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self-reducibilities have been useful. Throughout, we will focus on the question of when self-reducibilities can
be used to force sets, or classes of sets, to have lower complexity than might otherwise be expected.

Contents.

1. Introduction

2. Elementary applications

3. Self reducibility and functional computation
4. Characterizing polynomial time

5. Bibliography

Categories and Subject Descriptors: F.1.3 [Theory of Computation]: complexity classes
General Terms: Structural complexity theory
Additional Key Words and Phrases: self-reducible, near-testable, p-cheatable

*  Work of the first author supported in part by the National Science Foundation under grant DCR-
8520597. Work of the second author supported by a Brittingham Visiting Professorship in the Computer
Sciences Department at the University of Wisconsin-Madison.

The authors are grateful to Eric Bach, Danilo Bruschi, Anne Condon and Meera Sitharam for useful
discussions and comments. This paper will appear in 1988 as a special guest column in the Bulletin of the
EATCS.

ii






1. INTRODUCTION.

In this column we will discuss the effect that various self-reducibility properties have on the analysis of
complexity classes. A set, S, is self-reducible if the membership question for any element can be reduced in
polynomial time to the membership question for a number of shorter elements. The classic example of a
self-reducible set is SAT, the set of satisfiable Boolean formulas. SAT is self-reducible because an arbitrary
Boolean formula B(z1, z2, ..., &,) is satisfiable if and only if at least one of the two shorter Boolean formulas

B(0,zs,...,z,) or B(1,22,...,2,) is satisfiabile.

The potential importance of the self-reducibility of SAT and other sets was recognized early, and in
the 1970’s the property was defined, generalized and investigated by Trachtenbrot, Schnorr, Selman, and
Meyer and Paterson, ([Tr-70], [Sc-76], [Sc-79], [Se-79], [MP-79]). Nice reviews of this early work can be
found in Balcazar ([Ba-87]), Wagner and Wechsung ([WW-86]), Selman ([Se-88]), and Mahaney ([Ma-82b]),
this latter particularly for connections with sparse sets. We recommend these more detailed treatments for
readers wanting more complete information about the subject. In this column we will be primarily interested
in reviewing some of the more elementary results for readers unfamiliar with the field and then discussing
some recent results and directions where self-reducibilities have been useful. Throughout, we will focus on
the question of when self-reducibilities can be used to force sets, or classes of sets, to have lower complexity

than might otherwise be expected.

In one direction, in work going back to Berman, Fortune, Mahaney, Karp-Lipton, Long,: and Yap, one
uses the fact that variations of SAT are both self-reducible and complete at various levels of the polynomial
time-hierarchy to show how reductions to sparse sets can force various collapses in the polynomial time
hierarchy. Of the exponentially many elements of size n, sparse sets, by definition, contain only polynomially
many elements. Thus results of this form are a strong indication that the information in complete sets cannot
be compressed into a polynomial amount of information. A general overview of work on collapsing hierarchy

results and the role of sparse sets appeared in this column in June and October of last year, ([Ha-87]).

In another direction, following up early work by Schnorr, self-reducibilities have been u§ed by Selman
and Balcéazar to show that all functional versions of NP-complete problems are Turing reducible in polynomial
time to their corresponding decision problems. More recently, moving further in the direction of classifying
functional problems, the self-reducibility of SAT has been used by Krentel, by Wagner, and by Beigel to
show that certain functions can be computed in polynomial time by a machine that makes a small number

of oracle queries to SAT .

In still another direction, beginning with work by Selman showing that a set is in P if and only if it
is both disjunctively self-reducible and p-selective, one can show that self-reducibility properties which are
generally expected to define classes broader than P (polynomial time), work in combination to give precise,

and sometimes unexpected, characterizations of P.



2. ELEMENTARY APPLICATIONS.

A set A is said to be Turing self-reducible (or just self-reducible for short) if there is a polynomial time
oracle machine M4 that uses A itself as oracle to recognize A, with the restriction that on inputs of length
n all of M4 ’s queries are required to have length less than n.! Obviously, all polynomially decidable sets

are self-reducible in this sense, and all sets that are self-reducible are decidable in exponential time (time
2or(l=D),

If we consider the case of SAT, then the self-reducibility mentioned earlier,
B(z1,%2,...,2n) € SAT <= [ B(0,23,...,%,) € SAT or B(l,z2,...,%,) € SAT ],

yields, in an obvious way, a disjunctive self-reduction tree. Begin by placing B(zi,z2,...,%y) at the root of
the tree and then each node is given two daughter nodes by fixing the first free variable first at 0 (“false”),
and then at 1 (“true”). The depth of this tree is n, which corresponds to the length of the possible satisfying
assignments, while the number of leaves in the tree is 2", which corresponds to the number of possible
satisfying assignments. The Boolean formula B(z1,2,...,2s) at the root of the tree is satisfiable just if,
for each level of the tree, at least one node at that level is satisfiable. Furthermore, since the leaves of the
tree have no free variables, but simply have assignments of “true” or “false” to the variables, each leaf of the
tree can be tested for satisfiability in linear time.

An exponential time and polynomial space algorithm for SAT can thus be obtained from the tree by
doing a depth-first search of the tree and using the fact that the formula, B(z1, 2, ...,%,), at the root of
the tree is satisfiable just if at least one of the leaves of the tree is satisfied. Furthermore, one can terminate
the depth first search at the first leaf which belongs to SAT .

