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Abstract. A simple method is presented whereby the quadratic character in a finite field of odd
order q can be computed in O(logq)? steps. It is also shown how sequences generated determin-
istically from a random seed can be used reliably in a recent randomized algorithm of Peralta for

computing square roots in finite fields.
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1. Introduction.

In [10], Peralta has published two interesting randomized algorithms for computing square
roots modulo an odd prime p. In fact, his algorithms work in any finite field of odd characteristic,
and in connection with this I would like to discuss two questions:

1. What is the best way to decide if an element in a finite field is a square?
2. How should one choose successive pseudo-random numbers for use in these algorithms?

The first question arises because several randomized algorithms for computing square roots in
a finite field of order ¢ fail when a randomly constructed field element is a square. If failure can
be predicted in less than O(logq)® steps — the time needed to run the algorithm — then another
trial can be started with very little loss of time. One can test if a nonzero element ¢ is a square by
computing #(3-1)/2, but this requires an O(log¢)® computation. Section 2 gives another test that
requires O(log ¢)? steps, which generalizes the Jacobi symbol algorithm to any ﬁﬁite field. The
algorithm is implicit in the reciprocity law for polynomials over finite fields [4], but it does not
seem to have been analyzed before.

The second question has already been studied in connection with some algorithms for com-
puting square roots mod p. In [1] I showed that these algorithms are very reliable when run on
sequences derived in a simple fashion from a randomly chosen seed. The results therein do not ap-
ply to Peralta’s second algorithm, nor do they apply to non-prime finite fields. It therefore seemed
interesting to ask if these results could be extended to Peralta’s algorithms. Section 3 reviews the

algorithms, and section 4 answers this question in the affirmative.

2. A quadratic character algorithm.

In the sequel p denotes an odd prime, and ¢ = p™, a prime power. IF; or K denotes a finite field
of q elements, K* its group of nonzero elements, K its algebraic closure, and K[X] the polynomial
ring in one indeterminate. I assume that IF, is implemented as IF,(c), where o satisfies a monic
polynomial equation of degree n over IF,. Then in IF,, addition and subtraction take O(loggq)
steps, and multiplication and division take O(log q)? steps (assuming that classical algorithms are
used for integer and polynomial arithmetic). x denotes the usual quadratic character on K; the
following definition generalizes the Jacobi symbol to polynomials over finite fields.

Definition 2.1. Let K be a finite field of odd characteristic, and let f and g be polynomials in
K[X], with g monic and of positive degree. If g is irreducible, then

—1, if f and g are relatively prime and f is not a square mod g;
0, otherwise.
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1, if f and g are relatively prime and f is a square mod g;
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If g = g1---gr with each g; monic and irreducible, then (ag[) = H;l(-})

The above definition implies that if @ € K, (%‘-) = x(a)de89. The analog of quadratic reci-
procity is the following.
Theorem 2.2 [4]. Let f,g € K[X], with f, g monic and deg f,degg > 0. Then

_-_f_=__ defdegsm-k_—lzg_
(£) = (~1ytes/ter o2 2,

Algorithm 2.3. Input: f,g € K[X], with ¢ monic and degg > 0; output: (‘5)

f « fmod g.
o « leading coefficient of f.
If deg f = O then return x(a)de89.

fe fle
Return +x(a)?89(4) (taking ‘-’ iff (¢ — 1)/2, deg f, and degg are all odd).

Theorem 2.4. If f and ¢ in K[X] have degree at most d, then algorithm 2.3 computes (.gt) using

O(d?) field operations and O(d) evaluations of the quadratic character in K. Consequently, the
quadratic character in IFy can be evaluated with O(log¢)? bit operations.
Proof. The correctness of the algorithm follows from the reciprocity law. To analyze its running

time, note that it computes a polynomial remainder sequence

Ug = QolUy + ol

Uy = g1Uy + Q1U3

Uk—1 = Qr—-1Uk + Ok—1

where ug = f, u; = g, u; is monic for 7 > 1, and degu; > degu;y; for ¢ = 1,...,k — 1. Such
remainder sequences have length O(d) and can be computed with O(d?) field operations [9]; this
proves the first assertion.

To prove the second, note that if IF, = IF,(a) where a has a monic defining polynomial g,
then IF, & IF,[X]/9(X), so x(f(a)) = (‘5') In IF,, x can be evaluated in O(logp)? steps by the
Jacobi symbol algorithm [5], and arithmetic operations take O(log p)? steps. So if ¢ = p™, the total

number of bit operations used is at most a constant times

n?(log p)? + n(log p)’ = O(nlogp)® = O(logg)?. m



Remarks.

