesssrssssssonanasassasssssssessssasassestsaransesns
8.2.3.2 SChema EVOIULONcccveverrerneeninessicstisssscatsissssssassnissssssssssasatsnssssssssranst saosasssnssssssestosssesssses
8.2.3.3DChUgEZING SUPPOTL «covevvrverterinriensersmntsmiesienerssssesssisssessssnsentonsesssssat sossesssssssosstsssssassnsassussesse

83 CONCLUSION

Chapter 9: REFERENCES

..

...

vii

121
121
122
122
123
123
123
124
124
125
125
126
126
127

128

CHAPTER 1

INTRODUCTION

In the 1970’s, the relational data model was a major focus of research in the database community. Today,
relational database technology is well understood, a large number of relational systems are available in the market
place, and they support the majority of traditional business applications relatively well. One of the foremost
database problems of the 1980’s and beyond is how to support classes of applications that are not well served by
relational systems. For example, computer-aided design systems, scientific and statistical packages, image and
voice data, and large, data-intensive Al applications all place demands on database systems that exceed the
capabilities of relational technology. Such application classes differ from business-oriented systems in a variety of
ways, including their data modeling needs, the types of operations of interest, and the storage structures and access

methods required for their operations to be efficient.

This thesis presents the design and implementation of the E programming language. E was developed in the
context of work on extensible database systems, an area of research that addresses the problems stated above. The
original design goal of E was to provide a language targeted specifically for implementing database management
systems (DBMSs) [Rich87]. That is, we wanted to provide programming constructs that would give the database
implementor (DBI) high leverage in solving the particular problems of building a DBMS. The resulting language

design [Rich89a is suitable for building not only DBMSs, but persistent systems! in general.

One of the main features of the E language is the provision of typed, persistent objects, and one of the main
implementation challenges has been the generation of code for expressions that manipulate these objects. There
have been several versions of the E compiler and several different implementations of persistence. Version 1.0 of
the compiler [Rich89b] was a demonstration of feasibility as well as a leamning vehicle. Two alternate lines of
development have evolved from that version. This thesis describes the implementation of version 2.2 which not
only improves greatly over version 1.0 on the quality of generated code, but also provides a framework that allows
further improvements to be made easily. This framework, called compiled item-faulting, along with the language
design itself, are the two main contributions of this thesis. Before discussing the specific problems that E addresses,

let us first develop the context out of which it grew.

1By “persistent system”, we mean a software system that maintains and manipulates objects whose lifetimes may extend beyond any given
program run.

1.1. EXTENSIBLE DATABASE SYSTEMS

In the mid-1980’s, several research groups in the database community began to explore ideas for building
"extensible database systems” [Bato88, Care89, Daya85, Rowe87, Schw86]. Although different groups have
different notions of what "extensible” means, a common theme (broadly stated) is the desire to support more
flexibility than is provided by traditional DBMSs for customizing the database system to the user’s application. For
example, one usually cannot add new attribute types to a commercial database system; in an extensible DBMS, it
should be easy to augment the collection of "base” types in the system with new, user-defined types. Another
direction for extensibility is the support of new data models and the new operations and index structures that they
require. At the same time, we wish to avoid the severe performance penalty associated with providing such

flexibility as a layer on top of a (nonextensible) relational system [Care85].

A range of different approaches has appeared in the literatre. For example, POSTGRES [Rowe87], the
successor to INGRES [Ston76], is an attempt to provide for the needs of next generation applications through
extensions to the relational model; the POSTGRES data model includes procedures as a data type, abstract data
types for attributes, triggers, and rule processing. The STARBURST system [Schw86] also retains the relational
model, but provides a system architecture that may be extended by adding "attachments" [Lind87] in places with
well-defined interfaces. The PROBE project [Daya85, Daya87], while departing from the relational model, is
similar to POSTGRES in attempting to provide for all users’ needs within a single system. PROBE offers an
object-oriented data model and includes support for temporal and spatial data and for recursive query processing.
Finally, GENESIS [Bato88] is an attempt to formalize database structures and processing in a variant of the
functional data model [Ship81]. GENESIS provides extensibility in that modules defined under its data model may
be easily plugged together.

1.2. EXODUS

The EXODUS Project at the University of Wisconsin has been exploring a toolkit approach to building and
extending database systems. The driving philosophy for our research has been a belief that no one system is likely
to meet the needs of all potential applications [Care86b]. Unlike the projects described above, EXODUS is not
itself a database system but a set of powerful software tools to be used in building such systems. The bulk of the
work to date has been to examine the factors that make DBMSs particularly difficult systems to build and to provide
tools targeted to address those factors. The first operational DBMS built with the EXODUS tools was a small
relational system that we demonstrated at SIGMOD ’88 in Chicago. The latest effort to validate the EXODUS
approach has become a research project in its own right. EXTRA, an advanced, object-oriented data model, and
EXCESS, its associated query language, have recently been defined [Care88]. Current work includes defining a
formal algebra for EXCESS queries and mapping EXTRA data structures into E constructs.

The first component of EXODUS to be designed and built was the EXODUS Storage Manager [Care86a].
The Storage Manager provides four main abstractions: objects, files, transactions, and buffer groups. We shall
describe the first two very briefly here; more details will be given in Chapter 5. An object is an uninterpreted string
of bytes of arbitrary size. A client of the Storage Manager manipulates data stored in an object by reading and
writing subranges of bytes. A client may also grow or shrink an object. A Storage Manager file is a collection of
objects. Unlike conventional operating system files, these files do not themselves store byte-addressible data;
rather, they are provided as a mechanism both for object grouping and for efficient storage allocation. By providing
a simple and uniform (yet powerful) abstraction, the Storage Manager is able to support a wide range of physical

storage needs.

While some new systems built with EXODUS may be hard-wired for a particular application, others will be
general purpose DBMSs, the latter being based on advanced data models having formal algebras. (EXTRA is one
example.) Another EXODUS component, the Optimizer Generator [Grae87a, Grae87b], allows the DBI to produce
a query optimizer tailored for a new algebra from a high-level description. This component generated the optimizer
used in the SIGMOD ’88 demonstration, and it will soon be used to generate an optimizer for the EXCESS query

language.

13. THE E LANGUAGE

The third major component of EXODUS is the E language and its compiler. As we said earlier, the original
motivation for E was to provide programming constructs tailored for implementing a DBMS. The traditional
difficulty in building such a system derives from several factors. First, the DBI must write code whose primary task
is to manipulate data on secondary storage. A significant portion of the total system code is therefore devoted to
interacting with the storage layer, e.g. calling the buffer manager to read a record, and with transaction
management, e.g. calling the lock manager to set a lock. Another difficulty for the DBI is that the code to
implement operators (e.g. hash join) and access methods (e.g. B+trees) must be written independently of any data
types on which they might operate. The DBI cannot know, for example, that a user will eventually want to build an
index over a set of polygons, keyed on area. The need for generic access methods is particularly critical in an
extensible system, since one of the stated goals is to be able to add new types easily. Finally, a DBMS must convert
queries posed by end users into a form that the system can execute. This translation is greatly simplified if the basic

operators can be written in a uniformly composable manner.

These and other considerations have led to the current language design. E is an extension of C++ [Stro86]
providing generator classes, iterators, and persistent objects. C++ provided a good starting point with its class
structuring features and its expanding popularity as a systems programming language. Generator (or generic)
classes were added for their utility both in defining database container types, such as sets and indices, as well as in

expressing generic operators, such as select and join, Iterators were added as a useful programming construct in
general, and as a mechanism for structuring database queries in particular. Both generators and iterators in E were
inspired by those in CLU [Lisk77]). Persistence — the ability of a language object to survive from one program run
to the next — was added because it is an essential attribute of database objects. The provision of persistent objects
has several major benefits for the programmer [AtkM83). First, mapping the application to the language becomes
conceptually easier since there is no longer a semantic gap between the objects in the language and the objects in the
database. Second, this mapping is also easier to implement, since we can manipulate the database objects naturally,

via expressions in the language.

E thus represents a synthesis of ideas and advances from both the programming language and database
communities. While E is certainly not the first language to provide some form of persistence, it is distinguished
from its predecessors in being a systems-level implementation language rather than a modelling or prototyping
language. Also, as we have mentioned, the implementation of E provides a new mechanism for managing 1/O at

run-time.

1.4. OUTLINE OF THESIS

Over the past decade, there has been considerable interest in the synthesis of database systems and
programming languages. From the very early work on Pascal/R [Schm77] to the most recent of the persistent
language designs, the area has remained very active. Chapter 2 reviews of some of the more important language

designs to emerge from this research.

Chapter 3 presents the E language design in detail. Beginning with a review of C++, this chapter then
describes the main language additions: iterators, generators, and persistence. Iterative refinement of a binary tree

example serves to motivate as well as to illustrate each new feature.

We devote the next three chapters to describing the compiler implementation. Chapter 4 discusses the overall
organization of the compiler and the handling of various kinds of declarations (e.g. of persistent objects). In
Chapters 5 and 6, we describe code generation. Since a language that features persistent objects also hides /O from
the programmer, the system is responsible for making 1/O efficient. Chapter 5 presents the basic concepts and
organization of the code generator, while Chapter 6 introduces compiled item faulting (CIF), our mechanism for
improving the performance of E programs.

In Chapter 7, we present the results of a small performance study. We ran these experiments as a preliminary
evaluation of the quality of code generated by the E compiler. The results show that CIF is a viable approach to
managing I/O in a persistent system, and they suggest ways that conventional compiler-optimization techniques can

be applied to further improve performance.

Chapter 8 presents our conclusions. We evaluate E’s successes and failures, both as a language design and as

an implementation, and we give our recommendations for future work.

CHAPTER 2

A SURVEY OF RELATED WORK

In this chapter, we review some of the more significant work to emerge from efforts to integrate programming
languages and database systems. We discuss representatives from several different categories: database languages,
in which constructs from a particular data model (usually relational) have been merged with a programming
language language (e.g. Pascal); conceptual modelling languages, in which very high level data descriptions
subsume much of the semantic integrity checking usually performed by procedures; persistent languages, in which
the complete type system of a base language is made available for defining and manipulating persistent objects;
and object-oriented database systems (OODBs), in which modern, object-oriented type systems have replaced the
relational model. The order of languages in the survey also corresponds roughly to the chronological order in which
they appeared. While the survey is by no means exhaustive, it should give the reader a feeling for the range of
designs that have appeared over the last decade. (An excellent comparison of database programming languages
may be found in [AkM87].) ‘

2.1. DATABASE PROGRAMMING LANGUAGES

The majority of work in this area occurred in the late 1970’s and early 1980’s in response to the problems
encountered in database application programm'mg.2 Prior to that time, application programs were traditionally
written in an embedded language, i.e. one in which the data definition and query language of a DBMS is available
inside a traditional programming language (e.g. embedded SQL [Date82, pp.145+]). There are several problems
with the embedded language approach which may be summed up with the term "impedance mismatch” {Cope84].
For example, the programmer is burdened with notational awkwardness, since special symbols are required to flag
the DBMS statements to a preprocessor. A more severe problem is that the type system available to the application
programmer is effectively the lowest common denominator between the DBMS and the host language: integers,
reals, and characters. And finally, the correspondence of types in an application program to the schema in the
database is not well defined. Thus, one is forced to maintain this integrity manually.

*The term "application program” is quite generic and refers 10 any program written as an extra layer between the DBMS and the user. Ap-
plication programs can be simple (e.g. a menu of "canned queries™) or can be quite complicated (e.g. a forms-based interface).

2.1.1. Pascal/R

As we shall see, the typical database programming language (DBPL) combines the concepts of an existing
data model with those of an existing programming language. For virtually all DBPLs, the chosen data model is the
relational model, and Pascal is the most common starting language. This approach was pioneered by Pascal/R
[Schm77), the first of the "integrated DBPLs" [AtkM87].

Pascal/R extends the type system of Pascal with two type constructors: relation and database, where a
relation is of some record (tuple) type, and a database is a collection of named relations. In addition, a relation type
declaration also specifies the primary key by naming the appropriate field(s) in the constituent record-type. Basic
operators on relations include union, difference, and replacement, all based on primary keys; e.g. Rl :- R2; deletes

each tuple in R1 whose primary key appears in R2.

Pascal/R provides both low- and high-level access to relations. The foreach loop, with an optional selection
predicate, allows tuple-at-a-time processing. The general relation constructor, an expression whose value is a

relation, provides the full power of the relational calculus, e.g. one Pascal/R statement can express any QUEL
query.?

From today’s standpoint, Pascal/R suffers several drawbacks. The first — actually an artifact of Pascal — is
the limited ability to define abstract types. A more serious problem is that databases are mutually exclusive, and a

program may access only one database at a time. Finally, iterators are restricted 1o operating on relations only,

although the concept is useful in many other contexts. The next language addresses these and other issues.

2.1.2. Rigel

The Rigel language [Rowe79] was developed shortly after Pascal/R, and it benefited from newer
developments in programming languages. Like Pascal/R, Rigel provides relation as a type constructor, where a
relation consists of records with named fields, a subset of which forms a primary key. And likewise, Rigel also
provides an expression syntax that includes the relational calculus, such that a single expression can implement a

complex query.

Rigel improves on PascalR in several key areas, however. First, it incorporates the module concept as
developed in [Wirt77]. In addition to providing a form of abstraction, modules provide a database structuring

mechanism: each module may declare its own relation(s), and each program must import the modules (i.e. the part

3One additional feature listed in [AtkM8T] is the ability to access a relation as an associative array, indexed on primary key. However,
[Schm77] made no mention of this, The Plain language {Wass79] does have this capability.

of the database) that it needs.* Rigel provides another kind of abstraction with the view type constructor. In
combination with the visibility rules of modules, this mechanism allows the definition of secure, alternative
interfaces to the database. Finally, iterators® were generalized to a CLU-like [Lisk77] form in which the
programmer may define arbitrary iterator procedures.

One restriction that Rigel shares with virtually all other database programming languages is in the type of
entity that may be stored in a relation:
In [no] case may any field of a relation tuple type be a pointer, union type, relation type, file fype, view type, nor a
structure of a dynamic size. [Rowe81, p.8]
Such restrictions are motivated, in part, by the implementation difficulties in trying to provide them, but more
fundamentally by the semantics of the relational model. As E does not involve the relational model, it is not
semantically bound by these restrictions; moreover, part of the interesting research has been in solving the

associated implementation problems.

2.1.3. Plain

The language Plain [Wass79] is another Pascal extension based on the relational model. It was designed "to
support the construction of interactive information systems”, and it includes not only database oriented features, but
also those tailored for user /O, including extensive string handling and pattern manipulation. Like both Pascal/R
and Rigel, Plain includes the type constructor relation. The language allows tuple-at-a-time processing through a
form of iterator loop. Unlike Pascal/R or Rigel, however, Plain’s extended syntax includes algebraic operators
rather than calculus expressions. Thus, a Plain query is decomposed into a series of selects, projects, and joins.® The
stated motivations for including an algebra instead of a calculus include consistency with the procedural nature of
Pascal and ease of compilation. Finally, Plain is similar to Rigel in allowing the programmer to define abstract data
types and in the structuring of the database such that each program imports the relations it needs.

Plain has several interesting features that distinguish it from other languages in its class. One is the provision
for associative access to a relation. For example, assuming that DEPT is a relation of department tuples and that the
department name is the primary key, then the statement

print(DEPT{ "toy"] floor);
prints the floor number of the toy department. Another feature, a marking, provides a convenient and efficient

mechanism for taking snapshots of relations and for holding temporary results of queries.

“As later examples will show, E takes a similar approach.
*Rigel uses the term "generator”.
*Only join is actually an operator in the language. Plain's where clause and atribute lists implement, respectively, select and project.

2.1.4. Theseus

One more effort secking to integrate database concepts with an existing programming language (Euclid
[Lamp77}) is Theseus [Shop79]. Like all the above languages, Theseus provides a relation type constructor with
associated primitive operations. Although these operations are not strictly those of the relational algebra, the paper

demonstrates that Theseus is relationally complete.

One feature which does distinguish this language is that the elements stored in relations are a-sets rather than
simple records. An a-set is a set of (name, value) pairs, and behaves very much like a property list in LISP.
However, since names are declared and are not first-class objects, name expressions can be statically type-checked.
A-sets are intended to subsume records, parameter lists, and messages with a single mechanism and to "move the
relational database in the direction of ... "knowledge bases.'™ [Shop79, p.495). Whether these goals were actually

achieved is unclear; the language design was incomplete and the paper discussed a number of possible extensions.

2.1,5. Other DBPLs

The above set of DBPLs is by no means exhaustive. Ada has been used as a starting point for database
extensions in at least two ways: AdaRel [Horo83] was proposed as a relational extension, with a flavor similar to
the Pascal-based extensions. Adaplex [Smit83] is a synthesis of Ada with the DAPLEX functional data model
[Ship81]. An approach quite different from any of the DBPLs mentioned so far was taken in Aldat [Merr85], which
extended the relational algebra with limited procedural constructs.

2.2. CONCEPTUAL MODELLING LANGUAGES

The DBPLs of the previous section have one important feature in common: each is a synthesis of an existing
programming language with relational database concepts. The languages described in this section are all original
designs (as opposed to extensions of existing languages), and they provide, at once, more flexible data models and

more structured programming environments.

2.2.1. Taxis

One of the more distinctive languages to emerge from database programming efforts is TAXIS [Mylog0,
Nix087], for it was the first DBPL to provide inheritance as a modelling tool [AtkM87]. The use of inheritance is,
in fact, quite pervasive in TAXIS; not only are the users’ data arranged in a class hierarchy, but all other
components of the database system (e.g. transactions) are part of the same hierarchy. The objects in a user’s
database are instances of user-defined classes; every instance of a class has all of the properties named in the class
definition. Classes are themselves instances of metaclasses, allowing one to define class properties (e.g. current

number of instances).

10

The TAXIS kemnel comprises a set of predefined metaclasses arranged in a hierarchy. To create a database
application, one defines new classes and class instances. To define the schema, one creates instances (e.g. DEPT) of
the predefined metaclass VARIABLE-CLASS”: the definition of DEPT specifies the properties (attributes) that all
department instances will have. To write an application program, one defines an instance (e.g. HIRE-EMP) of the
metaclass TRANSACTION-CLASS. This means that each program is actually a class definition; the "attributes”
of a transaction instance include the actions to be performed, a parameter list, local variables, and the return value.

An instance of this class is an executing program, called an execution instance. Finally, an attribute of a variable

class object may be a transaction class, effectively providing support for virtual fields.®

TAXIS provides class hierarchies via the IS-A construct, a specialization hierarchy with multiple, structural
inheritance. Thus one may define the classes STUDENT and EMPLOYEE and then define STU-EMP such that
every STU-EMP object has all the properties of both students and employees. One important point to note about
classes and the IS-A hierarchy is the semantics of extents, i.e. the sets of existing objects of a given type. In TAXIS,
each class has one implicitly associated extent, and the IS-A relationship implies extensional containment as well as
structural inheritance. That is, each STU-EMP instance is included in both the STUDENT and the EMPLOYEE
extents.

2.2.2. DIAL

The language DIAL [Hamm80] is, like TAXIS, an attempt to facilitate the construction of database
applications through the use of very high level constructs within a tightly structured environment. One major
emphasis in DIAL is data description. In particular, many of the integrity constraints associated with an application
are expressed declaratively; the use of procedures is definitely secondary. The second emphasis is on user
interaction. DIAL provides a very high level, forms-oriented interface for use by all applications. Forms look very
similar to normal entities — they are objects with atiributes — and the programmer may "code” rather complex
interactions with a user by declaring properties for the form, including, for example, user prompts and integrity
constraints on input values. Again, the goal is to subsume with declarations a large part of the procedural

programming involved in developing an application.

The data model provided by DIAL comprises entities and entity classes, where all entities in a given class
share the same structure (attributes). New classes may be derived from existing ones via specialization. As in

TAXIS, the notion of a class encompasses both type information and physical extent. Furthermore, membership in

70f the several predefined metaclasses in TAXIS, VARIABLE-CLASS is closest to the usual concept of a relation. A presentation of the
full range of features in TAXIS is beyond the scope of this survey.

8A virtual field (or attribute) is one whose value is computed at the time of access.

11

a derived class may be defined to be automatic, based on satisfying a user-defined predicate; e.g. a PERSON entity
automatically becomes an ADULT (a derived class of PERSON) when the age becomes 18. The DIAL run-time
system is responsible for ensuring that this PERSON now also appears in the set of ADULTSs. Another interesting
result of this design is that an entity may acquire (or lose) attributes as it dynamically satisfies (or fails) the
predicates defining various derived classes; in the above example, a PERSON becoming an ADULT might acquire
the new attribute job fitle. Another implication is that type checking often cannot be done at compile time, since

class membership can change dynamically.

DIAL provides highly tailored constructs for manipulating classes and entities. For example, entities may be
created and updated only within specially declared procedures whose actions are limited to a small set of predefined
operations. The designers argue that most database application programming follows "common and frequently
recurring patterns,” and that the language should therefore address these needs with "problem-specific rather than
general structures” [Hamm80, p.76]. The authors claim that in one application, the DIAL program was no more

than 25% of the size of an equivalent program written in a conventional language.

2.2.3. Galileo

Classifying Galileo [Alba85] is slightly problematic. It is one of the more recent and certainly one of the most
ambitious of the very high level DBPLs; however, due to its treatment of environments (to be discussed), Galileo
can also be considered a persistent language. Intended as an interactive, conceptual modelling language, Galileo
combines a number of advanced features. Like DIAL, Galileo is based on a semantic data model, and one goal is to
provide a very powerful data description facility such that many semantic constraints of the application may be
expressed declaratively. Galileo also provides abstract data types, subtypes with multiple (structural) inheritance,
strong typing, and type inferencing.

As in Theseus, entities are viewed as sets of (name, value) pairs, although the semantics of names and values
differ. Data in a Galileo database are grouped into classes®, where a class is a "modifiable sequence” of entities, all
of the same type. One interesting note is that, unlike TAXIS and DIAL, Galileo, in theory at least, separates the

concept of type from that of class (physical extent); however, the syntax for defining classes forces one also to
define a new type for each class.

One novel aspect of Galileo is its treatment of environments, which are mappings between names and
definitions. Environments are used as a modularization mechanism, and the language provides numerous

environment operators affording very fine control over the visibility of names. Using this mechanism, one can

%The term "class” has become one of the most overloaded words in the PL area (second only 10 "object™). A Galileo class is a set of in-
stances; a C++ class ig a type.

12

construct a database, provide alternate views, and grow the database incrementally. Environments can be nested,
and the user gains access by "entering" the desired environment. Finally, there is a unique global environment in
which all declared values automatically persist. Since there is no restriction on what an environment may contain,
any value — e.g. simple values, relations, and other environments — may persist. As of this writing, the
implementation of environments is still at the prototype stage and is based on a workspace load/save model
[Orsi891.

2.3. PERSISTENT LANGUAGES

The languages in this section, inspired partially by the DBPLS, specifically explore and develop the concept of
persistence. Of particular interest is the principle that persistence of a data object should be independent of the
object’s type and of how the object is used [AtkM83]. Such a feature is called orthogonal persistence.

2.3.1. PS-Algol

The first language to explore fully orthogonal persistence was PS-Algol [AtkM83]. Having observed that
30% of the code in a typical program simply moves data between disk and memory,'? the authors extended an
existing language, S-Algol [Morr82], with certain predefined procedures and a new run-time system allowing
arbitrary structures to be preserved indefinitely. To preserve an object, one opens a database (named with a string
value). The structure returned is called a "persistent name environment." The user then calls a procedure which
inserts into this environment a pair comprising a pointer to the object and a user-defined name. The run-time
garbage collector is then responsible for ensuring that the object and everything reachable from it are written to
disk. Later, a program can open the database and request the object by name. A pointer is returned, which may
then be dereferenced normally. A run-time address translation mechanism moves objects into memory as they are

referenced.!!

All objects in PS-Algol carry self-identifying type information. While this ensures that objects created by one
program are properly type checked in another, there is a price: the added type information requires space, and type
checking must be dynamic. Another cost factor concerns buffer space. Since the run-time system reads entire
objects, applications requiring very large or very many objects may suffer poor performance. Thus, PS-Algol may
be suitable only for small systems. However, the language is clearly distinguished for placing persistence in a
general and uniform framework.

1°This statistic includes I/O calls and code 1o pack and unpack data structures.
'We will describe this mechanism in more detail later in this chapter.

13

2.3.2, Napier88

The designers of PS-Algol have recently introduced a new language, Napier88 [AtkMSS, Dear89], which
builds upon their experience with the earlier language. Unlike its predecessor, Napier88 was designed from scratch
and makes several significant advances in the concepts of persistence. In PS-Algol, the mechanism providing
persistence is the "persistent name space,” which is not strictly part of the language, but rather, is a user-defined data

structure. In Napier88, the idea of a name space is central to the structure of the language itself.

A name space in Napier88 is like an environment in Galileo; it defines the names, types, and objects
available during the compilation of a statement or declaration. While lacking the extensive set of operators that
Galileo provides for environments, Napier88 does allow for dynamically adding and deleting names in an name
space. There is one important difference from environments, however. Name spaces are first class objects in
Napier88; the actual referencing environment for a particular section of code may be the result of a function call.
Since the name space for a piece of code can also be statically bound, Napier88 has the very nice quality that static

type checking and binding occurs when possible, while dynamic type checking and binding occurs when necessary.

The design of name spaces provides great flexibility in designing software systems. Essentially, the language
allows a system designer to decide the tradeoff between flexibility and performance. A system primarily using
dynamic binding is easy to evolve, while paying a higher overhead at run-time, than one in which static binding is
predominant. Clearly, the design of extensible database systems could benefit from such a mechanism, although
there are several problems to be addressed. One problem is that even a statically bound name space can itself
change dynamically, perhaps losing names and objects. While such errors are detected, it is not clear if they can be
handled in any structured manner. (This is an example of the schema evolution problem, later to be discussed at
greater length.) Another issue is the implementation of persistence. Since Napier88 sits atop the same abstract
machine layer as does PS-Algol, its performance may be insufficient for the needs of a high-performance database
system. Static type checking, however, should give Napier88 a significant performance boost over PS-Algol.

2.3.3. Avalon/C++

Like E, the next two languages are both extensions to C++ that include long-lived data. Avalon/C++'?
[Herl87, Detl88], a language designed to support reliable distributed computing. This language utilizes the
inheritance mechanism of C++ to allow programmers to design data types having customized synchronization and
recovery properties. Persistence is then modeled as a set of objects encapsulated by a server; a server may recover

the state of its objects after a crash. E differs from this approach in that persistent objects exist independently of any

2Avalon/C++ is not really a persistent language, but it does not belong in any of the other sections of this survey, either.

14

active process. E's goal is to provide transparent persistence for structuring databases and transparent /O for

manipulating them.

234. O++

In an interesting recent development, researchers at Bell Labs have proposed the language O++ [Agra89a,
Agra89b] that secks to blend both high-level and systems-level programming features. Like E, O++ is also an
extension of C++ including persistence. However, O++ maintains type extents (one for each class), and it provides
support for integrity constraints and triggers. Like most DBPLS, O++ also provides a form of iterator for expressing
calculus-like queries over type extents; two variations of this looping construct allow for querying either the extent
of a single type or the extents of a type and all of its subtypes. Finally, O++ provides a fix-point operator for
expressing recursive queries. As of this writing, O++ is still a paper design, although work on a compiler is under
way [Geha89].

2.4. OBJECT-ORIENTED DATABASE SYSTEMS
Object-oriented database systems (OODBS) are closely related to persistent languages in that they provide
rich type systems, typed persistent objects, and general computation. The difference seems to be mostly in name

and, perhaps, orientation of the inventors.”> OODBSs have appeared recently, both in the literature and in the

marketplace.

2.4.1. GemStone

GemStone [Cope84, Bretl89] is an OODBS based on the language Smallialk [Gold83]. Like PS-Algol,
GemStone bases its persistence on reachability, but in GemStone, there may be multiple roots of persistence. A
persistent name space consists of a dictionary of <name,value> associations, where the name is a string, and the
value is either an atomic value, e.g. the integer "10", or a reference to another object. Among its contributions,
GemStone was the first OODBS to be implemented and the first to tackle the problem of indexing in the context of
objects.

2.4.2. Vbase

Vbase [Andr87, Vbas87] is'* a commercial product calling itself an “integrated object system.” It seeks to

“There have been lively discussions at workshops in recent years over the question of what, if any, is the difference between a persistent
programming language and an QODBS.

“The original Vbase is no longer being distributed. Ontologic recently reorganized and is now developing VBase+; it is to be based on
C++ and reportedly will be very different from Vbase.