This by itself is not very interesting, but in [Be-78] and in [MP-79] Piotr Berman and Meyer and Paterson
observed that if SAT is reducible to any set by a polynomial time computable function g, then, because the
self-reducibility is disjunctive, the collisions among the values g(B;) can be used to prune the depth-first
search tree: if two nodes of the tree B; and B; both map to the same element, i.e., if g(B;) = g(Bj;), then B;
is satisfiable if and only if B; is satisfiable. Thus if B; lies on a branch to the right of the branch containing
B; there is no reason to continue the depth first search if the search reaches node Bj: if B; is satisfiable the
depth first search would already have discovered that node B; is satisfiable. Thus we can safely prune the
subtree beginning at node B; from the depth-first search tree when we reach node Bj. The net result is a
depth first search tree for a formula B of length n that has the property that at any level of the tree the
number of unsatisfiable nodes at that level cannot exceed the cardinality of the set g(SAT N {z : |z| < n}).
Thus, if the entire range of g could ever be forced to be polynomially sparse, that is, if

{g(z) : l2| < n}| < b(n)

for some polynomial b, then the pruned depth-first search tree would have at most b(n) leaves, and so there
would be a polynomial time algorithm for SAT. In fact, (Fortune, [Fo-79]), if we merely had that g(SAT) is

1 Meyer and Paterson were the first to define self-reducibility as we use it today. To obtain full generality and
to preserve the concept under polynomially computable isomorphisms, they measure the “length” of strings by
using suitably polynomially computable, polynomially well-founded partial orders. For our purposes here, using
ordinary lengths of binary strings is adequate.



sparse, the pruned tree would have at most b(n) unsatisfied leaves, and so the depth-first search algorithm
would terminate after visiting at most b(n) + 1 leaves of the pruned tree. Thus, in the case where SAT is
reducible by g to a co-sparse set, the depth-first search tree can safely be pruned to a polynomial sized tree
by pruning nodes which map under g to a common value and by terminally pruning the depth first search
tree after it has reached only b(n) -+ 1 leaves. Therefore, if g(SAT) is sparse there is a polynomial time
decision procedure for SAT.

For later use, note first that any pruning of the self-reducibility tree for SAT to a polynomial sized tree
yields a polynomial time decision procedure for some subset of SAT, provided our acceptance rule is that
we accept the formula at the root of the tree just if at least one of the leaves is verified to be a satisfying
instance of the formula. Note also that to work correctly on formulas of length n, g only needs to be a
correct reduction for all formulas of length < n.

With Fortune’s result, we see that, unless P = NP, no co-sparse set can be hard for NP under poly-
nomially computable functional reductions. Now if we instead had that g(SAT) is polynomially sparse, we
would know that the pruned depth-first search tree had at most b(n) satisfied leaves. Thus, after visiting at
most b(n) + 1 leaves of the pruned tree, the depth-first search algorithm would have visited an unsatisfied
leaf. But, since a test for satisfiability cannot halt when it simply reaches an unsatisfied leaf,'this case does

not yield a polynomial time algorithm for SAT.

However, this situation deserves closer scrutiny. For this case, Mahaney, ([Ma-82a]), gave a method
for “estimating” (or guessing) an “optimal” pruning of the self-reducibility tree. This is a clever technique,
which can be expected to have wide applicability. For example, as discussed recently in this column, it is
one historical root for the technique used by Immerman (and by Szelepcsényi, see [HR-88]) in their recent
independent work proving the closure of various nondeterministic space classes under complementation.

When Mahaney proved that if SAT is <P reducible to a sparse set S, then P = NP, his proof required
that S be in NP. In the same paper he pointed out how, given a reduction of a set A in NP to an arbitrary
sparse set S, to give a reduction of A to a sparse set S# in NP. However, this seems often to be overlooked,
and in the subsequent literature, Mahaney’s theorem is frequently misquoted as requiring that the sparse
set S be in NP. It is thus instructive to modify Mahaney’s (and Fortune’s) proof(s) to directly obtain the
full version of Mahaney’s theorem.

Theorem, [M-82a). P = NP if and only if there exists a sparse set S such that SAT <P s.

For the proof, we begin by considering Fortune’s proof discussed above. This time however, we have
that SAT <P S where S rather than § is sparse, and instead of bounding |g(SAT [ {z : [z| < n})|, the
bounding function b now insures

lg(SAT () {z: |zl <n})| < b(n).
Following Mahaney, we now define the pseudo-complement of SAT as

P(SAT) =aes {{z,t) :t < b(|z]) & there exist distinct g(y1) ... 9(w)
& for each ¢ [y; € SAT m {z : |z| < n} and g(¥) # 9(=)]}.

Clearly P(SAT) € NP, For each n, and for each m < b(n) define
P(SAT)nm =des {2 |z| < n and (z,m) € P(SAT)}.
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Now if mo = |g(SAT) N {z : |z| < n}|, i.e., if mo happens to be the actual number of distinct elements
of S which elements of length less than or equal to n in SAT map to under g, then it is easy to see that

P(SAT)n,m, = SAT ﬂ {z:|z] < n}.

