ADF 5;’/6/

CACHE MEMORY DESIGN ges
CONSIDERATIONS TO SUPPORT
LANGUAGES WITH DYNAMIC HEAP ALLOCATION

by

Chih-Jui Peng and Gurindar S. Sohi

Computer Sciences Technical Report #860

July 1989

CACHE MEMORY DESIGN CONSIDERATIONS TO SUPPORT
LANGUAGES WITH DYNAMIC HEAP ALLOCATION

Chih-Jui Peng and Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, WI 53706

June, 1989

Abstract

In this report, we consider the design of cache memories to support the execution of languages
that make extensive use of a dynamic heap. To get insight into the cache memory design, we
define several characteristics of dynamic heap references and measure these characteristics for
several benchmark programs using Lisp as our model heap-intensive language. We make
several observations about the heap referencing characteristics and study the implications of the
referencing characteristics on cache memory design. ‘ ‘

From our observations, we conclude that conventional cache memories are likely to be inade-
quate in supporting dynamic heap references. We also verify this conclusion with an extensive
trace-driven simulation analysis. Then we present some cache optimizations that exploit the
peculiarities of heap references. These optimizations include: i) the use of an ALLOCATE
operation to improve the cache miss ratio as well as the data traffic ratio, ii) the use of a biased-
LRU replacement algorithm that discriminates against garbage lines and moves the miss ratio of
a cache closer to that of an unrealizable optimal cache and iii) the use of a garbage bit with each
cache line that eliminates unnecessary write back operations.

Using trace-driven simulation, we conclude that with the heap-specific cache optimizations pro-
posed, it is possible to design cache memories that have a miss ratio and a data traffic ratio that
is close to 0. Without these optimizations, the miss ratio and data traffic ratio of a cache organi-
zation can be extremely poor, regardless of the cache size.

Two of the proposed optimizations rely on a mechanism that detects garbage soon after it is
created. Since cache memory performance without the proposed optimizations is very poor, we
point out the need for garbage collection mechanisms that can detect garbage almost immedi-

ately after it is created and while the garbage heap cell is still resident in the cache.

1. Introduction

To support the éfficient execution of languages that make extensive use of a dynamic heap
(such as functional languages), efficient memory support must be provided. In the execution
paradigm of such languages, memory references are concentrated on 3 areas: i) an instruction or
code space (which could be a part of the heap space if interpretation is used), ii) a stack space,
and iii) a dynamic heap space.

Thus far, most of the work in memory system support for heap-intensive languages has
concentrated on instruction and stack references (see, for example, special memory support for
instruction and stack references in Lisp machines such as the Symbolics 3600 [9]). This is
justifiable since most memory references are to these 2 areas. However, as processor speeds
increase, the impact of heap references on overall system performance becomes significant.

In this report, we study a topic that has largely been ignored so far in the research literature
-- cache memory support for dynamic heap references. The approach we take in this study is to
characterize dynamic heap references and pinpoint characteristics that impact cache memory
performance. We see how certain heap reference characteristics can pose an unacceptable lower
bound on the performance of conventional cache memories and verify these bound with detailed
trace-driven simulation. We also see how other heap reference characteristics can be used to
optimize the cache memory design. The language that we use for our studies is a dialect of Lisp.

The remainder of this report is as follows. In section 2, we define dynamic heap reference
characteristics, measure these characteristics using benchmark Lisp programs, make observa-
tions about these characteristics and present the implications of the referencing characteristics on
cache memory design. In section 3, we consider cache memory design using the cache miss
ratio and the data traffic ratio as our performance metrics. We verify our observations of section
2 and their impact on cache memory design with extensive trace-driven simulation. We also
present optimizations that are peculiar to dynamic heap references and measure the impact of
these optimizations with trace-driven simulation. Many of our optimizations are based upon an
efficient garbage collection strategy that is able to detect garbage while it is still resident in the
cache. In section 4, we outline the requirements for such a garbage collection strategy. Finally,
in section 5, we present some concluding remarks.

2. Characteristics of Dynamic Heap Accesses

A heap is a block of storage (heap space) where pieces (objects) are allocated in a sys-
tematic manner and deallocated in some unpredictable way. Managing the heap has been a clas-
sic problem among computer scientists since it raises an interesting question: how to create the
illusion of infinite memory out of a limited amount of physical (or virtual) memory. There are

2

two issues to be tackled: (i) how to provide this illusion correctly and (ii) how to provide this
illusion efficiently. Much work has been done on both problems.

At the core of the heap management problem is garbage collection. Much research has
been devoted to garbage collection strategies that not only manage the heap in a correct fashion,
they also manage it "efficiently” [3,4,8]. Traditional metrics of efficiency have included: i)
minimizing the garbage collection overhead and the interaction between garbage collection and
list processing and ii) improving locality of non-garbage cells to improve paging behavior. A
key component of a high-performance CPU, the cache memory, and its relationship to dynamic
heap growth and management, has largely been ignored in the literature; possibly due to the lack
of special purpose list processing machines with cache memories.

Our intention in this report is to investigate the relationship between dynamic heap refer-
ence patterns and cache memory design; we shall concentrate solely on this problem. The sam-
ple dynamic heap-intensive language that we use is a dialect of Lisp but we believe that bu;‘
results are equally applicable to any other language that makes intensive use of a dynamic héap'f

2.1. Definitions

Before we can pinpoint the peculiarities of heap referencing in Lisp and explain how they
impact the design of cache memories to support heap accesses, some definitions are needed.

Definition 1: A heap cell is the unit of allocation in the heap space. It is the fundamental ele-
ment for constructing heap objects, which are the high level abstraction of the
entities seen by the program. '

Definition 2: A heap memory word is a location in memory (not necessary a 4-byte word) to
which a heap cell is allocated (or bound to). The collection of heap memory
words form the heap memory.

