PARALLEL SOLUTION OF EXTREMELY LARGE
KNAPSACK PROBLEMS

by

Michael C. Ferris

Computer Sciences Technical Report #3842

April 1989

Parallel Solution of Extremely Large Knapsack
Problems®

Michael C. Ferris'

April 1989

Abstract. We shall describe an parallel algorithm for solving the knapsack feasibility problem, also
known as the subset sum problem. The use of a random branching technique is described and its implemen-
tation on a parallel processor is discussed. Computational results show this to be an effective method for
solving large problems. Using this approach we have solved problems with as many as 9 million variables in
an average of 800 seconds on the Sequent Symmetry parallel processor. Furthermore, a coarse parallelization
overcomes some of the problems that are present when serial algorithms are used to solve the knapsack

problem.
Key words. Knapsack problems, subset sum problems, parallel algorithms, random branching

Abbreviated title. Knapsack problem solution

*This material is based on research supported by National Science Foundation Grant DCR-8521228 and
Air Force Office of Scientific Research Grant 86-0172
tComputer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706

1 Introduction

Our principal example in this paper will be the subset sum problem[9] (also known as the
knapsack problem or the 0-1 feasibility knapsack problem). The problem can be described
as follows:

Given a finite set S, a size a(3) in the set of positive integers Z* for each ; € S, and a
positive integer b, is there a subset S’ C S such that the sum of the sizes of the elements in
S’ is exactly 4?

Karp([9] has shown that the the subset sum problem is N P-complete by using a reduction
from the partition problem:

Given a finite set S, a size a(i) € Z* for each i € S, is there a subset S C S such that

2ali)= Y as)
ies’ i€s\s!

A more complete discussion of the relationship between these problems and the theory
of NP-completeness is given by Garey and Johnson[4].

It is noted that the magnitude of the input is crucial in the development of algorithms
for the solution of the subset sum problem, since both the partition problem and the subset
sum problem (which are N P-complete problems) can be solved in pseudo-polynomial time
by dynamic programming(4]. (An algorithm is pseudo~polynomial if its time complexity
can be bounded above by a polynomial in the length of the input and the magnitude of the
input. For example, the length of the input for the subset sum problem is n, the magnitude
is b and a dynamic programming algorithm can be produced to solve this problem in time
O(nbd). However, this is not in P since this cannot be bounded by any polynomial in n log b,
the number of bits needed to encode the input.)

These problems have been investigated thoroughly in the literature, although mainly in
the context of 0—1 knapsack minimization problems. The best known methods for solving
these problems to optimality are the branch-and-bound methods first conceived for this
problem by Kolesar[10] and Greenberg and Hegerich[5], the partition methods of Horowitz
and Sahni[6] and Ingargiola and Korsh[7] and the method due to Balas and Zemel[l]. A spe-

2

cialized dynamic programming and branch-and-bound technique for the subset sum problem
was given by Martello and Toth[12]. Most of these methods are based on branch-and-bound
techniques and require a preliminary sorting of the elements, which is the computationally
dominant part of the proposed algorithms. Balas and Zemel[l] have defined the concept
of a core of the problem, and Fayard and Plateau[3] have presented an algorithm based on
this idea. For further details on these methods, the reader is referred to a survey paper of
Martello and Toth{l4]. A very recent paper[15] gives an improved algorithm for the knap-
sack problem and does report some experience with large knapsack problems, giving results
on problems up to a size of 10,000. Along with the results quoted in [1], these represent
the largest problems which have been solved to the authors knowledge. The computational
results given by these algorithms are impressive; however, there are two points to be noted.
The first is that the reduction techniques given for the knapsack problem are not appropriate
for the subset sum problem and so all the advantages from these heuristics are not appropri-
ate. Secondly, the results reported on the subset sum problem in both of the aforementioned
papers have the variables a; generated from a uniform distribution with fixed (and rather
small) upper bound. It is well known that the size of the coefficients changes the degree of
difficulty of the problems, and this was also noted in our experimental work. We have chosen
not to report on problems of this type as this avoids the essential difficulties associated with
the subset sum problem. However, on such problems, our algorithm does perform as well as

the the ones cited here.