Le., since P(SAT) is in NP, the “optimal guess,” my, of the value m “seems” to place SAT into NP. Since
SAT is complete for NP

P(SAT) <P sAT <P s,

so let f be a polynomial time computable function which reduces P(SAT) to S.

Let & be a polynomial bounding function, derivable from the sparsity of S, from b, and from f satisfying
{f(z,m):|2| <nand m < b(n)}| < ¥(n).

Next, for any fixed n, for all « of length < n, consider each of the reductions
Az f(z,m) for constants m with m < b(|z}).

For each of these b(|z|) + 1 reductions, we can prune the self-reducibility tree for SAT by using the reduction
Az f(x,m) to prune the branches of the tree and stopping the generation of the tree once it has '(|z|) + 1
leaves. This yields a polynomial number of pruned self-reduction trees, each of polynomial size. So we can
test them all in polynomial time. We have already seen that for each n the “optimal” guess mo, which guesses
l9(SAT N {z : |z| < n})|, actually yields (on all formulas of length less than or equal to n) a reduction
of SAT to the sparse set S. Thus, from the proof of Fortune’s theorem, we see that for this choice of m
the pruned reduction tree must actually decide SAT in polynomial time. While the other pruned reduction
trees cannot be expected to decide SAT, we have already remarked that a pruned reduction tree for SAT
can never yield an answer “yes” unless the root of the tree really is in SAT. Thus a root element is in SAT
if and only if at least one of these polynomially many pruned reduction trees claims that it is in SAT.

This shows that if SAT is <[, reducible to a sparse set, then P = NP. The proof of the converse is
trivial, since in this case SAT would be reducible in polynomial time to any set except the empty set and
the universal set.

A number of authors, including Ukkonen ([Uk-83]), Yap ([Ya-83]), and Yesha ([Ye-83]), have extended
the Fortune-Mahaney collapse of NP to P. For example, Yesha shows that if there is a sparse set S which
is hard for co-NP or complete for NP under a positive polynomial time bounded-truth-table reducibility
then P = NP. Given the current interest in the Boolean hierarchy (the closure of NP under polynomial time
bounded-truth-table reductions), it would be particularly interesting to know whether the Fortune-Mahaney-
Yesha results can be extended to all bounded-truth-table reductions. We should note here that Book and
Ko, ([BK-87]), have shown that the collection of all sets <P _,, reducible to a sparse set is properly contained
in the collection of all sets <f 1ot reducible to a sparse set, and that these separations can be witnessed
by sets which are in EXP. An extension of the results of Fortune-Mahaney-Yesha to all bounded-iruth-table
reductions would show that the Book-Ko separations can not be accomplished by sets which are in the
Boolean hierarchy. (Further separation results for classes reducible to sparse sets may be found in [Ko-88].)
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Obviously, the Fortune-Mahaney results apply to sets which are hard for NP or for co-NP under <P .
But another interesting open question, pointed out by Mahaney in [Ma-82b}, is the extent to which the
Fortune-Mahaney results apply to sets in NP — P which are not complete for NP. The Fortune proof will
clearly apply to any set which is disjunctively self-reducible, but Mahaney’s proof seems to require both
disjunctive self-reducibility and completeness of the set reducible to the sparse set. As Mahaney points
out, GRAPH-ISOMORPHISM remains a particularly interesting problem. This problem is easily seen to
be disjunctively self-reducible. As shown in [MP-79] (and as follows directly from Fortune’s proof), the
complement of GRAPH-ISOMORPHISM cannot be reduced to a sparse set without collapsing GRAPH-
ISOMORPHISM to P. But because it is not known whether GRAPH-ISOMORPHISM is complete, in spite
of its self-reducibility it still remains unknown whether GRAPH-ISOMORPHISM can be reduced to a sparse
set.?

It is easy to see that every disjunctive self-reducible set is in NP, ([Ko-83], so it is natural to ask whether
every set in NP is disjunctively self-reducible. However, this is probably not true. In ([Se-88]) Selman shows
that if, for linear exponential time, E, E # NE, then NP — P contains a p-selective set. But, as we shall see

later, any disjunctively self reducible set which is <P equivalent to a p-selective set is in P.

The above work of Mahaney eif.al. does not answer the question of whether sparse and co-sparse sets can
be complete for NP under polynomial time Turing reductions. Various people have worked on this problem,
([KL-80], [Lo-82b], [Ma-82a], [Ya-83]). Perhaps the strongest of these results is by Long, who proves the
very elegant (and usually not fully quoted) result that if SAT <E S for a sparse set S, then every set in the
polynomial time hierarchy is <k reducible to S. It follows for example that if SAT is <¥ reducible to a sparse
or co-sparse set in AP, then the whole polynomial time hierarchy collapses to A¥. There is a good discussion
of similar results in [Ma-82b]. Mahaney also gives a nice discussion of how the disjunctive self-reducibility of
SAT can be used to give a II¥ description of polynomial sized circuits for SAT and an excellent discussion
of applications of this technique to many results on collapsing the polynomial-time hierarchy. Mahaney also
points out that not all of the original Karp-Lipton methods, ([KL-80]), use the technique of self-reducibility,
and he raises the question of whether self-reducibility can, in effect, be made a universal method.