The reason why we distinguish between heap cells and heap memory words is that a heap cell
may be bound to different heap memory words at different times during the execution of a pro-
gram. For example, the garbage collector may relocate a heap cell and assign it to a different
heap memory word. Furthermore, the program manipulates abstract objects in the heap space
whereas the processing hardware manipulates objects (contents of memory locations) in the heap
memory.

Definition 3: The active region of the heap space (Ry) is the total number of distinct heap cells

referenced by a program in a trace of its execution®.

Definition 4: The active region of the heap memory (Ry,) is the total number of distinct heap
memory words referenced in a trace.

With a straightforward heap allocation algorithm and no garbage collection, R, = 2R assum-

ing that a heap cell occupies 2 heap memory words?. Garbage collection can change this rela-
tion in two ways: (i) it may decrease Ry, by reusing a collected garbage heap memory word and
allocating more than one heap cell to the same heap memory word, or (ii) it may increase Ry by
mapping the same heap cell to different heap memory words during different times in the execu-
tion of the program. Because of the difficulty in characterizing all the garbage collection algo-
rithms in a general way and also because we are more interested in the inherent heap referencing
behavior that can be exploited to improve cache performance, we shall initially' assume that no
garbage collection takes place. When considering cache organizations, we shall study the poten-
tial impact of garbage collection on cache performance. ‘ '

Definition 5: The access ratio of the héap Spdce (Ap,) in a trace is the lavefage number of refer-
ences made to a distinct heap cell.

Definition 6: The write ratio of the heap space (Wys) in a trace is the average number of write
accesses made to a distinct heap cell.

Definition 7: The access ratio of the heap memory (Apy) in a trace is the average number of
references made to a distinct heap memory word.

Definition 8: The write ratio of the heap memory (W,) in a trace is the average number of
write accesses made to a distinct heap memory word.

These four definitions can be divided into two sets. The first set, Ay and Wy, reflects the heap
referencing behavior that is inherent in a program. In particular, the Ay can tell us how fast the
heap space grows (1/A,s cell per heap reference). Because A, and W, are characteristics of a
program, running the same program on different machine architectures will not result in dif-
ferent Ap; and Wy,.

The second set, Ay, and Wy,,, reflects the memory referencing behavior observed by the
processor (and memory) during the execution of a program. The resulting memory referencing
behavior is a mixture of both the inherent heap space referencing behavior of a program as well

Hereafter, we shall use the word trace to mean a trace of the execution of a program (or a part of it).

2 Using Lisp terminology, a heap cell (cons cell) consists of 2 parts, a car and a cdr. If each part occupies a heap memory
word, then the heap cell occupies 2 heap memory words.

as the processor implementation details such as the heap memory allocation algorithm (along
with the garbage collection algorithm) and the cache configuration. In a system with no garbage
collection, Ap; = 24, and Wy, = 2W,,,,, because Ry, = 2Ry;.

Appn and Wy, can provide us with insight into the performance of cache memories used to
support heap memory referencing. Ay, provides a theoretical lower bound on the cache miss
ratio that can be achieved by exploiting temporal locality alone in a conventional cache, i.e., a
cache without the heap-specific optimizations that we shall describe in section 3. For example,
in a cache with line size equal to 1 word, because the first access to a memory word is a miss, the
best-case number of hits to that word in Ap,—1, i.e., the miss ratio for access to the heap data
cannot be lower than 1/Ay,, irrespective of the cache size. By increasing the line size to L
words, one can exploit spatial locality and decrease the lower bound to 1/LA,, (only 1 miss for
LAp,—1 hits).

Wpm can also provide insight into cache performance since it allows us to compute the
number of memory write requests generated and compare write-through and write-back cache
organizations. More on this in sections 2.4 and 3.2.

Definition 9: The temporal distance of a reference to a heap cell (D.) is the number of heap

references since the last access to that cell (excluding the first access to the cell?).
The average temporal distance of (references to) the heap space (Dy) is the aver-
age of D, over all heap cells referenced.

Definition 10: The temporal distance of a reference to a heap memory word (D,,) is the number
of heap memory references since the last access to the heap memory word
(excluding the first access to the word). The average temporal distance of (refer-
ences to) the heap memory (Dpy) is the average of D,, over all heap memory
words referenced.

Dy and Dy, are measurements of the temporal locality in a program. Similarly to A, and Wi,
Dy measures the locality of heap referencing inherent in a program and is a characteristic of a
program while Dy, measures the locality of heap memory referencing during the execution of a
program on a particular machine and can be affected by implementation details.

Definition 11: The lifetime of a heap cell (L.) in a trace is the number of heap references
between the creation of the cell and the last reference made to it. The average

3The first access is excluded since it is meaningless to count the number of heap references since the last reference to a cell
since there is no last reference.

lifetime of the heap space (Lys) is the average of L, over all the cells referenced.

Ly, tells us how long a cell will stay "alive" (or not become garbage) on the average. It can be
combined with Dy, to estimate A;. Since a cell is accessed in every Dy, references, it will be
accessed Ly /Dpg + 1 times throughout its lifetime (the 1 is due to the first access that is not con-
sidered in Dyy), i.€., Apg=Lps/Dps + 1. Ly can also be combined with Ay to estimate the aver-
age number of cells that are alive simultaneously (or the average size of the working set (WS) of
a program). Because a cell is created every A, references and it stays alive for L, references,
there are Lj;/Aps cells alive simultaneously, on the average. Therefore, the average number of
heap cells that are not garbage at a given time during the execution of a program is
Lips DpsLips
Lis/Dps+1 Dpg+Lps
memory that would be needed. More on this in section 2.4.