1. The subresultant algorithm can be used to compute a remainder sequence that differs from
ug, . . ., ux only by constant factors [9], from which it is easy to recover the u;’s and the o;’s.
Then

f -l b1 X ;
(L) =x( [T v )1y Bz e,

0gi<h
degu;4o0dd

from which the quadratic character on IF, can be quickly reduced in parallel to arithmetic in
IF, and one evaluation of x. This gives another proof of Fich and Tompa's result [6] that for
fields of small characteristic, the quadratic character is in NC.

2. Even for prime fields, it seems to be unknown if one can decide if an element of IFg is a d-th
power in O(logg)? steps, when d # 2, and d | ¢ — 1.

3. The question of this section becomes moot if K has characteristic 2, for then every element is

a square.

3. Two Square Root Algorithms.
Below, I review Peralta’s results, generalized to any finite field.

Algorithm 3.1. Input: @, a nonzero square in K; output: a square root of a.
Choose z € K at random.
If z2 = a, output z.
Otherwise, in A = K[T]/(T? - a), compute (T + z){(4=V/2 = uT + v.
If v = 0, output u1.
Theorem 3.2 [10]. Algorithm 3.1 returns a square root of a unless x(z? — a) = 1. It takes
O(log q)° steps, and fails with probability 1/2 — 3/(2q).
Algorithm 3.3. Input: @, a nonzero square in K; output: a square root of a.
Let ¢ — 1 = 2°d, where d is odd.
Choose z € K at random.
If z =0 or 22 = —a, fail.
Otherwise, in A = K[T]/(T? + a), compute (T + z)¢ = uT + v.
If uv = 0, fail.
Otherwise, find the least ¢ such that (uT + v)?' = (rT + 3)? = wT.
Return s/r.
Theorem 3.4 [10]. Let b denote a square root of —a, and let m = 2¢e-1: assume ¢ =1 (mod 4).

Algorithm 3.3 returns a square root of a unless z = £b or for some nonzero y, (z+b)/(z—b)=y™.

It takes O(logg)® steps, and fails with probability 1/m + 1/q.
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Ordinarily one simply repeatedly tries a randomized algorithm until it works. However, by the
results of section 2, it is faster to test random values of z until one is found with x(z? - a) # 1
than to repeatedly run algorithm 3.1 (this strategy was suggested by Berlekamp [2]).

If m is large, algorithm 3.3 is much more reliable than algorithm 3.1. Unfortunately, there
seems to be no better way to tell if a choice of z will work than to try it. However, any z for which
x(z% + a) = —1 will succeed in algorithm 3.3, for then (z + b)/(z — b) is not a square, and surely
not an m-th power. One might also use algorithm 2.3 here to quickly find such an z.

Remarks.

1. Peralta’s first method is a simplified version of the Berlekamp-Rabin algorithm for factoring
T? — a. For, if (T + z){9-1/2 = 4T mod T? — a, then Rabin’s algorithm [11] would compute
ged((T+2)9-1/2 = 1,T? —a) = T —u~1. Since K[T] & K[T + ], replacing T + = by T shows
that ged(T-1/2 — 1,(T - z)? —a) = T — (z + u~1), from which Berlekamp’s algorithm [2]
would return u~! as a square root of a.

2. The failure criterion for algorithm 3.1 is nearly identical to that of the Cippola-Lehmer algo-
rithm [8], which computes v/a in O(log ¢) steps when a random z € K satisfies x(z% —4a) # 1.
Also, given z € K for which x(z) = —1, the Tonelli-Shanks algorithm [13] will compute a square
root in K in O(log q)* steps. Both of these methods could profit from algorithm 2.3.

3. All algorithms discussed in this section for computing square roots in K take at least O(log ¢)3
steps. It is unknown if this can be reduced to O(logg¢)?, although when K has characteristic
2, one can compute square roots by inverting the matrix for the Frobenius map z — z? [3].

This method takes O(log ¢)? steps once the inverse matrix is computed.

4. Deterministic Sequences for Square Root Computation.

The algorithms of the last section will in general require a sequence of random inputs from K;
this section discusses simple methods to generate them from a random seed z € K. The results
show that if fixed constants ¢y, ..., ¢y are properly chosen, then trials using z + ¢1,...,2 + ¢; will
simulate independence.