Balcazar, Book, and Schéning have worked on this problem, and the results in [BBS-86], [Ba-87],
[Ba-88] show that essentially all known results proving that reducibilities of complete sets to sparse sets
force collapses in the polynomial time hierarchy can be obtained as a fairly wniform application of the
self-reducibility technique.?

2 Further work on GRAPH-ISOMORPHISM, making use of both self-reducibilities and promise-problems, may
be found in [Se-88b].

3 In [Ba-87] Balcézar introduces the notion of word decreasing query (wdq) self-reducibility. A set A is wdq
self-reducible if there is a polynomial time oracle machine M4 that uses A itself as oracle to recognize A, with the
restriction that on an input z all of M’s oracle queries must either be to strings shorter than z or to lexicographic
predecessors of . Balcdzar observes that all wdq self-reducible sets are decidable in exponential time and shows
that if a wdq self-reducible set is in Pspace/poly, then it is in Pspace. He then uses wdq self-reducible sets to
reprove the Karp-Lipton results on the collapse of EXPTime that were originally proved by the “round-robin
tournament” method.



3. SELF REDUCIBILITY AND FUNCTIONAL COMPUTATION.

Many problems which we traditionally think of as set recognition problems are more naturally thought
of as functional computations, or clearly involve functional computations as the most obvious means of
solution. For problems like the Traveling Salesperson Problem, this is surely obvious from its statement,
but even in other problems, for example clique problems, one is presumably more interested in knowing not
just, e.g., whether there is a clique of a given size, but in knowing an actual instance of a maximal clique,
or perhaps the maximum size of a clique. Even in asking whether the maximal clique of a graph is unique,
which is a set-recognition problem, one expects that the difficulty of answering the question should have
something to do with how hard it is to find a maximal clique.

In fact, Papadimitriou and Yannakakis, ([PY-82]), show that the problem “does the maximal clique
have size ezactly k?” is complete for the class Df which is at the second level of the Boolean hierarchy over
NP, and (presumably) well below AP, which is at the second level of the polynomial time hierarchy. While
showing that a problem is complete or hard for NP is generally believed to be adequate for showing that no
fast (i.e., polynomial time) algorithms exist for the set, knowing the exact classification and structure of such
sets is important because, as discussed by Papadimitriou and Yannakakis, ([PY-88]), such results may have
a bearing on whether efficient approzimation or probabilistic algorithms will exist for the sets. As we shall
see, Krentel (and others) have recently shown that understanding hierarchies of functional computations

may yield useful insight into such set classification problems.

While mathematically we are trained to think of functions as being reducible to sets, (namely each
function is equivalent to its graph), from the point of view of computations this notion of equivalence seems
too gross. For example, given a method of computing a function, one can reduce the question of whether a
pair (z,y) is in the graph of the function by making a single request for a computation of f. But the reverse
question, given x asking what is the value of f(z), is by no means easily related to asking membership
questions about the graph of f. In the worst case, one might need f(z) queries to the graph to compute
f(z). Even if one is clever and tries to code a function f, not by the graph of f, but instead by the more
complicated set,

S; =qes {{z,y) : y is an initial segment of f(z)},
it still seems to require |f(z)| questions to Sy to compute f(z).

It is interesting to observe that many of the functions one is interested in computing, for example, the
minimal traveling salesperson tour or the maximal satisfying assignment, are self-reducible as functions. To
date, this fact, the self-reducibility of functional computations, seems to have had little direct use in the
literature. However, as we shall see, the self-reducibility of sets like SAT has been well-exploited in building
functional hierarchies which help in analyzing set recognition problems.

Trachtenbrot, ([Tr-70]), in his early work on auto-reducibility, was interested, not directly in the self-
reducibility of sets, but rather in the question of when, in computing a function f(z), knowing values of f(y)
for y # z would help in the computation of f(z). Because his definition did not require y < z, it led, not
to the notions of self-reducibility which we have been exploring here, but rather to questions about helping,

a broad topic with many new and interesting results,* and to questions about p-cheatability. However

4 We do not have space in this column to discuss the many new results relating robust oracle machines, helping
and self-reducibilities, but we encourage the reader to look at [Sc-88], [Ba-87], [Ko-87] and [HH-87] to gain a feeling
for this rich area of research.



by the mid to late 1970’s, Schnorr was interested in using self-reducibilities to analyze the difficulty of
functional computations, ([Sc-76], [Sc-79]). He showed that for sets in NP which have a certain special form
of disjunctive self-reducibility, there is a related functional problem for which the functional computation is
“equivalent in difficulty” to the original decision problem.

But as we have already seen, it is not likely that every set in NP is disjunctively self-reducible. Nev-
ertheless, it is natural, to associate with any set A in NP the set of all initial segments of the strings
which “verify” that elements of A are in A, (for example, the initial segments of satisfying assignments for
Boolean formulas). This set is obviously self-reducible, and one might expect it to be somehow equivalent
to A. But Selman, ([Se-84]) gives a proof, credited to Borodin and Demers, ([BD-76]), which shows that if
P # NP coNP, then there is a set A € NP — P for which the associated set of “verifying prefixes” is not
even Turing reducible to A in polynomial time. In [Se-88] Selman improves this to show that if P £ NP,
then there is a set A € NP — P for which the associated set of “verifying prefixes” is <& —complete for
NP even though A itself is not complete for NP. On the other hand he proves that if A is <& —complete
for NP, then A is polynomial Turing equivalent to its set of “verifying prefixes.” In [Ba-87], generalizing
Schnorr’s results on the equivalence of certain NP problems and their functional counterparts to all NP
-complete problems, Balcazar uses the self-reducibility of initial segments of verifying solutions in much the
same way. For example, he shows that for an arbitrary NP-complete set A, a function, f(z), verifying that
z € A can always be computed in polynomial time relative to an oracle for A.