15

blend an QODBS with the C programming language. The system presents to the programmer two languages and
their respective compilers: the type definition language, TDL, in which the one specifies classes and operations,
and the C superset, COP, in which one writes methods to implement the operations. Application programs are. also
written in COP. In order to bind persistent names within a program, both the TDL and COP compilers require a
database file name as a command line argument. A Vbase database implements a global persistent name space in
which type names and instance names are resolved. It also supports a module construct, however, so that names
within a module do not conflict with names at the global level. In the beta release (version 0.8), databases are self-
contained and disjoint; a given database contains all of the types, methods, and instances needed for its

applications, and there is no sharing between databases.

2.4.3. Orion

The Orion system [Bane87, Kim89] is another OODBS developed in recent years. Its basic data model
provides classes with multiple inheritance, object identity, and message passing. Orion maintains implicit extents
for each class: unlike GemStone and PS-Algol, only class (extent) names are persistent handles into the database.
Orion provides two alternatives that name either the extent associated with a single class or the extents associated

with a class and all its subclasses. Orion has been a rather broad-based research effort. One of its original

contributions was addressing the problem of schema evolution.’* Other contributions have included research into

transaction management, locking protocols, and composite object support all in the context of an OODBS.

244. 0,

The O, system [Banc88, Lecl89] is another recently-developed OODB. It is similar to Vbase in that it
attempts to integrate an object-oriented database system, O, with a superset of the C language, CO,. (Actually,
both Vbase and O, intend to support a set of languages. While only the C extension was ever implemented in
Vbase, O, has so far been integrated with C (CO) and with Basic (BasicQ,).) Like Vbase, type definitions are
written in one language, while methods are written in the C extension. In O, persistence is based on reachability,
as it is in PS-Algol. However, like GemStone, every named object is a root of persistence; in addition, O, also
provides class extents, but unlike Orion, an extent for a class exists only if the class’s definition explicitly specifies

one.

YWe note that GemStone also supports schema evolution [Penn87].

16

2.5. RELATIONSHIP TOE

The common denominator between E and the languages surveyed in this chapter is the provision for typed,
persistent objects. Such a language concept benefits the programmer by making applications involving persistent
objects easier to think about and easier to implement. The differences of these languages from each other and from
E derive from their intended use. The DBPLs and conceptual languages, targeted at developing end-user
applications, integrate such database concepts as entity sets, views, and transactions with such programming
concepts as strong typing and procedural abstraction. The conceptual languages provide even higher-level data
models than the DBPLs and emphasize declarative specification of integrity constraints over procedural
implementations. The persistent languages extend the type system of a base programming language to the realm of
long-lived objects. The OODBSs, closely related to persistent languages, provide database systems having object-
oriented data models and general computational power.

One feature distinguishing E from these other languages is that E is intended as a systems implementation
language. While one can certainly write end-user applications in E, the choice of language constructs makes it more
suited for implementing higher-level data models. For example, the efficient implementations of different data
models are likely to require different storage structures, and the operators in the various models are likely to require
quite general processing. E thus gives the programmer explicit control in defining the layout of persistent objects
and in defining the procedures to manipulate them. E belongs firmly in the category of persistent languages, but
differs from other members of that family in its model of persistence and in its implementation thereof. E'’s
persistence, in combination with its other features, provides a blend of language constructs well suited to the task of

building persistent systems.

17

CHAPTER 3

THE DESIGN OF E

This chapter, describes the E language design in detail. Through a series of refinements on a binary tree index
example, we present each of the major language features. We use a binary tree, instead of a "real™ database
structure such as a Be+tree, since it still illustrates the essential features of E while keeping the examples short
enough for presentation; at the end of the chapter, we will outlines how a B+tree can be implemented. Since E is an
extension of C++ [Stro86), we begin the chapter with a brief C++ review. The initial example is presented as a
complete program. Next we describe iterators and discuss their use as a query structuring mechanism. We then
show how iterators may be used to add scanning capabilities to the index example. The following section describes
generic types in E, extending the index example into one that abstracts the type of keys stored in the index and the
type of entities referenced. Then we discuss the features that make E a persistent language: database types,
persistent variables, and collections. One last refinement of the index example shows how a binary tree can be
made a persistent object in a database. The chapter closes with a discussion of several important issues germane to

programming in E.
3.1. C++ REVIEW

3.1.1. Classes

E is an extension of C++, which is itself an extension of C [Kern78). The essential concept in C++ is the
class. A class defines a type, and its definition includes both the physical representation of any instance of the class
as well as the operations that may be performed on an instance. Unlike the abstraction mechanisms provided in
CLU [Lisk77] or Smalltalk {Gold83], a C++ class does not necessarily hide the physical representation of instances.
It is up to the designer of a class to declare explicitly which members (data and function) are private and which are

public.

In C++ parlance, objects comprising the representation of a class are called data members, and class
operations are called member functions (ak.a. methods). Member functions are always applied to a specific
instance; within the function, any unqualified reference to a data member of the class is bound to that instance.
The binding is realized through an implicit parameter, this, which is a pointer to the object on which the method

was invoked. An unqualified reference to a member x of the class is equivalent to this->x.

18

3.1.2. An Example

The example in Figures 3.1 and 3.2 is a complete C++ definition for a very simple binary tree index. The
basic operation of the tree is to map a key value to the address of an entity having that key. In this simple example,
each tree node stores a floating point key and a pointer to the indexed entity along with pointers to its left and right
subtrees. The implementation uses a pair of classes: one which defines the nodes in the tree and one which defines
the tree itself. The node class is recursive, both in its representation (i.e., nodes point to nodes) and in its operations
(i.e., search and insert are recursive methods). The tree class is a simple "wrapper” class encapsulating the nodes.
Further refinements to this example will concentrate largely on the node class. In order to keep the example simple
while still showing the major features, the tree is unbalanced, and we limit the operations on the tree to inserting and

searching,

Figure 3.1 gives the definition of the class binaryTreeNode. The physical representation of each node in
the tree follows the class heading. As noted, each node contains a floating point key value (nodeKey), a pointer'®
to the indexed entity (entPtr), and pointers to the left and right subtrees (LeftChild and rightChild). By

default, the members of a class (both data and function) are private, i.e. they are not visible to users of the class.

The keyword public introduces a set of member declarations that form the public interface to the class. The
interface to binaryTreeNode comprises the methods search and insert, as well as one named
binaryTreeNode. These member functions are elaborated following the class declaration. Let us first consider

the function binaryTreeNode. In general, a member function whose name is the same as its class is called a

constructor for that class.!” Constructors initialize class instances; the binaryTreeNode constructor initializes
all the fields of a newly created node. C++ guarantees that if a class has a constructor, then that constructor will be
invoked automatically whenever an instance of the class is created (e.g. by coming into scope). If the constructor
takes arguments, they must be supplied with the object’s declaration as in the example

binaryTreeNode aNode(0.0, NULL);

which declares aNode asa binaryTreeNode instance with a key of zero and a null pointer.

Now let us consider search. This function is always invoked on a particular binaryTreeNode
instance, e.g. myNode.search(1.414) or myNodePtr->search(3.14 y,and this, a pointer to

the instance, is always passed to the function implicitly. References within search to binaryT reeNode data

17 C++ (and in newer versions of C),a void* may legally point to any type of object.

VA class may have many constructors, and in general, C++ supports operator and function overloading. Although it is also supported in E,
we not will discuss overloading here.

19

class binaryTreeNode

{

float nodeKey;
void *entPtr;
binaryTreeNode *leftChild;
binaryTreeNode *rightChild;

public:

binaryTreeNode(float, void *)i

void * search(float);

void insert(binaryTreeNode*);
bi

binaryTreeNode: :binaryTreeNode
(float insertKey, void * insertPtr)
{

nodeKey = insertKey;

entPtr = insertPtr;

leftChild = rightChild = NULL;
}

void * binaryTreeNode::search(float searchKey)
{

if{ this == NULL)
return NULL;
else if{ searchKey == nodeKey)

return entPtr;
else if (searchKey < nodeKey)
return leftChild->search(searchKey)i
else
return rightChild->search(searchKey)
}

void binaryTreeNode::insert (binaryTreeNode* newNode)
{
if (newNode->nodeKey == this->nodeKey)
return; /* no duplicates allowed */
else if (newNode->nodeKey < this->nodeKey)
if{ leftChild == NULL)
leftChild = newNode;
else
leftChild->insert (newNode);
else
if(rightChild == NULL)
rightChild = newNode;
else
rightChild->insert (newNode);

Class Definition for Binary Tree Nodes

Figure 3.1

20

members are implicitly bound to that node. For example, in the third line of the function body, the reference to
nodeKey is equivalent to this->nodeKey. The search function, then, compares the node’s key with the
argument, searchKey, and either returns the node’s entity pointer or recursively searches the appropriate subtree.
Note that is it possible for this to be null inside a member function, and in fact, the search routine checks for this
condition in order to terminate the recursion. In the sixth line, for example, if the node has no left child, then the
recursive call will pass a null this pointer. Thus, if the search routine receives a null pointer, it immediately

returns a null pointer, meaning the key was not found. a null pointer.

The insert member function takes a pointer to a new node which is to be inserted into the tree. It is
assumed that this node has been initialized with its key and pointer values. The routine compares the key in the new
node with the one in the current (this) node. If the new entry has a key value less then the current key, then the
new node either becomes the left child (if there is none), or it is inserted recursively into the left child. If the new
key is greater than the current key, then processing proceeds to the right. For this implementation, attempts to insert

duplicate keys are simply ignored; the next section will remedy this shortcoming.

Figure 3.2 gives the definition of the binaryTree class. As we said above, this class is really a thin
wrapper around the node class, and it is mainly used to start the recursion, e.g. in a search. The physical
representation of a binaryTree is a pointer to the root node. Initially, this pointer is NULL (see the
binaryTree constructor). To search the tree, we simply search the root node recursively. The insert member
function contains an example of creating a node dynamically. The new operator returns a pointer to a node which
has been allocated on the heap; since we are creating an instance of a class having a constructor, we have provided
arguments. If the tree is empty, the new node immediately becomes the root. Otherwise, we pass the new node to

the root, and the insert proceeds recursively.

Finally, Figure 3.3 shows a main program that uses a binaryTree. The program allows the user to keep a
student database in which students are indexed by gpa. As mentioned earlier, our binary tree does not allow
duplicates. Such a limitation is clearly unacceptable in a secondary index such as this, but we will soon address this
problem. In any case, new students may be added, and existing students may be processed (in some unspecified
way). To add a new student, we call the function getNewStudent which presumably interacts with the user in
order to create a new student instance. The function returns a pointer to the instance along with the student’s gpa.
We then add the student to the binary tree index, gpaIndex, by invoking the insert method and supplying it with
the gpa and the pointer to the student. Similarly, to "process” a student, we obtain a selected gpa from the user and
then search for that gpa in the tree. If an entry is found with a matching key value, the search routine returns the

corresponding student pointer; we then pass the pointer to the student processing routine.

class binaryTree
{

binaryTreeNode *root;
public:

binaryTree();

void * search(float);

void insert(float, void *);
};

binaryTree: :binaryTree ()

{
root = NULL;
}

void * binaryTree::search(float searchKey)
{
return root->search(searchKey);

}

void binaryTree::insert
{ float insertKey, void * insertPtr)
{

binaryTreeNode * newNode;

newNode = new binaryTreeNode(insertKey, insertPtr):;
if(root == NULL)

root = newNode;
else

root->insert (newNode);

Class Definition for Binary Trees

Figure 3.2

21

22

class student
{

/* ... */
}:

binaryTree gpalndex; // declare an instance
main ()

{

student * CH

float gpa;
int cmd;
while ((cmd = getCommand()) !'= QUIT)

switch(cmd)

{
case NEWSTUDENT:

getNewStudent (&gpa, &s);
gpalndex.insert{ gpa, 8)i
break;

case PROCESS:
getGpa(&gpa):
s = (student*) gpalndex.search(gpa);
if(s == NULL)
printf (*No students with this gpa.");
else
processStudent (s);
break;

Using a Binary Tree

3.1.3. Inheritance

Another reason that we chose C++ as a starting point for E is that it supports subtyping, or, in C++

terminology, class derivation. Givenaclass A, we may define a class B thatisa subtype of A as follows:

class A { ... };
class B : public A { ... };

A is called the base class, and B, the derived class. B inherits both the representation of A as well as A’s
member functions. The public keyword in this context specifies that public members of A are also public members
of B; without this keyword, public members of A would become private members of B. B may declare

additional data members and member functions, and it may override the member functions inherited from A.

Normally, the invocation of a class method on an object is statically bound. That is, if a member function £
is invoked on a variable of class A, then the call is statically bound to A’s version of £. Function invocation can

also be dynamically bound, however. If a member function g of aclass A is declared virtual, then invocation of

23

g on an object depends on the actual (run-time) type of that object, which may be a subtype of A. If that subtype
has redefined g, then the subtype’s version of g will be called; thus, each object responds to the invocation
according to its type. Virtual functions provide the C++ programmer with late-binding of method calls, a central

concept in object-oriented programming.

Although there are a great many details that we will not discuss here (see [Strou86]), we note that E supports
all of the derivation constructs of C++ (including virtual functions), and it extends those constructs 10 the realm of
dbelasses (to be discussed in Section 3.4). We further note that the E compiler is based on a version of the AT&T
C++ compiler supporting only single inheritance. Version 2 of C++ now supports multiple inheritance [Stro87], and

we plan to adopt that version soon.

3.2. ITERATORS

Iterators were inspired by CLU [Lisk77]. An iterator is a control abstraction comprising two cooperating
agents, an iterator function (i-function) and an iterate loop (i-loop), that work together to process a sequence of
values. The i-loop is a client of the i-function. It requests a value from the i-function, processes the value, and then
requests the next value. From the client’s point of view, the i-function is simply a "stream” from which to receive a
sequence of values. The i-function produces the values in the stream one at a time by yielding a value to the client
loop. Unlike a return from a normal function, when an i-function yields a value, it saves its local state so that it may
resume execution when the next value is needed. Thus, an i-function can be viewed as a limited form of coroutine,

one which may be invoked only within the context of an i-loop.

We chose to include iterators in E for several reasons. First, the ability to separate the production of a
sequence of values from the processing of those values is a convenience generally, since a very common
programming task involves processing such sequences. We have found iterators to be extremely useful in many
diverse programming contexts. Second, E was originally conceived as a DBMS implementation language.
Database systems are dataflow-intensive systems in which a large portion of the processing involves scanning and
filtering streams of data; an iterator can implement such processing in a direct, natural way. E is not unique in
recognizing the utility of iterators for database query processing [Schm77, Rowe79, OBri86], although E iterators
are somewhat more general. Finally, iterators are easy to implement and are relatively inexpensive to use [AkR78];

each invocation costs little more than a normal procedure call.

3.2.1. Iteratorsin E

Let us now consider the details of iterators in E. Syntactically, an iterator function looks like a normal
function, except that the keyword iterator precedes the return type, and the function body may contain yield

statements. An i-function may take parameters of any type and may yield values of any type, that is, they may take

24

or yield any type that would be legal for a normal function. The code comprising the i-function body is arbitrary;

an i-function may invoke other iterators, including itself (i.e. iterators may be recursive).

Consider the example in Figure 3.4, The purpose of the i-function bigElements is to yield the elements
of an (unsorted) integer array that are greater than the average of all the elements. When bigElements is
invoked, it first makes one pass through the array in order to compute the average. Then it makes a second pass,
yielding each element that is larger than the average. At each yield point, bigElements suspends its execution
while the client processes the element; when the client requests the next element, the i-function will resume after
the yield point, i.e. it will continue onto the next iteration of the for loop. When the for loop terminates, and control
“falls out" the bottom, the i-function also terminates. (An iterator may also terminate by executing a normal

return.) Although this example shows only one yield statement, in general, an i-function may have many.

iterator int bigElements(int * array, int size)
{

float sum = 0.0;

float ave 0.0;

/* first compute the average */
for(int i = 0; i < size; i++)
sum += array[i }1:

ave = sum / size;

/* now vield the big elements */
for(i = 0; i < size; i++)
if(array[1] > ave)
yield array(1 1;
main ()
int A[10 1;
/* Initialize A */
/* Now find big elements. */
iterate (int nextEl = bigElements{ A, 10))
printf£("%d ", nextEl);

A Simple Iterator Example

Figure 3.4

25

An iterate loop comprises the keyword iterate, followed by one or more i-function invocations in parentheses,
followed by a statement which forms the loop body. Each invocation supplies actual arguments to an i-function,
and it declares a variable to receive the yielded values. For example, the following i-loop activates the i-functions

fand g, where the yielded types are int and char, respectively.

iterate(int x = £(); chary = g(); int z = £())
{

}
Note that there are two simultaneous activations of £, one associated with x and one with z.

An i-function may be invoked only within the context of an i-loop. Figure 3.4 also shows a main program
containing an i-loop that uses the bigElements iterator. After initializing the array A, control enters the loop,
and the i-function is activated. When control returns to the loop, nextE1 holds the first value of the sequence.
After the loop body prints that value, control returns to bigElements if itis still active; if bigElements has

terminated, then the loop also terminates, and control flows to the next statement in the program.

3.2.2. Flow of Control

In the example in Figure 3.4, the flow of control through an iterate loop is implicitly defined, and it follows
the rules introduced in CLU [Lisk77]. That is, at loop entry, and at the top of the loop in each iteration, the i-
function is resumed in order to obtain the next value. The number of iterations is determined by the i-function, i.e.
the loop iterates until the i-function decides to terminate. In addition, a single i-function controls the loop. E

provides for several variations on this theme, providing the programmer with more general control flow capabilities.

First, E allows multiple i-functions to be activated in parallel.'® In this case, the default flow of control
resumes all i-functions at the top of the loop; the order of resumption is undefined. The loop terminates when all i-
functions have terminated. If some i-functions have terminated while others are still active, then the loop variable
associated with the terminated i-function continues to retain its last yielded value. In order to allow the program to
determine which i-functions have terminated, E provides a built-in function, empty, which may be applied to any
i-loop variable; empty (v) returns 1 if the i-function activation associated with variable v has terminated, and

0 otherwise. We will see an example shortly.

3.2.2.1. Advance

The default flow of control described above is too restrictive in certain cases. Consider an iterator that is

supposed to merge two sorted streams of values, yielding a single sorted stream. Naturally, we wish to produce the

®This capability is distinct from having several active i-functions due to nesting of i-loops, which is also allowed.

26

sorted streams using iterators, and so the merge i-function is also a client of other i-functions. The default flow of

control is inappropriate for this task. If we simply try

iterate (int vall = streaml(); int val2 = stream2())
{ «.. 1}

then we will march down the streams in lock-step, and the loop body will have to buffer an arbitrary number of
values (up to the entire sequence produced by one of the streams). If we try nesting, then we will repeat the entire

inner i-loop for each element considered by the outer:

iterate (int vall = streaml())
iterate (int val2 = stream2())
{ ...}

Clearly, more flexible control is needed.

The advance statement was introduced in part to meet this need. As an example, consider
advance val2;
where this statement appears within the context of either of the two iterate loops above. The effect of the statement
is to resume the i-function activation associated with val2, in this case, stream2(). After the advance
statement, val2 has its new value. In its general form, advance may have a comma-separated list of variables;
the i-function activation associated with each of the variables is resumed (in an unspecified order). If an advance
statement is executed on any given pass through the body of an i-loop, then no default resumptions are carried out,

i.e. if any i-functions are advanced, then those are the only i-functions advanced for that iteration.

Figure 3.5 shows how the advance statement and the empty function may be used to implement the merge
example. When control enters the i-loop, two i-functions, streaml and stream2, are activated, and the loop
variables, vall and val2, receive their initial values. We first test to see if either i-function has terminated, and
if so, we simply yield the element from the other stream. The default flow of control will then advance the one
active i-function until it is exhausted. If both i-functions are active, then we yield the smaller value and explicitly
advance the i-function from which it came; the other i-function will not advance on that iteration. The loop

terminates when both i-functions have terminated.

3.2.2.2. Break

The merge example shows how the client loop can decide which i-function activation to resume on any given
iteration. So far, though, loop termination has still been determined by the i-functions, i.e. the client iterates until all
i-functions have terminated. Alternatively, a client may decide to break out of an i-loop; normally, this causes

immediate termination of all active i-functions associated with that loop.

A given i-function may sometimes require explicit control over the termination sequence, however. It may,

for example, need to release heap space or to perform other bookkeeping tasks. To handle such cases, we have

27

iterator int merge ()
{
iterate (int vall = streaml():;
int val2 = stream2())
{
if (empty(vall))
yield val2;
else if (empty(val2))
yield vall;
else if (vall < val2)

yield vall;
advance vall;

yield val2;
advance val2;

Using the advance Statement

Figure 3.5

extended the yield statement syntax with an optional termination clause. This clause is a statement which is
executed if, and only if, the client terminates the i-loop while the i-function is suspended at that yield point.? For
example, suppose that an i-function has built some structure which it must deallocate before terminating, and
suppose that the variable p points to the root of the structure. Then in the following example, if the client breaks

after the i-function has yielded x, the (user-defined) cleanUp routine will be called before the i-function

terminates:

yield x : cleanUp(p);

In the absence of this clause, the i-function is terminated automatically.

3.2.3. A Recursive Iferator Example

As a final example, Figure 3.6 modifies the binary tree implementation from the previous section so that it
handles duplicate keys. We have amended the insert routine so that it no longer ignores a duplicate entry; instead,
if it finds a match, it recursively inserts the new entry into the left subtree. Now, since we must be prepared to find

many entries with the same key value, we have rewritten the tree search in Figure 3.6 as an iterator which yields a

YA more general exception handling facility would have been useful here.

28

iterator void * binaryTreeNode::search(float searchKey)
{
ifl this == NULL)
return;

if { searchKey <= nodeKey)
{
if (searchKey == nodeKey)
yield entPtr;

iterate (void * p = leftChild->search(searchKey))
yield p:
}
else

iterate (void * p
yield p;

rightChild->search(searchKey)})

}

void binaryTreeNode::insert(binaryTreeNode* newNode)
{
if (newNode->nodeKey <= this->nodeKey)
if({ leftChild == NULL)
leftChild = newNode:;
else
leftChild->insert (newNode);
else
if (rightChild == NULL)
rightChild = newNode;
else
rightChild->insert (newNode);

Allowing Duplicate Keys

Figure 3.6

sequence of pointers to each of the entities with matching keys. Furthermore, just as the original search routine was
a recursive function, the new search routine is a recursive iterator.” We again ground the recursion by first
checking if this is a null pointer. If so, then the iterator returns without having yielded any values; from the
client’s perspective, the iterate loop terminates immediately, and the loop body is never entered. Assuming that
this is not null, we compare key values. If the search key is less than or equal to the current node’s key, then we
first check to see if the keys are, in fact, equal. If so, then the entry in the current node is yield to the level above.

We then recursively search the left subtree; each entry so obtained is also yielded. If the search key is greater than

2The search routine is, of course, more efficient if coded without recursion. We show it this way to illustrate how recursive iterators may
be used. It also makes for a shorter and more elegant solution.

29

the key in the current node, we simply search the right subtree.

At the top level, the client picks up the return values one-by-one. At any given point in the client loop, there
is a chain of active i-functions corresponding to levels of the tree. We note that the client may break out of the loop
before all duplicate entries have been yielded; this event triggers a cascading termination of all active i-functions.
Although the yield statements in the search iterator do not contain termination clauses (since none are needed), any

such clauses would be executed as described above, beginning with the deepest activation.

3.3. GENERATOR CLASSES

As mentioned in the introduction, one of the problems facing the DBI is that much of the system code for a
DBMS must be written without knowledge of the types of objects that the code will manipulate. Traditionally, a
DBMS had knowledge of a few basic attribute types "wired in." The basic operators and access methods could
operate on any of these types, essentially by switching on the type of the attribute at hand. One obvious problem
with this approach is that the set of basic types is fixed, and therefore the system is difficult to extend. Another
problem is that in order to handle different record types, offset and length information must be passed explicitly to
each routine. In addition, the programmer is responsible for interpreting untyped buffer pages. One of the original
goals of E was to make such mechanical tasks implicit. We were inspired by generators {Lisk77] as providing an

elegant solution to the problem.
3.3.1. Parameters to a Generator Class

3.3.1.1. Class Parameters

A generator is a parameterized type, i.e. one that is defined in terms of one or more unknown (formal) types.
A generator defines an infinite family of related types and provides a natural way of defining container classes. The
classic example is the generic type stack[T 1, which, given any element type T, defines the type of a stack of
T elements. In the case of our binary tree, we can (and will) make it a generic class by introducing two type

parameters: the type of the key and the type of the entity being indexed.

E introduces generators in the form of generator classes.? A generator class may have any number of class
parameters; the formal class names may be used freely within the generator as data member types and as argument

or return types for member functions and iterators. Figure 3.7, for example, shows the E definition of a (bounded)

ACLU also has generator procedures and iterators. Although E does not provide these, we note that the same effect can be achieved, albeit
indirectly. Consider a generator class having no data members and having a public member function, £, such that the retumn andfor argument
types of £ involve class parameters. Then f is effectively a generic function. The reason this approach is indirect is that we must declare "dum-
my" instances of the instantiated class in order to invoke f.

30

generic stack class. Syntactically, a generator class has the form of a regular class, except that the formal

parameters are specified in square brackets following the class name. The parameters themselves have the form of

empty class declarations.”> We shall omit showing the stack member functions, since the only notable feature is

that T is used wherever the name of the element type is needed.

In order to use a generic class, we must first instantiate a specific class by supplying actual arguments to the
generator. For example, assuming we have a (nongeneric) class frame, we can then define a type describing
stacks of frames by:

class frameStack : stack{ frame];

Given this definition, we can now declare and use frameStack instances. For example, the declarations

frameStack S1;
frame £;

specify that S1 isan instance of frameStack and f is an instance of frame. We can then push f onto Si:
Sl.push{ £):

Attempting to push anything buta frame onto S1 will be flagged as a type error at compile time.

3.3.1.2. Constraints on Class Parameters

If a class parameter is specified with an empty body, as in the stack example, then there are no constraints
on the actual type that may be used in an instantiation. We could, for example, define intStacktobe stack|
int 1,eventhough int isnotreally aclass. Asin CLU, E allows the specification of constraints on instantiating
types; constraints are specified by "fleshing out” the parameter class body with member function declarations. Only

classes having member functions with the same names and type signatures can be used to instantiate the generic

class stack [class T { } }
{

int top;
T stk[100 1;
public:
stack();
T pop():

void push(T);
}:

A Generic Stack Class Definition

Figure 3.7

2We will shortly fill out these declarations in order to specify certain constraints on the formal parameters.

31

class.Z? Furthermore, within the generator, these member functions may be invoked on objects of the parameter
type. For example, we mentioned earlier that the binary tree class can be made generic by introducing two type
parameters, one of which is the key type. In order for a key type to be useful, however, we must be able to compare
two key values to determine their ordering. One means of accomplishing this is to constrain the key type:

class binaryTreeNode

[
class keyType
{ public: int compare(keyType*); },

class entityType { }
}i
With this declaration, an actual class may be bound to keyType only if it has a public member function named

compare that takes a keyType pointer (as well as the implicit keyType* parameter this) and returns an

integer. Within the search routine, we can now compare keys as follows:

int cmpVal = searchKey.compare (&nodeKey):
if{ cmpval < 0)
{ ...}
else if { cmpval == 0)
{ ...}
else

{ ...}

Of course, there is an implicit additional requirement that the integer returned by the compare function be less than,
equal to, or greater than zero corresponding to the ordering of the two keys. Such semantic constraints cannot be

expressed within the E type system, however.

3.3.1.3. Function Parameters

One shortcoming of the approach taken in the above example is that it is no longer possible to instantiate
(directly) a tree with floating point keys since float isnota class with a compare routine. While it is a relatively
simple matter to define wrapper classes around the fundamental types, there is also a potentially more serious
disadvantage here. In the definition of a generator class, the names of class parameters are formal names. However,
if a class is constrained to have a certain member function, the function’s name is actual. In the example above, any
class may instantiate keyType provided that it has a member function whose name is literally "compare” and that
is has the appropriate type signature. While this may be useful in some contexts, in others it may be too restrictive.

For example, we may have a preexisting class that does have a comparison routine, but the routine’s name may not

BEor completeness, E also supports constraints specifying data members, although it is not clear how useful such constraints will be.

32

be "compare.” Or, we may have a class that defines several different comparison routines corresponding to different
criteria for ordering instances. Although the name "compare” may be overloaded within the class, the various
overloaded routines must have different type signatures, so only one routine could be used in the instantiation of
keyType in our example. An alternative, more flexible approach is to make the key comparison routine a function

parameter to our binaryTreeNode class.

A function parameter specifies the argument and return types required of any actual function parameter; these
types may be other formal class parameters. Function parameters are especially useful when we would otherwise be
required to pass a function argument with each method invocation. Using a function parameter, we can specify the

comparison routine as a separate parameter 10 the class:

class binaryTreeNode
(
class keyType{ },
class entityTypel 1},
int compare(keyType*, keyType*)

}:

With this class definition, we may now use any type at all to instantiate keyType. If the instantiating type is a

fundamental type, e.g. £loat, we must still write a comparison routine, of course.