WS = WS provides us with insight regarding the size of the cache

Note that we do not define the lifetime of a heap memory word because such definition is
meaningless. A heap memory word doesn’t "die," it only gets assigned to a different heap cell
when the heap cell that is bound to the heap memory word becomes garbage.

2.2. Benchmarks and Examples

Let us illustrate our definitions with statistics collected from 8 medium size Lisp bench-
mark programs. Table 1 presents a description of these programs which are used in all of our
remaining experiments in this report. Many of the benchmark programs that we use are obtained
from Gabriel’s book on Lisp benchmarks[5] and have also been used in a previous study [14].

Table 1. Description of the Benchmark Programs Used in this Paper

r__---Beuchmark Description

boyer a theorem proving program

browse a program that creates and browses through an Al-
like database of unit

dderiv a program for calculating derivatives of polynomials

destr a program that builts and destructively traverses a
tree

interp a simple LISP interpreter that interprets a program
for calculating the greatest common divisors using
Euclid’s algorithm

frpoly a program on polynomial arithmetic

gsort a quick-sort program

queen a 8-queen problem solver

Each of our benchmark programs is executed on a software simulator that emulates a Sym-
bolic 3600-like architecture [9]. The simulator allows us to generate memory reference traces
that are then examined by other programs. Two of the benchmarks (boyer and browse) are so
long that they exceed the limit of the cache simulator (used in section 3) when the simulator uses
an optimal replacement algorithm. Therefore, only a portion of these traces (100,000 heap refer-
ences) are used in all our experiments. For the remaining 6 benchmarks, full traces of a com-
plete execution of the program are used. During the generation of these traces, the garbage col-
lector is turned off so as to satisfy our assumption of the previous section. Since no garbage col-
lection is done, a discarded heap cell is never reused and therefore R, is equal to the number of
CONS operations in the benchmark.

Table 2 presents the total number of references, the active region, the access ratio, and the
write ratio for both the heap and the stack memory areas for each of the benchmark programs.
From the table, we can see that most of the memory references (about 90%) are to the stack and,
therefore, stack references deserve more attention. Fortunately, we find that the active region of
stack is small and the access ratio and the write ratio for stack references are very high. This
suggests that any reasonable local memory suppdrt for the stack (such as a stack buffer [12] or a
set of registers [14]) should be quite effective in supporting accesses to the stack. As mentioned
earlier, previous work on efficient memory supj)oi‘t has concentrated on these stack references.

Table 2. Chéi'acteristics'bf the Benchmark Programs

Total References | Active Region Access Ratio Write Ratio
Heap Stack |Heap (R,,) |Stack |Heap (A,,)| Stack |Heap (W,,)| Stack
boyer(long) 2056614 | 16446397 | 228664 173 8.99 95065.88 2.00 43928.28
boyer(short) 100000} 801091 11153 170 8.97 4712.30 2.00 2163.94
browse(long) | 2150802|15925997| 221701 79 9.70 {201594.90 2.18 92618.97
browse(short) 100000] 741015 10322 78 9.69 9500.19 2.18 4360.27

Benchmark

dderiv 68200(492030 26100 38| 261 12948.16 2.00 5953.02
destr 872891 832347 6889 45 12.67 18496.60 4.44 8252.36
interp 270021 224051 1595 496 16.93 451.72 2.00 202.90
frpoly 170744} 1654670 14315 160 11.93 10341.69 2.16 4703.27
gsort 22215| 153627 4695 611 4.73 251.44 2.00 117.04
queen 75478 1033397 4417 | 1075 17.09 961.30 2.00 425.68
Average* - - - - 8.19 - 2.26 -

4 The two short traces are used in the calculating of the average and all subsequent cache simulations.

On the other hand, the heap references do not have this property. The active region for
heap references is large and the access ratio and the write ratio are small. Once sufficien’ = p-
port is provided for stack accesses, adequate attention must be paid to heap accesses.

In Figure 1, we present the cumulative distribution of D, D,,, and L, for each of the @ :h-
mark programs. From the figure, it appears that most heap cells are short lived and most refer-
ences to a heap cell occur shortly after it is created. We will come back to this later.

2.3. Observations

With our definitions of some key characteristics of heap referencing behavior and the data
of section 2.2, we can make some observations about the behavior of heap references. Some of
these observations are obvious while the others may need explanation; some of them have been
exploited previously though not in the context of cache memories. Our interest is mainly in the
relevance of these observations to cache memory design.

Observation 1: A newly allocated heap memory word is guaranteed to contain no useful data.

Observation 2: The first access to a new word allocated from heap (a new cons cell) is always a
 write. i o | R

Observation 3: Wri’té' accesses usually come in grqubs of two (car & cdr).

A new heap memory word contains no useful data because the heap memory is an uninitial-
ized data area. This also explains Observation 2 that the first access to such a word must be a
write to initialize it. Write accesses come in groups of two since the car and cdr components of
a cons cell are initialized simultaneously. ;

Observation 4: The value of Ay, is small.

This is evident from table 2 where Ay, for heap references ranges from 2.61 to 16.93 with
an average of 8.19. The main reason for this small A is because a heap cell is associated with a
fixed data structure throughout its lifetime and references to the same element in a data structure
are few. On the other hand, an element in the stack can be part of different data structures at dif-

ferent times and consequently stack accesses can have a comparatively high access ratio (251.44
~ 18496.60).

Observation 5: W is close to 2.

The first two write references to a cons cell occur when the cell is initialized. Another
write reference will occur only if the car or the cdr is updated, that is, if a destructive operation
such as RPLACA or RPLACD is carried out. Previous studies have shown that the frequency of

T —p—
0N 2B W

Temporal Distance (2*°n)

?