Other work has been concerned with approximation algorithms and notable results are
given by Lawler[11], Sahni[17] and Martello and Toth[13]. Due to the conceptual simplicity
of the subset sum problem, there are a large number of equivalent formulations for the
problem. Recently, Moré and Vavasis[16] have given an O(n log n) algorithm to find a strict
local solution to a concave quadratic formultaion of the subset sum problem. In contrast,
our principal aim is to use simple heuristics (the ideas of which can be easily parallelized) in
order to find actual solutions of the subset sum problem. For the remainder of this section
will will describe the form of the problem that we shall solve and how it is used in the

computational development we describe in the sequel.

We shall rewrite the problem in the following manner by introducing a vector of binary
variables z;, each of which is 1 or 0 according as the ith element of the set S is in the set S’
or not: ‘

Find z € {0,1}" such that a7z = b (1)
where ay,...,a, and b are positive integers. Note that we denote the size of the jth element
by an integer a;.

The algorithm we give in this paper is a method for finding a solution of the subset sum
problem, if one exists. The method will not terminate if there is no solution to the subset
sum problem but continues looking for some solution. In the examples we have tested,
this fact did not create any difficulties even though the problems we generated were not
guaranteed to have a solution. This approach can be theoretically justified by noting that
under appropriate assumptions Karmarkar, Karp, Lueker and Odlyzko[8] have shown that
the probability that the subset sum problem has solution tends to one with n.

We first generate an optimization problem from (1). Essentially, the following problem is
concerned with the minimization of a residual (the error in the satisfaction of the equality)

over the vertices of a box. The following definition formalizes these notions.
Definition 1 Given a vector a € IR", the box, B(a), is defined by:
Bla):={z€R"|0 <z <a}
The vertex set of this boz, V(a), is given by:
V(a):={z € R* |z = 0 or z; = 2;}

Problem (1) is thus seen to be equivalent to

minimize 1(eTz — b)?

subject to 2z ¢ V(a)
with z variables related to z variables by the scale transformation

zi = a;z;, foreachi=1,... n (3)

2 Serial solution of subset sum problems

In the following discussion we will describe a naive procedure to find a solution of the subset
sum problem, if one exists. The technique does not address the situation where the problem
has no solution, but is able to solve large problems in relatively small computational times
and with linear storage.

We shall be concerned with the following notions.
Definition 2 z is said to be a global solution of the minimization problem

minimize f(z)

subjectto € S

if f(2) < f(z), forallz € S. If S is a compact polyhedral set (for instance B(a)), then a
vertex of S, ¥, is a local star solution of the problem if f(v) < f(v), for every adjacent

verter v of U.

The algorithm uses the formulations of the subset sum problem given in (2). It can be

described as follows.

Algorithm

Initialize: Given a feasible vertex, z € V(a), set k = 0 and calculate the residual
{eTz - b‘

Iteration:

Search: Given an index i, move to an adjacent vertex of the box (i.e. move this
particular z; to its opposite bound) if the residual is reduced by this move. Set ¢

to 1+ 1 and repeat this procedure until every adjacent vertex has a larger residual.

Check: If the residual is zero, then stop with a feasible solution, z, which under the

scale transformation (3) gives a solution, z, to the subset sum problem.

5

Branch: Generate a small number (say 10) of random integers lying between 1 and
n, and move the corresponding z; to their opposite bound. Calculate the new

residual.

Set k = k + 1 and repeat the iteration.

We note that this algorithm is essentially a search procedure through the vertices of
B(a) to find a local star solution of (2), followed by a random branch step to allow a move
away from a local star solution of (2) which has a positive residual and therefore does not
correspond to a solution of the subset problem. The algorithm will not terminate if the
original subset sum problem has no solution.