Balcazar’s interpretation of this result is that for NP-complete problems there is always a functional
solution which is “not much harder to compute than A itself.” Obviously, except for the polynomial bound
on the number of queries, this interpretation ignores the number of queries which the functional computation

must make to the oracle, A.

Recently there has been a lot of work developing hierarchies of functions which are based on the number
of queries which the computations make to oracles. Some of this, for example the work of Beigel, ([Be-87c]),
shows that such hierarchies often differ significantly from the hierarchies of sets which are built by the same
criteria. A very nice survey covering a wide variety of topics in this area (adaptive versus parallel queries,
complete problems for bounded query classes, small numbers of queries versus sparse oracles, polynomial
truth-table reducibilities and the Boolean hierarchy) can be found in Wagner’s 1988 Structure in Complexity
Theory paper, ([Wa-88]). Such work demonstrates the importance of studying functional computations in
their own right, and not simply as a little understood adjunct of set recognition problems, which are the
traditional domain of complexity theory.

Of the published work relating functional computations to set recognition problems, perhaps Krentel’s
work in [Kr-86] makes the most explicit use of functional hierarchies. In a manner analogous both to the way
one defines the Boolean hierarchy over NP and to the way one defines the set A,’; =def PNP at the second
level of the polynomial time hierarchy, for any well-behaved polynomially computable and polynomially
bounded function function b, Krentel defines the functional class

FPSAT[B] =4.¢ {f : f can be computed in polynomial time

using at most b(|z|) queries to SAT for each input z}.

The union of these classes FPS4T[b] over all polynomial bounds b gives all of the functions which can
be computed in polynomial time given a set in NP as oracle, and is thus directly analogous to the set
recognition class A . But Krentel shows that these functional hierarchies may be of particular interest when

7



the bounding functions, b, are subpolynomial. The self-reducibility of sets like SAT has been well-exploited
in the development of this and similar functional hierarchies. As just one example, we will discuss Krentel’s
work, ([Kr-86]).

With problems in NP, we traditional associate with accepting paths the simple answer “yes,” which
gives only limited information about the problem. In the case of a problem like CLIQUE, we might want
to get more information by associating with any accepting path the size of the clique (if any) that is found
along the path. This gives more information than a simple “yes” answer, but less information than would
be supplied by outputting the clique itself. In the case of a problem like Traveling Salesperson, one might
want to output the length of the tour found by the path, or even the tour itself. And with SAT we can well
imagine wanting each successful path to output the satisfying assignment which it finds. In the terminology
used in [Wa-86], these output variations amount to changing the valuation functions, S5, which Wagner
assigns to the accepting paths of the validations that x € A.

More interestingly, for a problem like BIN PACKING for which there is a polynomial time algorithm
which approximates the optimal solution to within O(log?(|z|)), ([KK-82]), one might want to output for
each path the difference of the path’s proposed solution and the calculated polynomial time approximation
to the optimal solution. This would enable one to recover the optimal solution from the difference calculated
along the path.

Now consider nondeterministic Turing machines which, along each “accepting” computation path pro-
duce some functional output value. For any such machine N, define OptPn(x) to be the largest value
produced on any accepting computation path for input x. (Or, for problems like TSP, take the smallest
value.) Clearly, many problems which we normally associate with nondeterministic set recognition machines
can be more crisply formulated as questions about calculating functions in the class, OptP, of functions
computed in this manor by nondeterministic machines. For any well-behaved, polynomially computable
bounding function b, Krentel defines

OptP[b] =4es {f : f € OptP and |f(z)| < b(|=)}.

Note that a priori, b is not a bound on any computational aspect of f; it merely bounds the size of the output.
Nevertheless, because of the disjunctive self-reducibility of SAT, it is easy to establish a tight relationship
between the classes QO PT[b] and the functional hierarchies FP[b] :

Definition, [Kr-88]. For functions f and g, define f <f_,, g if there exist polynomially computable
functions, Ty and Ty for which f(z) = Tx(z, 9(Ti(z)).’

Using the obvious self-reducibility of the functions in OptP, it is not difficult to prove that, ([Kr-86]),
up to <P_,, reductions, the classes Opt P[b] and F PSAT[b] are the same for each b. (The full power of <F_,,
reductions are not used here.) Furthermore, for functions f in OptP and <f_,, reductions there is a tight

relation between the functional query hierarchies and more traditional set hierarchies. For example:

5 Krentel calls <F_,, a metric reduction, presumable because it will preserve the number of queries in oracle
computations. It is also clearly the correct generalization of one bounded-truth-table reductions in the functional
context.



Theorem, [Kr-86].
1. If f is complete for OptP, then there is a natural polynomially time computable predicate P such that
P(z, f(z)) is complete for AY.
2. If f is hard for OptP, then {(z, k) : f(z) = k} is complete for DF .
3. If fis hard for OptP, then {{z,k) : f(x) > k} is complete for N P.