&

Y L v A A ; °
g] R 3 2

RN B TN A Y ' CTEE XY EEE X K -~

-

-

| »

2

X

| -

-

L e

L -

-dunudv.l
8 2 8 & § 8§ S 8% 8 =2

VUSENw Owmwm>20 A=0mnmDe=0c wit~

p—pe—
4 5 4

Temporal Distance (2**n)

7

3

(b) Cumulative Distribution of D,

(a) Cumulative Distribution of D,

1.2 3 48 67 38 9101121314181 17 131920

g ¢ 8 2 3 8 s 8 8] = =°

USED=U0wwm>@ O—0wnuwfIe=90E wiRa~

Ufe Time (2'*n)

(c) Cumulative Distribution of L,

Figure 1. Cumulative Distributions of D, D,, and L,

destructive operations is very low [2], and therefore, we can expect that Wy, will be close to 2
(but slightly greatgr).

Checking with the statistics in table 2, we find that in all but one case, Wy is very close o
2. The only exception is destr which is especially written to test the speed of destructive opera-
tions and consequently has a comparatively large number of them.

Observation 6: A high percentage of D, ’s are small; or Dy, is small.

This observation is basically the same as Clark’s observation [2] where he uses LRU-stack
distance to measure the distance between successive access to the same cell. In this report we
use temporal distance instead because it allows us to estimate the size of the working set as
shown in Definition 11.

Observation 7: A high percentage of L_’s are very short; or Ly, is small.

Most heap cells are allocated, referenced, and discarded (become garbage) in a short time
period. Cells that do not become garbage soon generally survive for long periods of time. This
observation forms the back-bone of generation-scavenging garbage collection algorithms [7].

2.4. Implications

As mentioned earlier, some of the above observations are well known and have been
exploited before but not in the context of cache memories. We are mainly interested in the
implications of the observations for cache memory design.

First, consider Observation 1. This observation implies that when a new heap cell is
created, it should be allocated directly in the cache even if the heap memory words to which the
cell is assigned do not exist in the cache. By carrying out such an allocate operation, we can: (i)
improve the cache miss ratio and (ii) cut down on the cache-memory traffic.

Next, consider Observation 4. A small A, implies a small A, (if no garbage collection is
done). A small A, implies a high lower bound for the miss ratio of the cache. For our bench-
mark programs, using the formula derived from Definition 7 (1/LAp,), the lower bound of the
miss ratio for caches with line size of 1, 2, 4, and 8 words will be 24.45%, 12.22%, 6.11%, and
3.06%, respectively, irrespective of the cache size andlor organization. These are quite high
considering cache miss ratios typically achieved for languages without intensive dynamic heap
allocation'[10]. In order to improve cache performance, these lower bounds must first be tack-
led. To reduce these lower bounds, one can not rely on locality of reference (to heap cells) alone
rather one must rely on optimizations. These might include: (i) using the allocate operation
described above to reduce the number of misses or (ii) artificially boosting Ap,. The value of
Apm can be artificially boosted by assigning several heap objects to the same memory word, i.e.,

10

by identifying a heap memory word as garbage while it is still resident in the cache and assign-
ing a new heap cell to it.

From Observation 5 (W, is very close to 2), we can conclude that W, is close to 1. If no
garbage collection is involved, this implies that the magnitude of cache-memory traffic will be
approximately the same for both write-back and write-through caches. This is an important con-
sideration if one of the purposes of the cache memory is to reduce the cache-memory traffic and
thus allow more processors to be connected together in a multiprocessor [6].

Finally, consider Observations 6 and 7. Since both Dy, and Ly, are small, the average

working ‘set size WS = —QEE’-“—— is small. For example, from Figures 1(a) and (c) we can
Dyps + Ly, :

observe that, in most cases, more than 90% of the D_’s are less than 2048 heap references and a
high percentage of the heap cells are discarded within 16384 heap references after allocation.
Using the estimation procedure derived from Definition 11 we can roughly estimate Ah, to be
16384/2048 + 1 =9, which is very close to the value we measure directly ﬁ'om the traces (=
8.19) in Table 1. Furthermore, the average size of the working set can be esumatcd to be 1820
(= 16384*2048/(16384+2048)) cells. This means that a fully assoc1at1ve cache of about 3640
words, along with a good replacement algorithm that minimizes cache mterference, should be
adequate for capturing the locality available in the traces. Increases in the cache size beyond
this is not likely to result in a substantial improvement in the miss ratio. This is in spite of the
fact that the total number of heap memory words referenced by all but one of the traces is much

larger than 3640 words (the smallest trace, interp, references 3190 heap memory words).

3. Cache Memory Organization

Now let us evaluate various cache organizations and see if the performance achieved is in
line with the predictions made by our observations. We consider 2 practical cache organizations
that represent the end points of the spectrum: (i) a direct mapped cache (DM cache) and (ii) a
fully associative cache with an LRU replacement algorithm (FL cache). We are also interested
in the best-case performance that can be achieved with an arbitrary cache organization. To do
so, we also consider a fully associative cache with an optimal replacement algorithm (FO cache)
such as MIN [1]. The FO cache is evaluated solely for comparison purposes; it is understood
that the FO cache is impractical. In our evaluation, we shall first consider the miss ratio metric
and then the data traffic ratio metric.

11

3.1. Miss Ratio

In Figure 2(a), 2(b), and 2(c), we present the average miss ratios for DM caches, FL caches,
and FO caches, respectively, using our benchmark programs. Various czche sizes and line sizes
are considered for each cache type. As predicted by our benchmark cha:acteristics in section 2,
all the miss ratio curves level off as the cache size becomes larger. The lower limits for the miss
ratio in the FO cache for various line sizes support our observation that the miss ratio of a cache
cannot be lower than 1/LA;,,. The knees of the curves, again for a FO cache, support our esti-
mate that a cache size of 3640 words is large enough to exploit the locality in the traces.