The algorithm needs an initial vertex as input. This is given by the heuristic
1 if 2;;11 zja;j+a; <b

Fori=1,...,n, z;=
0 otherwise

Although our first experiments generated the next vertex as the one which minimized the
residual amongst all adjacent vertices to the current one, it was quickly found that, due to
the overhead of finding this minimum, it is better to accept the first adjacent vertex which
decreases the residual.

The problems were all randomly generated as follows. Note that |z] is the integer part

of z.
Input: U, n, where U is a large upper bound on the distribution of the a;.

Procedure: Fori = 1,...n + 2, generate r;, a sample from a uniform distribution on [0, 1].
For:=1,...,n,let
a; = [_U’I”i + lJ
and let

b= |Urpy1 +1] X L%Tnm + 1]

Three comments on this procedure are in order.

6

Size | No. probs | Average branches | Average CPU (secs) | o for CPU
10000 80 80 22.2 20.7
20000 80 69 40.9 35.0
30000 80 78 68.8 7.4
40000 80 62 76.2 63.4
50000 80 59 91.9 80.2
60000 80 50 93.5 75.6
70000 80 58 129.3 113.9
80000 80 63 159.4 135.5
90000 80 60 173.3 135.5
100000 80 58 189.2 169.8

Table 1: Serial solution times for subset sum problems

1. bis stored as the product of two integers and since the precision of the random number

generator we use is 10 decimal digits, we have 20 digits of accuraccy in the problem.
2. The problem is not necessarily solvable.

3. In all the experiments U was chosen as 30n to make sure that as n increases the
problems are not becoming easier to solve. This scheme guarantees that the density of

the a; is constant in their range of possible values.

A sample of the computational results is given in Table 1. We note that o represent the
standard deviation observed in our experiments. A graph of the solution times for some of
these experiments is given in Figure 1. These results were obtained using a Microvax II,
and are averaged over a set of 80 problems. The average number of branches is noted to be
approximately constant independent of the size of the problem.

It should therefore be pointed out that the value of the right hand side b, was generated
as the integer product in order to generate problems which are not solvable in pseudo-

polynomial time by dynamic programming. For large n, all of the problems were observed

Figure 1: Serial solution times for subset sum problem

CPU time (in secs)
200

150

100

50

».

10 20 30 40 50 60 70 8 90 100

Problem size (in thousands)

to have solutions even though the generation scheme did not guarantee this. Theoretically,
this can be explained by the result of to Karmarkar, Karp Lueker and Odlyzko[8] on the
probabilistic analysis of optimum partitioning which shows that the probability of no solution
tends to zero with n under appropriate assumptions on the problem data.

The algorithm given above is a random algorithm. The number of random branch steps
needed to solve the larger problems means that the computation becomes rather expensive.
We shall attempt to use a parallel architecture in the next section to limit the number of

these branch steps and so effect the solution of very large problems in much smaller CPU

times.

3 Random branching procedures

In the previous section we gave an algorithm which found a local star solution of the subset
sum problem and then used a random branching technique, if needed, to give a new vertex
from which to continue the search for a global solution. In this section we shall use a parallel
architecture in order to effect the solution of very large problems by doing many random
branches in parallel. The efficacy of this technique relies heavily on two factors. The first
is that the search procedure used to calculate a local star solution must be efficient, and
the second is that the memory needed by each individual processor must be relatively small.
The former was demonstrated in the previous section. To overcome the latter, we note that
a solution can be stored as a bit pattern and hence each processor only needs to hold its
current residual and the bit pattern of its solution, the problem data being accessed from a
shared memory.

We note that although the algorithms we propose are for the particular instance of the
subset sum problem, it is hoped that the technique of random branching can be extended
to further problems where a local star solution can be found easily but a (known) global
solution is required.

The pattern of work for each processor in the algorithmic schema is as follows:

Initialize: Generate an initial vertex.

Iterate:

Search for a local star solution of the problem and calculate the residual of

this solution.
Reset the current solution.

Branch from the current solution and repeat the iteration.

