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The purpose of this note is to extend the results given in [3] concerning the solution set

of the optimization problem
minimize  f(z)

subject to z € S

where f:IR® — IR: = IR {-00, +c0} is an extended real valued function which is assumed
to be proper and convex and S is a convex set in IR®. We shall assume throughout that the
solution set, which we denote by S: = arg min,¢g f(z), is nonempty.

The following notation will be used. If C' is a convex set, then N(z | C) is the normal

cone to C' at z € C defined by
Nz |C):={z|(2,c—2) <0, forallye C }.
The convex subdifferential of f at z, df(z), is given by
Of(w): = (2] £(2) 2 f(x) + (22 — ) }.

The relative interior of a convex set C is denoted by riC' and the effective domain of an

extended real valued function f is defined as
dom f:= {z € R"| {(x) < +c0}.

"The following characterization of the solution set of a convex program is well-known. It

is often referred to as the minimum principle.

Lemma 1 Suppose f:IR® — R is a proper convezx function and S # 0 is a convex set in

IR™ and ridom fNriS # 0. Then T € S if and only if 0 € Of(z) + N(z | S).

A proof of this result is given in [4, Theorem 27.4]. The result can be rewritten in the

following manner, which will be more convenient for this note
zelS < 9f(@)()-N(@|S)£0.

In [3], an elegant characterization of the solution set of a differentiable convex program

was given, and the fact that V f(z) is a constant on the solution set was also established.
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Both of these results were extended to the nonsmooth case, but the corresponding results are
not nearly as elegant and useful since they involve some (unspecified) subgradient and the

relative interior of the solution set. Since the differentiable results are useful as a theoretical

tool[1, 2], we would like to characterize the subgradients which identify the solution set and
remove the relative interiority assumption. In this note we prove that this can be done and
show that the differentiable results have exact analogues in the nonsmooth case. First of all,
we show that the subgradients which achieve the minimum principle are a constant of the
problem. Using this result, we establish a generalization of the differentiable results of [3].
In the following lemma we show that df(z)—N(z | S) is constant on the solution set
of a convex program. This result has not been given before to the best knowledge of the
authors. Note that if f is differentiable, the constancy of the gradient on the solution set

follows immediately from part (a) of the lemma.

Lemma 2 (a) 9f(z)N—N(z | S) is independent of z € S.
(b) Let A C S be a convex set with SNA# 0. Then df(z)N\—N(z | A) is independent of
z € SNA.

Proof

(a) Let z € S and take v € f(Z)N—N(& | S). —v € N(% | S) gives

(v,e—2) >0, forallz e S (1)
v € 0f(Z) implies that
(v,z — ) < f(z) — f(&), for all z. (2)
Let & € S. It follows from (1) that (v,% — ) > 0 and from (2) that (v,% —z) < 0, so
that
(v, — ) = 0. (3)

Substituting (3) in (1) we find (v, — %) > 0, for all z € 5, so —v € N(& | §). Using
(3) in (2) and & € S gives (v,z — &) < f(z) — f(&), for all z, implying v € Hf(&). Hence
v € df(Z)N—N(Z | S). The result now follows since & and Z are arbitrary in S.
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(b) Consider

minimize  f(z)

subjectto z € A
. Applying part (a) to this problem gives the required result. 0

We remark that although the sets described above are constant on the solution set in

general they are not the same set. The following example exhibits this fact.

Example 3 Let f(z,y) = |z| and let S = {(z,y)| > 0}. Then § = {(0,y)|y € R} and
so for z = (0,y)

0f(z)(1=N(=15) = [0,1] x {0}
and

0f(2)(1=N(z | §) = [-1,1] x {0}

which are clearly different.
The following lemma enables us to relate the above results to those given in [3].
Lemma 4 Ifz €1iS then 0f(z) C ~N(z | 5).
Proof Let z* € 0f(Z), so that
0> (2%2-12), Vzeld.
It follows from [4, Theorem 6.4] and Z € ri S that for each y € S there is some € > 0 with
T—¢(y—z)€S. Hence
which implies that 0 > (—z*,y — Z) as required. 0

In [3, Lemma la], Mangasarian showed that the subdifferential is constant on the relative

interior of the solution set of a convex program. This follows from the above result, since



Lemma 4 shows that f(z) = 8f(2)N—N(z | S) on the relative interior of the solution set
and Lemma 2(a) shows the latter set to be a constant of the problem. However, this set is
not the set where the minimum principle is achieved as the example shows, that is, there
are some subgradients in this set which do not achieve the minimum principle, and this is
precisely the reason that the subgradient is not specified explicitly in [3, Theorem 1a].

In the following theorem we give another characterization of the solution set. In con-
trast to [3, Theorem la] we describe precisely the subgradients which are used to form our

characterization.

Theorem 5 Suppose z € S. Let

5. = {qzes)af )-N(z | S)=af(z)(\~N(z | 5)}
and let A be a convex set with § C A C S and

Sai={z € A|0f(2)~N(z | A) = af(z) (| -N(z | A)}.
Then S =8 = Sy.

Proof

S CS: Let z€ 5. Then z € S and by Lemma 2(a) it follows that z € S.

SC 8 Let z € 8. Since 7 € 8, f(B)N-N(Z | S) # 0, s0o v € df(z)N—N(z | 9).
Therefore z € S since 0 € df(z) + N(z | S) and so from Lemma 2(b)

(2)(\=N(z | A) = 8f(z) (| -N(z

which implies that z € S.

S4C S Let z € §4. Then z € S and note that of(z)N-N(z | S) # 0, since z € S
which implies that df(zZ)N—N(z | A) # 0, since A € S. Hence Jv € 9f(2)N=N(z | A).
But v € 9f(2) implies f(y) > f(z) + (v,y—z), for all y and —v € N(z | A) implies



(—v,y — z) <0, for all y € A. Therefore

f(y) f(z) +(v,y—2) forally

f(2) forallye A.

IAVARRAY)

Thus z € S since z is feasible and has objective value at least as good as the optimal value,

since 5 C A. 0

The differentiable result now follows immediately, since by Theorem 5, 5 = 54 with A = §,

and so if z € S then df(z) C {Vf(z)} and -~V f(z) € N(z | 5).

Corollary 6 ([3, Theorem 1]) Let f be a differentiable convex function and T € §. Then
S={z € S|(Vf(z),z~2) <0, Vf(z)=Vf(z)}.

Using Theorem 5, this corollary has the following generalization.

Corollary 7 Let A C S be such that ANS # 0 . Choose T € SN A and set
Sai={e € A|0f(=)~N(z | A) = df(@)(~N(z | A)}.

Then SN A =54 = arg ming, f(z) .
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