If the instantiating type is a class having its own comparison routine(s), the desired routine may be supplied as
the function parameter. In order to match the type signature, note that the implicit first argument to any method of a
class C is the pointer this whose type is C*. Assume that we have a class dataPoint for recording data
associated with some experiment and that we wish to build an index over such points. The key is to be a complex

number taken from the experimental data, where complex is defined as follows:

class complex

{
/* representation... */

public:
int cmpImag(complex*); // compare imaginary parts
int cmpReal(complex*); // compare real parts

i

We may then instantiate a node type in which the keys are ordered by their imaginary parts as follows:

class complexNode
: binaryTreeNode[complex, dataPoint, complex::cmplmag]/

3.3.1.4. Constant Parameters

The last kind of class parameter that E supports is a constant. A constant parametcr may be of any
fundamental type, and within the generator class, it may be used freely as a const. This kind of parameter is
particularly useful in defining array data members whose size depends on the particular instantiation. For example,

33

we may define a generic stack class where the maximum number of elements is a class parameter:

class stack [class T { }, int STKMAX]
{

int top;

T stk[STKMAX 1;

}:

We may then define a stack of one hundred integers as follows:
class intStack : stack([int, 100];

3.3.2. Class Name Scoping

In most respects, E is upward compatible with C++. The one exception is in class name scoping. In C++, itis
legal to define nested classes, but this is "at most a notational convenience since a nested class is not hidden in the
scope of its lexically enclosing class” [Stro86, p.152]. In order to support class parameters, which have no meaning
outside the scope of a generator, we have changed this rule in general. In E, any nested class is hidden within the
scope of its lexically enclosing class. Specifically, if class B is nested within class A, then B is visible only 0 A
and A’s member functions, i.e. A may declare private members of type B,and A’s member functions may declare
local variables of type B. A may not declare public data members of type B, nor may A’s public member
functions have argument or return types involving B. We felt justified in making this exception to upward
compatibility since generators require different scoping rules and since class nesting in C++ has no apparent
benefit.

There is a subtle point involving scoping and generator classes. Consider the following definition:

class gen([class T{ } 1
{
public:
T genFunc () ;
bs

While the formal class T is essentially nested within gen (i.e. T is hidden within the scope of gen), T is also
the return type of the public member function genFunc. This definition is perfectly valid, however, because gen
must be instantiated before it may be used. The instantiated class has a public member function whose return type
is well defined. For example, in

class intGen : gen[int };

the new class intGen has a member function, genFunc, whose return type is int.

3.3.3. Nested Instantiations

In defining a class C, it is normal to use other classes as part of C’s representation. Similarly, in defining a

generator class GC, we often would like to make use of previously defined generators in GC’s representation. We

34

have said that a generator must first be instantiated before it may be used. In the case of generators using other
generators, however, those specific types are rarely known. Our binary tree example is a case in point. We have
shown how to define binaryTreeNode as a generator class, but what about the wrapper class, binaryTree?
Certainly we would like to define a generic binary tree type, but how do we define the type of tree node that it
encapsulates?

E's modified scoping rule for nested classes allows the definition of new types within the context of a class
including definition through instantiation. Furthermore, within the context of a generator class GA, we may
instantiate another generator GB by supplying any or all of GA’s parameters to GB. Then any instantiation of GA
with actual parameters causes a nested instantiation of GB. We can make the binaryTree class a generator as
shown in Figure 3.8. Within the context of binaryTree, a new class btn is instantiated from
binaryTreeNode by passing along the parameters supplied to binaryTree. We will complete this class

definition in the next section.

3.4. DB TYPES AND PERSISTENCE

In the discussion so far, we have described language extensions in E that allow the programmer o process
sequences of values and to define parameterized types. Both features are important for database programming.
However, the data objects available to the program thus far are still volatile objects whose lifetimes are bounded by
a program run. We now introduce the features of E that allow a program to create and use persistent objects and

thus to describe a database and its operations strictly within the language.

class binaryTree
(
class keyTypel{ 1},
class entityType{ },
int compare (keyType*, keyType*)
11
class btn : binaryTreeNode[keyType, entityType, compare];
btn *root;
public:
binaryTree();
entityType * search(keyType):
void insert (keyType, entityType*):

A Generic Binary Tree Class

Figure 3.8

35

3.4.1. Database Types

E mirrors the existing C++ types and type constructors with corresponding database types (db types) and type
constructors. Any type definable in C++ can be analogously defined as a db type. Db types are used to describe the
types of objects in a database, i.e. the database schema. However, not every db type object is necessarily part of a
database; db type objects may also be allocated on the stack or in the heap. (Another way of saying this is that
persistence is orthogonal to db types.) We will shortly convert the binary tree class into a db type.

Let us informally define a db type to be any of the following:

(1) One of the fundamental db types: dbshort, dbint, dblong, dbfloat, dbdouble, dbchar, or dbvoid.
Fundamental db types are fully interchangeable with their non-db counterparts For example, it is legal 10
multiply an int and a dbshort or to assign a dbint to a float.

(2) A dbclass (or dbstruct, or dbunion). Every data member of a dbclass must be of a db type. The argument
and return types of member functions may be either db or nondb types.

(3) A pointer to a db type object. The usual kinds of pointer arithmetic are legal on db pointers, and casting is
allowed between one db pointer type and another. It is not possible to convert a db pointer into a normal
(non-db) pointer, nor into any non-pointer type (e.g. int). It is legal to convert normal pointers into db

pointers, however.

(4) An array of db type objects. As in C or C++, an array name is equivalent to a pointer (o its first element.

3.4.2. Persistent Objects

An fundamental property of a language with persistence is that dbjects in the database may be manipulated
using the same expression syntax as for volatile objects. In order to evaluate such an expression, however, there
must first exist a binding between symbols in the program and objects in the persistent store; such a binding is
informally called a "handle” on the database. Part of what distinguishes one persistent language from another is the

nature of these handles: When are they established, and to what can they attach?

In E, if the declaration of a db type variable specifies that its storage class is persistent, then that variable
survives across all runs of the program (and across crashes). A simple example is a program that counts the number

of times that it has been run:

persistent dbint count = 0;
main() { printf("This program has been run $d times.", count++); }

Here, the integer count is a persistent variable whose initial value is set to 0. Each time the program runs, it

36

prints the current value of count and then increments it Note that there are no explicit calls to read or write
count, and there are no references to any external files; /O is implicit in the program. The great convenience of
language support for persistence is that it allows the programmer (o concentrate on the algorithm at hand rather, than
on the details of moving data between disk and main memory [AtkM83].

3.4.3. Collections

While the above example illustrates the essential concepts of persistence, it is hardly convincing; a single
integer does not a database make! In fact, while the persistent storage class is the root of all persistence in E, by
itself it is insufficient for the needs of database programming. First, it implies that every object in the database must
be named, and second, it implies that creating a new object requires calling the compiler. What is needed in

addition is a facility for managing unbounded collections of dynamically allocated, persistent objects.

Different researchers have taken different approaches to this problem. As we saw in Chapter 2, Pascal/R
introduced relation as a type constructor; tuples could be added or deleted under program control, although the
relations themselves could only be named variables. One implication of this restriction is that nested relations were
not allowed. The other DBPLSs, e.g. Rigel and Plain, took a similar approach with similar restrictions. PS-Algol
made the run-time heap the basis for persistence. Any type of object could be made persistent by simply making it
reachable from the database root pointer. However, the persistent heap has no notion of a collection of objects;
such a collection would have to be coded explicitly as a persistent data structure. E takes an intermediate approach.
Like the DBPLs, a given collection stores a specific type of object, and there are facilities for processing all of the
objects in a collection. Like PS-Algol, there are no restrictions on the type of object that may be persistent (except
that it must be a db type); for example, one may define collections of collections. E does not provide an implicit
persistent heap; the dynamic creation of a persistent object requires the specification of a collection in which to

create the new object.

E introduces collections via the built-in generator class collection[T] where T may be any db type. A
collection([T] is an unordered collection of objects of type S, where Sis T or any public subtype of X
Like any generic class, the programmer must first instantiate a specific type of collection before declaring a
collection object. As with any db type, a given collection object may be volatile or persistent, depending on the
declaration, and it may be declared as a data member of another class. The lifetime of an object within a collection

is bounded by the lifetime of the collection; in particular, if a program creates an object in a persistent collection,

#The initialization to zero occurs only once, i.e. when the object is created.

That is, any type S for which T is a public base type, directly or indirectly. The reason for this restriction is that during a scan overa
collection of T, the client obtains a pointer of type T* to each object in the collection. If an object in the collection were of type S where Sin-
herited T privately, then giving the clienta T* to that object would violate C++'s type rules. For an explanation of public versus private base
classes, see [Stro86].

37

then that object will also be persistent.

3.4.3.1. Creating Objects in a Collection

An extension 10 the syntax of the new operator accommodates the creation of objects in a collection. As an
example, suppose that person is defined as a dbclass and that it has a constructor taking a character string, €.g.
the person’s name. Then the following E code defines a type describing collections of persons, declares an instance

of that type, and creates two people within the collection:

dbclass person { ... };

dbclass City : collection(person 1:

persistent City Madison;

person * pl;

person * p2;

pl in(Madison) new person("Jane Doe");

p2 in{ Madison) near(pl) new person("John Doe");

o

Here, the syntactic extensions are the in and near clauses. In general, the in clause may be followed by any
expression which evaluates to a collection as long as the type following new is the same as or a subtype of the type
of entity in the collection. In this example, we are creating instances of personina collection of persons, but if,

for example, student were a subtype of person, we could also create student instances within this collection.

The near clause on the last line specifies a clustering hint to the underlying storage layer; in this case, the hint
requests that the new person object be created physically near the object referenced by pl. In general, near
may be followed by any pointer-valued expression, and the referenced object need not be of the same type nor in the
same collection as the newly created object. It is up to the implementation of the underlying storage layer to
determine what "near" means, and at worst, the hint will be ignored. In the implementation of the EXODUS
Storage Manager, the search for a nearby location begins on the same disk page if the objects are part of the same

collection, and on the same disk cylinder otherwise.

3.4.3.2. Scanning Collections

The collection generator class has an iterator member function for scanning all of the elements in a collection.
This iterator, scan (), returns a sequence of pointers to the objects in the collection. The following example

processes all of the people in Madison:
iterate (person * p = Madison.scan()){ ... }

Note that even though a collection of T may contain objects of a subtype of T, scans over such collections
always return pointers to type T*. For example, the preceding scan always yields a person*, although the
referenced object might be of a subtype of person. However, if a T member function, f, is invoked through the
returned pointer, the binding of the call will be late or early as £ is virtual or not, respectively. If f is virtual, then
the version of £ associated with the actual type of the object will be called; if £ is not virtual, then T’s version of

38

£ will always be called? Although early binding may be acceptable in some cases, in general, if a
collection[T] is to contain instances of a subtype of T, then T’s member functions (and those of T's
subtypes) should be declared virtual. Of course, if the collection is to contain only T objects, then this discussion

does not apply.

3.4.3.3. Destroying Objects and Collections

The usual delete operator may be used to remove an object from a collection. For example, we can delete
"John Doe" (from our earlier example) with:
delete p2;.
If the object’s type has a destructor, then the destructor will be called first, and then the object will be destroyed.

If a collection is destroyed, the objects that it contains are destroyed also. If the collection contains objects of
type T where T has a destructor, then the destructor will be invoked on each object before the collection is
destroyed. Assume we wish to delete Madison, which is a collection[person]. Conceptually, this

process involves the following steps:

iterate (person * p = Madison.scan{()) { delete p; }
/* now destroy the empty collection...*/

For performance reasons, however, our implementation does not actually destroy the objects individually. Rather,

the entire collection is then destroyed en masse.

The previous remarks concerning collections and virtual functions also apply to destructors. If a
collection[T] is destroyed, then the actual destructor function invoked on each object depends on whether T
has declared its destructor to be virtual or not.

3.4.4. The Binary Tree Example Revisited

Let us now (finally) reimplement our binary tree example as a db type. Figures 3.9, 3.10, and 3.11 replace
Figures 3.1, 3.2, and 3.3, respectively. '

The node class shown in Figure 3.9 has changed from the C++ version of Section 3.1 in the following ways:
The insert routine accepts duplicates, and the search routine is an iterator (as developed in Section 3.2); the key
and entity types are type parameters, and the key comparison routine is a function parameter (as developed in
Section 3.3); and the class itself is a dbclass (as developed in Section 3.4).

*This description simply restates the semantics of C++ virtual functions, as described in Section 3.1.3.

39

dbclass binaryTreeNode
[

dbclass keyType{ },

dbclass entityTypel{ },

int compare (keyType*, keyType*)
]

keyType nodeKey;
entityType *entPtr;
binaryTreeNode *leftChild;
binaryTreeNode *rightChild;

public:
binaryTreeNode(keyType, entityType *):
iterator entityType * search(keyType);
void insert(binaryTreeNode *);

bi

binaryTreeNode: :binaryTreeNode
(keyType insertKey, entityType * insertPtr)
{
nodeKey = insertKey;
entPtr = insertPtr;
leftChild = rightChild = NULL;
}

iterator entityType * binaryTreeNode::search(keyType searchKey) {
int cmp = compare(&searchKey, &nodeKey);
if(cmp <=0) {
if(leftChild != NULL)
iterate (entityType * p = leftChild->search(searchKey))
yield p;
if(cmp == 0)
yield entPtr;
}
else if(rightChild != NULL)
iterate (entityType * p = rightChild->search(searchKey))
yield p;
}

void binaryTreeNode::insert (binaryTreeNode * newNode) {
int cmp = compare(& (newNode->nodeKey), &nodeKey)
if(cmp <= 0)
if(leftChild == NULL)
leftChild = newNode;
else
leftChild->insert (newNode);
else if(rightChild == NULL)
rightChild = newNode;
else
rightChild~>insert (newNode);

The Binary Tree Node Class

Figure 3.9

dbclass binaryTree
{
dbclass keyTypel{ 1},
dbclass entityTypel{ 1},
int compare(keyType*, keyType*)

dbelass btn : binaryTreeNode[keyType, entityType, compare };
dbclass btnSet : collection{ btn];

btnSet allNodes;
btn *root;

public:

binaryTree();

iterator entityType * search(keyType);

void insert(keyType, entityType *);
b

binaryTree: :binaryTree ()
{

root = NULL;
}

iterator entityType * binaryTree::search(keyType searchKey)
{

if(root == NULL)
return;
else
iterate (entityType * p = root->search(searchKey))
yield p;

}

void binaryTree::insert(keyType insertKey, entityType * insertPtr)
(.

btn * newNode;

newNode = in{ allNodes) new btn(insertKey, insertPtr);

if(root == NULL)
root = newNode;
else
root->insert (newNode);

The Binary Tree Class
Figure 3.10

Figure 3.10 shows the binary tree class. In order to define this class, we must first instantiate two new classes
which we then use. The class btn is binaryTreeNode instantiated with the same parameters as
binaryTree, i.c. this is a nested instantiation as described in Section 3.3.3. Next, btnSet is instantiated as a
type of collection containing btn nodes. The binary tree itself is now represented as allNodes, a

collection containing the nodes, and root, a pointer to the root node. On an insert, the new node is allocated in

41

the tree’s collection. Other changes to the binary tree class parallel those made for the node class: the use of type

parameters and the definition of search as an iterator.

Figure 3.11 shows an example using a persistent binary tree index. Like the original main program in Figure
3.3, this one builds an index over students keyed on gpa. Since the students must persist, we first define school
as a collection of students, and we declare a persistent instance, UWmadison, of this type. We then define a

comparison routine for floating point numbers, and we use this routine, along with the types student and dbfloat, to

dbclass student{ ... }7
dbeclass school : collection{ student };
persistent school UWmadison;

- int compare(dbfloat * x, dbfloat * y) {
float cmp = (*x - *y);
if(cmp < 0)

return -1;
else if{ cmp == 0)

return 0;
else

return 1;

}

dbclass gpaIndexType : binaryTree[dbfloat, student, compare }:
persistent gpaIndexType gpalndex;

main () {
student * 387
float gpa;
int cnd;
while ((cmd = getCommand()) != QUIT)

switch (cmd)

{

case NEWSTUDENT:
getNewStudent (&gpa, &s y:
gpalndex.insert(gpa, 8);
break;

case PROCESS:
getGpa (&gpa)’
iterate (student * s = gpalndex.search(gpa))
processStudent (s);
break;

Example Using a Persistent Binary Tree

Figure 3.11

42

instantiate a specific index type. Next we declare a persistent index, gpaIndex. Finally, the main program
parallels the operation of that in Figure 3.3, except that the getNewStudent function is assumed to create the
student in the UwWmadison collection, rather than on the heap. Any students entered during one run of the

program will therefore still be present in later runs.

3.4.5. Implementing a Database Index

The binary tree example that we have developed in this chapter is obviously hinting at the implementation of
“real” database index structures, e.g. B+trees, in which each node contains many keys. In‘ defining such structures,
an essential constraint is that each index node must fit on one disk page and must make maximal use of the space on
that page. If we define the node type as a generic class, then clearly, the number of keys that will fit on a page
varies with the specific key type. One approach is to define the generator with a constant parameter, as we did in the
stack example of Section 3.3.1.4. However, this approach forces the user of the class to compute the maximal

number of keys for each instantiation.

An easier approach is to make use of the fact that within a generator, the expression sizeof (T), where T
is a type parameter, is treated as a constant and may be used in calculating array bounds. For example, assume that

PAGESIZE is a constant giving the size of a disk page in bytes. (This could be a class parameter, but it is more

dbclass BTreelLeaf
{
dbclass keyTypel 1},
dbclass entityTypel 1},
int compare{ keyType*, keyType*)

/* auxiliary definitions */

dbstruct kpp {
keyType keyVal;
entityType * entPtr;
bi
#define MAXSPACE (PAGESIZE - sizeof (dbint))
#define MAXENTRIES (MAXSPACE / sizeof (kpp))

/* data members */

dbint nKeys:

kpp kpPairs[MAXENTRIES];
public:

}:
A Generic DbClass for B+Tree Leaf Nodes

Figure 3.12

43

likely to be a system-wide constant.) In Figure 3.12, we have outlined the definition of a (simplified) generic class
describing leaf nodes in a B+tree; each node is to contain an array of key-pointer pairs where the number of array
elements is the maximum that will fit on one page. Like the binary tree example, this class is parameterized by the
key and entity types and by the key comparison routine. For convenience, we have defined an auxiliary type, kpp,
for key-pointer pairs; the tree node is an array of these structures. Note that since kpp is defined in terms of class
parameters, it is also a generic type, and it is implicitly instantiated with each instantiation of BTreeLeaf. We
then define two macros for convenience. The amount of usable space on a page is the size of the page minus any
overhead for control information; in this simple example, the only control data is an integer giving the current
number of entries in the array. Finally, the maximum number of array entries is the amount of available space
divided by the size of an entry, i.e. by sizeof(kpp). The data member, kpPairs, is then defined to be an

array whose dimension is this maximum.

3.5. TWO LANGUAGE DESIGN ISSUES

This chapter has presented the major features of E within the framework of developing a specific example.
Let us now explain the rationale behind two major language design issues. In Chapter 8, we shall consider these

and other design decisions in retrospect and give some suggestions for possible improvements.

3.5.1. Orthogonality

One legitimate question is why we chose to give E a "two-headed” type system, rather than simply to
introduce persistence as an orthogonal property of all types. Orthogonality is, after all, often cited as a desirable
feature of a persistent language [AtkM83, AtkM87]. The reasons for E's use of db types stem both from philosophy
as well as from implementation concerns. First, E was originally conceived as a language in which to write
database management systems. In such systems, there is a clear distinction between those objects that persist and
those that are volatile. For example, lock tables and transaction descriptors are definitely not persistent?, while
objects in the database definitely are. The "db" attribute of a type distinguishes between objects that may be
persistent and those that are definitely volatile.

The importance of separating normal types from db types also has a strong grounding in performance
considerations. Those same system resources that are known to be volatile are often the ones that are accessed with
the highest frequency. If every object that is referenced can potentially be a persistent object, then before every

access the system must check that the needed object is in memory. Even if the check costs only one boolean test,

We ignore design transactions which need to hold long term locks. Again, however, the system designer would be aware of the distinc-
tion between long term (persistent) locks and short term locks.

the cost of accessing these critical system resources might be significantly increased. In E, accesses to non-db type

objects suffer no loss of performance over the same accesses in C++.

In addition to the cost of a pointer dereference, another factor in our decision to introduce db types is the
representation of pointers. On a VAX, a pointer is 32 bits, giving an address space of approximately 4 GB.
However, databases are already exceeding this limit and, in fact, are moving into the terabyte range. If persistence
were orthogonal to all types, then we would be faced with several not very appealing alternatives. We could make
all pointers 32 bits, and thus guarantee that E would already be obsolete for real world applications. Alternatively,
we could make all pointers be "large enough” for projected needs. E programs use the EXODUS Storage Manager
[Care86a] as its persistent store, and every object id is 12 bytes; since a pointer to a persistent object also contains
an offset, the total size is 16 bytes. Thus, this approach would quadruple not only the space needed but also the

copying cost for every pointer.

As a final comment on the question of orthogonality, note that (1) any nondb type can be (easily) defined as a
db type, and (2) persistence is orthogonal over all db types. Thus, it is easy to give E the appearance of a language
having completely orthogonal persistence if desired. By including the file shown in Figure 3.13, the programmer
may omit all mention of "db", and may declare any variable persistent. Referring to the above discussions, the
resulting "language" is then one which takes the approach of making all pointers large and all pointer dereferences a

bit more costly.

3.5.2. Persistent Handles

In a language without persistence, long term store has traditionally been implemented by files. The persistent
name space is simply the space of file names maintained by the operating system. In this case, the program’s handle

on the database is a character string representing a file name. A run-time call to a system routine (e.g. open)

#define class dbclass
#define struct dbstruct
#define union dbunion
#define int dbint
#define short dbshort
#define long dblong
#define float dbfloat
$#define double dbdouble
#define char dbchar
#define void dbvoid
A Useful Include File

Figure 3.13

45

establishes the binding (e.g. a file descriptor) between the program and an actual file. The program can then access
the persistent data via read and write calls. One obvious drawback of this approach is type safety; since a file may
be accessed independently, there is no guarantee that the file bound to one run of the program has any relationship to

the one bound in another, except that they have the same name.

In PS-Algol, a program’s persistent handle is a character string naming an operating system file, and the
actual binding is established with a run-time call. This time, however, the file contains a persistent PS-Algol heap,
and the open call binds the heap to a pointer in the program called a database root. The program is then free to
dereference through the root pointer to access the rest of the database. The top level object in every database (i.e.
what the root points to) is an associative index of pointers keyed on string names. By providing a character string
argument to a lookup routine, the user gets back a pointer to the object associated with the string. The persistent
name space thus comprises whatever strings the user has stored in the index. It should be noted that these strings
are not recognized as variable names by the compiler, so there is no persistent binding between program symbols
and database objects. A program can cause an object to persist at run-time by establishing an access path to the
object from the root of an open database. When the program closes the database, all objects reachable from the root

are written out to disk.?

In E, if a variable is declared to have the persistent storage class, that variable’s name is a persistent
handle. Having db types allows the E programmer to define the types of objects in a database; the persistent
storage class provides the basis for populating the database. The existing scoping rules of C++ determine the
organization of the name space. That is, a name n in one source module does not conflict with n declared in another

module unless one attempts to link the two into a single program. The binding between the name and the persistent

object is established at compile time?, and it remains valid until the module is explicitly destroyed. There is no
explicit run time open call, and there are no references to external file names. Bindings between the source code
and persistent objects are maintained implicitly by the programming environment. In order to access the database,
one compiles and runs an E program which manipulates persistent objects. These objects may be declared in the
same module with the program, or they may be declared as extern variables. In the latter case, one must link the
program together with other object modules (.o files) that contain the desired persistent variables. The language

does not define how such modules are named or accessed, however.

PThis is an oversimplification. An object is written back only if was created or changed during the program run.

®This describes the implementation in versions 1.0 and 2.2 of the compiler. Version 2.1 defers the actual creation of the object to the first
run of a program that uses the persistent handle.

CHAPTER 4

COMPILER ORGANIZATION

In the next three chapters, we describe the implementation of db types and persistence in version 2.2 of the E
compiler. This chapter presents an overview of the entire compilation process, describing the pieces that relate to
persistence and showing how these pieces fit together. We begin with a description of the compiler’s internal
structure and show how new functionality has been integrated with the phases of an existing C++ compiler. Next
we discuss the processing of declarations of persistent objects and their types. We then present an overview of code
generation, previewing briefly the material that Chapters 5 and 6 will cover in detail. This chapter concludes with
discussions of two implementation problems that arise due to the combination of E’s model of persistence with C++

semantics; we describe both the problems and the solutions adopted in version 2.2 of the compiler.

4.1. ARCHITECTURE OF THE COMPILER

The E compiler is an extension of version 1.2.1 of the AT&T C++ compiler. We chose this compiler as our
starting point for several reasons, the main one being that we had access to the source code. We did not want to
start from scratch because reimplementing the C++ subset of E was not our interest and would require a significant
amount of time and effort. At the time we began work on E, there were only a few C++ compilers available; the

AT&T compiler, in addition to being available, also had the distinct advantage of being quite stable.

The C++ compiler consists of a large shell script, CC, which spawns three processes, as illustrated in Figure
4.1. First, the standard C preprocessor, cpp, performs macro expansion and file inclusion. The C++ front end,
cfront, then translates the result into C source code. The C compiler, cc, compiles the output of cfront into binary
form. Although not shown in the figure, cc itself comprises a series of processes: cpp (again!); ccom, which

translates C into assembler code; as, the assembler; and /d, the link editor.

If the result of the last step is an executable program, the compiler then performs an additional series of steps
(enclosed in the dashed box in Figure 4.1). A C++ program may declare an object of a class with a constructor. If
such an object is declared in the global scope, then the constructor for that object must execute before the main
program runs. The extra steps in the dashed box are part of the mechanism that implements this feature.

The majority of the work in implementing E has involved extending the source code for cfront into an E-to-C
translator called efront. The internal organization of efront is shown in Figure 4.2. Of the five phases shown, all but
db simplify were part of the original C++ compiler. A yacc-produced parser [John75] builds an abstract syntax tree

of the source text. The parser consumes one external declaration at a time, e.g. one function definition or one global

47

Other Modules
C++ Source vee -

C+
cpp Source

cfront

List of h
nm Symbols munc

@ oy

The Process Structure of CC

Figure 4.1

variable declaration. A few new keywords and productions were added to the grammar in order to handle
constructs related to persistence. In addition, when the parser adds a type node to the syntax tree, a special flag is
set in that node if it represents a fundamental db type (e.g. dbint) or a dbclass. In all other respects, it is like any
other type node. This fact is important for the second phase, which handles type checking. Slight changes were
needed here to prevent, for example, assigning a db address to a non-db type pointer. Most other type checking is
handled normally, to allow such common activities as assigning a dbint to an int, or adding an int and a dbfloat. The
simplification phase transforms C++ constructs into equivalent C constructs. This phase has been extended also to
handle E generators and iterators.® The new fourth phase, and the one which is the concern of these three chapters,

transforms constructs related to db types and persistence. Finally, the print phase walks the resulting C syntax tree,
producing C source code.

Given the architecture of efront, the input to the db-simplification phase is a C syntax tree in which certain
nodes are decorated. Any expression or object of a db type will point to a type node marked "db." Any object
declared persistent will have the persistent storage class recorded as part of its symbol table entry. It is the
responsibility of the db-simplification phase, therefore, to look for such decorated nodes and to apply appropriate

®This work was done by another member of the EXODUS project, Dan Schuh. See acknowledgements.

48

E Source E Syntax type E Syntax v
{
pare Tree check Tree simplify
Decorated db C Syntax rint C Sourc:.-§
C Syntax Tree simplify Tree p
efront
Compilation Phases in Efront
Figure 4.2

transformations, producing as output another C syntax tree.

4.2. PROCESSING DECLARATIONS

This section details the transformations that are applied to the declarations in a program, €.g. to type or data
declarations. The interesting cases include types that define pointers to db objects (db type pointers) and
declarations of persistent data.

4.2.1. Representation of Objects and Pointers

One important consideration in the implementation of a persistent language concerns the implementation of
objects on disk. How are objects organized internally? Is there a format-conversion as objects are brought into
memory? How are their addresses represented? In order to place E’s approach to these issues in some perspective,

we compare it to the implementation of PS-Algol [AtkM83, AtkM84], a particularly well known predecessor.