Some comments are in order. The generate procedure used was the heuristic given in
the previous section and the branch and search procedures are also described there. There
are many different ways to implement such schema on a given parallel architecture. The
different algorithms are constructed by carrying out the reset step in different ways. Our
experiments were confined to the following different techniques, where the description given

below details only the reset step of each algorithm.

Manyruns: Check for an exit condition. If any of the processors has found a solution, then
exit. (This means the procedure is almost the same as running the serial algorithm

several times except that we are able to terminate very quickly after a solution is

found.)

Syncmin: Wait until every processor has found a local star solution. Compare the local star
solutions to find the best one. If this is a solution of the problem, then exit. Otherwise,

reset all the processor solutions to the best local star solution.

Syncsome: Wait until every processor has found a local star solution. Compare the local
star solutions to find the best one. If this is a solution of the problem, then exit.
Otherwise, reset the processor solutions to the best local star solution if they have a

residual which is more than twice the residual of the best one.

Async: Keep the best solution stored in shared memory. When a processor has found a
local star solution, check this solution against the best solution immediately. If the
processor solution is better than the best one, then update the best solution. If the
processor solution has a residual more than twice as big as the best residual, then copy

the best solution into the processor. If the best solution has residual zero, then exit.

10

Procs | Manyruns Syncmin Syncsome Async
r CPU | E(r) | CPU | E(r) | CPU | E(r) | CPU | E(r)
1 17.16 | - * - * - 1771 -
2 9.15 | 0.93 | 8.95 - | 9.51 - 9.65 | 0.92
3 8.60 | 0.67 | 5.27 | 1.13 | 7.71 | 0.82 | 6.01 | 0.98
4 6.45 | 0.67 | 6.91 | 0.65 | 6.92 | 0.69 | 5.28 | 0.84
5 4.19 1 0.82 | 4.33 | 0.83 | 5.67 | 0.67 | 3.59 | 0.99
6 3.68 | 0.78 | 4.22 | 0.71 | 4.60 | 0.69 | 2.54 | 1.16
7 3.30 | 0.74 | 3.77 [0.68 | 5.56 | 0.49 | 2.82 | 0.90
8 3.22 1 0.67 | 3.52 | 0.64 | 3.71 [0.64 | 2.51 | 0.88
9 3.20 | 0.60 | 4.11 | 0.48 | 3.99 | 0.53 | 2.46 | 0.80
10 3.04 | 0.56 | 3.98 | 0.45 | 4.08 | 0.47 | 2.26 | 0.78

Table 2: Efficiencies for subset sum solution

(Note that the implementation of this algorithm requires that the best solution can
be read by many processors, but only written by one at a time. This is implemented

using the technique of semaphores described by Dijkstra[2].)

The above algorithms constitute efficient methods for solving the subset sum problem.
Table 2 and the following graph (Figure 2) support this observation with some computational
results performed on a Sequent Symmetry 81 multiprocessor. The figures given are averaged
over a set of 40 problems, each of which has 10,000 variables. The definition of efficiency

which we use is speedup efficiency, E(r), which is defined as follows:

where T'(r) is the total time for solving a given problem using r parallel processors. In
Table 2, a * indicates some of the problems in the set of 40 test problems were not solved by

the specified algorithm. This means that in some cases the speedup efficiencies have to be

11

Figure 2: Parallel solution efficiences for subset sum problem

Efficiency (%)

120
100
Async
80
. <. Man S
60 AT
Syncsome
éyncmin
40
1 2 3 4 5 6 1 8 9 10
Number of processors

12

Size | No. probs | Average branches Average CPU (secs) | o for CPU
100000 40 7 25.2 17.9
200000 40 9 64.0 52.9
300000 67 8 85.1 56.7
400000 80 9 130.9 114.0
500000 40 7 132.6 85.4
600000 40 9 209.8 140.9
700000 40 9 222.6 160.6
800000 40 7 212.5 128.9
900000 80 8 271.9 203.3
1000000 40 7 264.1 157.0
1500000 40 8 508.1 440.7
2000000 40 10 801.2 701.5

Table 3: Asynchronous solution times for subset sum problems

calculated from a base of 2 processors instead of 1. Note that failures occurred only when
using a single processor. This is an indication that even a coarse parallelization with two
processors circumvents such difficulties.