The following are examples of functional problems which Krentel shows to be complete for OptP:
traveling salesperson, lexicographically maximal satisfying assignment, value of knapsack solutions. For
OptP(log) Krentel shows the following functional problems to be complete: maximal number of satisfying
assignments, size of largest clique, the chromatic number of a graph, the longest cycle in a graph, etc.

Theorems like the preceding can thus be used to project naturally occurring functional problems onto
set recognition problems which occur above NP in the polynomial time and Boolean hierarchies. We refer
the reader to [Kr-86] and [Wa-86] for further details.

Using the Karmarkar-Karp approximation algorithm for BIN PACKING discussed earlier, the optimal
number of bins can be approximated to within O(log(log)) bits, which thus places the problem of calculating
the optimal number of bins in OptP(log(log)). Whether this problem is complete for this class is unknown.
However, in view of the following theorem, it cannot be complete for Opt P(g) for g > log without collapsing
NPto P:

Theorem, [Kr-86]. For honest and monotone functions f and g with f < g and with f < (1 —¢) -log, if
FPSAT[f] = FP5AT[g] then P = NP.

The proof of this theorem is obtained by exploiting the disjunctive self-reducibility of the optimal
solution of SAT' . Observe that for any Boolean formula B(zy, ..., z,) the function which on input B gives
the first g(n) bits in the maximal satisfying assignment to 21, ...,z is a function in F'PSAT[g]. Thus it can
be calculated by an F PSAT[f] machine. But since f < log, we can simulate the results of the answers to all

possible oracle queries in time polynomial in || without actually querying the oracle.

Simulating the F'PSAT[f] machine allows us to produce a new Boolean formula,

B'(Y1,. -y Ys(n)s Tg(n)41s - - +» Ty Ty - - 5 Ty(n))

such that eny truth assignment to the variables yi, ..., ys(n) forces a unique assignment to z,, .. .,mg(n).e
This process may be iterated repeatedly until an equivalent formula is obtained which has at most log(n)
truly “free” variables. Once this is achieved, we can substitute the n possible satisfying assignments to these
log(n) variables, into this formula. For each of these possible satisfying assignments, we can calculate the
required values for the remaining variables, test the resulting assignment to see if it satisfies the formula,
and from these n possible satisfying assignments read off the maximal satisfying assignment. This gives a
polynomial time decision procedure for SAT.

Krentel’s theorem, which (modulo P # NP) establishes that the FPS4T[b] query hierarchy is a true
functional hierarchy up to logarithmic bounds, lends further insight into why problems such as finding the

6 Note that, while this process does not reduce the actual size of the formulas, in the larger sense it is still
a disjunctive self-reduction since it does produce a formula which is smaller in the partial ordering of formulas
obtained by counting only the free variables.



size of the largest clique, which is complete for FP54T[log], and finding the length of an optimal traveling
salesperson tour, which is complete for FP3AT | should indeed be viewed as having increasing levels of
difficulty. And, as pointed out by Krentel, this functional hierarchy makes the problem of characterizing the
optimal number of bins for BIN PACKING, which lies in FPS4T [loglog], particularly intriguing.

We should point out that using similar methods Wagner, ([Wa-86]), has also obtained many results
like those above, and he does so in a nicely systematic fashion. For our purposes, we have concentrated on
Krentel’s exposition simply because it makes more explicit use of functional methods and gives a particularly
nice result about functional hierarchies.

4. CHARACTERIZING POLYNOMIAL TIME.

In the preceding sections we discussed results which show how the self-reducibility of SAT can be used to
prove that certain problems cannot be solved with only a polynomial amount of information unless P = NP
or some other collapse occurs in the polynomial time hierarchy.

In this final section, we will consider generalizations of the notion of self-reducibility which can be used
to characterize polynomial time. Our starting point is two early results of Selman, ([Se-82b]), which show
that P can be characterized as those sets which are both disjunctive self-reducible and p-selective, and also

as those p-selective sets which are positive truth-table reducible to their complements.

Definition, [Se-79]. A set S is said to be p-selective if there is a polynomially computable function s which,
given elements = and y always computes s(z,y) € {z,y}, and s(z, y) € S if and only if at least one of z and
yisin 8.7

Thus, from z and y, s is guaranteed to select “a most likely candidate” for membership in S. For
example, the set of optimal solutions of the the Traveling Salesperson Problem is a p-selective set, as are
most other optimal solutions of NP-complete problems. Ko, ([Ko-83]), has characterized the p-selective sets
as those sets, S, for which there is a polynomially computable preordering for which S is a Dedekind left cut
in the induced linear ordering.

Although p-selective sets are not Turing self-reducible in the sense defined earlier, p-selectivity is a weak
form of the intuitive notion of self-reducibility since it relates the membership question for any two elements
to the question of membership for the smaller of the two elements (in some suitable ordering).