Miss Ratio Optimization with an ALLOCATE Operation

Since increasing cache size and/or organization cannot improve the miss ratio beyond the
knee points of an FO cache, we must resort to other techniques. One way to do this is to exploit
Observations 1 and 2 and allocate the heap memory word directly in the cache without fetching
it from memory on a miss. This can be accomplished with an explicit ALLOCATE hint (or com-
mand) to the cache. Therefore, when a CONS operation is carried out, the cache can be
instructed to allocate the heap memory words for the cons cell directly in the cache without car-
rying out a memory read operation. By definition, the heap memory word to which the new cons
cell is assigned is guaranteed not to be accessible by any other processor in the system before the
CONS operation is complete, and the processor that initiates the ALLOCATE command can
proceed just as if the ALLOCATE operation was a hit in the cache.

Table 3 shows the miss ratios after this ALLOCATE optimization. In the table, all ALLO-
CATE operations are assumed to be hits in the cache. From the table, we can see substantial
improvement in the miss ratio. More importantly, the lower bound on the miss ratio has essen-
tially been made zero for an FO cache. Further attempts at improving the miss ratio for practical
cache organizations can now concentrate on other aspects, for example the replacement algo-
rithm, in an attempt to make the performance of a practical cache approach that of the optimal
cache.

Miss Ratio Optimization with a Biased-LRU Replacement Algorithm

If a replacement algorithm in an associative cache always replaces a cache line that will
never be referenced in the future, it will have the same performance as an unrealizable optimal
replacement algorithm [13]. In most contexts, future knowledge is not possible and that is what
makes implementing an optimal replacement algorithm impossible. However, for heap refer-
ences, we know that a garbage heap cell by definition will never be referenced in the future.

12

1" 12 13 14

10

Cache Size (2°*n words)

¢ g % 8 =B/ 8 =

F~00 NU»=0 it~

10 1" 12

Cache Size (2°*n words)

9

& E

F—08 AUw=0 -t~

(b) Miss Ratlos for FL Caches

() Miss Ratios for DM Caches

2
15 J
10

F-00 BHDew0 R~

(c) Miss Ratios for FO Caches

d Caches

imize

Figure 2. Miss Ratios for Conventional, Non-Opt

13

Therefore, if we can determine that a cache line contains only garbage, we can make that gar-
bage line the victim of the cache replacement algorithm.

This leads us to a new cache replacement algorithm which we call the biased-LRU replace-
ment algorithm. In this algorithm, an arbitrary garbage line is chosen first for replacement and if
no garbage line is found, the LRU line is chosen. To detect a garbage line, we assume the pres-
ence of an additional bit in the cache state, a garbage bit. We shall discuss the setting of this bit
in section 4.

In Table 4, we present the miss ratios for fully-associative caches using this algorithm.
Comparing this table to Table 3, we see that the miss ratios with the biased-LRU algorithm fall
between the miss ratios of the FL and the FO caches. The improvements, however, are mainly
in caches with large sizes or small lines. This is because the probability of having a garbage line
is low when the cache size is small or when the line size is large.

3.2. Data Traffic Ratio

Now let us consider the data traffic ratio°. To estimate the data traffic ratios, let us carry
out an analysis of the data traffic taking into account our definitions and observations of section
2. Unless mentioned otherwise, all caches are write-back caches.

The data traffic (T) can be divided into read data traffic (7,) and write data traffic (7,). Ina
write-back cache with a write allocation policy [10], T, results from fetching cache lines on
misses. This can be expressed in the following equation:

T,=M,+M,)L . 09
where M, is the number of read misses, M,, is the number of write misses, and L is for the line

size. The write data traffic (T,,), on the other hand, results from the write back of replaced lines.
In a conventional cache, a replaced line needs-to be written back if it is dirty. That is,

T,=DM, +M,)L)

where D is the probability that a replacement line is dirty. Combining equation (1) and (2), we
have “

5The data traffic ratio is defined as the ratio of the data traffic appearing on the cache-memory interconmect in the presence
of a cache to the data traffic without a cache. A data traffic ratio of less than 100% implies that the traffic on the cache-memory
interconnect with a cache is less than the traffic without a cache. Reducing cache-memory data traffic is crucial in the design of a
shared memory multiprocessor [6].

14

Table 3. Miss Ratios with an ALLOCATE Optimization

Line Cache Cache Size (words)
Size Type

(words) P 128 256 512 1024 | 2048 | 4096 | 8192 | 16384
DM 2344 11699 | 1087 | 622 | 375 | 214 | 1.18 0.67
1 FL 1840 | 13.55 634 | 229 | 137 | 1.06 | 048 0.30
FO 794 | 335 131 | 056 | 0.29 | 029 | 029 0.29
DM 15.56 | 11.07 677 | 381 | 229 | 124 | 0.68 0.38
2 FL 1143 8.60 454 | 127 | 072 | 056 | 027 0.17
FO 5.76 2.60 078 | 032 | 0.16 | 0.16 | 0.16 0.16
DM 11.94 8.19 495 | 274 | 158 | 083 | 043 0.23
4 FL 7.99 5.83 336 | 087 | 041 | 031 | 0.16 0.10
FO 444 2.27 058 | 023 | 0.09 | 009 | 0.09 0.09
DM 10.76 7.12 420 { 231 | 1.28 | 061 | 0.30 0.16
8 FL 641 4.17 267 | 061 | 031 | 018 | 0.10 0.06
FO 3.88 2.08 075 | 019 | 0.07 | 006 | 0.06 - 0.06
DM 11.36 7.11 415 | 224 | 120 | 054 | 0.24 0.12
16 FL 6.91 341 226 | 1.01 | 021 | 0.10 | 0.06 0.03
FO 4.10 2.03 088 | 018 | 0.05 | 003 | 0.03 0.03
DM 13.87 8.52 477 | 250 | 131 | 057 | 0.24 0.10
32 FL 9.03 3.9 196 | 075 | 0.14 | 0.06 | 004 0.02
FO 5.58 2.36 1.03 | 025 | 0.05 | 0.02 | 0.02 0.02