The culmination of the computational effort is given in Table 3 and illustrated in Figure 3,
where some extremely large subset sum problems are solved on the Sequent Symmetry 81
multiprocessor using the asynchronous version of the algorithm. All of these results are
for the case when we have 10 processors working. We note that the increase in time is
approximately linear in n (and the storage required by the algorithm is obviously linear).
Clearly, the use of parallelism has enabled the number of branches to be kept very small on
average (compare Tables 1 and 3).

We note the variance in the results for the asynchronous version of the algorithm is due

to two factors. These are:

1. Variance due to the asynchronous nature of the algorithm.

13

Figure 3: Parallel solution times for subset sum problem
CPU time (in secs)
A

300

250

200

150

100

50

1 2 3 4 56 7 89 10
Problem size in 100,000’s

14

2. Variance due to the varying degree of difficulty of the problems.

In order to ascertain which of these factors dominates (if any), a problem of size 400,000 was
run 40 times when other machine activity was high. The resulting variance in the solution

times was very small, leading to the conclusion that the variance is due mainly to the varying

problem difficulty.

The author knows of no computational results for subset sum problems of this magnitude

at the time of writing this paper.

References

[1] E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems. Operations

Research, 28:1132-1154, 1980.

[2] E.W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123, Tech-
nological University, Eindhoven, The Netherlands, 1965.

[3] D. Fayard and G. Plateau. An algorithm for the solution of the 0-1 knapsack problem.
Computing, 28:269-287, 1982.

[4] M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

[5] H. Greenberg and R.L. Hegerich. A branch search algorithm for the knapsack problem.
Management Science, 16:327-332, 1970.

[6] E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack
problem. Journal of the ACM, 21(2):277-292, 1974.

[7] G.P. Ingargiola and J.F. Korsh. A reduction algorithm for the zero—one single knapsack
problem. Management Science, 20:460-463, 1973.

(8] N. Karmarkar, R.M. Karp, G.S. Lueker, and A.M. Odlyzko. Probabilistic analysis of
optimum partitioning. Journal of Applied Probability, 23:626-645, 1986.

15

[9] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.

Thatcher, editors, Complezity of Computer Computations, pages 85-103. Plenum Press,
New York, 1972.

[10] P.J. Kolesar. A branch and bound algorithm for the knapsack problem. Management
Science, 13:723-735, 1967.

(11] E.L. Lawler. Fast approximations algorithms for knapsack problems. Mathematics of
Operations Research, 4:339-356, 1979.

[12] S. Martello and P. Toth. A mixture of dynamic programming and branch-and-bound
for the subset-sum problem. Management Science, 30:765-771, 1984.

[13] S. Martello and P. Toth. Worst—case analysis of greedy algorithms for the subset sum
problem. Mathematical Programming, 28:198-205, 1984.

[14] S. Martello and P. Toth. Algorithms for knapsack problems. In §. Martello, G. Laporte,
M. Minoux, and C. Ribeiro, editors, Surveys in Combinatorial Optimization. Annals of

Discrete Mathematics 31, North-Holland, Amsterdam, 1987.

[15] S. Martello and P. Toth. A new algorithm for the 0-1 knapsack problem. Management
Science, 34(5):633-644, 1988.

(16] J.J. Moré and S.A. Vavasis. On the solution of concave knapsack problems. Mathe-
matics and Computer Science Division Report ANL/MCS-P40-1288, Argonne National
Laboratory, Argonne, Illinois, 1988.

[17] S. Sahni. Approximate algorithms for the 0/1 knapsack problem. Journal of the ACM,
99(1):115-124, 1975.

16