Here we are interested in Selman’s proof that one can characterize the polynomially decidable sets, P, as
those sets which are both disjunctive self-reducible and p-selective. To see this, simply observe that if a set,
S, is p-selective, then we can prune the self-reducibility tree as follows: in a linear pass over the daughters of
the elements at any node (doing a breadth first search) we can find an element “most likely” to be in the set
S. Since the self-reduction tree is disjunctive, we can prune all daughters except this most likely daughter
from the tree. Continuing in this fashion, in a polynomial number of steps at each level of the self-reduction
tree, we can prune the entire self-reduction tree to a “telephone pole.” The root node is then in the set if
and only if the single leaf of this pruned tree is in S.

7 The notion of p-selective comes directly from the classical notion of “semi-recursive” studied by Jockusch
in early papers in classical recursion theory, e.g. ([Jo-68]). P-selectivity and other variants of self-reducibility
are discussed in the survey, [GJY-87a], which has very little overlap with the material discussed in this column.
We recommend the technical report version of [GJY-87a], which was distributed at the conference, and which is
more complete than the Proceedings version. Copies are available from either the University of Washington or the
University of Wisconsin Computer Science Departments.
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Recently, working with Judy Goldsmith we have used variants of Balcézar’s notion of word-decreasing-
query self-reducibility, p-cheatability, and self-reducibility to give new characterizations of the class of sets
decidable in polynomial time.

Definition, [GIY-87a). A set A is near-testable if there is a polynomially computable function which,
given w # 0, decides whether exactly one of w and w — 1 is in A, where w — 1 is the lexicographic (or

numerical) predecessor of w. That is, the function

f(w) = xa(w) + xa(w — 1) (mod 2)

is computable in polynomial time.

For later use notice that if a set is near-testable, then it is word-decreasing-query (wdq) self-reducible
with w—1 being the only query necessary to answer membership for input w. Obviously, all wdq self-reducible
sets that require only one query to the set, including all near-testable sets, are decidable in polynomial space.
We originally became interested in studying near-testable sets because they are an especially easily defined
class of sets, which lie someplace between P and Pspace, but require no appeals to “complicated” concepts
such as nondeterminism or randomness for their definition.

The other variant of self-reducibility we will be interested in is the notion of p-cheatability. The p-
cheatable sets were first studied by Amir, Beigel, Gasarch, Gill, Hay and Owings, ([AG-87], [Be-87a], [Be-87b],
[BGGO-86], [BGH-87], [BGO-87]). The definition of the class is based on the following scenario: one is given
a large collection of inputs, w1, w3, ..., wn, and one would like to determine whether or not each input isin a
known set A. It is assumed that the membership problem for A is difficult. Therefore, if knowing whether
some w; is in A helps in determining whether another wj is in A, then one would like to use this information.
These authors use this idea to motivate the following machine model. To determine membership in A, one
designs an oracle machine M that, when given A as oracle will determine membership in 4 for n different
inputs by asking the oracle as few questions and doing as little computation as possible. For example, one
might hope to design machines that run in polynomial time and for a fized k decide membership for 2% inputs
by asking only k questions. The definition can be formalized as follows.

Definition, [AG-87], [Be-87a]. A set A is (n for k) p-cheatable if there exists a polynomial time oracle
machine M using A as oracle such that, if M4 is given inputs (w1, ..., wy), then, with k or fewer queries to
the oracle, M4 determines membership in A for each of wi, ..., wn. (We will be primarily interested in the

case where n = 2% and in this column we will often call (2* for k) p-cheatable sets simply p-cheatable.)

Note that the queries that M asks in the course of deciding membership for wy, ..., wor are not restricted
to come from the set {wi,...,wy}. In fact, for our purposes the exact questions asked and the oracle to
which they are addressed turn out not to be relevant.® It will turn out that the only thing that matters is
the number of questions that are asked. Notice that k is a constant that will depend on the set A.

8 Beigel’s definition of p-cheatable sets (sets which we call (2* for k) p-cheatable) allows M access to any fixed
oracle. However, the definitions given by Amir and Gasarch for (2" -1 for k) p-cheatable sets require that M use
A as the oracle. (These sets are called verbose by Amir and Gasarch.)
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To put the results that follow in context it is useful to observe the following.

e Amir and Gasarch ([AG-87]) have shown that there are p-cheatable sets of arbitrarily high time com-
plexity. Thus, there are p-cheatable sets that are not wdq self-reducible, and thus not near-testable.
e In [GJY-87a] we have shown that if one-way functions exist, then there are near-testable sets not in P. In

fact, in a weak sense, the class of near-testable sets turns out to be <P equivalent to the Papadimitriou-
Zachos class, parity-P, ((GHIY-87]).

Thus it is highly likely that both the near-testable sets and the p-cheatable sets are proper extensions of the

class P of sets decidable in polynomial time.