Table 4. Miss Ratios with a Biased-LRU Replacement Algorithm; Fully-Associative Caches

Line Cache Size (words)
Size
(words) 128 256 512 | 1024 | 2048 | 4096 | 8192 | 16384
| 1 1722 | 10.18 | 315 | 181 | 0.60 | 040 | 0.29 0.29
2 10.75 6.63 | 2.21 100 | 033 | 023 | 016 0.16
4 1.72 500 | 262 | 066 | 021 | 0.15 | 0.09 0.09
8 6.29 388 | 210 | 051 | 020 | 0.09 | 0.06 0.06
16 6.82 323 1203 | 095 | 015 | 006 | 0.03 0.03
[32 9.02 396 | 1.88 | 072] 012 | 004 | 0.02 0.02

T=Q1+D)M, +M,)L. A3

When the cache size approaches infinity (C — o), there are no misses due to a limited
capacity of the cache. This means that only the first access to a heap memory word, which is a

R
write access, would result in a miss. Therefore, M, — 0 and M,, — {-—%’"——] (one miss to load L

words from the active region). Furthermore, since each cache line is written while it is in the
cache (it must be to initialize it), D — 1.

15

Therefore, equation (3) becomes:

Rpm
T—>2 _Z—L’ when C — o0 @)
. : Ry : Rym .
Since Ry, is much larger than L, I can be approximated by I and equation (4) can be
further reduced to
T — 2Rpym » When C — oo,)

Now, the lower bound of the data traffic ratio can be derived as:

2 Rym _2 _4
Total References Apn Ans

Traffic Ratio — , whenC — oo, v ©6)

From equation (6) and using Ap;=8.19 from Table 1, we can calculate the lower bound on the
data traffic ratio to be 48.84%, i.e., approximately 1 in every 2 heap references will appear as
traffic on the cache-memory interconnect. This is indeed a very surprising result considering the
importance of a low data traffic ratio for shared memory multiprocessors [6], and also when
comparing the observed data traffic ratio to the data traffic ratio for more traditional imperative
languages [10, 11]. | S S

Does such a high value of the data traffic ratio ‘spell doom for the execution of functional
languages on multiprocessors, especially shared bus multiprocessors? We believe not since, as
we shall see, we can exploit heap characteristics and optimize the data traffic ratio to the point
where it is close to 0. If these suggested optimizations are not used in cache design, i.e., a con-
ventional cache design is used, the number of processors that can be connected together to form
a shared memory multiprocessor for executing heap-intensive languages will be severely res-
tricted.

Traffic Optimization with an ALLOCATE Operation

Let us consider the read traffic in equation (1). The read data traffic comes from either read
misses (fetch-on-read) or write misses (fetch-on-write). The fetch-on-read is unavoidable
because memory is the only source for the operand. However, as we saw in the case of the miss
ratio, a fetch-on-write is not necessary if the heap words being fetched do not contain useful
information (see Observation 1). Therefore, this component of traffic can be optimized away. In

R
a cache with line size L, if a program allocates Ry, words, [—-Lhﬂ- of the write misses are due to

the first write to a heap word. Subtracting these misses from the M,,, we have

16

R
T, =M,L +(M,,~ [—L"’-’-‘-])L. b

o
As before, M, > 0and M,, — -—Zh'l'— when C — oo, therefore:
Rim| [Rum]
- L =
T,f—->0L+([2 I 7 L =0 ®)

and the lower bound on the total data traffic becomes

T=Tw—->[%L=Rh,,,. 9)

i.e., the lower bound on the data traffic ratio is 1 = 2

Apn Ape

Table 5‘presents the data traffic ratios obtained from our simulation for various cache and
line sizes, for both DM and FL caches. In all cases, the allocate operation is used to optimize the

data traffic. Observe that as the cache size increases, the traffic ratio asymptotically approaches

the lower bound -Zg—- = 24.42%, irrespective of the line size. The lower bound of the data traffic

hs ,
is reduced by half when compared to a conventional cache without an ALLOCATE operation,

however, the data traffic ratio is still very high when compared to the traffic ratio for imperative
languages [10, 11].

Write-Back vs. Write-Through

Before proceeding to the next optimization scheme, let us verify a prediction we made ear-
lier regarding the data traffic ratio of write-back caches and write-through caches. In Table 6,
we show the data traffic ratios of write-through caches with the ALLOCATE optimization. Com-
paring tables 5 and 6, we can see that the differences of traffic ratio between write-back and
write-through caches are indeed small in all cases. If Wj, was always 1, then write-back and
write-through caches would always result in the same data traffic. Therefore, if we are relying
on write-back caches to cut down the processor/cache-memory traffic when executing languages
that make intensive use of dynamic heaps, we may be in for a surprise. Fortunately, there is a
solution and let us consider that.