The representation of persistent objects in a persistent language is dictated, in part, by base language from
which it is derived. S-Algol [Morr82], the starting point for PS-Algol, is a heap-based language in which "the data
type pointer comprises a structure with any number of fields, and any data type in each field" [AtkM83]. Any
pointer may point to any structure, that is, pointers are inherently untyped. This design has two important

implications for PS-Algol. One is that performance is affected since all pointer dereferencing is subject to run-time

49

type checking. For example, in the expression®’ p (x), the compiler cannot know in general that at run-time p
will point to a structure with a field named x whose type matches that required in the current context. Therefore, a
run-time check is included to validate the expression. The other important implication is that run-time type
descriptors must be available in order to carry out this check. In a persistent extension, of course, these descriptors

must also be persistent.

Another reason that PS-Algol needs type descriptors at run-time is that the basis for deciding on the
persistence of an object is reachability from a persistent root. In fact, garbage collection is an integral part of any
PS-Algol implementation. Since an object may be an arbitrary composition of structures, arrays, and pointers, and
since pointers in PS-Algol are inherently untyped, there must be type descriptors available in order to do the
reachability traversal. Again, since the objects being traversed are persistent, so must be the descriptors. The
efficient representation and processing of type descriptor information thus formed a significant part of the
implementation effort of PS-Algol [Cock84, Brow85].

In contrast, E, being derived from C++, is a language in which the physical structure of objects is known (and
specified) by the programmer. Dynamic storage allocation is under explicit programmer control, i.e. there is no
garbage collection. Furthermore, pointer is a type constructor, rather than a fundamental type, so all pointer
dereferences are type checked at compile time. Because there is no garbage collection, and because type checking

is static, there is no general need to maintain persistent type descriptors.

Another way in which E differs from PS-Algol is in the implementation of pointers. The PS-Algol run-time
system recognizes two kinds of pointers, both one word in length, that are distinguished by their most significant bit
(msb). A pointer with an msb of zero is called a Local Object Number (LON) and it contains the virtual memory
address of the object it references. If the msb is one, the pointer is a Persistent IDentifier (PID) and contains the
database address of the object. At run-time, PIDs are converted to LONs and back, as objects are moved in and out

of memory.

Like PS-Algol, E recognizes two kinds of pointers. Unlike PS-Algol, they are distinguishable by type at
compile time. Any pointer whose type is defined in the C++ subset of E is a normal C++ pointer, i.. it is one word
in length and contains a virtual memory address. Any pointer whose type is a db type has a different format. The
Lvalue of a db type object comprises an EXQDUS storage object id and an offset into the object, as shown in Figure
4.3. This [OID,offset] pair is called a DBREF. The offset is necessary because it is possible (and quite common)
for a program to produce an address which lies in the middle of a storage object. For example, one often processes

an array by incrementing a pointer to each element in trn. Also, member functions of a dbclass, like their non-

MPS-Algol uses parentheses 1o express structure access.

50

DBREF
OID | offset

%

EXODUS Storage Object

Db Pointer Representation

Figure 4.3

dbclass counterparts, are passed a pointer, this, to the beginning of the class instance; this instance, however,
may be embedded as a data member in some containing class object. This aspect of E pointers — really, a
straightforward extension of current C++ semantics — is in contrast to PS-Algol, in which pointers are constrained
to reference only "top-level” objects, i.e. to the start of an independently allocated unit of storage. Finally, a pointer
to a nonpersistent db type object comprises an OID indicating that the object resides in virtual memory and an offset

field that contains the object’s virtual address.

4.2.2, Type Declarations

E provides a full complement of fundamental types having the "db" attribute: dbshort, dbint, dblong, dbfloat,
dbdouble, dbchar, and dbvoid. These types are duals of the fundamental C++ types, and they have the same
representations.’ For the purposes of assignment, expression evaluation, and parameter passing, these db types are
equivalent to their non-db counterparts. A node in the abstract syntax tree that represents a fundamental db type is
not changed by db-simplification; it is simply printed as its non-db dual. For example, if the type of an argument to
an E functionis dbint, then in the C translation, the type of that argument is int.

A node representing a function type is processed by recursively transforming the function’s return and

argument types. If the function also has a body, i.e. if it is a definition, then we also generate code, as described
later.

*These representations are machine dependent, of course.

51

For now, we may simply observe that the following (pointless) function

dbvoid fcn(dbfloat x, dbint y)
{

X = ¥7
}
translates to:
char fen(x, v)
float x;
int y:
{
X = y,‘

}

A node representing a dbclass (or dbstruct or dbunion) is processed by recursively transforming the dbclass’s
data and function members. Although we do not show an example, it should be noted that by the time control enters
this phase of the compiler, classes related to generators (i.e. generators and classes instantiated from them) have

already been transformed into an equivalent set of non-generator classes.

So far, the transformation of types is not very interesting. The one important translation occurs when a type
node represents a pointer to an object of some db type. Recall from the discussion in the last section that the address
of a db type object is represented by an [OID,offset] pair. In the C translation of every E program is a series of

typedefs culminating in the following declaration:

struct DBREF {
QID oid;
int offset;
}i

Any type node representing a db pointer is printed as a struct DBREF. Consider, for example, the declaration of a

dbclass implementing a binary tree node (based on the examples in Chapter 3):
dbclass binaryTreeNode {

dbfloat nodeKey;
dbvoid *entPtr;
binaryTreeNode *leftChild;
binaryTreeNode *rightChild;

}i

The C translation is printed as:

struct binaryTreeNode {

float nodeKey;

struct DBREF entPtr;

struct DBREF leftChild;

struct DBREF rightChild:
}:

52

4.2.3. Data Declarations

When the source code contains the declaration of a db type object, the correct transformation depends on the
scope of the object and its storage class. Obviously, the most interesting case is the declaration of a persistent
object. In this version of the E compiler (version 2.2), an object which is declared persistent establishes a binding
with a physical object at compile time.3® The name of the persistent variable is then the programmer’s handle on

the object; any program in which the variable’s name is visible may then access the object.

Before creating any persistent objects, the compiler first asks the storage manager to create a file; all
persistent objects declared in the source module are then created within this file. Thus, compiling an E source
module that contains the declaration of one or more persistent objects yields both its C translation and a file in the

storage manager containing the objects.

The general approach is illustrated in Figure 4.4. When the db-simplification phase sees the declaration of the
persistent db integer, x, it asks the EXODUS storage manager to create a 4-byte object. The OID of the new
object is then introduced into the output in the form of a DBREF structure with an initializing expression.?® This

DBREEF variable is called the companion of x, and the initializer assigns it the OID returned by the storage manager

together with an offset of 0. Note that only the companion’s declaration appears in the C output.

E Source persistent dbint x;
l efront
C Source
struct DBREF __E_x = {21, 3, 25, 10, 0}; m
l [~
Persistent
Environment
Load Module _Ex [File

Compiling A Persistent Object Declaration

Figure 4.4

HThe implementation in version 2.1 of the E compiler allows for more flexible bindings, e.g. it allows recompilation of a source module to
retain previous bindings.

The interpretation of the numbers composing the OID is not important for this discussion.

53

If a db type object is declared to be external, db-simplification transforms this declaration into an external

reference to the object’s companion. For example,
extern dbint x;

becomes
extern struct DBREF __E x;

A function in one module may thus access persistent objects declared in another via the usual C++ external
reference mechanism. Conversely, it implies that if a module declares a nonpersistent db type variable in the global
scope, then a companion must be generated for that object as well, since another module may include the variable’s
name in an extern declaration. The companion must be initialized with the address of this object, which in this
case, is in main memory. Such addresses use a null OID indicating "in memory”, and the actual address of the

object is embedded in the offset. Thus, if the declaration
dbint x;

appears in the global scope, then the translation is:
int x;
struct DBREF _E x = { 0, 0, 0, 0, (int) &x };

The example of Figure 4.4 showed a persistent object declared in the global scope. Persistent objects may
also be declared locally in a block. For example,

int counter()

{
persistent dbint x;
return x++;
}
In this case, although the object is persistent, its name is visible only within the block. Again, the object is created
at compile time, and a companion is introduced into the local scope. Here, the companion is given the storage class
static so that it need not be reinitialized every time the block is entered. The declaration in the above function
thus becomes:

int counter()

{
static struct DBREF __E x = { ... };
/* return ... */

}
For nonpersistent db type objects declared in a local scope, there is no special processing. A local dbint x in
the E source simply becomes a local int x in the C translation because expressions which use x, e.g. addition,

know that x is not persistent. In the case where an expression takes the address of x, e.g. in passing x by

reference, a temporary companion is constructed.

54

To be consistent with C++ semantics, a persistent object declared without an initializer will be initialized to
all zero bytes. Thus, the above counter function will return O the first time it is called. A persistent object may also
be declared with an initializer, as in Figure 4.5. In this example, the user has declared a persistent array of dbfloats,
specifying the first 3 elements. In such cases, the compiler itself interprets the expressions (which must evaluate to

constants) and sends the binary image of the object to the storage manager.

4.3. GENERATING CODE

Code generation presents one of the major challenges in the implementation of persistence for E. The code
generator’s job is to take as input an abstract syntax tree for an E procedure and to introduce code that manipulates
persistent objects; since such manipulations involve 1/O, it is critically important that the compiler generate efficient
code. While Chapters § and 6 describe code generation in detail, here we discuss the rationale behind our approach
to the problem, show how code generation ties in with the rest of E’s implementation, and give a flavor of how the

code generator operates.
4.3.1. Two Machine Models

4.3.1.1. A Persistent Virtual Memory

Given that the persistent objects of a program reside on secondary storage, we must decide the mechanism by
which these objects migrate in and out of main memory during a program run. We must also decide how external

addresses are mapped to internal addresses that are usable by the program. The approach pioneered by PS-Algol is

persistent dbfloat ar[51={ 1.1,2.7,0.8 };

An Initialized Persistent Object

Figure 4.5

55

to view the storage layer as a persistent virtual memory. A software® check of the address format precedes each
pointer dereference. If the pointer is in persistent identifier (PID) format, an "object fault” is signaled. The object is
read into memory, and the pointer that caused the fault is overwritten with the object’s virtual address, i.e. with its
LON. Once a pointer has been converted into LON format, it will no longer cause an object fault, although every
reference is still subject to the run-time check. Maier refers to such pointer translations as "pointer swizzling"
[Maie87b].

When an object X is written back to disk, any pointers in X that were converted to LONs must first be
restored o PID format. Furthermore, any pointers (i.e. in other objects) which contain X's LON must now have X’s
PID restored. This description is obviously simplified, but the basic idea was used in several different
implementations [AtkM83b, Cock84, Brow85]. It should be noted that this approach has much in common with the
mechanisms employed in LOOM [Kaeh83], an implementation of object virtual memory that supports Smalltalk
[Gold83). The major difference is that LOOM does not attempt to support persistence or transactions [Kach86].

4.3.1.2. A Load/Store Machine

E views the problem of code generation as being roughly analogous to register allocation in a load/store
machine. In such a machine, a program must first move a data word from main memory into a register before it can
manipulate that data. The number of registers is assumed to be smaller than the amount of data used by the
program, and the transfer rate of data into the registers is limited by the speed of the slower main memory. The
greater the difference in memory speeds, the more important it becomes to reduce the number of loads and stores
performed by the program. In the case of persistent objects, the slow memory (disk) is four to five orders of

magnitude slower than fast memory (main memory).

This analogy with load/store architectures may be extended further. In addition to fast and slow memory,
there is often a memory of intermediate speed, a cache, between the two. The cache is, in most cases, invisible to
the compiler. By exploiting the locality of references in time and space, the cache is able to intercept most memory
references, thus giving the appearance that slow memory is responding at the speed of the cache. For persistent E
objects, the cache is the buffer pool provided by the EXODUS Storage Manager. When the program issues a request
for persistent data, the Storage Manager accesses the disk only if the data is not already resident in the buffer pool.

The speed of this cache is essentially the path length through the Storage Manager on a buffer pool hit.

3Hardware implementations are also possible and, in fact, some have been designed. See, for example, [Cock87).

%This figure is somewhere in the range of 100-200 instructions. Thus, our cache is about 2 orders of magnitude slower than our fast
memory, and between 2 and 3 orders of magnitude faster than our slow memory.

56

Of course, there are significant differences between generating code against a load/store machine and
generating code against the EXODUS Storage Manager. The greater difference in memory speeds makes certain
dynamic techniques economical. Spending two instructions to save one makes no sense, but spending two to save
several hundred is certainly a win. We will develop this idea in Chapter 6. Another difference from register
allocation is that registers are usually fixed in number and in size, and each load operation usually moves only one
word into a register.” The Storage Manager, b); contrast, supports requests for arbitrary-length strings of bytes.
This capability allows the compiler to "coalesce™ separate requests for neighboring byte ranges into a single request
for the combined range. Finally, because of the possibility of aliasing, register allocation must be careful not to load
the same data word into two different registers; otherwise an update to one would not propagate to the other,
possibly leading to inconsistent results. On the other hand, the Storage Manager is a non-copy-based system
(unlike, for example, WiSS [Chou85b]). The result of a data request is a pointer to the data in the buffer pool, and
two different requests for the same data item receive pointers to the same location. Thus, the impact of aliasing is

less severe (although still present) in the E compiler than it is in compilers for typical hardware architectures.

4.3.2. The Storage Manager Interface

Because the EXODUS Storage Manager figures so heavily in the design of E's code generator, it is
worthwhile to digress briefly here and review its interface. The basic abstraction provided by the Storage Manager
is the storage object, which is an uninterpreted byte sequence of virtually any size. Whether the size of an object is
several bytes or several gigabytes, clients of the Storage Manager see one uniform interface. Each object is named
by its object ID (OID), which is its physical disk address. Two operations, sm_ReadObject and
sm_ReleaseObject, are the basic means of moving data in and out of memory, i.e. they are the analogues of
load and store, respectively. (Again, however, the Storage Manager "machine" has a cache, so a release operation
does not actually return the data to disk.) The read call specifies an object ID (OID), an offset, and a length. The
Storage Manager reads the specified byte sequence into the buffer pool and then returns the address of a user
descriptor 1o the client. This descriptor contains a pointer to the data in the buffer pool, and the client may read the
data by dereferencing through this pointer. Because the Storage Manager design supports atomic, recoverable
transactions, the client updates data with a procedure call, sm_WriteObject, which updates the target object
and performs the appropriate logging. When it is finished with the data, the client program returns the user

descriptor to the Storage Manager in a release call, after which the descriptor is no longer valid.

¥Statements about hardware architectures must always be qualified with terms such as "usually” because there are always exceptions. The
NYU Ultracomputer [Edle85], for example, exposes the cache 1o software control, and the Berkeley RISC machine {Pat82] provides a variable
number of registers in each stack frame.

57

It is important to understand that the data requested in a read call is pinned in the buffer pool until the client
releases it. Pinning is a two-way contract: the Storage Manager guarantees that it will not move the data (e.g. page
it out) while it is pinned, and the client promises not to access anything outside the pinned byte range. In addition,
the client promises to release (unpin) the data in a "timely" fashion, because data that remains pinned unnecessarily
can degrade performance by effectively reducing the size of the buffer pool.® In subsequent discussions, the terms

pin and unpin are used interchangeably with read and release.

An example of a client’s interaction with the Storage Manager is illustrated in Figure 4.6 Assume that a
range of bytes containing a struct S is embedded at location offset within the Storage Manager object
having the given oid. The code segment shown multiplies the structure’s x field by 10. The read call first pins
the range of bytes containing the structure. On return, ud points to a user descriptor whose first word contains a
pointer to the pinned data. The statement after the read then multiplies the x field by 10 and assigns the result to
temp. The write call specifies that four bytes are t0 be written starting at offset 0 within the pinned byte range
described by ud; the last argument to this call gives the address of the data to be copied into the object. Finally,
the pinned data is released. While the EXODUS Storage Manager is a powerful utility, it is necessary for the
programmer to learn numerous procedures and to execute many steps in order to perform even simple tasks. There
are 25 interface routines to the Storage Manager, although only a few may be needed for a given application, Not
shown in this example are the (necessary) steps of initializing the Storage Manager, mounting a volume, and
allocating buffer space via the buffer group mechanism. The resulting complexity was one of the original

motivations for the E language.

struct S { int x; float y: }:
USERDESC * ud;
int temp;

sm_ReadObject (oid, offset, sizeof(struct S), &ud);
temp = ((struct § *) *ud)->x * 10;

sm_WriteObject (ud, 0, 4, &temp);
sm_ReleaseObject(ud);

Interacting with the EXODUS Storage Manager

Figure 4.6

A crually, the EXODUS Storage Manager provides buffer groups. A buffer group is a set of pages requested by a transaction and
managed with a specified page replacement policy. The ideaisto avoid interference in the paging characteristics of different wransactions. Thus,
if a transaction leaves data pinned, the performance degradation will tend to affect only the pinning transaction itself.

®The actual calls to the Storage Manager are slightly different than those shown here. Additional parameters include, for example, a tran-
saction id and a buffer group specifier. Such parameters are not essential for this discussion and have been omitted for simplicity.

58

4.3.3. Overview of Code Generation

The input to the code generator is essentially a C syntax tree in which certain type nodes are decorated with
the "db" attribute and certain variables are marked as having the persistent storage class. The output of the code
generator is a C syntax tree in which the db-related constructs have been replaced with equivalent C constructs. In
particular, the code generator must graft Storage Manager calls onto the tree at appropriate points, replace each use
of a persistent variable with an expression to reference the object in the buffer pool, and transform arithmetic on db
pointers into expressions involving OIDs and offsets. This section provides an overview of the code generator;

Chapters 5 and 6 will present the details.

Basic code generation is split into two phases; if enabled, optimization introduces two additional phases.
Figure 4.7 illustrates this organization; Phase I accepts a decorated C syntax tree and identifies the objects in the
program that need to be pinned and unpinned. It also decides the points in the program where those pinning
operations should occur. The output of this phase is the same tree that it received, except that sets of objects to be
pinned and unpinned have been attached to the appropriate program nodes. These sets are called pin sets, or
simply, p-sets. If optimization is not enabled, phase IV traverses the tree produced by the first phase. If a node n
has a p-set of objects to be pinned, then for each object in the set, phase IV grafts a call to sm_ReadObject
before n and a corresponding call to sm_ReleaseObject after n. In addition, within the region of the program
defined by n, phase IV replaces each use of the object’s value with an expression that dereferences through its user

descriptor into the buffer pool to produce the value. Assignments to the object are replaced with calls to

I - v
Optimizer .
PO T) >
Initial pinning Disabled Tree lramfo.rmauons
(munging)
Optimizer
Enabled
/4 I
Detecting e P i
Path Changes ropagation

Phases of Code Generation

Figure 4.7

59

sm_WriteObject. Finally, phase IV is also responsible for transforming arithmetic on db pointers into
expressions involving OIDs and offsets.

A very simple example will help to clarify this discussion. Consider the following function:

persistent dbint x;

int foo() |{
int y = (x + 1);
return y;

}

The variable x is a persistent integer, and the function foo simply assigns the value of (x + 1) toa local
variable y and then returns y’s value. Figure 4.8 summarizes the processing performed by phases I and IV on the
body of the function. The tree representation of the function body enters on the left. Phase I walks the tree and
determines that the variable x should be pinned for the addition. Accordingly, it attaches a p-set containing x to
the statement in which x is used, The transformation phase then traverses the tree again; on discovering the p-set
associated with the first statement, this phase grafts pin and unpin operations for x around that statement. Finally,
phase IV also replaces the use of x on the left-hand side of the addition with a dereference through x’s user

descriptor.

If optimization is enabled, then the output of phase I feeds into two intermediate phases. The aim of
optimization is to reduce the number of Storage Manager calls executed by the compiled program. The basic
strategy is to alter the plan created by phase I such that a given object remains pinned over many uses, rather than

being pinned for each use and then immediately unpinned. We will accomplish this by moving the unpin operations

1 v
—— ——
() § {} : {)
;—"““*reti:m é { x}; —*return g ; > - > ,milm
N y : AN y ; sm_ReadObject =~ sm_ReleaseObject ¥
y + by + P (x,0,4,&ud) ¥y + (ud)
7\ : VRN : VRN

X 1 : X 1 : "l' 1
5 E :
H ' 1
! ! ud

A Simple Example

Figure 4.8

60

from their originally scheduled locations to points in the program determined by the optimization phases. Phase II
detects points at which objects must be unpinned due to the side effects of an assignment or procedure call.
(Chapter 6 will explain why this is necessary.) Phase III detects points at which an object should be unpinned
because there are no more uses of the object following that point. This phase changes the p-sets that were produced
by phase I to reflect the new pinning plan. The syntax tree output by phase III, having the same form as the output
of phase I, finally passes to phase IV, where the improved plan is translated into C code.

4.4. OTHER IMPLEMENTATION ISSUES

So far, this chapter has described the E compiler’s internal organization and has outlined its general approach
to implementing persistence. In this section, we consider two specific implementation issues that arise from the

interaction of the semantics of C++ with the semantics of persistence.

4.4.1, Constructors and Destructors

An interesting problem arises when a persistent object is declared to be an instance of a dbclass that has a
constructor. Consider again the binary tree class definition in Figure 3.10. The class’s constructor initializes the
tree’s root node to NULL, indicating that the tree is empty. By definition, a constructor is called when the object is
created. Suppose, as in Figure 3.11, a program declares a persistent tree instance. Since the compiler creates the
persistent object, it would appear that the compiler must also invoke the constructor. But how is this to be
accomplished? The compiler, that is, efront, has only the abstract syntax tree for the program. Should we write an
interpreter? In general, a constructor may call other functions arbitrarily; what if those functions are externally

defined? In general, unlike this example, it may be that the constructor itself has been declared, but not yet defined.

In the implementation of version 2.2 of the E compiler, the problem is handled as follows. Strictly speaking,
it is not necessary to call the constructor at compile time. Rather, it is sufficient to ensure that the object is
initialized before any program actually uses it, and that it is initialized only once. A very slight extension to an
existing cfront mechanism provides a simple implementation satisfying these conditions. Before describing how
constructors are called on persistent objects, then, we first review the mechanism used in cfront for constructing

static objects.

Consider for a moment the C++ binary tree implementation in Figure 3.2, and suppose that a module®® m (not
necessarily the one containing main()) defines a tree instance T in the global scope. Any program which
includes m as one of its components must be sure to initialize T before the main program begins. In the general

case, a given program comprises a set of modules M each of which contains a set S,, of statically allocated objects

“The term "module” is used to emphasize that C++ programs are usually composed of separately compiled units.

61

that need initialization. The approach adopted in the AT&T C++ compiler involves first generating, as part of the C
translation, an initializer function f,,() for each module in M. The initializer function simply calls the appropriate
constructor for each object in §,,:

fn()

(

constructor(sy, args,)
constructor(s, argss);

)

In the case of the nonpersistent tree example, the initializer for module m would look something like®:

void _STI _m()
{
_binaryTree_ctor(&T);

}

The first action of every C++ main program is to call the initializer function for every module in the set M. The
steps enclosed in the dashed box in Figure 4.1 bind the calls made by the main program to the initializer functions.

E extends this mechanism as follows: In addition to the set of static objects S,, an E source module contains
a (possibly empty) set P,, of persistent objects, each of which is of a dbclass with a constructor. To implement the
desired semantics, efront amends the initialization function as shown in Figure 4.9. When f,() is called for the first
time, the persistent flag has the value TRUE. The flag is then cleared and constructors are invoked on the persistent

objects in m. If the same program is run again, or even if another program containing m is run, these constructors
f[m()
persistent BOOL init = TRUE;
if (init) {
init = FALSE;

constructor(p,,args,);
constructor(py, args,);

}

constructor(sy, argsy);
constructor(s, argsa);

)
Initializer for a Module with Persistent Objects

Figure 4.9

“"The actual name of the function is the name of the source file prefixed by "_STI", for STatic Initializer.

62

will not be called again because the flag is itself persistent and shared by all programs that include m. Once the
basic E persistence mechanism began working, this solution was trivial to implement; the compiler simply builds

the function internally as a normal E function and then passes it through the usual compilation phases.

One shortcoming of this solution is that it does not extend to destructors. A destructor is the inverse of a
constructor. Whenever an object of a class is destroyed, e.g. by going out of scope, the class’s destructor (if it
exists) is called first. A named persistent object is destroyed by deleting the module containing its persistent handle.
If that object is of a dbclass with a destructor, then we should call that destructor. While persistent objects are
initialized in the context of a running program (i.e. when all necessary code is available), the problem here is that
they are essentially destroyed "out of context,” (i.e. when all we have is a module containing persistent handles).
We currently provide a utility program, erm, for destroying modules. Erm ensures that destructors are called
properly, but it requires the user to specify explicitly any other modules that contain the code necessary for such
calls.

4.4.2. Virtual Functions

The C++ mechanism that supports "true" object-oriented behavior — the late binding of code to a method
invocation — is the virtual function. If a member function of a class is declared to be virtual, then the run-time
calling sequence involves an indirection through a dispatch table. In the AT&T C++ compiler, there is one such
table for each class having virtual functions, and every object of the class contains a pointer to that table. Thus, the
dispatch table is a kind of run-time type descriptor, and the table pointer embedded in each object of the class plays
the role of a type tag. The amount of type information known to the compiler thus allows for a very fast
implementation: a virtual function call adds one pointer dereference and one indexing operation to the cost of a

normal procedure call.

Unfortunately, when virtual functions are combined with persistence, this implementation no longer suffices.
We cannot store the virtual memory address of the dispatch table in a persistent object, as that address will be
different for different programs. One approach is to make the dispatch table itself a persistent object, thus making
the addresses embedded in the objects valid persistent addresses. This is the solution adopted in Vbase, for example
[Andr88]. However, this approach implies a dynamic loading implementation, as the dispatch table is filled with the
persistent addresses of the method code fragments; like the dispatch table and the objects themselves, methods are
"faulted in" as the program runs.

For E, we have implemented a different solution. For every dbclass C having virtual functions, the compiler
generates a unique integer type tag, and every instance of C contains this tag. The dispatch tables are still main
memory objects, but in addition, we introduce a global hash table (also a main memory object) for mapping type
tags to dispatch table addresses. Like the dispatch tables, the hash table is initialized at program startup; for each

63

dbclass in the program having virtual functions, we enter its type tag and dispatch table address into the global hash
table. Then, to call a virtual function at run-time, we hash on the type tag in the object. Once we obtain the

dispatch table address via hashing, the calling sequence then proceeds as before.

The current implementation computes the type tag as a 32-bit hash value based on various attributes of the
class definition. The possibility of a collision between types within a program does exist, although remotely. For
now, such collisions are simply detected at program startup and reported as an error. A complete solution, i.e. one
guaranteeing uniqueness, requires a substantial programming environment design and implementation. Such an
environment would have to distinguish between the first use of a given type and subsequent uses; the former case
requires that a new tag be generated, while the latter would reuse the existing tag. Note that classes themselves
would become objects in such an environment. We view such an environment as ultimately necessary, and we

discuss it further in Chapter 8.

64

CHAPTER §

CODE GENERATION

In Chapter 4, we outlined the basic approach that the E compiler takes in generating code to manipulate
persistent objects. In this chapter and the next, we will describe this framework in detail. This chapter describes
phases I and IV, while Chapter 6 details the optimization phases, II and III. For the sake of clarity, this chapter
omits a few details from the description of phases I and IV; these details relate to optimization and will be provided

in Chapter 6.

5.1. PHASE I: INITIAL PIN SCHEDULING

Phase I traverses the syntax tree of a function’s body and collects information that is needed by later phases
(II and HI, as well as IV). As mentioned in Chapter 4, this includes identifying objects in the program that must be
pinned as well as deciding initially where in the program those operations should be inserted.

In this section, we will describe the operation of phase I in detail. In order to make the discussion of code
generation more concrete, however, we first introduce an example that will be used in this chapter and the next.
Figure 5.1 shows the class definition and one class method for a doubly linked list implementation. Each linked list
node comprises an integer data field, as well as pointers to the next and previous nodes in the list. The insert
method performs a series of four pointer assignments to insert the node referenced by that between the node
referenced by this and its following neighbor.

5.1.1. Identifying Common Subexpressions

The first task performed by phase I is the identification of common subexpressions (CSEs). In one pass over
the syntax tree, phase I builds a dag representation of the expressions in the procedure. The difference between the
dag and the syntax tree is that a given expression in the dag is shared by all contexts in which it appears; in the
syntax tree, each occurrence is a separate copy of the expression. During phase 1, each expression node in the tree
is made to point to its common representative in the dag. As a result, later processing can easily check that two
expressions are "the same" by seeing if they point to the same representative. Although techniques for building
such dag representations are well known [ASUS86), there are a few small complications in this environment that
should be noted. First, in building a dag from intermediate code, one is usually limited to expressions that are either
named variables or arithmetic operations. The expressions in a C syntax tree also include operators that dereference
through a pointer (*), index into an array ([]), and select a field from a record (.). Furthermore, C allows several

different syntactic forms to denote the same object. For example, since arrays and pointers are equivalent, a[n]

65

dbclass dil ¢
dbint data; // data field
dll * prev; // pointer to previous node
dll * next; // pointer to next node
public:

void insert(dl1 *); // insert new node
}:

void dll::insert{(dll * that) {
that->next this->next;
that->prev this;
this~>next->prev that;
this->next that;

[I

Doubly Linked List Example

Figure 5.1

and * (a+n) are equivalent expressions.
Because CSE identification is based on matching syntactic forms, all such constructs are first normalized:
(1) The expression e, [e,] becomes * (¢, +e,) if e, is actually of a pointer type.
(2) The expression * (e ,+e,) becomes e, [e,] if e is actually of an array type.
(3) The expression e, —>mem becomes (*e).mem in all cases.