Definition 4.1. A line in IF, is a set of the form {y + 6t :t € IF,}, where v, € IF, and § # 0.

In the results below I will assume that ¢y, ..., cx are distinct elements of K, chosen from a set
containing no lines (this is the interpretation of “properly chosen”). Such sets are easy to find. For
example (viewing IF, as a vector space over IFp), {(z1,...,2,) : all ; # 0} contains no lines. Also,

any set of size less than p cannot contain a line.



Lemma 4.2. Let m | ¢~ 1, with m > 1,and let 0 < ¢; < m fori = 1,...,1. Then

!
FX) = TTUX + i+ B)(X + e = b))
i=1
is not an m-th power in K[X].
Proof. The zeroes of f are a; = b — ¢; and fB; = —b — ¢;. Certainly the «;’s are distinct, as are
the f;’s. Hence no three of them can be equal. Localizing at X — a; shows that if f is an m-th
power, then {ei,...,a;} = {B1,...,0i}, that is, {¢1 — b,...,c1 — b} = {e1 + b,...,c; + b}. Thus
C = {ec1,...,c} is invariant under translation by 2b, so C must be a disjoint union of sets of the
form {y +2b-t:¢t € IF,}. This contradicts the hypothesis that C' contains no lines. @
Lemma 4.3. Let m | ¢ — 1, with m > 1, and let b # 0. If N denotes the number of (z,y1,...,Yx)
in K™+ satisfying
(z+ci+b)(z+ec;i=b)" =y, i=1,...k

then N < ¢ + 2km*,/q.
Proof. Let x denote a character of order m on K*. Weil showed that if f € K[X], with d distinct

roots in K, but not an m-th power, then

| Y- x(f@)] £ (d-1)va

zeK

[12, Theorem 2C]. By the orthogonality relation for characters,

k
N=3 Tl X x(@+e+b)a+e-b)m "

zeK i=1 0<e;<m
= T S xEta+d)etea—b)mrx(@ + ox+ B) (@ + cx = ™R
0<e; e <m €K

Group the terms in the first sum according to how many e;’s are nonzero and use Weil’s estimate

and lemma 4.2 to show that N is at most
ul k
g+ ) (2i—-1)(m- 1)’°(i> VI = q+mF2k(m-1)-m]+1)\/§ < q+2kmF/q m
i=1

Theorem 4.4. Choose z € K at random. The probability that algorithm 3.1 fails on = + ¢;,
i=1,...,k, is at most 1/2% + 2k/,/g. If k = [} log, q, this is O(log ¢/,/7).
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Proof. If all trials fail, there are nonzero y,...,yx € K for which (z + ¢;)? — a? = v i, i=1,...,k.
Take m = 2 and b = /a in lemma 4.3, and divide by 2* to get the number of z’s and by q to get
the probability of failure. The second result follows by substitution. m

Theorem 4.5. Choose ¢ € K at random. The probability that algorithm 3.3 fails on z + i,
i=1,...,k, is at most 1/m* + 2k/./g + 2k/q. If k = [}log,, q], this is O(log g/(logm,/q)).
Proof. Choose b with b2 = —a. If all trials fail either z = —¢; + b for some t, or there are nonzero
Y1,.--, Yk € K such that (z+c¢;+b)/(z+¢;—b) =y, i = 1,...,k. The rest of the proof is similar
to that of theorem 4.4. ®

Remarks.

1. By lemma 4.2, the equations (2 + ¢; + b)/(z + ¢; — b) = y™, i = 1,...,k, define an algebraic
curve, whose genus g can be shown to be k(m — 1)m*=1! — m¥ 4 1 by the Hurwitz formula [71.
Lemma 4.3 can be replaced by the Weil bound N < ¢ + 29,/q, which will sharpen the above
theorems. The improvement is very slight unless m = 2, in which case the dominant term in
theorem 4.4 can be reduced by a factor of 2.

2. If m > /g, then theorem 4.5 becomes irrelevant as theorem 3.4 is sharper.

3. Theorem 4.4 evidently applies to the Cippola-Lehmer algorithm. If one merely wants to find
an element in K that is not an m-th power (i.e. for use in the Tonelli-Shanks algorithm), then

a bound similar to theorem 4.5 holds, provided only that ¢, ..., c are distinct [14].

Acknowledgement. Thanks to Gilles Brassard for posing the question. Thanks also to Victor

Shoup for suggesting the use of character sums.
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