Data Traffic Ratio Optimization by Recognizing Garbage

17

Table 5. Data Traffic Ratios with an ALLOCATE Optimization; Write-Back Caches

Line Cache Cache Size (words)
Size Type

(words) 128 256 512 1024 2048 | 4096 | 8192
i DM 48.34 41.82 35.55 30.88 | 28.43 | 26.83 | 25.87
FL 43.24 3843 3091 2695 | 26.01 | 25.75 | 25.12
2 DM 58.74 48.83 38.86 3259 | 29.41 | 27.27 | 26.08
FL 50.20 43.75 33.66 27.19 | 26.10 | 25.84 | 25.20
4 DM 78.36 61.22 46.06 3639 | 31.40 | 28.24 | 26.50
FL 61.81 51.02 38.04 28.14 | 26.36 | 26.03 | 25.34
8 DM 123.95 90.10 62.25 45.05 | 3593 | 30.15 { 27.32
FL 84.70 63.80 47.54 29.57 | 27.28 | 26.30 | 25.57
16 DM 239.60 | 159.82 | 102.62 66.14 | 46.69 | 3491 | 29.13
FL 156.02 90.79 67.25 4095 | 28.13 | 26.60 | 25.85
12 DM 55761 | 35586 | 21243 | 12234 | 75.52 | 47.36 | 33.86
FL 378.37 | 182.88 | 105.85 48.75 | 29.24 | 26.96 | 26.14

Table 6. Data Traffic Ratios with an ALLOCATE Optimization; Write-Through Caches

Line Cache Cache Size (words)
Sizr Type

(words) ‘ 128 256 512 1024 2048 | 4096 | 8192
1 DM 50.06 4408 38.30 33.76 | 31.33 | 29.75 | 28.81
FL 45.00 40.47 33.96 2992 | 29.00 | 28.69 | 28.11
2 DM 58.41 49.63 41.12 3523 | 32.19 | 30.12 | 28.98
FL 50.49 4483 36.71 30.16 | 29.06 | 28.75 | 28.16
4 DM 74.88 60.16 47.34 38.55 | 33.92 | 3093 | 29.34
FL 59.57 50.94 41.07 31.10 | 29.26 | 28.89 | 28.26
3 DM 11296 84.28 61.04 46.04 | 37.86 | 32.51 | 30.03
FL 78.87 60.99 4901 32.51 | 30.09 | 29.08 | 2841
16 DM 208.16 | 140.88 93.76 63.38 | 46.83 | 36.29 | 31.50
FL 137.83 82.16 63.74 4385 | 30.92 | 29.28 | 28.59
12 DM 469.45 | 29922 | 179.78 | 10736 | 69.58 | 45.97 | 35.29
FL 315.18 | 155.10 90.46 5153 | 31.99 | 29.56 | 28.78

After eliminating read traffic, we now concentrate on write-back traffic. From equation (2),
we see that one way to reduce the write back traffic is to reduce D. Unfortunately, this approach

is not likely to be successful since D = 1 as argued earlier.

The other approach is to disregard the writing back of garbage cache lines. Since the gar-
bage line contains no useful information that will be needed in the future, why bother writing
them back! As before, we can identify a garbage line with a special garbage bit in the cache
state. This garbage bit can be set by some mechanism that identifies garbage (see section 4) and
when the cache replacement algorithm selects a line to be replaced, it does not write it back if it

18

is garbage, even though it might be dirty.

The resulting data traffic after implementing the optimization of not writing back garbage
lines is shown in Table 7. Not surprisingly, the data traffic ratio asymptotically approaches 0 as
the cache size increases for all cache sizes. When compared to a conventional cache without any
dynamic heap-specific optimizations, there is a 20-fold improvement in the data traffic ratio
(data traffic ratios for conventional caches which we computed, but did not present simulation
results for, had a lower bound of 48.84%). Given the unacceptable data traffic ratio with a con-
ventional cache, we believe that multiprocessors designed to support the execution of dynamic
heap intensive languages must make use of the suggested optimizations in the cache memories
local to the processors to prevent the processor/caché-memory interconnect from severely limit-
ing performance.

[

4. Detecting Garbage in the Cache

So far we have tacitly assumed the existence of a scheme that can cfﬁcu:ntly detect garbage
and set the garbage bit in each cache line. While the detection of garbage is not essential for
correct operation, is is essential if the cache performance metrics, especially the data traffic ratio,
are of concern in the processor design. o

The task of garbage detection and settmg the garbage bit can be carned out be any one of
the several known garbage collection strategies. However, one charactenstlc of the selected

Table 7. Data Traffic Ratios with all Optimizations; Write-Back Caches

Line Cache Cache Size (words)
Size Type

(words) 128 256 512 1024 2048 | 4096 | 8192
1 DM 33.90 25.18 16.34 10.53 7.01 5.01 4.03
FL 25.84 1721 6.95 429 2.59 1.81 1.63
2 DM 4443 32.31 19.75 12.30 8.03 5.47 424
FL 3240 2147 8.29 4.56 2.66 1.90 1.68
4 DM 65.45 45.79 27.83 16.70 | 1041 6.71 4.80
FL 46.25 30.29 1535 561 322 2.27 1.87
8 DM 112.80 7600 | 4516 | 26.08 | 15.38 8.91 5.76
FL 71.84 45.69 23.26 773 | 4.38 2.65 2.15
16 DM 23029 | 147.32 86.88 48.00 | 26.60 | 13.96 7.71
FL 146.38 73.23 46.49 19.69 5.28 322 243
32 DM 550.59 | 345.55 | 19891 | 105.58 { 56.04 | 26.79 | 12.60
FL 371.90 | 170.35 88.61 28.48 712 | 3.69 2.66

19

garbage collection strategy that we consider especially important is the immediacy of garbage
collection, i.e., how soon is garbage detected after it is created. This aspect of the garbage col-
lection strategy is very important since we are relying on the strategy to collect garbage whii: it
is still resident in the cache! In most cases, this implies garbage collection every C CONS ope:a-
tions, where C is the number of cons cells in the cache. It is also possible that the garbage col-
lection process may interfere with the contents of the cache, possibly kicking out garbage lines
from the cache and defeating the purpose of the cache optimizations. Such issues, which have
largely been ignored so far in the literature on garbage collection, need to be investigated in
more detail.