Fortunately, these additional operators present no real difficulty; the dag-building algorithm simply considers ([])
and (.) to be additional binary operators, and (*) to be another unary operator.

Another problem is that, unlike languages such as Pascal, C considers assignment to be an expression and not
a statement. This feature leads to the possibility of such constructs as (p = £ ())->x, meaning, call £, assign
the result to p, and dereference through that pointer to obtain the field x. The problem here is that CSE
information is used to eliminate redundant pinning by detecting when the same object is being referenced in two
different places. If an expression has a side effect, then eliminating the evaluation of one instance of the expression
could result in an incorrect program. For example, suppose a program contains the expression:

((p=£0)->x + (p=£0)->x)

It would be incorrect to produce code that pins x once and uses the pinned value for both sides of the addition. We

must assume that £ returns a different value for each call*?, and hence, the two operands of the addition denote

different objects. For these reasons, the CSE identification algorithm considers every expression having side effects

“Interprocedural dataflow analysis could perhaps improve this conservative estimate.

66

to be a unique expression, even if the operands are the same. Such expressions include assignment in all its various

forms (e.g. =, +=, ++, etc.) as well as all function calls.

The last issue complicating CSE identification involves scoping. Since every name in the leaves of an
expression tree is defined within a particular scope, the expression itself is defined only within a particular scope.
Specifically, a CSE is associated with the most deeply nested scope of any of its operands. For example, consider

the following program fragment.

void f(dbint * p)
{
{

int n;
.. *{p + n)

}

The name expression p is associated with the scope of the function’s body, while the expressions n, p+n, and
* (p+n) are all associated with the scope of the inner block. If a function references a global variable by name,

that variable is temporarily “imported” and associated with the scope of the function body.*® Constants (literal
values) are also associated with the scope of the function body.

Every symbol table owns a table of the CSEs that are associated with its scope. Figure 5.2 shows this
relationship. When a new CSE is detected, it is given an identification number and added to the appropriate table.
Id numbers start at zero for each scope and are assigned in order of CSE identification. The global id for a given
CSE is determined by adding the number of CSE’s in all enclosing scopes to the CSE's local id. CSEs in mutually

exclusive scopes may have the same global id.

Since algorithms for constructing dag representations are well known, and since the complications we
described have fairly straightforward solutions, we will omit giving the full algorithm here. Instead, Figure 5.3
shows only the two most important procedures: enterScope and matchCse. EnterScope builds a new
CSE table when we enter a new lexical scope and immediately adds all of the locally declared names to that table.
MatchCse accepts an operator (token) and its associated CSE operands. If a CSE having the given operator and
operands already exists, it is returned. Otherwise, matchCse builds a new CSE, enters it into the appropriate
1able (based on the scopes of the operands), and then returns it. Obviously, we are only sketching the algorithms
here; there are many details in the actual implementation that are not of interest for this discussion. For example,
the matchCse procedure shown in Figure 5.3 only handles binary operators, when in fact, we must handle unary

and ternary operators as well.

“Thus, the "most global" scope for any item is a function body. If we were to introduce interprocedural analysis into the compiler, then
this aspect of the implementation would have to change.

67

Symbol

CSE
Tables Tables
() mpEEEEN
() HERNE
Ox \;
Syntax Tree Dag Representation

Syntax Tree and Dag Representations

Figure 5.2

Let us examine the process of collecting CSEs in the context of the linked list insertion example given earlier.
Figure 5.4 illustrates the resulting data structures after the first two statements have been processed. When we enter
the scope of the procedure, enterScope adds the locally declared names. In this example, the implicit parameter
this receives the id 0, and the parameter that receives id 1. Now, when we descend the expression tree for the
first assignment, we first discover the leaf node, that,and find that it is already a CSE whose id is 1. Returning to
next higher level, we look for a CSE whose operator is * and whose operand is CSE 1. Finding none, we identify
*that as a new CSE, and assign it the next available id, 2. In addition, the instance of *that in the syntax tree is
made to point to the newly created CSE. Continuing in this fashion through the first two assignments in the
procedure, we obtain the labelings as shown in the figure. For clarity, we do not show all of the arcs actmally

present. Instead, we only show the two occurrences of *that pointing to their common representative CSE.

5.1.2. Items

For the purposes of identifying CSEs, all expressions in the program are of interest. However, for the task of
pinning and unpinning objects, we will only be interested in a subset of the CSEs called the items. An item is an
Lvalue, i.e. an expression denoting an addressible object. Informally, an item is any expression that may legally
appear on the left hand side of an assignment. An item is easily identified by its syntactic form. First, any named
variable is an item. Next, if e, is a pointer valued expression, then *e, is an item. If e; is a structure valued
expression, then e,.mem is an item, where mem is the name of a field in the structure. Finally, if e4 is an array

valued expression and e, is an integer valued expression, then ej[e4] is an item. Thus, given an expression tree,

void enterScope(symbolTable stbl)
{

create a new cse table, cseTbl, and attach it to stbl;
initialize number of entries, nEntries, to 0;

foreach (name in sthbl)

{

enter new cse corresponding to name into cseTbl;
initialize id# of cse to nEntries;

make name point to cse;

increment nEntries;

cse matchCse(token op, cse csel, cse cse2)

cseThl = of csel’s table and cse2’s table, the one
of deeper lexical level;

if(op is an assignment or function call)

{

create new cse = <op, csel, cse2> in cseTbl;
return cse;

else

look in cseThl for cse == <op, csel, cse2>

if (found)
return cse;
else

{

create a new cse = <op, csel, cse2> in cseTbl;
return cse;

Procedures for Collecting CSEs

Figure 5.3

68

69

.nfxt .nfxt D“e{ \!his '""\"‘3'/1”""7/ . nexts
|

“.this that 7 than this 0

e
.~ -

- -
...........

CSE’s from the Insert Method

Figure 5.4

one need only look at the operator in the root node to determine if the expression is an item. Note that an itlem may
of course have subexpressions that are not items. For example, if pisa pointer, then * (p + 1) is an item, but

{(p + 1) isnot.

Because the scheduling of pin and unpin operations is concerned exclusively with items (as opposed to
general CSEs), the E compiler’s implementation is optimized for manipulating sets of items. Within a given scope,
the items are distilled out of the general pool of CSEs and given local item ids, again starting at O for each scope.
Thus, if there are n items in a given scope, they will have local item ids ranging from O to n-1. Figure 5.5 shows the
items from the linked list example, each labeled with its local item id. For those items whose item id differs from its
CSE id, the latter value is also given in parentheses. As with CSEs, the global id for a given item is its local id plus
the number of items in all enclosing scopes; items in mutually exclusive scopes may again have the same global
item id. Because the items in Figure 5.5 all belong to the scope of the function body, their local ids are also their
global ids.

By renaming items as described above, it is then possible to represent sets of items compactly with bit vectots.
Like CSEs and items, item sets are associated with scopes. An item set may contain items from its scope or from
any enclosing scope, and the numbering of the bits in the set’s representation corresponds to global item ids. For
example, the item set associated with the scope of the insert routine requires nine bits, as there are nine items in that

scope. The set { 100 011 000) represents the items this, *this,and (*this).next.

5.1.3. Initial Pin Scheduling

In addition to identifying common subexpressions and items, phase I also decides on an initial plan for
pinning and unpinning items. As we saw in the overview in Section 4.3.3, this plan is represented by sets of items,

called the p-sets, attached to certain nodes in the syntax tree.

70

. prev 8 (10)
.next 3 .prev 6 (7) 'i 79
* 2 .next S
* 4
that 1 ‘
this 0

Items from the Insert Method

Figure 5.5

5.1.3.1. Detecting Items to Pin

The algorithm for detecting which items to pin is essentially the same as that used in the code generator for
the first E compiler [Rich89]. (We will review this algorithm shortly.) The major difference lies in the action taken
when such an item is discovered. Formerly, the syntax tree was immediately transformed; a Storage Manager call
to read the object along with a dereferencing expression to produce the object’s value combined to replace the
item’s occurrence in the tree. In phase I of the current code generator, however, there are no tree transformations.
Instead, items that are to be pinned are simply added to the p-sets of certain nodes in the tree. Deciding where those

sets should be located will be discussed in the next section. For now, let us concentrate on finding the items.

Assume for the moment that x is a persistent integer. The mere occurrence of x in the syntax tree does not
necessarily imply that x should be pinned. For example, if x occurs in the expression (&x), then clearly, all that
is desired is the location of x, which is available in x’s companion. In general, then, whether an item should be
pinned or not depends on the context in which it is found. Accordingly, as the expression tree is traversed during
phase 1, each call level passes a parameter to the next call level indicating whether the subexpression is intended to
produce an Lvalue (an address) or an Rvalue (a data value).

Figure 5.6 shows the algorithm for detecting which items to pin. (The cases shown are representative rather
than exhaustive.) Although the algorithm is written as if it were an independent pass over the tree, we note again
that the tasks of identifying CSEs and items, of deciding which items to pin, and of deciding where initially to
schedule the pins are all performed in one pass. The first parameter to detectPins is ex, a pointer to an
expression node in the syntax tree. If the expression is a name, then the base field contains the token NAME;
otherwise, base contains the operator token for the expression. In the latter case, the node also contains fields el

and e2, which are pointers to the operands of the expression. (For unary operators, e2 is unused.) The second

void detectPins(ex,

{

context)

switch (ex->base)
{
case NAME: .
if(NAME’s type is not
break;
if(NAME is persistent
&& context == Rvalue
schedulePin(ex
break;
case DOT: /* {(el.mem) */
detectPins(ex->el,
if(mem’s type is db

71

db)

or extern
)
)

Lvalue);

&& context == Rvalue)
schedulePin{ ex);

break;

case DEREF: /* (*el) */
detectPins{ ex->el, Rvalue);
if (ex->el is pointer to db type
&& context == Rvalue)

schedulePin{ ex);

break;

case ADDROF: /* (&el) */
detectPins(ex->el, Lvalue);
break;

case ASSIGN: /* (el = e2) * /
detectPins(ex->el, Rvalue):
detectPins{ ex->e2, Rvalue);
break;

case PLUS: /* (el + e2) */
detectPins{ ex->el, Rvalue);
detectPins{ ex->e2, Rvalue);
break;

/* etc... */

}

return;

}
Detecting Items to Pin

Figure 5.6

parameter to the routine is context, an enumerated type having one of the values Lvalue or Rvalue. When the

algorithm detects an item that should be pinned, it calls the routine schedulePin, which adds the item to the

72

appropriate p-set.

As an example of the operation of detectPins, consider the first assignment statement in the linked list
insertion routine. Figure 5.7 shows the syntax tree for this assignment. Each arc in the tree is labeled with the value
of the context parameter for the associated invocation of detectPins. Arrows point to the items that the

algorithm decides should be pinned.

5.1.3.2. Deciding Where to Pin Items

Given that we are able to identify what should be pinned, we must now decide where those pin operations
should be inserted into the program. Although it may appear that we can simply pin the items needed by a statement
right before entering that statement, we must beware of certain subtleties involving side effects and flow of control
through C expressions. According to Kernighan and Ritchie,

...the order of evaluation of expressions is undefined. In particular the compiler considers itself free to compute sub-

expressions in the order it believes most efficient, even if the subexpressions involve side effects. The order in which

side effects take place is unspecified. [K&R78, p. 185]

These comments apply to expressions involving such operators as +, *, and =. There are a few expressions,

however, in which the evaluation order is defined. In particular, the comma operator explicitly specifies sequential

—> _next .next ¢
Lvalue Lvalue
* "
Rvalue Rvalue
that this

Example of Detecting Items to Pin

Figure 5.7

73

left-to-right evaluation; in (e;,e,), for example, e, is evaluated before e,.** The conditional operator is another
example; in (e;%ej:€3), € is evaluated first, followed by the evaluation of either e; or e3, depending on e,’s
value. Finally, the boolean connectives && (AND) and | | (OR) are defined to have short-circuited evaluation; in

(e, &&ey), e, is evaluated first, and only if the result is nonzero is e, then evaluated.

These control flow considerations are important for deciding where to pin items in the tree, as the process of
pinning an item involves evaluating the expression that denotes the item’s location. Consider for example, the item
p->x. If this were to appear in

(p=£0, p>x =1)
it would be incorrect to pin the item before the comma expression; the programmer has been careful here to define
the path to p->x before traversing it, i.e. by assigning a value to p. If, however, the item instead appears in
((p=£0, y) + p->x)
then the compiler is free to pin p->x before the expression. Here, the programmer has, in all likelihood, assumed

incorrectly that the operands to + will be evaluated from left to right.

Based on these issues, phase I of the code generator decides where to schedule pin operations as follows.
During its recursive descent of the syntax tree, this pass looks for nodes that specify flow of control; such nodes
include all statements as well as the expression types mentioned above (e.g. comma expressions). When such a
node is encountered, phase I pushes either that node or the appropriate child of that node onto a stack called
flowNodes. Later, when it discovers an item that must be pinned, phase I adds that item to the p-set associated with
the top node on the flowNodes stack. The reason for pushing "either that node or the appropriate child" may be seen
through two examples illustrated in Figure 5.8. Assume that phase I encounters a comma expression. The correct
sequence of events is to process the left subtree (e1) recursively, then to push the root node of the right subtree (e2)
onto flowNodes, then to process the right subtree, and finally, to pop the stack. We do not push the comma node
itself for two reasons. First, for items discovered in el, pinning them only for the duration of the comma
expression is more limiting than is necessary; we may legitimately pin those items higher up in the tree. Second,
and more importantly, for items discovered in e2, pinning them before entering the comma expression is incorrect,
as explained. Now assume that phase I encounters an expression statement, i.e. a statement consisting of an
expression followed by a semicolon. In this case, we could correctly attach the p-set for el either to the statement
node or to the root node of the expression; the order of events during execution would be the same in either case.
We chose the former, however, since it ultimately produces better code. Here, "better” means that the output has

smaller expressions, since the pin and unpin operations become separate statements, rather than being welded into

*“Note that the commas separating arguments in a function call are nof comma operators; the order of evaluation of function arguments is
undefined [K&R78, p. 186).

74

/

Items from el l

l Items from el
pinned above.

Items from e2 « pinned here.

’ pinned here. H

A X

Itustrating Where Items Are Pinned

Figure 5.8

one very large expression. Not only does this make debugging the compiler easier, but it also avoids the problem

that some C compilers have (rather arbitrary) limits on the size of the expressions that they can handle.

In light of the preceding discussion, the linked list insertion routine has quite a simple structure. In its series
of four assignments, none of the expression operators specifies control flow; therefore, all pinning of items will
occur at the statement level. Figure 5.9 shows the output of phase I. Attached to each of the four statement nodes is
a p-set for that node. The first statement, for example, has a p-set containing (*that).next and
(*this) .next. Note that the p-set for the third statement contains (*this).next (item 5) and
* ((*this) .next) .prev (item 8). That is, before the assignment, we must pin item 8, which is the prev field
from the object following the one referenced by this. In order to do this, however, we must first pin item 5,

which is the next field in the object referenced by this.

5.2. PHASE IV: TRANSFORMING THE SYNTAX TREE

If optimization is not enabled, then the output of phase I feeds directly into phase IV of the code generator. In
this section, we describe the process by which phase IV transforms an E syntax tree (decorated with p-sets) into a C
syntax tree. The major tasks in this process include: generating code fragments (sprigs) to pin, unpin, read, and
write the items found in the p-sets; grafting the sprigs onto the tree at the appropriate points; and transforming db
pointer arithmetic into DBREF manipulations.

There are several issues that affect the design of phase IV. First, the items to be pinned are not necessarily
persistent; E allows db type variables to have any of the normal storage classes in addition to persistent, and db
type objects may also be allocated from the heap (i.e. with the new operator). In some cases, the compiler knows
for sure whether an item is persistent or not. For example, if the item is a named variable, the compiler can simply
look in the symbol table to find its storage class. In many (perhaps most) cases, however, the persistence of an item
cannot be determined until run-time. For instance, in our linked list example, the compiler cannot tell if the pointers

passed into the insertion procedure refer to persistent or to volatile objects. Therefore, the sprig that implements a

{000 101 000}

{000 000 100}

{000 001 001}

{000 001 000}

|
/ N\

|
/\

that

|
/\

. prev this . prev that
*
next
*
this
Legend of Items

]
/\

. next that

this

. niaxt . next
* *
that this
0 this
1 that
2

3 (*that).next
4 *this
5 (*this).next

6 (*that).prev
7 *((*this).next)
8 *((*this).next).prev

Figure 5.9

Phase I Pinning Plan for the Insert Method

75

pin operation must handle both possibilities. This same problem also affects the sprig to reference or to write a

pinned item.

Another issue that affects the design of phase IV is that items are expressions of rather arbitrary composition.

A given item may involve a chain of pointer dereferences, for example; in order to pin such an item, we must first

pin each intermediate pointer in the chain. We just saw an example of this in Figure 5.9 with the item

* ((*this) .next) .prev. Another item may involve pointer arithmetic, e.g. * (p + n); inorder to pin this

item, we must first transform the arithmetic into DBREF manipulations. The point here is that generating the sprig

to pin an item in a p-set — one of the tasks of phase IV — may require a recursive call of phase IV on that item in

order to obtain its DBREF address.

76

5.2.1. The Functions genSprigs() and mungeTree()

Phase IV is implemented with a pair of mutually recursive procedures, genSprigs and mungeT ree®

The routine genSprigs takes an item as a parameter and builds a set of code fragments (the sprigs) for that item.
These sprigs implement the basic operations needed for manipulating the item at run-time. The pinning sprig pins
the item; it includes a call to the Storage Manager routine sm_ReadObject. The unpinning sprig unpins the
item; it contains a call to sm_ReleaseObject. The reading sprig produces the item’s value for use in an

expression; it involves dereferencing through the item’s user descriptor. Finally, the writing sprig assigns a new

value to the item; it contains acall to sm_WriteObject.*

In building the pinning sprig, genSprigs must include arguments with the Storage Manager call that
provide the OID and offset of the item. In order to do this, genSprigs must have access to an expression giving
the DBREF address of the item. Such an expression can be produced by the routine mungeTree. Thus, in the

course of building the pinning sprig for an item, genSprigs calls mungeTree, passing it the item and

requesting the item’s Lvalue.*’

MungeTree is the "top level" routine of phase IV. That is, phase IV begins when the compiler calls
mungeTree, passing it the syntax tree produced by phase I. MungeTree traverses this structure and performs

the following tasks:

(1) If a node in the syntax tree has a p-set, then genSprigs is called for each item in the set. MungeTree

then grafts the pinning and unpinning sprigs before and after the node, respectively.

(2) Ifan item occurs in the tree, and that item is pinned, then that occurrence is replaced with either a reading or
a writing sprig, as appropriate for the context. For example, if the item appears on the left hand side of an
assignment, then a writing sprig replaces the occurrence (and actually replaces the assignment itself).

However, if the item appears on the right hand side, then it is replaced by a reading sprig.

(3) If an expression performs arithmetic on a db pointer, then it is replaced with an expression that manipulates
a DBREF structure.

Together, the routines genSprigs and mungeTree transform the E syntax tree into a C syntax tree.

Now that we have outlined what the two routines do and how they interact, let us describe each one in more detail.

S munge (munj) v. 1. slang to fold, spindle, or otherwise mutilate; in this case, to transform the syntax tree into a form no longer recog-
nizable as the original.

“For detailed implementation reasons, writing sprigs are not generated until they are actually needed for grafting onto the tree.

“Since mungeTree alters the expression tree passed to it, genSprigs actually passes a copy of the item.

77

5.2.2. Generating Code Sprigs

In this section, we describe the form of the code fragments built by genSprigs. Before we can proceed,
however, we must first explain in more detail the data structures that connect an expression in the syntax tree with

its representative in the dag built by phase L.

As shown in Figure 5.10, an expression’s representative is a data structure that maintains several pieces of
information, one of which is a pointer to the CSE, i.e. to the expression nodes in the dag. This pointer is represented
as a dotted arc in Figure 5.10. Note that the expression nodes in the dag also point (back) to this representative,
although for clarity those arcs are not shown in the figure. A representative also maintains a pointer to every CSE
that is an immediate parent of this CSE. Given this structure, we may find all subexpressions of a CSE by traversing
down through the subexpression arcs, and we may find all supexpressions (i.e. expressions containing this CSE) by
traversing up the parent arcs. For example, starting at the + node in Figure 5.10, we can find the subexpressions x
and z. Conversely, starting at x, we can traverse upward along x’s parent arcs to find that x is a subexpression
of (x + z). Lastly, although not shown in Figure 5.10, we note that a CSE’s representative node in the dag also
includes the CSE'’s local id and a pointer to the CSE table to which it belongs.

The syntax tree. teds “
I \ i / Representative of (x+z

l f /1 :

+ : \\ ’/] |

/ \ : pinlnfo parem.s| expr-f==""TTTTTTTTS |

\——iwnfo‘mlré&s expr]' pinfnfo [Par\mtsl expr-}- _________ . i

': >\>\ Sprigs. I

Detail of Data Structures for CSEs and Items

Figure 5.10

78

When genSprigs is called on an item, it creates a structure called a pin record which it then attaches to
the item’s representative in the dag. This structure serves mainly to store the code fragments built by genSprigs
for later retrieval. It also holds the names of two variables needed for building the sprigs. The first variable, labeled

"ud" in Figure 5.10, is the name of a temporary variable introduced by the compiler to serve as the user descriptor

argument to the various Storage Manager calls that are generated. This variable is declared to be of type int * 48

The second variable recorded in the pin record is the DBREF variable that contains the item’s address. As stated
earlier, genSprigs invokes mungeTree in order to obtain the address of the item. MungeTree retumns an
expression that computes this DBREF along with the name of the variable that will contain this value at run-time.
GenSprigs then records the variable’s name in the pin record. For example, if the item being pinned is *p, then
the expression to "compute” the address of the item is simply the variable p. If the item is instead * (p+1), then

the expression assigns p to a temporary and increments the temporary’s offset.

5.2.2.1. The Pinning Sprig

After genSprigs has obtained the name of a DBREF that will hold the item’s address at run-time, it builds
a Storage Manager call to pin the item. The OID and offset arguments are supplied by the DBREF. The length
parameter is a constant equal to the size of the type of the item being pinned. As we stated above, the user
descriptor argument is a pointer (temporary) declared by the compiler. The declaration has the following form:

int * _tmpUd00l = NULL;
The initialization of this pointer to NULL is important for reasons that will be explained in Chapter 6. The first
approximation of a pin operation, then, is an expression the form:
ping ::= sm_ReadObject(dbref.oid, dbref.offset, length, & _tmpUd001)
Every Storage Manager call returns a status value; zero indicates success, and any other value indicates an error of
some kind. E programs check every call to sm_ReadObject, and if there is an error, the program is aborted.
Thus, we modify the pin operation as follows:
piny ::= ((__E_error = ping) ? __Eabort(__E error) : 0)

__E_error is a global integer variable in all E programs, and it records the status value returned from Storage
Manager calls. _ Eabort is a library routine that reports the error, aborts the transaction in the Storage

Manager, and exits the program.

As we have mentioned previously, the compiler cannot generally tell if the item being pinned is persistent or

not. If the item is not persistent, then the DBREF contains an OID that indicates virtual memory and an offset that

“Recall that a client of the Storage Manager passes the address of a pointer in the sm_ReadOb7ject call. On retum, the pointer refer-
ences a user descriptor inside the Storage Manager.

79

contains the item’s virtual address. To handle this case, the compiler allocates a second temporary:
int _tmpInMem001;

and the pin operation is modified as follows.

ping ::=
((_tmpInMem00l = INMEM(dbref.oid)) ?
(_tmpInMem00l = dbref.offset, _tmpUd001l = & _tmpInMem001)
: pinl);

TNMEM is a macro that does a simple test (an integer comparison) on a portion of the OID and returns TRUE if the
OID references a nonpersistent object. Thus, the pin operation first checks if the OID indicates a virtual address and
then assigns the boolean result to _tmpInMem001. If the result is TRUE, then _tmpInMem001 is reassigned
with the virtual address of the object, and _tmpUd001 is made to point to _tmpInMem001. (Note that after the
reassignment, _tmpInMem001 is still nonzero, i.e. TRUE.) If the result is FALSE, then the operation calls the

Storage Manager.

The reason for designing the pinning sprig in this way is that no matter which branch is taken during the pin,
read access to the object is uniformly a double indirection through _tmpUd001. The alternative would be to
perform another check at the point of access to see which branch was taken in the pin. If the Storage Manager
branch was taken, the access would perform the double indirection, and if not, it would perform a single indirection
using the virtual address in the DBREF. This alternative has two disadvantages. First, we would essentially be
making the same test several times instead of once, i.e. not only at the pin, but also at every access. Second, on at
least some architectures, a double indirection can be performed in one machine instruction; the second alternative

would require a test, a branch, and then either a single or a double indirection.

5.2.2.2. The Unpinning Sprig

The unpin operation is a call to the Storage Manager routine sm_ReleaseObject. This call is needed

only if the pin operation took the Storage Manager branch. Accordingly, an unpin has the form:
unping ::= (_tmpInMem00l ? 0 : sm ReleaseObject(_tmpUdO0l))

That is, if the object is in virtual memory, do nothing; otherwise call the Storage Manager (o release it.

5.2.2.3. The Reading Sprig

As explained above, read access to a pinned item always follows a double indirection. Assume the item is of
type T. The reading sprig then has the form:
ready ::= *{ (T*) *_tmpUdO00l)
That is, this operation dereferences through _tmpUd001, casts the resultasa T*, and then dereferences one more

time.

80

When we discuss coalescing in the next chapter, we will see that a read operation will sometimes require an
additional offset into the pinned range. In such cases, the operation will have the form:
read; ::= *((T*) (* tmpUd00l + offset))
Since _tmpUd0O01 is declared as an int*, the addition is integer addition, and the offset thus specifies a number

of bytes.

5.2.2.4. The Writing Sprig

Unfortunately, unlike the read operation, the writing sprig cannot be made uniform with respect to the
persistence of the item being written. If the pin operation took the in-memory branch, then we must update the item
directly through the pointer. If the pin operation took the Storage Manager branch, however, we must call
sm_WriteObject to update the object. Parameters to this routine include a pointer to the user descriptor
associated with the pinned byte range, an offset into the range, and the number of bytes to be written. Furthermore,
this call requires as a parameter the address of the new data to be written into the object. As a result, we must often
copy the value to be assigned into a temporary location so that we may pass the address of the temporary in the call.
For example, if X is a persistent integer, then in the assignment X = 0, we must first assign O to a temporary and

then pass the address of the temporary to sm_WriteObject.

Assume that the item being updated has type T, and that <expr> is the value to be written. The compiler

allocates a temporary, _tmpVal001, of type T. The write operation then has the form:

writeg ::=
(_tmpValO00l = <expr>,
(_tmpInMem001 ?
(read; = _tmpvalO0l) .
sm _WriteObject(_tmpUd00l, offset, size, & tmpvall0l)))

If the object is in virtual memory, we assign to it directly, so the left hand side of the assignment has the same form
as the read expression for the item. If the item is persistent, we call the Storage Manager instead. The offset

parameter has the same value as in the reading sprig, and size is a constant equal to the size of T.

5.2.3. Grafting the Sprigs

The code fragments generated by genSprigs are grafted onto the syntax tree by the routine mungeTree.
As we stated earlier, mungeTree is actually the top level routine of phase 1V, and its job is to traverse the tree,
transforming it into a C syntax tree. This job involves calling genSprigs for the items found in p-sets, inserting
the code produced by genSprigs at appropriate points, and translating db pointer expressions into DBREF

expressions. Figures 5.11 and 5.12 show the mungeTree routine. (The procedure is split between the two figures

81

for clarity of presentation.) MungeTree takes as its first argument a pointer to an expression®®, and it returns a
pointer to the transformed expression. Thus, when mungeTree calls itself recursively (i.e. to descend the
expression tree), the form of the call is:

ex->el = mungeExpr{ ex->el, ...);
Here, mungeTree recursively processes the subexpression referenced by el and replaces el with a pointer to

the result.