While the analysis of (2% for k) p-cheatable sets for arbitrarily large (but) fixed k often involves more
difficult combinatorial arguments, one frequently, but not always, gains the necessary fundamental insight
for analyzing the general case by considering the special case k = 1. For example, in the case k = 1, if we
are given two elements a and b and we consider any algorithm which decides both ¢ € S and b € S by
making only one oracle call, then without consulting the oracle we can ask what the outcomes would be if
the oracle returned the answer “yes” and also if the oracle returned the answer “no.” Now one possibility is
that independent of whether the oracle answers “yes” or “no” the algorithm decides, for example, that a € S.
In this case, in polynomial time we will have learned that one of the pair, namely a, is in S. What happens
if the algorithm does not locate either a or b in S or in 5? Then the algorithm must yield different answers
to the question “a € S?” depending on whether the oracle answers “yes” or “no.” And in this case the same
thing must happen for b. If the patterns for a and for b agree, then we know that a € S <= b € 5, while
if the patterns for a and for b disagree, then we know that a € S <= b ¢ S. Summarizing, if S is (2 for
1) p-cheatable, then there is a polynomial time algorithm which, (without the use of an oracle), given any
a and b either places at least one of @ or b in S or in S, or else the algorithm tightly binds the membership
questions of a and b.°

In the case where a and b are adjacent elements, this relationship is very close to the near-testability
relationship. But there is a significant difference. Suppose we knew a priori that ¢ € S. Then the near-
testability relationship would enable us to decide whether b € S, but if we applied the cheatability relationship
then we might simply again get the information that a € S, which by itself is of no help in determining
whether b € S.

The next tesult shows that, in spite of the fact that it is unlikely that either can be used alone to
characterize polynomial time, near-testability and p-cheatability can be combined to characterize polynomial
time.

Theorem, [GJY-87c]. For any fixed k, a set S is in P if and only if S is both near-testable and (2% for
k) p-cheatable.!®

If Sisin P, the result is of course trivial. For the converse, we prove the result here only for k = 1,
referring the reader to [GJY-87c¢] for the proof for arbitrary k.

9 The result in this paragraph (for k = 1) appears in [GJY-87a] and as Lemma 5.4.9 of [Be-87b]. An outline of
the corresponding result for arbitrary k appears in [GJY-87a] and in full detail as part of the proof of Theorem 1
in [GIY-87c].

10 Richard Beigel has informed us that he independently obtained this theorem for the special case k = 1,
(personal communication).
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The idea is as follows. Suppose we have -+ 1 integers, ag < a1 < ... < a3, and we know whether or
not ag € S and furthermore for each k, (0 < k < t), we have a relation which, given the answer to a; € S
provides the answer to ax41 € S. We call the interval from ag to a; the critical region because if we could
determine a relationship which, given the answer to ag € S would determine a;, we would then know the
membership of all of the a;. Obviously, if a3 = ao + 1, we could use the near-testability of S to determine
such a relationship. This will give us the final step of our algorithm. The algorithm for testing membership

in S now goes as follows:

To decide whether an element b € S, begin by setting ag = 0 and a; = a; = b. This makes the interval
from O to b the critical region. Proceeding recursively then, if a; = ao + 1, we use near-testability on ao and
a; and we are done. Otherwise, let ¢ be the midpoint between ao and a;. Apply the p-cheatability algorithm
to the pair ¢ and a;. Three things can happen.

1. If the p-cheatability algorithm tells us whether or not a; € S, we are done, for we can then successively

find the answers to membership for each a;.

2. If the p-cheatability algorithm tells us whether or not ¢ € S, we can reset ap = ¢ and try again. In this
case we have cut the length of the critical region by half.

3. If the p-cheatability algorithm tells us how the membership question for ¢ € S relates to the membership
question for a; € S, we can insert ¢ between ag and ay, making the interval from ag to ¢ the new critical
region. To do this we simply relabel each a; as a;4 for all i > 1 and then reset a; to c. Note that this
again cuts the length of the critical region by half.

Since at each basic iteration of the algorithm, either the algorithm terminates or we cut the size of the
critical region by half, the total number of iterations cannot exceed log(b). It is thus easy to see that this
method gives a polynomial time algorithm for S. The idea for k > 1 is similar, but the combinatorics are
more difficult. We refer the reader to [GIY-87¢] for details.

The question of whether this result can be proved with a word-decreasing-query condition replacing the

near-testability condition is open, although some partial results may be found in ([GIY-87¢]).

In closing, we shall discuss one final characterization of the polynomial time decidable sets using vari-
ations of self-reducibilities. We remarked above that for p-cheatable sets, when we reduce the membership
question for 2% elements of the set to k elements of the set then the k elements of the set need not be among
the original 2* elements, or even be of the same or smaller size. Indeed, if given k + 1 elements we can
always reduce their membership question to k or fewer elements of smaller size, then it is not too difficult to
see that given any truth-table self-reduction tree (disjunctive or not), we could systematically use this form
of strong p-cheatability to force the self-reduction tree to have finitely bounded width. (If at any time any
level of the tree had more than k nodes we could use p-cheatability to prune the tree back to k critical nodes
which are shorter than the original nodes, (although possibly not among the original nodes).

What is surprising is that this can be made to work for the most general form of self-reducibility and
for (2% for k) p-cheatability even when the sizes of the queried nodes increase. This result, was originally
proven by Beigel for polynomially self-truth-table-reducible sets, ([Be-87b; Theorem 5.4.6). The result can
also be proved for arbitrary Turing self-reducible sets. Here we merely state the result. We refer the reader
to ([GIY-87c]) for details of the full proof, or to [Be-87b] for details for the simpler case.
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Theorem, ([GJY-87c]). For arbitrary k, a set is in P if and only if it is both self-reducible and (2* for
k) p-cheatable.

The question of whether this result can be proved for, say, (2¥ — 1 for k) p-cheatable is open, although
some partial results may be found in ([GIY-87c]).
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