The garbage collection strategy that we have used in all our experiments in this report is
based on reference counting. Since reference counting can detect garbage almost immediately
(actually immediately if all reference counts are updated recursively when a pointer is updated),
it allows us to estimate the potential benefits of our optimizations. Our garbage collection stra-
tegy assigns reference counts to heap memory words only while they are resident in the cache.
This overcomes the problem of extra memory space for reference counts with each main
memory word. For reasons of brevity, we do not present the details of our strategy in th:s report.

- By detecting garbage while it is still resident in the cache, we can not only improve the data
traffic ratio, we can also improve the cache miss ratio by using a better replacement algorithm
and also by artificially boosting Aj,. The last point, which we have not considered in this
report, allows us to improve the cache miss ratio since the same heap memory word is reused for
different heap cells, all of which are cache hits. In the limit, the characteristics of heap referenc-
ing behavior can be exploited with appropriate cache optimizations (and the assist of garbage
collection) to design a cache memory for a dynamically growing heap that has a miss ratio and a
data traffic ratio of close to 0. Without these optimizations, if conventional caches are to be used
to support dynamic heaps, they are likely to have very poor performance.

5. Conclusions

In this report, we have considered the design of cache memories to support the execution of
languages that make intensive use of a dynamic heap. We believe most functional languages fall
into this category. To facilitate our study, we defined several characteristics of heap references,
measured these characteristics for Lisp (the canonical "functional” language) heap references
using some benchmark programs, made some observations about the reference characteristics
and studied the implications of our observations.

From our observations about heap referencing characteristics, we conclude that conven-
tional cache memories are likely to be inadequate in supporting dynamic heap references. We

20

verified our observations by an independent trace-driven simulation of several cache organiza-
tions. Then we presentéd some optimizations to enhance the performance of the cache
memories. The optimizations exploit reference characteristics that are peculiar to dynamic
heaps and include: i) the use of an ALLOCATE operation to improve the cache miss ratio as well
as the data traffic ratio, ii) the use of a biased-LRU replacement algorithm that discriminates
against garbage lines and moves the miss ratio of the cache closer to that of an unimplementable
optimal cache and iii) eliminating the unnecessary write back of replaced cache lines that are
garbage. With the heap-specific cache optimizations proposed, it is possible to design cache
memories that have a miss ratio and a data traffic ratio that is close to 0; without the optimiza-
tions, the miss ratio and data traffic ratio of a cache organization can be extremely poor, regard-
less of the cache size.

Two of the proposed optimizations rely on a mechanism that detects garbage lines while
the lines are still resident in the cache. This property of garbage collection algorithms, which we
refer to as the immediacy of garbage collection, has not been studied before and needs further
investigation.

21

References

(1]

(2]

31

(4]

(51
(6]

(7]

(8]

9

(101
(11]

(12]

[13]
(14]

Belady, L. A. and Gecsei, J., **A Study of Replacement Algorithms for a Virtual-Storage Computer,”” IBM
Systems Journal, vol. 5, pp. 78-101, 1966.

Clark, D. W., ‘“‘Measurements of Dynamic List Sturcture in Lisp,” IEEE Trans. Software Engr., vol. SE-5,
pp. 51-59, January 1979.

Cohen, J., ‘Garbage Collection of Linked Data Structures,”” Computing Surveys, vol. 3, pp. 341-367, Sep-
tember 1981.

Courts, R., “‘Improving Locality of Reference in a Garbage-Collecting Memory Managment System,”” Com-
munications of ACM, vol. 31, pp. 1128-1138, September 1988.

Gabriel, R. P., Performance and Evaluation of Lisp Systems. MIT Press, 1985.

Goodman, J. R., *“Using Cache Memory to Reduce Processor-Memory Traffic,”” Proc. 10th Annual Sympo-
sium on Computer Architecture, pp. 124-131, June 1983.

Lieberman, H. and Hewitt, C., *‘A Real-Time Garbage Collector Based on the Lifetimes of Objects,”” Com-
munications of ACM, vol. 26, pp. 419-429, June 1983.

Moon, D. A., “Garbage Collection in a Large Lisp System,”” Proceedings 1984 ACM Symposium on Lisp
and Functional Programming, pp. 235-246, 1984.

Moon, D. A., “‘Architecture of the Symbolic 3600,” Proceedings 12th International Symposium on Comput-
er Architecture, pp. 76-83, June 1985.

Smith, A. J., “‘Cache Memories,”” ACM Computing Surveys, vol. 14, pp. 473-530, Sept. 1982.

Smith, A. J., ““Line (Block) Size Choice for CPU Cache Memories,”” IEEE Transactions on Computers, vol.
C-36, pp. 1063-1075, September 1987.

Stanley, T. J. and Wedig, R. G., ‘‘A Performance Analysis of Automatically Managed Top of Stack
Buffers,”” in Proceedings 14th International Symposium on Computer Architecture, Pittsburgh, PA, pp.
272-281, June 1987.

Stone, H. S., High-Performance Computer Architecture. Reading, MA: Addison-Wesley, 1987.

Taylor, G. S., Hilfinger, P. N., and Larus, J. R., “‘Evaluation of the SPUR Lisp Architecture,” in Proceed-
ings of the 13th International Symposium on Computer Architecture, Tokyo, Japan, pp. 444-452, June 1986.

22