As was the case with the phase I routine detectPins, each invocation of mungeTree receives
parameters from the caller indicating what kind of transformation is required. For example, like detectPins,
mungeTree has a context parameter indicating whether the transformation is to produce the Lvalue or the Rvalue
of the expression. In addition, mungeTree takes a third argument, RorW. The value of this argument is either
READ or WRITE, and it is used when mungeTree replaces a pinned item’s occurrence in the syntax tree. If the
item’s value is being used in an expression, then RorW will have the value READ, and mungeTree will replace
the item with its reading sprig. If the item is being assigned, then Rorw will have the value WRITE, and

mungeTree will replace the item with its writing sprig.

We may now summarize the actions of an invocation of mungeTree. As shown in Figure 5.11, the first act
is to check the expression node to see if it has an attached p-set; if so, then mungeTree calls genSprigs on
each item in the set. On retur, the pin record for each item contains the different code sprigs that will be needed
later. In the next step, mungeTree checks to see if the given expression is a pinned item, that is, one for which a
pin record currently exists. If so, and if the current context requires the item’s Rvalue, then mungeTree
immediately returns either the item’s reading sprig or its writing sprig, depending on the value of the parameter
RorW. If the context requires the item’s Lvalue, then processing continues on to the main body of mungeTree,
shown in Figure 5.12. For the moment, let us postpone considering that part of the procedure and continue instead
with Figure 5.11. Assume that we have processed any subexpressions and that we are now ready to complete the
invocation at this level. If genSprigs was called at the beginning of the invocation, then mungeTree grafts
the pinning and unpinning sprigs onto the tree. MungeTree grafts each pinning sprig by building a comma
expression in which the sprig is the first operand and the expression is the second; unpinning sprigs are grafted
similarly, except that the order of the operands is reversed in the comma expression. MungeTree then calls the
procedure delSprigs which deallocates certain data structures built by genSprigs. Finally, mungeTree

terminates the invocation by returning the transformed expression.

“MungeTree is really two routines, mungeStmt and mungeEXpr. The actions of mungeStmt (not shown) are similar enough to
those of mungeExpr that they do not need an independent explanation.

82

expr * mungeTree(ex, context, RorW)
{
if(ex has a p-set)
foreach (item in p-set)
genSprigs(item);

ifex is the root node of a pinned item
&& context == Rvalue)
{
if(RoxrW == READ)
return the item’s reading sprig;
else
return the item’s writing sprig;

/*

** Process subexpressions recursively here.
** Also transform db pointer arithmetic.

** (See Figure 5.12.)

*/

if(ex has a p-set)

foreach (item in p-set)

{
let p = the item’s pinning sprig;
let u the item’s unpinning sprig:;
ex = (p, ex }); // prepend the pin
ex = (ex, u); // append the unpin
delSprigs(item);

}

return ex;

The Procedure MungeTree (part 1)

Figure 5.11

Figure 5.12 shows the remainder of the body of the mungeTree routine. It is here that the routine processes
subexpressions and converts db pointer manipulations into DBREF manipulations. The context parameters that
are passed in the recursive calls match the values passed in the detectPins routine. For example, if the current
invocation is to produce the Rvalue of a structure member (i.e. of a DOT expression), then it requests the Lvalue of
the containing structure (i.e. of the subexpression el). If the current invocation is to produce the Rvalue of a
PLUS expression, then it requests the Rvalue of both operands. In the recursive calls, the RorW parameter has the
value READ in all cases except for processing the left hand side of an assignment; in that case, RorW has the

value WRITE.

83

Let us consider some specific examples and show how mungeTree and genSprigs work together 0
transform a syntax tree. Suppose we pass mungeTree the expression (p + n) where p is a nonpersistent
dbint* and n is an int. (We must be requesting the Rvalue, since this expression does not denote an
addressible object.) When we enter mungeTree (Figure 5.11), we will fall through both of the first two steps;
since we are assuming that nothing here is persistent, the expfession does not have a p-set, nor is it the root of a
pinned item. In the main body of mungeTree (Figure 5.12) we then go to the PLUS branch in the switch
statement, and will request the Rvalue of both operands. Consider the left operand, p. In the new invocation, we
will fall to the NAME branch of the switch. Since context specifies Rvalue, we break out of the switch, and
ultimately return from mungeTree with the same expression (p) that was passed in. The same path is taken in
processing the right operand of the addition, n. Thus, after processing both operands, no changes have yet been
made. In the next step of the PLUS branch, however, we will discover that the left operand is a DBREF, indicating
that the program is performing arithmetic on a db pointer. At this point, the compiler declares a DBREF temporary

variable, and builds the following expression:

*(tmpRef00l = p, _tmpRef00l.offset += n*4, & _tmpRef001)

This expression assigns p to the temporary, increments the byte offset in the temporary by the n times the number

of bytes in an integer, and finally produces the value of the temporary for use in a larger expression.so

As a more interesting example, consider the first statement of the program in Figure 4.8. This example is
reproduced (slightly modified) in Figure 5.13 for convenience. When (the statement version of) mungeTree is
invoked on the first statement, it discovers that the node has a p-set containing the persistent dbint x. Just as in
Figure 5.11, it then invokes genSprigs on the item x. GenSprigs then builds the code sprigs as described
in section 5.2.2. In building the pinning sprig, genSprigs invokes mungeTree On X, requesting its Lvalue.
This invocation of mungeTree eventually returns x’s companion, _ E_x. GenSprigs thenuses _ E x 10
build the sm ReadObject call, builds the other sprigs, and finally returns to the first invocation of
mungeTree. This invocation then processes the assignment expression.' We will not bother to trace the entire
execution path here; the only interesting case occurs when mungeTree calls itself on the left operand of the
addition. In this new invocation, context specifies Rvalue, the item x is currently pinned, and the RorW
parameter has the value READ. Thus, as shown in Figure 5.11, mungeTree returns the reading sprig for x,
which then replaces the occurrence of x in the tree. Eventually, we return to the invocation that called

genSprigs. Its last action is to graft the pinning and unpinning sprigs onto the tree. Figure 5.13 shows the

$The last expression in parentheses takes the address of the temporary which is then used by the outer dereferencing operator. This is a de-
tail required by C.

switch (ex->base)
{

case NAME:
if (context == Lvalue && NAME’s type is db)
ex = companion;
break;
case DOT: /* el.member */
ex~->el = mungeTree(ex->el, Lvalue, READ);
if (context == Lvalue && member’s type is db)
{
/* ex->el is now a DBREF */
using ex->el as a base, transform ex into
a DBREF expr with offset incremented by
member’s offset within record;
}
break;

case DEREF: /* *el */
ex->el = mungeTree(ex->el, Rvalue, READ);

if (context == Lvalue && ex->el is a DBREF)
ex = ex->el;
break;
case PLUS: /* (el + e2) */

ex~->el = mungeTree(ex->el, Rvalue, READ);

ex->e2 = mungeTree(ex->e2, Rvalue, READ);

if(ex->el is a DBREF)

{
using ex->el as a base, transform ex into
a DBREF expr with offset incremented by
ex->e2 time sizeof referenced type;

}

break;

case ASSIGN: /* el = e2 */
ex->el = mungeTree(ex->el, Rvalue, WRITE);
ex->e2 = mungeTree(ex->e2, Rvalue, READ);
if(ex->el is a writing sprig for pinned item)
{
declare temporary and assign ex->e2 to it;
use temporary to fill in data arg to
sm WriteObject call;
replace ex by the write expr;

break;

The Procedure MungeTree (part 2)

Figure 5.12

84

85

v
B —
L () § ()
" ; |
{ x }; —>return : ; > >3 > return
B & i
. s | | | |
- /—\; g y . sm igad(?)t?éecz J/ \+ sm_RelZlads)eObject y
N : x.o0d, 'y
= SN ; TExoffser, 47
! PN H
LN N ; sizeof(int), .
! |
L &Ud) ud

A Simple Example Revisited

Figure 5.13

resulting tree; the tree has been simplified for presentation by omitting all nonessential code (i.e. code that is not
essential for this discussion).

As a final example, consider the third statement in the linked list insertion procedure:
this->next~>prev = that;

The p-set attached to this statement contains the items (*this) .next and * ({*this) .next) .prev. (See
Figure 5.9.) Therefore, mungeTree first calls genSprigs, passing it the item (*this) .next>

GenSprigs then calls mungeTree, asking for the Lvalue of this item. Now, tracing the nested calls to
mungeTree, we ask for the Lvalue of *this and in turn for the Rvalue of this. The result of these calls is

that the Lvalue of (*this) .next is the OID from the DBREF this with an offset incremented by the offset

within a list node of the field next. After building the sprigs, genSprigs returns to mungeTree.

MungeTree then invokes genSprigson *((*this).next).prev. Essentially, we repeat the above
process. GenSprigs calls mungeTree to obtain the DBREF of the item, causing mungeTree (o begin a
descent of the item’s expression tree. This time, however, mungeTree will eventually call itself on the item
(*this) .next, asking for the Rvalue. At that point, it will discover that this item is pinned, and the reading
sprig will be returned (without descending any further into the tree). This expression holds the value of this-
>next, which is the DBREF needed in order to pin this->next->prev. Figure 5.14 shows the (approximate)

output of phase IV for the third statement of the linked list insertion procedure; the output for the other statements

5'The order here is important given that the program is to follow a pointer chain. The fact that items are identified (and numbered) in depth
first order ensures that we will pin the items in the chain in the proper order.

86

/*
% PIN(this->next)

** Notes:

**x "next" field has offset of 20

* %k length param == sizeof (DBREF) == 16
*/

__tmpRef001 = this;
__tmpRef001l.0ffset += 20;
sm_ReadObject
(__tmpRef001.0id, __ tmpRef00l.offset, 16, &__ tmpUd001);

/*
** PIN(this->next->prev)
** Reads this->next (a DBREF) out of buffer pool.

** Notes:

* * prev field has offset of 4

* % length param == sizeof (DBREF) == 16
*/

__tmpRef002 = * ((DBREF*) *__ tmpUd001);
_tmpRef002.0ffset += 4;
sm_ReadObiject

(__tmpRef002.0id, __ tmpRef002.offset, 16, & __tmpUdo002);

/*
** ASSIGN(this->next->prev) = that

** Notes:

* % length param == sgizeof (DBREF) == 16

*x new data’s address == address of "that," a
k% local variable

*/

sm_WriteObject (__ tmpUd002, 0, 16, &that);

/*
** UNPIN(this->next->prev)

** UNPIN(this->next)

*/

sm_ReleaseObject (__ tmpUd002);
sm_ReleaseObject(_ tmpUd00l1);

Translation of the Assignment: (this->next->prev = that)

Figure 5.14

in the procedure is similar. We note that the code in the figure has been formatted and annotated for presentation.

As in Figure 5.13, we have omitted code that is not essential to the discussion.

87

CHAPTER 6

COMPILED ITEM FAULTING

In the preceding chapter, we outlined the basic strategy for generating code to manipulate persistent objects.
While the strategy does work, the quality of generated code often leaves much to be desired. Because the code
generator uses only local information in deciding where to pin and unpin items, the nulﬁber of such operations
performed during execution can be excessive. For example, while multiple uses of an item within a given
expression resolve to a single pin/unpin pair, multiple uses across statements are not recognized. Since pinning is a
rather expensive operation (even when the requested data is already in the buffer pool), some kind of global
optimization is needed in order for E programs to run with acceptable performance. In this chapter, we describe the
approach to optimization taken in the current E compiler. The next section presents an overview of that approach,

while following sections detail the implementation.

6.1. OVERVIEW

As we have said, pinning is the dominant cost in executing an E program. Therefore, the goal of optimization
is to reduce the number of such operations performed at run-time. The E compiler achieves this reduction through
two means: propagation and coalescing. Code generation as described in the previous chapter keeps an item
pinned over very localized regions of the program. In addition, each item is treated independently and generates its
own pin operations. By propagating information about item usage up the syntax tree, we may be able to keep an
item pinned over many uses. Furthermore, when two or more items are part of the same object, we may be able to
coalesce the separate pin operations into a single request for the spanning byte range. Figure 6.1 illustrates these
ideas. Note that coalescing is also a form of propagation, since we are pinning the spanning byte range over a larger

region which includes uses of the individual components.

6.1.1. Considerations

In any solution to a program optimization problem, one must consider the aspects of safety and profitability
[Much81]. A safe solution is one that does not change the observed behavior (i.e. the output) of the program. In
our case, there are two safety requirements. First, at the point in the program where a pin operation actually occurs,
we must be sure that the path to the item being pinned is defined. If it is, then we say that the path to the item is
valid at that point. For example, consider the following program fragment:

88

propagate
— pin{x)
coalesce
> pin(*p)
Ve
Propagating and Coalescing
Figure 6.1

if(p !'= NULL)

0;
0;

o

While we can legitimately pin *p before the first assignment, it would be an error to further propagate the pin out
of (i.e. to the point immediately before) the if statement, since the path might be invalid at that point, i.e. because p
is NULL. Note that our definition of "valid" is based on the programmer’s intentions as expressed in the code. In
the preceding code segment, for example, we consider the path to *p to be valid immediately before the first

assignment, even though in some executions, p might have a (non-NULL) garbage value.

The second safety concern is related to the path validity problem. If an item is pinned over a region of the
program, we must detect when the path to the item changes within that region due to an assignment or procedure
call. If we did not and control were then to flow from the point of such a change to a use of the item, we would be

accessing the wrong data. For example, in the following code segment, if the call to £ () retums TRUE, then p is

89

reassigned:

p->a = 0;
if(£0))

P = p->next;
p->b = 0;

If *p is pinned over this whole region, and we do not detect the change to p, then the last statement will
(probably) assign to the wrong location. Note that, in the absence of information to the contrary, we must assume

that such a change invalidates that path, since we do not know what value is being assigned.

With respect to profitability, the goal is to reduce the number of pins actually performed at run-time. While
propagation seems promising in this regard, we must be careful. If we simply push pin operations up the syntax
tree, we might actually increase the number of such operations performed by sometimes pinning items
unnecessarily. That is, a pin operation might land at a point such that control could flow from that point without

actually reaching a use of the item. In such a case, the program will waste time doing unnecessary work.

6.1.2. Compiled Item Faulting

These considerations led us to the following design for optimizing E code. The design is based on the
observation that phase I already schedules pin operations at safe points in the program; we can avoid the path
validity problem if we do not actually move the operations. In addition, by leaving the operations where phase I
scheduled them, we also avoid the possibility of pinning an item that the program doesn’t actually use. Finally, we
can avoid pinning the same item many times if we simply check first to see if the item is already pinned; as we

mentioned in Section 4.3.1, the cost of the check is negligible compared to the cost of a redundant pin.

With these observations in mind, let us outline our strategy for reducing the number of pin operations

executed by an E program.

(1) A pinning region for an item i, PR;, is defined to be a region of the program such that i might possibly be
pinned as long as control stays within the region and such that { is definitely not pinned when control leaves
the region. A pinning region is defined by a sequence, possibly of length 1, of nodes in the syntax tree.

(2) Within PR;, each use of i is preceded by a pin operation, i.e. pin operations are inserted into the code exactly
as described in Chapter 5. However, each operation is now preceded by a boolean test; if { is already
pinned, then we skip over the (redundant) pin.

(3) Following each point in the region at which the path to i is invalidated by an assignment or procedure call,
we append an unpin. An unpin operation first checks that i is currently pinned and then proceeds.

(4) An unpin operation immediately follows the exit point of the region.

90

(5) An unpin operation immediately precedes each flow-of-control construct (e.g. break) that transfers control

to a point outside the pinning region.

Figure 6.2 illustrates the characteristics and control flow of the operations performed for an item within a
pinning region. Assume that control enters a pinning region PR, _,, for the item p->a. When control first enters
the region, p->a is not pinned. If control exits the region without reaching a use of the item, then no pinning
operation will occur, When (and if) control reaches A for the first time, a pin operation occurs. The item then
remains pinned as control flows to B. As long we remain in a loop between A and B, no further pinning occurs. If
control flows from B to C, then p->a will be unpinned because C invalidates the path to the item by redefining p;
if control flows back into A, then p->a will be pinned again based on the new value of p. If control flows from B
to D, p->a will be unpinned because we are leaving the pinning region for the item. Finally, if control flows from

C o D, no unpin is performed at D since that was already done by C.

We call this framework "compiled item faulting” (CIF). It is a faulting system because, like dynamic object
faulting (DOF) (e.g. in PS-Algol), CIF places a run-time check before each use of an object, possibly resulting in a
call 1o the storage layer. There are two important differences, however. First, CIF does not swizzle pointers;
therefore, it does not pay the added overhead of unswizzling them when an object is released. Instead, CIF relies on

D: | ifi pinned)

unpin(p->a)

define(p)
ifl pinned)
unpin(p->a)

B: | if(! pinned)
pin(p->a)
use(p->a)

Control Flow in the Pinning Region PR, _,,

Figure 6.2

91

compile-time analysis to reduce the number of pin operations performed at run-time. While the curent
implementation performs only simple analysis (as we shall see), the framework may be extended easily.
Admittedly, static analysis will always be less accurate than dynamic interpretation, and as a result, there will
always be applications in which DOF will execute fewer storage layer calls than CIF.52 However, the range of

applications for which this will be the case is unknown, as is the overall performance impact of pointer unswizzling
on DOF.,

The second difference between CIF and DOF is that DOF appears to be constrained to read whole objects; if
a pointer is swizzled, then the entire object must be memory resident. CIF, by contrast, is able to read only the
portion of the object needed in the given context. If an application manipulates small portions of large objects, this

may be an important consideration.

6.2. IMPLEMENTATION

Having explained the approach to optimization in fairly high level terms, we now describe how it has been
implemented in the E compiler. In the course of this description, we will also revisit phases I and IV. Chapter 5
glossed over certain aspects of their implementation in order to convey the essential ideas; this chapter will revise

those parts to fit them into the overall optimization strategy.

6.2.1. Phase I Revisited

In Chapter 5, we said that phase I identifies the set of items that are to be pinned within a localized region of
the program (essentially, within an expression). It then attaches this set, called the p-set, to the node in the syntax
tree that defines the region. We then said that phase IV later grafts pin and unpin operations onto the tree based on
these p-sets.

When phase 1 determines that a set of items should be pinned over a region, it actually attaches three
identical®? sets to the node defining that region: an r-set, an x-set, and a p-set. (The i-set will be explained in the
next section.) The r-set (for "region” set) is a set of items such that the node marks the beginning of a pinning
region for each item in the set. Similarly, the x-set (for "exit” set) contains items such that the node marks the end
of a pinning region for each item in the set. When a single node in the syntax tree (e.g. one statement) defines the
entire pinning region for a given item, that item appears in both the r-set and the x-set for that node; when the
item’s pinning region spans a sequence of nodes, then the item appears in the r-set of the first node of the sequence

SNote that even DOF systems will fault multiple times on the same object if the references are made through different pointers. DOF wins
in this regard only if multiple references are made to the same object through the same pointer.

SThe optimization phases II and IIT may later alter the r-set and x-sets, however. Since we were not considering optimization in Chapter 5,
we did not bother to distinguish between them there.

92

| Set Meanin
r-set | The node marks the beginning of a
pinning region for each item in the set.
x-set | The node marks the end of a pinning
region for each item in the set.

p-set | We must graft a pinning operation be-
fore the node for each item in the set.
i-set | At the point immediately following
the node, the path to each item in the
set is invalid.

Summary of Item Sets at a Program Node

Table 6.1

and in the x-set of the last node of the sequence. Finally, the p-set (as in Chapter 5) contains items for which pin
operations (i.e. pinning sprigs) are needed at that point in the program. Table 6.1 summarizes these sets. We do not
show the sets produced by phase I for the insertion example, as all three are identical and equal to the p-sets shown
in Figure 5.12.

R-sets and x-sets are the subjects of propagation and coalescing; that is, we may enlarge the pinning region
for a given item by moving it into the appropriate r- and x-sets further up in the syntax tree. The p-sets, however, do
not change after phase I creates them. Phase IV grafts pinning sprigs onto the tree based on the contents of the p-
sets, and it grafts unpinning sprigs based (in part) on the contents of the x-sets. That is, phase IV adds a pin
operation for each item in a p-set immediately before the node associated with that set, and it adds an unpin

operation for each item in an x-set immediately following the node associated with that set.

6.2.2. Phase II: Ensuring Path Safety

In the overview of optimization, we said that if the path to an item changes (becomes invalid) within a pinning
region PR;, then we must unpin i following the change. It is the responsibility of phase II to compute, for each
assignment and function call, the set of items whose path could be invalidated. This set, called a i-set (for
"invalidates path"), is then attached to the appropriate node in the syntax tree. In addition to its other duties, phase
IV will look for i-sets; for a given item in the set, if the invalidation occurs within a pinning range for the item,

phase IV will graft an unpin operation immediately following the node associated with the set.

Note that i-sets are related to the def-sets often computed in dataflow analysis [ASU86]. In that setting, we
are interested in knowing which items could be written into (defined) by an assignment or a procedure call. Here,
we will use that information to derive the set of items whose path is invalidated. The basic idea, as suggested in

Figure 6.2, is that changing the value of a pointer invalidates the path to any item that involves a dereference

93

through that pointer. If the change occurs within a pinning region for such an item, then we must unpin that item

following the assignment.

6.2.2.1. The Role of Alias Analysis

In a language with pointers, an assignment may well define more than just what appears syntactically on the
left hand side of the assignment. If the left operand of the assignment involves a pointer dereference, then, lacking
any other information, we must assume that the assignment defines all items* [ASU86]. Even if the language does
not have pointers, but does have reference parameters, then we must still be concerned with what might be defined

in a procedure call [RicS89]. E has both pointers and reference parameters; furthermore, since E is a derivative of
C, pointer usage can be quite unrestricted.

In order to improve our estimate of the side effects of an assignment, we can solve a dataflow problem known
as alias analysis. Alias analysis techniques have been under development for quite some time, e.g. [Alle74,
Weih80]. Recent work by Larus [I.aru88] and Pfeiffer [Pfei89] promises to extend these techniques to languages
having structures and heap allocation. An interesting avenue of future research, therefore, would be an investigation
of the applicability of these results in the context of E. However, given that this thesis is not about alias analysis, we
have taken a very simple approach for now (in the interest of implementing the compiler in a reasonable time
frame). Fortunately, this approach proves effective in a number of realistic situations. This phase of the compiler is
implemented as a "black box" having a simple, well-defined interface, so it should not prove difficult in the future to

integrate more sophisticated alias analysis techniques into the existing framework.

6.2.2,2, The Current Implementation

As we have explained, we are interested in computing the set of all items whose path might become invalid as
a result of an assignment or procedure call. To do this, we must first compute the set of items defined at such points.

The rules we are about to give form a very simple heuristic for computing this set.

As explained in Chapter 5, every item is associated with a particular scope. We define an item to be reachable

through a pointer (or simply, reachable) everywhere in its scope if any of the following are true:

(1) the item itself involves a pointer dereference. For example, the items *p, p~>a,and p->next->b are
po

all reachable through a pointer since they all involve at least one pointer dereference.

(2) the item is a named variable from the global scope.”® Since we are not performing ‘real’ alias analysis

*That is, only one item is actually defined, but we must assume conservatively that it could be any one.

%Even though global variables are "imported” to the function body’s scope during CSE identification (Section 5.1), they are still known to
be global variables.

94

(either inter- or intra-procedurally), we assume that the address of any global variable could have been

assigned to a pointer.

(3) the item is a named variable in the local scope, and its address is taken somewhere in the scope. When we
enter the scope in which a name is declared, there are no aliases for that name. An alias can be created only
if the address-of operator (&) is applied to the name or if the variable is passed by reference. If it is, then we

assume, in lieu of dataflow analysis, that the name is reachable through a pointer everywhere in the scope.

Given this definition, we can compute the set of items potentially defined by an assignment or a function call as

follows:
(1) An assignment in which the left operand is a named variable defines only that name.

(2) An assignment in which the left operand involves a pointer dereference defines every item that is reachable

through a pointer.
(3) A function call defines every item that is reachable through a pointer.

Based on these (very conservative) rules, computing the set of items defined by an assignment or a function
call (the def-set) is extremely simple. From this set, we may then derive the set of items whose path is invalidated
(the i-set) essentially by noting the pointers in the def-set; we must now consider the path to any item involving a
dereference through such a pointer to be invalid. The algorithm for determining i-sets uses the dag representation of
the syntax tree. For each item that is defined by an assignment or function call, we traverse upward through its
parent links. In so doing, we locate every expression for which the given item is a subexpression; since the value of
the item has changed, so has every expression that includes it. Along each path in this upward traversal, we note
the first item that is a pointer dereference, i.e. the first item whose expression operator is a *. This item, and every

item above it on the path, is added to the i-set for the defining assignment or function call.

Let us return now to the linked list insertion example for an illustration of this process. The first statement of

the procedure is:
that->next = this->next;

Figure 6.3 summarizes the computations performed by phase II due this statement. Since the procedure does not
take the address of either this or that, neither variable is considered reachable through a pointer. All other
items in the procedure are considered reachable, however, because they all involve pointer dereferences. Since the
left hand side of the assignment also involves a pointer dereference, than all reachable items are added to the def-
set. From the def-set, we derive the i-set shown at the bottom of the figure. Consider, for example, the item
*this. Tracing upward, we encounter the items (*this).next, *((*this).next), and
(* ((*this) .next))) .prev. Since the second item on this path is a value produced through a pointer

traversal, we add it and the third item to the i-set. Now consider the item *that. Tracing upward, we encounter

95

def-set

Items defined by
the assignment.

i-set
Items whose paths are
invalidated by the assignment.
.next . prev
* . next
»n
that ‘
this

Computing the i-set for the Assignment: that->next = this->next;

Figure 6.3

only the items (*that) .next and (*that).prev. Since the definition of *that does not imply that the

location of either item has changed, neither is added to the i-set.*®

As this example illustrates, the usual result of our naive heuristic is that items involving a single pointer
dereference ("one-hop" items) are not added to the i-set resulting from an assignment through a pointer, while items
involving two or more hops will always be added. One-hop items will be added only if the root pointer of the item
(a named variable) is considered reachable as defined above. Assuming that the root pointer is not reachable, then
the compiler will be quite effective in keeping the one-hop items pinned over large regions of the program.
Fortunately, we expect that such cases will be quite common. Consider a class member function, for example. The
compiler translates references to class data members into a dereference through the pointer this. Thus, we expect

items of the form this->member to be very common. If the function does not contain the expression &this,

%That is, assigning 10 a structure does not imply that the locations of any of its fields have changed.

96

then the object referenced by this can safely remain pinned over large regions of the function. In any case, we
do not mean to suggest that true alias analysis is not needed, but rather that our simple heuristic is a reasonable first

approximation and that it may be surprisingly successful in a number of common cases.

After phase II computes a given i-set, it attaches the set to the associated node in the syntax tree. The
reasoning used in Chapter 5 to determine where phase [attaches p-sets also applies to phase II in determining where
to attach i-sets. Since flow of control through most expressions is not defined, E chooses to attach the i-sets for a
node as high as possible in the tree, i.e. at the first ancestor node in the tree for which flow of control is defined. The
output after phases I and IT have processed the list insertion procedure is shown in Figure 6.4.

~ r-set {000 101 000} {000 000 100} {000 001 001} {000 001 000} r-set
x-set {000 101 000} {000 600 100} {000 001 001} {000 001 000} x-set
p-set {000 101 000} {000 000 100} {000 001 001} {000 001 000} p-set
i-set {000 000011} {000 000011} {000 000011} (000000011} i-set
. next . hext . prv this . prev that . next that
* * * * *®
that this that . next this

this
Legend of ltems
0 this 3 (*that).next 6 (*that).prev
1 that 4 *this 7 *((*this).next)
2 *that 5 (*this).next 8 *((*this).next).prev

Result of Phase II for the List Insertion Procedure

Figure 6.4

97

6.2.2.3. Handling Array Elements

If an item denotes an element in an array, then the location of the item changes if either the path to the array
itself changes or if the value of the array index changes. For example, consider Figure 6.5. The item of interest,
p->aln], is an array element in a structure referenced by p. If p is defined, then the path to the array has
changed, and therefore, so has the path to the array element. If n is defined, then the location of the array element
denoted by the item also changes. With a very slight extension, the algorithm given above will handle both cases.
The extension simply affects the upward traversal through the item’s parent links. In particular, if we encounter an
item whose expression operator is [, and if we reach this item via its right child (i.e. via the index of the array

dereference), then we add this item and any items further up to the i-set being computed.

6.2.3. Phase ITI: Propagation and Coalescing

Phase II reduces the number of pin and unpin operations performed at run-time by propagating the pinning
regions of items higher up in the syntax tree and by coalescing the pinning regions of (certain) different items into a
single pinning region. Since it is guaranteed that an item will no longer be pinned when control leaves its pinning
region, the compiler attempts to make such regions as large as possible. In fact, it is easy to see intuitively that if we
simply define the pinning region for every item to be the entire scope in which the item is defined, then the program
will perform as few pin operations as static analysis will allow. To see this, imagine that control has reached a use
of an item, and therefore, the item is pinned. If control then flows to another use, and in so doing, leaves the current
pinning region, then the program will definitely execute another pin operation at the second use. However, if
control stays within the same pinning region (i.. if the region is large enough to contain both uses), then no
additional pin is required. If control flows through an intervening point which invalidates the path to the item, then
the second pin will be performed in either case.

*

|
|
p

N
s
]
'
'
'
1
'
'

Detecting Path Changes for Array Elements

Figure 6.5

98

However, the compiler does not take quite so simplistic an approach. Although the Storage Manager's buffer
pool is large, it is still finite, and it is unnecessarily wasteful of space to keep an item pinned when it is no longer
needed. (We shall have more to say about the impact of finite buffer space in Section 6.3.) Accordingly, phase 111
propagates the pinning region of an item to be the smallest region of the program that includes all uses of the item.
This approach still results in the "minimum" number of pin operations, but it reduces the program’s buffer space

requirements.

Of course, approaches other than simply minimizing the number of pin operations are also possible. For
example, one could try minimizing the number of pin operations subject to constraints on the total amount of data
pinned at any one time. Or, one might try minimizing the estimated space-time product of the program. However,
such alternatives appear to be much more complex than the current approach, and it is not at all clear how
successful they can be, given the information available at compile time. In order to estimate the amount of buffer
space consumed at any point in the program, the compiler would have to know, for example, how objects are
distributed on disk pages, and whether two pointers reference the same or different objects. The former is
information explicitly hidden by the Storage Manager interface, and the latter is information that the compiler can

only approximate, e.g. two pointers might refer to the same object in one execution but to different objects in

another.

6.2.3.1. Coalescing

Before proceeding to describe the propagation algorithm, let us first examine in more detail what we mean by
coalescing. If two items refer to separate locations within the same Storage Manager object, then we can consider
coalescing the pinning regions for the two items into a single pinning region for an item whose byte range spans (at
least) the original two. For example, pinning regions for the ittms p->a.x and p->a.y canbe coalesced into a
pinning region for p->a; we can further coalesce this region with one for p->b into a pinning region for *p.
However, we cannot coalesce pinning regions for p->next->a and p->b, nor can we coalesce p->a with

g->b; in both cases, we must assume that the items refer to locations in separate objects.”’

Coalescing can reduce the number of pin operations at the expense of pinning a larger range of bytes. Given
the design of the Storage Manager, however, these larger byte ranges may not increase the actual buffer space
requirements of the program at all. Pinning a single byte still requires at least an entire page frame in the buffer
pool; pinning two bytes can consume up to four page frames if those bytes happen to be split across two leaf blocks
of a large object (see [Care86a]). The compiler therefore assumes that it can coalesce freely unless the resulting

SWith sophisticated alias analysis, we might be able to improve on this estimate.

99

item’s size exceeds a certain threshold. Currently, this threshold defaults to 8K bytes; the user may reset this limit

with the command line option "+Tn" where n is the new limit.%*

One other limifation on coalescing is that it is based solely on the type composition of the item. For example,
in coalescing the pinning regions of two fields of a structure, we only consider pinning the entire structure as the
next level of granularity; we do not consider pinning the subrange of bytes that just spans the two fields. The main
reason for this limitation is that the alternative would greatly increase the complexity of the implementation, for
such subranges do not correspond to any single item (i.e. to any Lvalue). Asa result, of course, if the structure
contains additional fields such that the total size exceeds the coalescing threshold, then the compiler rejects the
coalesce. However, the compiler will still propagate the two pinning regions individually.

The algorithm that the compiler uses for deciding if it can coalesce two pinning regions is quite simple.
Suppose that item; and item are the items associated with the regions. We traverse downward through item,,
marking each node visited and stopping either at a named variable (since there are no further subexpressions) or at
the first node which is a pointer dereference (since the next item down will be located in a different object). In so
doing, we mark every item denoting a range of bytes that contains the range denoted by item,. We then traverse
downward through item,. If we encounter the root or a pointer dereference without finding a marked node, then
item, and item, denote locations in different objects, and their pinning regions cannot be coalesced. If we
encounter a marked node, then the regions can indeed be coalesced, provided that the size of the item denoted by
this node is below the threshold. Given the similarity between this algorithm and finding the least common ancestor
in a tree, the item is called the Ica of item and item,. Note that the algorithm works for item; == item,, ie. an
item is its own Ica. Figure 6.6 illustrates the outcome of this algorithm for two pairs of items from the linked list
example. Boxes enclose the nodes marked in the first pass (i.e. over item 1). In the first example, (*that) is the
lca of (*that) .next and (*that).prev. In the second example, the items (* (*this) .next) .prev

and (*this) .next have nolca.

We note that the Ica of two array elements, e.g. a[n] and a[m], is the entire array, a. The compiler
currently attempts to coalesce array references, generating code that pins the whole array when individual elements
are accessed. While this is a perfectly reasonable approach for small arrays, it is not appropriate for very large
arrays. Thus, as with all coalescing, the size of the array cannot exceed the threshold. One potential area for future

work is in improving the array processing characteristics of E programs.

SWe will probably want 1o provide a pragma for setting this value 30 that the threshold can be readjusted within a single compilation unit.

109

. prev &l
o] <= next &2
that M

this
Two Examples of Finding the LCA

Figure 6.6

6.2.3.2. Propagation

The basic operation of the propagation algorithm is to walk the syntax tree, adjusting r-sets and x-sets at each
node based on the items used within the program region defined by the node. The goal, as stated earlier, is to
propagate the pinning region of each item to be the smallest region‘ of the program that covers all uses of the item.
The task is complicated by three issues. First, we cannot determine what to propagate up to a given node simply by
looking at what has been propagated to the node’s immediate children. This is easily seen in Figure 6.7. The
children of node B in the figure use the items x and y; although not shown, phase I has inserted pinning regions
around each use. Now, looking only at node B and its children, neither x’s nor y’s pinning region will be
propagated to node B since doing so would not cover any additional uses. Similar comments apply to node C.
Thus, when we reach node A, the r- and x-sets for nodes B and C are all empty. However, we intend for the pinning
region of x to propagate to node A in order to cover both uses. Accordingly, the propagation algorithm also builds,
for each subregion of the program, sets containing the union of all items used anywhere within that subregion.
These sets are called mention sets, or m-sets, because they keep track of all items mentioned anywhere within the
region. At a given node, propagation decisions are then based on these m-sets. A new m-set is formed (by taking
the union of the m-sets from the subregions), propagation decisions are made for this node, and the node’s m-set is
then passed up to the parent. Unlike the sets described in Table 6.1, m-sets are only temporary; phase III discards
the m-set for a node once it has been used in making a propagation decision.

The second complication for propagation is that, despite the example in Figure 6.7, we cannot in general
determine what to propagate to a given node simply by taking the intcrsection of the m-sets from the subregions.
Rather, the possibility of coalescing must be considered as well. The intersection of an m-set containing p->a

with one containing p->b is the empty set; however, we know from Section 6.2.3.1 that we can coalesce these

101

use(y) use(x) use(x) use(z)
Propagation Based on All Uses
Figure 6.7

item into the common subsuming item *p. Figure 6.8 shows the algorithm for determining what to propagate,
given two m-sets, S1 and S$2. For a given pair of items, we check if the two have an Ica, as described previously.
If i1 and 12 do coalesce and the resulting 1ca is not too large, then i1 and 12 are removed from the result set
(in case either was added in a previous iteration), and their lca is added. Note that the order of these two
operations is important since the lca might actually be equal to i1 or i2. The lca of p->a and *p, for
example, is *p. After adding lca to the result, we remove i2 from S2. The reason is that once the lca
becomes part of the result set, we do not need to consider i2 again on any future iteration. Finally, the lca

replaces i1 for the remaining iterations of the inner loop.

R=1{1}; /* the result set */

foreach(item il in S1)
foreach(item i2 in S2)
if{ lca exists for il and i2
&& lca’s size <= coalesce threshold)
{

R=R-~-{il, i2 };
R=R + { lca };
$2 = 82 - { i2 };
il = lca;
}
Propagation Algorithm for a Node

Figure 6.8

102

Let us consider an example. Suppose that we start with a node where S1= (x, y, p->a }and S2=
{ x, z, p—>b }. Table 6.2 summarizes the state of the important variables in the algorithm at the start of each
iteration of the inner loop and gives the final state when the outer loop exits. (Note that by removing x from S2,

we have saved two iterations.)

The algorithm in Figure 6.8 can determine which pinning regions should be coalesced and propagated when
the destination is a single node in the syntax tree. For example, this algorithm can determine which pinning regions
should be propagated to if node from the constituent then and else statements. When we consider a sequence of
statements, however, the situation is somewhat more complex for two reasons. First, the pinning range for a given
item may begin with one statement in the sequence and end with a later statement; the algorithm in Figure 6.8
implicitly assumes that the pinning region corresponds to a single node. Second, the pinning regions for different
items in the sequence may overlap in arbitrary ways; the algorithm assumes that all the propagated pinning regions
coincide at the same node. Statement sequences, then, present the third and final complication that we must
consider in the propagation phase. Figure 6.9 illustrates this. As in the algorithm in Figure 6.8, we may still be able
to coalesce the pinning ranges of distinct items. For example, if statement S1 contains a use of p->a and

statement S3 contains a use of p->b, then we can give *p a pinning range from S1 through S3.

Figure 6.10 shows the algorithm for propagating and coalescing pinning ranges in a statement sequence. We
assume that an m-set is available for each statement in the sequence. The main data structure for the algorithm is
range, an array of integer pairs that determines the first and last statements of the pinning region for each item
visible in the current scope. This array is first initialized to all 0’s, meaning that no items have yet been seen. The

nested loop then processes each item in each m-set in the statement sequence. An item, i1, is compared against

iter il i2 s2 R
1 X X { x, z, p~>b } {1
2 X z { z, p=>b } { x }
3 b4 p->b { z, p=>b } { x 1}
4 Yy z { z, p~>b } { x}
5 v p->b { z, p~>b } { x }
6 p~>a z { z, p=>b } { x }
i p->a | p->b { z, p~>b } { x }
final - - { z } { x, *p }

Example of Algorithm in Figure 6.8

Table 6.2

103

X

[¥ 1
z f 1

f 1

S1 s2 ' s3 4

use(x) use(z) use(y) use(x)
use(z) use(y)

Propagating Over Sequences

Figure 6.9

every item, 12, seen so far, i.e. against every item with a nonzero entry in the range array. If il and i2 have
an lca andthe lca’ssize is not too large, then the lca is given a pinning range that extends from the beginning
of i2’s range through the current statement. Furthermore, if the lca is not equal to i1, then il’s pinning
range is cleared; i2 is handled similarly. (This step parallels the removal of i1 and i2 from the result set in
Figure 6.8) If i1 had no lca with any item already seen, then i1's pinning range is initialized to begin and
end with the current statement. When the algorithm terminates, the range array specifies the pinning range for every

item in the statement sequence (or else indicates that the item is not used).

The algorithms in Figures 6.8 and 6.10 show the essential processing steps at various levels of the syntax tree.
They do not, however, show the details of walking the tree, applying the algorithms, adding and removing items
from the r- and x-sets, or generating m-sets. Such details, while important, are not particularly interesting, and we
will not show them. We do note, however, that the syntax tree is processed bottom-up and that the levels of the tree
essentially alternate between statement hierarchies and statement sequences. For example, an if statement has then
and else components, each of which may be a statement sequence. Thus, the algorithms in Figures 6.8 and 6.10 will

be applied alternately as we percolate up the tree.

Returning to the linked list insertion procedure, Figure 6.11 shows the result of phase III as applied to this

example. Note the changes to the r- and x-sets from Figure 6.4.>° The interpretation of the sets in Figure 6.11 is
now as follows: The pinning region for the item (*that) spans the first two statements as it appears in the r-set
of the first statement and in the x-set of the second. After the second statement, the object referenced by that will

be unpinned. Note that the original pinning regions for (*that) .next and (*that).prev have been

*The reader may refer back to Table 6.1 for a summary description of these sets.

104

// Let n_items be the number of items defined in the current scope.
// Let range be an array of n_items integer pairs, first and last.

// If il is the global item id for a given item, then range[il] gives
// the algorithm’s current idea of the pinning region for the item.

foreach (int il = 0; il < n_items; il++)
{
range([il].first = 0;
range(il].last 0;

}

foreach (statement 3 in the sequence)
{ foreach(item il in s’s m-set)
{ foreach(entry in range)
{ if (entry contains 0’'s)
continue; /* item not seen */

let 12 be the item associated with this entry;

if{ lca exists for il and i2

§& 1lca’s size <= coalesce threshold)

{
range[lca].first = range[i2].first;
range[lca].last 3;

if(lca # il)
{
range[i1].first = 0;

range[il 1l.last = 0;
}
if(lca # i2)
{
range[12].first = 0;
range[i2].last = 0;

}

}
} /* end of i2 loop */

if(11 had no lca for any i2)
{
range il].first = s;
range[12].last s;

}
} /* end of il loop */
} /* end of 3 loop */
Propagation Algorithm for a Statement Sequence

Figure 6.10

105

r-set {001 001 000} {000 000 000} {000 000 001} {000 000 000} r-set
x-set {000 000 000} {001 000 000} {000 000 001 } {000 001 000} x-set
p-set (000 101 000} {000 000 100} {000 001 001} {000 001 000} p-set
i-get (000000011} {000 000 011} {000 000 011} {000 000 011} i-set

| | | |
/NN SN N

. next . next .p||~ev this . prev that . next that
»* * * »* *
that this that . next this
*
this
Legend
0 this 3 (*that).next 6 (*that).prev
1 that 4 *this 7 *((*this).next)
2 *that 5 (*this).next 8 *((*this).next).prev
Insertion Procedure After Phase III
Figure 6.11

coalesced, since those items no longer appear in any r- or x-set. The pinning region for (*this) .next spans all
four statements. Finally, the item (* (*this) .next)) .prev hasa pinning region that spans only the third

statement, as only that statement references the item.

6.2.4. Phase IV Revisited

Let us now finally return to phase IV and reexamine the process of transforming the syntax tree. The
algorithms mungeTree and genSprigs are still essentially valid as described in Chapter 5. However, the
specifics of the actions taken at various points in the traversal need to be modified in order to fit into the framework
developed in this chapter.

106

6.2.4.1. Entering a Pinning Region

During its traversal of the tree, mungeTree looks for r- and x-sets attached to the various nodes. When an
r-set indicates the start of a pinning region for an item, mungeTree calls genSprigs to generate code 'sprigs
for the item. As explained in the last chapter, this includes code to pin, unpin, and reference the range of bytes
denoted by the item. The reading and writing sprigs are unchanged from the descriptions given in Chapter 5. As
discussed at the beginning of this chapter, however, the pinning and unpinning sprigs are now preceded by a
boolean check to se¢ if the item is currently pinned. Instead of allocating yet another variable to record this
information, we simply utilize the user descriptor pointer. Being sure that this variable is initialized to NULL upon
procedure entry, we amend the form of the pinning and unpinning sprigs as follows:

piny ::= (_tmpUd001 == NULL ? piny : 0)
unpiny ::= (_tmpUd001 != NULL ? (unping, _tmpUd001 = NULL) : 0)

Here, pin, and unpin, denote the pin and unpin expressions, respectively, as given in the last chapter. Thus, if the
user descriptor pointer is NULL coming into a pin operation, the pin will be performed. In the process, the pointer
will acquire a non-zero value (regardless of whether the object is persistent or volatile), and successive pin
operations will then be skipped until after the next unpin. Similarly, an unpin operation first checks the pointer; if it
is non-NULL, then we perform the unpin and clear the pointer.

When a pinning region results from coalescing, the byte range of the item actually pinned (i.e. the lca)
contains the byte ranges of the items that were coalesced. In such cases, we say that the Ica is pinned explicitly, and
the items that were coalesced are pinned implicitly. When phase IV enters a pinning region for an item, the routine
genSprigs must generate sprigs for all implicitly pinned items as well as for the explicitly pinned item. In
particular, it will generate reading sprigs that include appropriate offsets from the start of the pinned (Ica) byte
range. For example, in the insertion procedure, the pinning regions for (*that) .next and (*that).prev
were coalesced. When phase IV enters the pinning region for (*that), it generates code sprigs to pin, unpin, and
read the byte range denoted by (*that). Reading sprigs are also generated for the ittms (*that).next and
(*that) .prev; these code fragments include appropriate offsets within the pinned byte range.

6.2.4.2. Grafting Pin and Unpin Operations

When mungeTree encounters a node with an associated p-set, it grafts a pinning sprig before the node for
each item in the p-set. As explained earlier, phase I determines the location of these nodes and the contents of their
p-sets. However, the parameters of the pin operation are dictated by the outcome of phase Ifl. If the item was
coalesced, then the operation actually grafted onto the tree is the pinning sprig of the (explicitly pinned) lca.

Phase IV grafts an unpinning sprig onto the syntax tree wherever control leaves a pinning region for an item.

For example, if a node has an x-set, then mungeTree will insert an unpinning sprig for each item in the x-set. In

107

addition, break, continue, and goto statements may transfer control out of the middle of one or more pinning
regions; for each such region, mungeTree prepends an unpinning sprig to the statement. While it is relatively
simple to determine exactly which regions will be exited on a break or continue, goto's are somewhat more
difficult. The current implementation simply unpins all items before a goto.% Finally, as explained earlier in this
chapter, if an item is currently pinned and the path to the item changes as a result of an assignment or function call,
then the item must again be unpinned. Thus, mungeTree also looks for i-sets produced by phase 1I; for each
item in the i-set, if we are currently in a pinning region for the item, then mungeTree grafts an unpinning sprig
onto the tree following the node.

6.3. COPING WITH FINITE BUFFER SPACE

One final but important point needs to be addressed. In the description of Compiled Item Faulting thus far, we
have implicitly assumed that the amount of available buffer space is sufficient to handle all pin requests. Of course,
the buffer pool is finite, and it is possible for a pin request to fail for lack of space. This section describes a
mechanism that has been implemented for handling such exceptional conditions.

The basic idea behind the mechanism is quite simple. First, we expect that the majority of pin requests will
succeed; if a request fails, we are willing to run a relatively expensive algorithm in order to continue the program.
This continuation algorithm will descend the run-time stack, unpinning items bottom-up, i.e. beginning with the
deepest stack frame. After each unpin, the failed pin request is then retried. If it succeeds, then the program

continues normally. If, however, the top stack frame is reached without success, the transaction is aborted. In this

event, the user can attempt to rerun the program with a larger buffer group.®!

In order for this mechanism to work, the exception handler must be able to find all of the user descriptors in
all existing stack frames. Furthermore, among the pinned items, it must be able to distinguish the persistent ones
from the nonpersistent ones; unpinning a nonpersistent item will not help to reclaim buffer space. Thus, we make
one last revision to our description of the implementation of phase IV. Instead of allocating a separate user
descriptor pointer for each item’s pinning region, as implied in Section 5.5.2, phase IV allocates an array of
pointers for each E procedure. Similarly, it allocates an array of in-memory flags; the i-th user descriptor pointer is

associated with the i-th in-memory flag. Each stack frame also includes a descriptor containing four elements:

(1) the address of the array of user descriptor pointers for this frame,

®This could certainly be improved in the future.

'When an E program starts, it opens a buffer group in the EXODUS Storage Manager. The user can specify the number of pages in this
group by setting the environment variable EBGSIZE. Otherwise, the group size defaults to 50 pages.

108

(2) the address of the array of in-memory flags for this frame,
(3) the size of the two arrays, and
(4) apointer to the descriptor in the next deeper stack frame.

Finally, a global variable points to the descriptor in the top stack frame. At procedure entry, the descriptor is
initialized, and the global pointer is set to this vector. Figure 6.12 illustrates this arrangement for a hypothetical

example.

There are two (related) problems that complicate our approach, one of which we have solved in a reasonable
manner; although we have a solution to the other problem as well, it is not entirely satisfactory. The two problems
are easily seen with an example. Consider the following code fragment:

x =y + £() + 2;

Assume that y and z are both persistent. The compiler will produce (approximately) the following code from this
statement:
pin(y); pin{(z); x = **udl + £() + **ud2; unpin(y); unpin(z);

The first problem is that, within the call to £, we may attempt a pin operation that fails for lack of space. If the
exception handler unpins either y or z, then depending on how the C compiler chooses to compile this statement,

the program will either run normally, crash, or produce undetected errors. We can solve this problem by breaking

the call to £ out into a separate statement and assigning its result to a temporary variabie:
_tmp001 = £();
pin(y); pin(z); x = **udl + _tmp001l + *xyud2; unpin(y); unpin(z);

The second problem is not so easily solved. Assume in this example that pinning y succeeds but that pinning z
fails. If the exception handler unpins y in order to pin z, we will again have an error. The current (less than ideal)
solution is that the exception handler skips the top stack frame in its search for items to unpin. While this approach
avoids the error just described, it also implies that the handler will fail to consider items in the top frame that really

could be unpinned safely. As a result, there may be situations in which the exception handler will give up in failure

prematurely.® A better solution would be somehow to recognize that, for a given region of the program, a group

of items must be pinned simultaneously; the problem just described arises because we are considering items
individually.

®Given that the search starts at the bottom of the stack, this event should be rare.

top-of-stack

descriptor

Lyl
user in-mem
desc array
array

[(Ll—1

(]

Descriptors for Use in Handling
"Out-of-Space” Exception

Figure 6.12

Call Level 2

Call Level 1

Call Level 0
(main())

109

110

CHAPTER 7

AN INITIAL PERFORMANCE STUDY

The implementation of the E language raises some interesting performance questions. For example, how
effective are the mechanisms described in Chapter 6 in reducing the number times an E program calls the Storage
Manager? What causes the scheme to generate poor code, and how bad is the performance loss? What is the actual
performance impact of using db types in nonpersistent applications? In this chapter, we present a study designed to
provide initial answers to these questions by testing the quality of generated E code on a small set of examples.
These experiments are not intended to be exhaustive; rather, they plot a few interesting points in the performance

" "

space.

7.1. ORGANIZATION

In this study, we will describe a set of three sample programs. The basic approach was w write the same
program in slightly different forms, to compile the different versions, and to compare their performance. For the
first two sample programs, we will compare the performance of versions written in C++ and in E. For each
program, there will be two E implementations; the first will simply change all types from the C++ implementation
into db types, and the second will then make the program’s data structure a persistent object. Finally, both E
versions will be compiled with and without optimization. For the third of our sample programs, we will compare

the performance of a program written in E with that of the same program hand-coded with direct calls to the Storage

Manager.

These experiments will allow us to make several useful observations. First, by comparing the optimized and
nonoptimized E versions, we can measure the effectiveness of our optimization strategy. Next, we may compare the
(nonpersistent) E version of a given program against the C++ implementation to gain an initial estimate of the
relative cost of using db types in nonpersistent applications. Finally, by comparing a hand-coded example against a
compiled program, we can better understand what factors (besides pinning) are important in determining an E
program’s performance.

Of course, when measuring the performance of a system that handles persistent objects, we must be
concerned with the cost of I/O. However, the I/O behavior of a program running on top of the Storage Manager is
highly dependent on the state of the buffer pool and on the program’s referencing pattern, neither of which is under

111

the compiler’s control.®* What the compiler can control is the number of pin operations that a program performs,
and in this study, that is our main concern. Therefore, all persistent data structures are made small enough to fit into
the Storage Manager’s buffer pool; the size of the buffer pool for these tests is 150 4KB pages, or 600KB. The
programs used in this study ensure that no 1/O occurs during a run by traversing the structure once before beginning
the time measurements. Two global counters maintained by the Storage Manager, IO_DiskReads and
10_DiskWrites, record the physical /O activity during a program run. For all of the experiments reported here,
these numbers indeed remained unchanged after the structure was initially faulted-in, confirming that no [/O was
taking place.

The two statistics that we gather are the number of pin operations performed and the execution time for each
program run. The compiler includes a command-line option that causes pin operations to increment two global
counters. One counter tallies the total number of pin operations executed, while the other counts the number of pin
operations that actually result in a call to the Storage Manager. The difference between these two gives the number
of pin operations that pin in-memory objects. Time measurements are based on the getrusage system call. In
order to minimize the effects of the clock’s low resolution, we measure the execution time for multiple traversals of
the given data structure. The times that we report in the following section are computed by dividing this execution
time by the total number of nodes visited, i.e. by the number of nodes in the structure times the number of traversals.
Finally, all experiments were run on a VAXstation 3200 running the BSD 4.3 UNIX operating system.

7.2. THE EXPERIMENTS

The three test programs represent three broad classes of data structures, and they correspond roughly to the
kinds of structures commonly found in persistent applications. The three structures are: a directed graph with
small, randomly connected nodes, a tree with large nodes and high fanout, and a flat relation containing many small
tuples. Essentially, each program builds a data structure according to given parameters and then traverses the
structure a specified number of times. Note that both graph traversal and tree traversal are also important tests of
the effect of using db types for nonpersistent applications. The penalty for such use is associated with pointers;
these structures consist almost solely of pointers, and traversing them is almost entirely a matter of pointer

dereferencing.

7.2.1. TestI: Graph Traversal

The first program builds a random directed graph of 1000 nodes, each with a maximum out-degree of 5. This
structure is characterized by having many small nodes and by being sparsely interconnected (that is, the number of

®One of the original goals of E was to provide the programmer with a structured means of declaring buffer group sizes and replacement
policies. We have not yet addressed this issue, so every E program uses a single buffer group with LRU replacement.

112

nodes is much greater than the number of edges per node). This data structure is an important example, as it is
likely to be quite common in such applications as CAD systems. Graph traversal is characterized by being highly
recursive and by doing relatively little work at each node. This task is an important test case for the compiler since
coalescing and propagation, being strictly intraprocedural techniques, will have only limited opportunities to
improve the program’s performance. |

All nodes in the graph are of the same same size; each comprises an integer id field and an array of five
pointers to other nodes. For the C++ version, nodes are 24 bytes long, while for the db type version, nodes are 84
bytes each. The reason for this difference is that the size of a normal pointer is 4 bytes, while the size of an E db
pointer is 16 bytes. The graph is built in a breadth first manner, starting at the root. That is, the graph building
algorithm creates the root node, adds the root to a queue of nodes to be processed (the work list), and then enters a
loop. Each iteration of the loop removes the node at the head of the queue and initializes its out-going arcs, possibly
adding new nodes to the work list in the process. The loop terminates when, at the top of the loop, the work list is
empty.

In selecting a destination node for a given out-going arc, the algorithm first decides (randomly) between
creating a new node and selecting a node at random from those already in the graph. The algorithm allows a given
node to point to another given node at most once, and it allows a node to point to itself. If a new node is created, it
is added to the work list. For the nonpersistent versions of this program (both C++ and E), new nodes are allocated
on the heap, while in the persistent E version, nodes are allocated in a collection. To ensure that the algorithm
terminates, the probability of creating a new node drops to zero when the total number of nodes in the graph reaches

a threshold; this threshold is supplied as a parameter to the program.

After generating the graph, we measure the cost of traversing it ten times, The traversal is depth-first, and we
build a hash table of nodes already visited to avoid visiting a node twice. (Obviously, we clear the table after each

of the ten traversals.) Table 7.1 summarizes the results of these traversals.

The first two columns of Table 7.1 show the parameter values that distinguish the different versions of the
experiment. The first row shows the results for the C++ version. The remaining rows all refer to versions of the
experiment that used db types. In these rows, “pst” indicates that the graph is persistent, and “opt” indicates that the
optimization phases were included in compiling the program. The fourth row, for example, refers to the experiment
in which the graph was persistent and optimization was turned off. The time per node is shown in column three.
This number is the total execution time for the traversal divided by the number of nodes visited. In this case,
execution times range from 2.5 to 32 sec, and the traversal (repeated 10 times) visits 10,000 nodes. Finally,
columns four and five tally the number of pin operations performed per node during the traversal.

113

Graph Traversal
No. Nodes = 1000, Max Out Degree = 5
time per node | pins per node
expts (psec) in-mem sm
C++ 256 0 0
—pst —opt 712 8.2 0
—pst opt 590 1 0
pst —opt 3229 0 8.2
pst opt 1029 0 1
Results for Graph Traversal
Table 7.1

The first point to note in these results is that the code generator is successful in reducing the number of
pinning operations per node (for the db cases). In the unoptimized cases, there are about eight pin operations per
node visited. To account for these, we note that the traversal algorithm scans the array of pointers in each node,
follows each non-null pointer, and stops when the first null is detected (or when the whole array has been
processed). In unoptimized code, the test for a null pointer results in one pin operation, and following that pointer
(if it is not null) results in another. Given that the average out-degree is about 3.6, then we should expect about 8.2

pins per node — two pins for each pointer plus one more pin to detect the final null.

In the optimized cases, each node is pinned only once. Given that that Storage Manager interface supports
only object-at-a-time access, this figure is a lower bound on the number of pin operations. We note, however, that
we achieve this lower bound only because the traversal involves exactly one procedure activation per node.
Coalescing and propagation can reduce the number of pin operations to one within a procedure activation (as they
do in this case), but they do not eliminate pin operations across procedure calls. Thus, if each node in the traversal

were processed by several routines instead of just one, we would see multiple pin operations per node.

It is interesting to compare the benefits of eliminating pin operations for the persistent case relative to the
nonpersistent case. While optimization reduces the number of pins by 88% in both cases, the execution time per
node drops by only 17% for the nonpersistent case, as compared with 68% for the persistent case. The reason for
this difference is simply that the cost of a pin operation is much greater when it involves calling the Storage
Manager. In this case, therefore, a reduction in the number of such operations has proportionately greater influence
on the program’s overall performance. Pinning a nonpersistent object comprises a few boolean tests and a few
pointer manipulations. Other costs, such as comparing db pointers or simply moving them around, are more

important in the nonpersistent case.

This issue is further demonstrated when we compare the results of the nonpersistent db versions of the graph

program with the C++ version. (The C++ version is also compiled by the E compiler.) Comparing the first three

114

rows of Table 7.1, we see that the execution time for unoptimized E code is greater than the C++ version by a factor
of 2.8, while for optimized E code, this factor is reduced to about 2.3. Given that we reduce the number of pins per
node to one and still have a program that takes twice as long to execute as the C++ version, it is likely that the
remaining cost lies in manipulating db pointers. Besides dereferencing, the important operations on pointers are
assignment, arithmetic, and comparison, all of which are more expensive when the pointer is a db pointer (i.e. a
DBREF). The reason for this increased expense is partly intrinsic and partly an artifact of the current E
implementation. For example, since moving 16 bytes takes longer than moving 4 bytes, db pointer assignment is
quite a bit more expensive than normal pointer assignment. And, since a DBREF consists of an offset and an OID
(which itself has internal structure), testing two db pointers for equality requires a series of comparisons rather than

one. Currently, in fact, a procedure implements db pointer comparisons, thus adding the cost of a procedure call to

each comparison.* Given that graph traversal consists almost entirely of pointer manipulations, this example
represents a kind of worst case test of E. For a less pointer-intensive application, we can expect a less severe

performance penalty; further experimentation would be needed, however, to explore this trend in detail.

It is possible to derive a rough estimate of the cost of a pin operation from Table 7.1. Consider rows two and
three, which show the results for the experiments using nonpersistent db type objects. The same graph is traversed
the same number of times in both cases; the only difference in the amount of work done is in the number of pin
operations performed. Thus, the difference in execution time per node should be due solely to the extra pin
operations performed in the unoptimized case. Dividing this time difference by the difference in the number of pins
per node should thus give us the cost of a pin operation. This computation yields a cost of 16.9 s per pin when the
objects are nonpersistent, and it yields 305.6 ps per pin for persistent objects that are already in the buffer pool.

However, these pin costs should be considered as only approximate. The reason lies in the way that statistics
were collected in the experiment. Recall from Chapter 6 that each pin operation is preceded by a boolean check 0
be sure that the item is not already pinned. The count of pin operations is incremented immediately after this check

if the item is not currently pinned:
((! pinned) ? (pin_count++, <pin>) : 0)

In unoptimized code, the pin is always performed®, so the final count of the number of pin operations also counts
the number of times that the program executes such boolean tests. This is not the case for optimized code, however.

Optimized code executes the same number of boolean checks as unoptimized code, since the pin operations appear

at the same points in the program in both cases, while performing fewer actual pins. Thus, optimized code is

$Making this comparison inline would be quite easy.
The compiler ought therefore to eliminate the boolean checks in this case.

115

actually doing somewhat more work than is indicated by the number of pins recorded; furthermore, the amount of
extra work (and therefore, the size of the error in estimating the pin cost) depends on the relative number of pin

operations performed by the optimized and nonoptimized code.

Another factor that leads us to treat these numbers as approximations is that a given pin operation may or may
not include pointer arithmetic, depending on the source program. Thus, the cost of pinning will appear to vary
somewhat from program to program. Finally, as we mentioned earlier, the cost of pinning a nonpersistent object is
of the same magnitude as other operations on db pointers; therefore the variation observed for nonpersistent

applications could be significant.

7.2.2. Test II: Tree Traversal

The second test program builds and traverses a balanced, index-like tree structure. Such a structure is
characterized by page-size nodes, each having many pointers. Like a graph traversal, a tree walk is also recursive;
however, since more work is done at each node, we can expect coalescing to have a greater effect in reducing the
overall execution time. For this study, we built a 2-level tree with a fanout of 100, giving a total of 101 nodes.%
Again, we emphasize that the tree — like all of the other structures in this study — was intentionally made small
enough to fit into the buffer pool. A fanout of 100 was small enough to allow us to build a complete tree of two
levels within the buffer pool and yet large enough to allow "a lot” of work to be done at each node. The traversal
algorithm walks the tree ten times; at each node, every pointer is examined, and if a given pointer is not null, the
traversal descends through that pointer. (The pointers in the leaves, of course, are all null.)

Table 7.2 shows the results of the tree traversal experiment. In the unoptimized E case, there were 101 pins
executed at each node. One hundred of these pins can be explained by the fact that the traversal compares every
pointer in a node to NULL, causing each one to be pinned individually. The remaining pin arises from processing
the root node. Since no pointer in the root is NULL, then each one will be pinned twice: once to make the
comparison with NULL and once again as the traversal descends through that pointer. Thus, processing the root

contributes 100 extra pins, which averages out to about one per node in the tree.

Again, optimization is able to reduce the number of pin operations to one per node. As expected, since the
tree traversal does more work at each node, the performance improvement is greater in this experiment than in the
graph example. In the persistent cases (rows four and five), optimization reduces the number of pin operations by
99% and the execution time by 93%. Again, however, the savings in execution time is proportionately less for the

nonpersistent cases (rows two and three) due to the lesser cost of a pin relative to other (pointer-related) costs.

%Nodes are actually declared with a fanout of 200 to ensure that each node goes on a separate page.

116

Tree Traversal
Depth = 2, Fanout = 100

time per node | pins per node

expr (sec) in-mem sm
C++ v 521 0
—pst —opt 3168 101 0
—pst opt 1980 1 0
pst —opt 33960 0 101
pst opt 2316 0 1

Results for Tree Traversal

Table 7.2

There, the execution time drops by only 38%.

We can once again estimate the cost of a pin operation from this table, as we did for Table 7.1. For the
nonpersistent case, this computation yields 11.9 ps per pin, while the persistent case works out to 316.4 pis per pin.
As we explained earlier, these numbers are only approximate. Comparing them with the pinning times derived from
Table 7.1, we see that two numbers for the nonpersistent case differ by almost 30%, a very significant margin, while
the numbers for the persistent case differ by only 3%. This wide variation can be explained in light of the earlier
discussion of error accumulation. Since the boolean test at the start of a pin operation is a significant fraction of the
total cost to pin a nonpersistent object, the error in our pin cost estimate will be far more noticable for nonpersistent
cases. Furthermore, as we explained, the greater the difference between optimized and nonoptimized code in the
actual amount of pinning done, the greater the error accumulation. In the graph example, there was a difference of

7.2 pins per node, while in the tree example, there was a difference of 100 pins per node.

7.23. Test III: Relation Scan

The final data structure that we examine is a flat file (i.e. a relation), where we measure the costs of three
processing steps: loading, scanning, and deleting. The load program creates 4500 tuples of 100 bytes each within
an initially empty file. The scan program simply reads the first four bytes of each tuple in the file, and its execution
is repeated ten times. Finally, the delete program destroys all of the objects one at a time. Since we have already
demonstrated in the graph and tree examples that the optimizer becomes more effective the more work we do on
each object, we will not repeat that result here. Instead, this experiment will do almost no processing of the objects:
the load program creates uninitialized objects, the scan program only reads four bytes from each object (without

interpreting those bytes in any way), and the delete program simply deletes each object.

The intention of this final experiment is quite different from the previous two. The graph and tree examples

serve to measure the cost of using db types and to test the effectiveness of our optimizations. In contrast, this test

117

will measure the performance of file (collection) operations as currently implemented. Our approach here is to
compare the performance of a program written in E against a version that we hand-coded in C++ with direct calls to

the Storage Manager.¥’

Recall from Chapter 3 that a collection provides a typed abstraction of the files implemented by the Storage
Manager. This abstraction is realized as a (generic) dbclass and supports the creation of new objects (with the
in...new construct), the deletion of objects (with the delete operator), and the scanning of objects in a collection
(with the scan iterator). Although knowledge of the collection class is wired into the compiler, the class
methods themselves have been implemented in E. The scan method, for example, is an E iterator that yields a db
pointer to each object in the file; it calls the Storage Manager routines sm_GetFirstOid and
sm_GetNext0Oid to obtain the sequence of object addresses. Writing the methods in E had the advantage of being
very easy to implement and to change as necessary. However, this design also places an extra layer of procedure
calls around each Storage Manager operation. As we shall see, the overhead of this implementation has a significant

effect on performance.

Table 7.3 presents the results of this last experiment. As in the graph and tree examples, the times given are
in s per object. We described the load, scan, and delete steps at the beginning of this section; the time in
parentheses for the C++ scan case will be explained shortly. The obvious result from Table 7.3 is that file
operations are significantly more expensive in E programs when hand-coded in C++. This overhead can be
explained by several aspects of the collection implementation. The first problem, as we have indicated, is the
extra procedure call overhead that results from implementing the collection methods as E routines. This
overhead is somewhat worse for the scan method, as iterators are slightly more expensive to invoke than normal
procedures,

File Manipulations
No. Objects = 4500, Object Size = 100 bytes
(times indicate jis/object)
expt load scan delete
C++ 384 480 (318) 556
E 524 571 731

Results for Relation Experiment

Table 7.3

“Ideally, we would have hand-coded the graph and tree examples as well. Time constraints prevented this extension, however.

118

The fact that the collection class is written in E also leads to another, more subtle, source of overhead. The
representation of a collection object itself is a pointer to the actual Storage Manager file, and the id of the file (FID)
is embedded within the OID part of this pointer. Now, in order to invoke a Storage Manager operation on our file,
we must extract the file’s FID from the pointer and pass that FID in the call. However, since E does not allow a db
pointer to be interpreted as anything but a pointer, there is no way (within the language) for an E program 1o treat a
db pointer as a DBREF — even with casting. As a result, the collection methods each pass the pointer 1o a routine
(written in C) that simply returns the pointer’s value as a DBREF. This aspect of the impleméntation implies that

there is not one, but rather several, extra procedure calls for each call to a Storage Manager routine.

For the operations of creating or destroying objects in a collection, it would be a fairly simple matter to have
the compiler introduce inline code to call the appropriate Storage Manager routines. This would eliminate not only
the call to the class method, but also the calls currently needed to convert between db pointers and DBREFs.

Improving the scan performance, however, is not as easily accomplished.

The Storage Manager supports two means of scanning the objects in a file. One approach is for a client to use
a series of sm_GetNextOid operations to obtain the sequence of object addresses; each object is then pinned
with a separate call to sm_ReadObject. E programs scan collections in this way, although the part that obtains
the object addresses (the scan iterator) is independent of the part that pins the object (the body of the iterate loop).
The other means of scanning a file is to use an option in the Storage Manager interface that combines the calls to
sm_ReadObject and sm_GetNextOid into a single call. That is, there is an optional argument to
sm_ReadObject that allows the client to receive the OID of the next object following the one currently being
pinned. This interface allows the client to scan a file with one Storage Manager call per object, as opposed to the
two that are required in the first style of scan.

The column labeled "scan" in Table 7.3 shows the cost per object to scan the file using the
sm_GetNext0id approach. The number in parentheses for the C++ case indicates the result of using the special
interface; since the E program can only use the scan iterator, it has no corresponding entry. Clearly, the combined
call provides a significant savings if one is able to utilize it. However, given the design of collections in E, this
appears to be a difficult task. While the separation of the scan iterator from the loop that uses it provides a clean
abstraction that was easy to implement, it also prevents us from using the special sm_ReadObject interface. As
far as the (current) compiler knows, scan is just a normal iterator of unknown purpose. Furthermore, it is not
clear that the compiler, even if it knew the semantics of the scan iterator, could combine the sm_GetNextOid
calls with the sm_ReadObject calls that are in the loop body. One problem would be deciding which of the
(probably many) pin operations should include the next oid request, as we would not want simply to add the request
to every call. (Acallto sm_ReadObject that requests the next oid is more expensive than one that does not; by

adding the request to every pin operation, we could easily ask for the same "next” oid many times.) Another

119

problem is that there may not even be any pins in the loop body; the loop may simply pass the object pointers to a
procedure. It thus appears that utilizing the faster scan interface would require quite a bit of special-case coding.

In a larger sense, however, it may be that the Storage Manager is not providing the appropriate mechanism for
optimizing scan performance. The separation of control flow from processing — the basic motivation for iterators
— is a useful programming methodology that has many practical benefits. The Storage Manager interface could
conceivably provide efficient, explicit scan support while keeping the sm_ReadObject calls separate. For
example, instead of sm_GetNext0id, a better call might be sm_GetNextPageOfOids, which would return
an array of all the OIDs on the next file page. Better yet, the Storage Manager could provide a more explicit scan
abstraction where, once the scan was started, getting the "next” OID would be very inexpensive (relative to the
current sm_GetNext0id call).

7.3. SUMMARY

This chapter has presented the results of a first investigation into the performance of E programs. The
exercise has been useful in demonstrating that the ideas developed in Chapters 5 and 6 can indeed improve the
performance of E programs, sometimes dramatically. More importantly, however, it has pointed out areas where
optimization is less effective than we would like, and it has revealed several aspects of the implementation of E that
could be improved.

120

CHAPTER 8

CONCLUSIONS

8.1. THESIS SUMMARY

This thesis has presented the design and implementation of E, a persistent systems programming language. In
Chapter 1, we introduced E and described its relationship to the other components of the EXODUS toolkit. We laid
out E’s major design goals and described the problems in the target programming domain that motivated them: the
need for a query structuring mechanism, the lack of type information during system implementation, and the
prevalence of disk-based data.

Chapter 2 presented a survey of some related languages, both past and present. The common feature that E
shares with all of them is the provision of typed, persistent data. E differs from previous work in being a systems
implementation language (as opposed to a high-level application language) and by having its model of persistence
based on storage class (rather than on reachability). The implementation of E differs from other persistent language
implementations in that its framework for managing 1/O is based on static analysis.

In Chapter 3, we presented the main features of the E language design through a series of refinements to an
example program. Since E is a superset®® of C++, we began by showing a C++ implementation of the example,
which was a binary tree index. Iterators were then introduced and shown to be a convenient mechanism for
scanning the index in the presence of duplicate keys. Next we described generator classes, and we showed how
they allowed the index code to be made independent of the key and entity types. Finally, we discussed database
types, persistent variables, and collections, and we refined the example one last time so that the index became an

object in the persistent store,

Chapters 4, 5, and 6 then described the implementation of persistence and code generation in version 2.2 of
the E compiler. Chapter 4 presented an overview of the compiler’s internal organization and explained our
approach to several implementation issues, such as the representation of pointers, the processing of type
declarations, and the implementation of persistent objects. Chapters 5 and 6 detailed the translation of E
expressions into code to manipulate persistent objects. Chapter 5 outlined the basic organization of our code
generation scheme, introduced the concept of an item, and showed how the program’s syntax tree is altered to

include calls to the storage layer for accessing persistent objects. Chapter 6 then described compiled item faulting, a

®With the exception of class nesting, as discussed in Section 3.2.2.

121

mechanism that reduces the number of run-time calls to the storage layer through a combination of static analysis
and dynamic checking.

Finally, Chapter 7 presented the results of a small performance study. We examined a few seletted E
program examples in order to gain an initial idea of the quality of generated E code. The code generation scheme
described in Chapter 6 was shown to provide significant performance improvement in the manipulation of persistent
objects. This scheme was also shown to improve the performance of nonpersistent applications that use db types,
although the speedup was not as great.

8.2. RETROSPECTIVE AND FUTURE WORK

‘Let us now consider the work accomplished so far, critique that work, and suggest directions for future
research. Given that the preceding chapters have emphasized the positive features of the language, here we
deliberately concentrate on E’s shortcomings. We consider each of three major areas: the language design (both

syntax and semantics), the compiler implementation, and the programming environment.
8.2.1. Language Design

8.2.1.1. Db Types Versus Non-db Types

As we stated in Section 3.5.1, the reason for having db types in the language is to allow nonpersistent C++
data structures to be manipulated with no loss of performance. As Chapter 7 showed, the difference in performance
between a C++ program and the same program implemented in E with db types can be significant. While the
separation of db types from non-db types may thus be a good idea, having two sets of keywords for describing them
is somewhat awkward. More importantly, however, db types present certain problems related to the semantics of
pointers. The current language design allows the assignment of a non-db pointer to a db pointer, but not vice versa.
The reason for accepting assignment in the one direction is to allow, for example, passing a string literal to a routine
that expects a dbchar*. The reason for disallowing assignment in the other direction is that it is not clear what

such an assignment should mean in the case where the db pointer references a persistent object.

The difference between db and non-db pointers gives rise to another problem when combined with un-type-
checked function calls, a feature derived from C and supported by C++ and E. If a db pointer is passed to a routine
that expects a virtual pointer (or vice versa), disaster ensues. The compiler can do nothing to prevent such errors,
since the function’s declaration provides no basis for rejecting the call. Library routines such as printf and
scanf are particularly painful examples. For instance, if p is a dbchar*, then printf ("%s", p) will
cause an error, since the call will pass a DBREF instead of a char*. The fact that printf ("%c", *p) works
only confuses the matter more. There are several options for improving this situation, and at the very least, the

compiler could warn the programmer that a db pointer is being passed in an unchecked function call.

122

8.2.1.2, Strings and Other Variable Size Types

One feature that was part of the original language design was support for variable-length arrays (our so-called
varrays) [Rich87]. Such a feature might be useful for implementing sets and strings, for example. These arrays
were intended to support dynamic resizing, reflecting the capability of the underlying Storage Manager objects to
grow and shrink. While the idea is simple enough at first glance, complications arise if we wish to allow varrays to
be composed with other type constructors, for we must then manage an arbitrary nesting of variable length objects.
After much consideration (and even an implementation outline [Rich88]), the idea was tabled in favor of addressing

the other, more fundamental implementation issues presented in this thesis.

It has recently been suggested, however, that variable-length objects be reintroduced into the language, but in
a more limited form [Solo89). Specifically, there should be a mechanism for declaring an array whose dimension is
not bound until creation time; once created, however, the array size remains fixed. Such an abstraction has
appeared in other languages such as Algol-60 and Ada, is easier to implement than fully dynamic varrays, and
would probably meet many of the needs for which one might have used a varray. The graph program in Chapter 7
is a good example. Instead of a compile-time binding of the out-degree of every node to some maximum, we could
instead determine this number for each node at the time of its creation. Adding a flexible array language feature to
E could be important, not only for its convenience, but also for performance reasons. Currently in E, if one wishes
to include, for example, a variable length string as a data member of a dbclass, that member must be implemented as
a pointer to a different object that contains the string. If the string were implemented as a flexible array of
characters, then the compiler could allocate the string at the end of the same object that contained the class instance,

embedding the string’s offset within that instance.

8.2.1.3. Generators and Inheritance

The current language design overloads the syntax for deriving subclasses to serve also as the syntax for
instantiating generators. Furthermore, one may only instantiate a generator via this syntax. To declare a stack of
integers, for example, one must first instantiate a class, e.g. intStack, and then declare an intStack instance.
A cleaner, more natural design would be to allow instantiation within the context of a variable declaration. For
example, the following declaration would declare s to be an integer stack instance:

stack[int] 3;
This style of instantiation syntax is found in CLU [Lisk77] and Trellis/Ow! [Scha86]. Of course, one may still
introduce a simple name for the type with a typedef, for example:
typedef stack(int] intStack;

This declaration introduces intStack asasynonym for stack[int].

123

Also important is the more general problem of the relationship of generators to inheritance. The existing E
semantics in this area are not clean. For example, despite the current syntax, a class instantiated from a generator is
not in any sense a subtype of that generator. Furthermore, while one may derive a subclass from an instantiated
class, one may not derive a generator from a generator, nor a generator from a non-generator class. These issues

have been examined previously [Meye86, Scha86] and need to be addressed in the context of E.
8.2.2. Compiler Implementation

8.2.2.1. Alias Analysis and Other Optimizations

As we stated in Chapter 6, version 2.2 of the E compiler does not implement alias analysis, nor does it
perform interprocedural analysis. Such techniques could help to improve the performance of E programs in several
ways. First, by providing a more accurate estimate of the side effects of a given assignment or function call, they
may make it possible to eliminate some of the unpin operations currently scheduled in phase II. Second, if it can be
determined that two different pointers reference the same object, we may be able to coalesce their pinning ranges.
Such an optimization would extend the current notion of coalescing, which considers only items based on the same
pointer.

E can also benefit from other conventional optimizations. One important technique is the detection of loop
induction variables. By knowing that the increment to a pointer or an array index is the same in every iteration of a
loop, the code generator can be more intelligent in pinning objects based on such items. Currently, an array is either
pinned in its entirety, or it is pinned one element at a time, depending on whether the array size falls below or above
the compiler’s coalescing threshold. The number of pin operations performed in processing an n-element array
therefore jumps from O(1) to O(n) as the array size crosses this threshold. Detecting induction variables would
allow the compiler to restructure a given loop so that it processes the array in large chunks. For example, the

following E loop looks for the end of a character string:
while(*p != /\0’)
ptt+;
Noting that p is incremented exactly once in each iteration, the compiler could transform this statement into a
nested loop. Each iteration of the outer loop would pin a large chunk of bytes which the inner loop would then

process.

8.2.2.2. Other Performance Enhancements

In addition to — and orthogonal to — potential compiler optimizations, there are other routes to improving
the performance of E programs that would be interesting to explore as well. For example, any improvement to the
performance of the storage layer (particularly on a buffer hit) would be reflected directly in better performance for E

124

programs. We might consider, for example, adding another (faster) layer of caching above the existing interface.
An alternative route would be to bypass the top layer of the Storage Manager altogether and to have E code
communicate with the next layer down. In addition (hopefully) to reducing the cost of a pin operation, such an
interface would also open up other new possibilities for the compiler. For example, while the current interface only
supports object-at-a-time access, the next layer down presents opportunities for page-at-a-time accesses. For certain

kinds of operations (e.g. scanning a relation), page-at-a-time access might provide significantly better performance.

8.2.2.3. A Hybrid Approach

In describing E’s approach to code generation in Chapter 6, we contrasted compiled item faulting with
dynamic object faulting. The E compiler reduces the number of calls to the storage layer via static analysis together
with simple run-time checking. In contrast, dynamic object faulting reduces the number of calls to the storage layer
via pointer swizzling and extensive run-time support. It is not clear that these two approaches are necessarily
incompatible. Rather, it may be possible to develop a hybrid approach that combines some form of pointer
swizzling together with static analysis to achieve the "best" of both worlds.

8.2.2.4. Generators

An important aspect of implementing E that was not covered in this thesis is the way in which generators are
instantiated with actual parameters. Following CLU [AtkR78], the methods of an E generator class are compiled
separately and shared by all classes instantiated from it. This decision was motivated by the expectation that E
generators would be used to build frequently instantiated packages, such as access method code. Since such

packages tend to be quite large, a code sharing approach seems appropriate.

There is, however, an unfortunate interaction between the code produced for a generic method and the code
produced for db types. A method for a generic class often does not know the offset of a given data member of the
(acmal) class until run-time. As a result, the compiler translates references to such members into expressions
involving pointer arithmetic and dereferencing. Since the code generation phase for persistence occurs after the
code generation phase for generators, it is not able to distinguish these pointer manipulations from others. As a

result, the compiled code will execute many more pin operations than necessary.

There are several possible approaches to solving this problem. For small generator classes (e.g. stack),
perhaps a better solution is to provide macro expansion as an implementation option for instantiating a generator.
(That is, an instantiated type would essentially reproduce the generator code with the actual type names in place of
the formal parameter names, and the result is then compiled.) The interaction problem between compiler phases
would not arise here, as the methods received by the code generator would then be type-specific. Such an

implementation is probably inadequate for the large generator classes used to implement database access methods,

125

however, and other solutions must be sought. One approach would be to pass more information between the
compiler phases, e.g. by tagging generator-induced offset calculations as such, so that the code generator for
persistence could produce better code.

8.2.3. Programming Environment Support

Currently, E programs are built according to the same paradigm used for building C or C++ programs. That
is, the program exists as a collection of independent files in the operating system, and the fact that one module has
any relation to another is (at best) maintained with a facility such as make [Feld79]. The shortcomings of this
approach are well-known, and integrated programming environments have recently received much attention
[Comp87, Soft87]. For a number of reasons, some of which we mentioned in Section 4.4, E has a particular need

for a more structured environment in which to compile and run programs.

8.2.3.1. Classes as Objects

Perhaps the most serious problem with the current E environment stems from the C model of defining and
using types. That is, type definitions are stored in header (.h) files, while the code to implement the types is stored
in separate source (.c) files. An application program that wishes to use a type includes the text of the type’s .h file
during compilation, and then later the resulting object module is linked with the object modules derived from
compiling the type’s methods. With luck, then the .h file that was included when compiling the application is the
same .h that was included when compiling the type’s methods. When the modules are linked together, we must
further hope that the symbols are bound to objects of the correct type; the linker does not care about matching

types, only matching names.

The basic problem with the semantics of file inclusion is that a type has no existence outside of a compilation
session; as far as the compiler is concerned, the type is created for the first (and only) time every time its header file
is included. While this looseness can cause problems in any system-building environment, it can prove disastrous
for persistent data. For instance, if a program compiled with one version of a type creates a persistent object, and
another program compiled with a different version of the type then accesses the object, the result is likely to be
unpleasant. Section 4.4 also mentioned another problem that file inclusion presents for E. In order to support
virtual functions for persistent objects, the compiler must generate a unique tag for a given type, and furthermore, it
must always generate the same tag for that type. Thus, the compiler really needs to be able to distinguish the first
time it sees a type from subsequent occurrences. In other words, there needs to be a semantic distinction between

creating a type and simply using it. (In the former case, the compiler generates a new tag, and in the latter, it reuses

the existing one.)

126

Both of these problems suggest that file inclusion as a means of using types does not provide the appropriate
semantics for a persistent language. Similar to the way programs use definitions in Modula-2 [Wirt82] for example,
an E program might declare its intention to use a particular type via some kind of import statement. An associated E
environment would allow programmers to add new types to various libraries and would track dependencies between
the types. In addition, such an environment would maintain the association between a persistent object and its type

to ensure that an application can access an object only if it really linked to the correct type.

8.2.3.2. Schema Evolution

One very important requirement of an environment to support a persistent language is the need to manage
change, especially in the definition of types. The requirements are more stringent here than in a Modula-style
environment, as the presence of persistent objects raises a number of additional issues: if the definition of a type is
changed, what should be done with the extant objects of that type? Should they be left alone, should the be
discarded, or should the system attempt to evolve them automatically? Should we allow types to change at all, or
should we only allow the addition of new versions of types? If we do allow versions, what is the relationship
between one version and another? Can a single program access objects of different versions of the same type? The
problem of schema evolution is an interesting research topic that could be addressed in the context of building an
environment for E. Work in the area of object-oriented database systems has produced several papers on the subject
[Skar86, Penn87, Bane87], but the problem is far from solved. E presents some unique additional challenges
because the programmer has much more control over the physical layout of objects than is provided by an OODBS.

8.2.3.3. Debugging Support

Currently, debugging E programs is, to be kind, cumbersome. Two factors contribute to this problem. First,

E code is translated into C, and the symbols known to the debugger are those produced by the C compiler.

Moreover, in order to output legal C code, the E compiler must alter function and variable names in certain cases,

e.g. to produce a set of C functions with unique names from a set of E functions with overloaded names. As a

result, the symbols available during a debugging session are often quite different from the names declared in the
source code. The second problem concerns db type objects (both persistent and nonpersistent). Since the debugger

knows nothing of persistent objects, we cannot print a persistent variable by simply giving its name. Furthermore,

the programmer cannot give the usual dereferencing syntax to print the data at the end of a db pointer, as the

compiler has converted all such pointers into DBREFs. Clearly, better debugging support is needed if E is to be

used for building large systems. At a minimum, such support would include an E expression interpreter.

127

8.3. CONCLUSION

We have made much progress in the design and implementation of E. We have shown the language to be a
powerful programming tool, and we have demonstrated that the compiler can produce good code. We believe that
the language design and compilation techniques developed in this thesis are important contributions to the area of
persistent programming. As this chapter has shown, however, there are several areas in which the language design
can be improved, and there are many possible avenues for pursuing further improvements both in the quality of
generated E code and in the environment support provided to the E programmer. Finally, and perhaps most

importantly, ideas for future improvements will also come from E programmers as they gain more experience with
the language.

