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1 Introduction

We propose an iterative linear programming method to solve the nonlinear program
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where f and g are differentiable, convex functions. Problem (1) will be solved by partially

solving the following sequence of linear programs

minimize (i, k) Ty
M P> 2
subject to ytaez @)
y=20

where ¢ represents an outer loop iteration and k represents a finitely terminating inner
iteration. We first describe the motivation and source of the quantities appearing in (2) and
then give a precise description of the algorithm.

In fact the algorithm produces a sequence of iterates which converge to a Karush-Kuhn-
Tucker point of (1). Under any of the standard constraint qualifications (see Mangasarian7]
for details), the Karush-Kuhn-Tucker conditions for (1) hold at any solution point. The

Karush-Kuhn-Tucker conditions for this problem are

v=V,L(z,u) = Vf(z) +uI'Vg(z) >0
y=—-VyL(z,u)=—g(z) >0

z20,u>0
zTv =0
uTy =0

where L(z,u) = f(z) + uTg(z) is the standard Lagrangian of the problem. By letting

V. L(z,
z=|" | eRr™ and F(z) = ()
u —VuL(z,u)



we produce the nonlinear complementarity problem, NLC P(F), of finding 2z € IR*™ with

F(z)>20, z>0
2ZI(F(z)) =0

If we linearize NLC P(F') about a current iterate z*, the following linear complementarity

problem, LCP(M¢, ¢*), is obtained. Find z € IR®™ such that

Miz+¢ >0, 2>0
2T(Miz+¢') =0

The quantities appearing in this problem are precisely the same ones as appear in (2) and

are given by

H = VI L(z)
[ Hi \v4 T
M= . g(=*) (3)
—~Vy(z') 0
2. [ Vi(e) — Hig
q = . .
~g(2*) + Vg(z')z’

The algorithm we propose can be briefly described as follows. Linearize NLC P(F') about
the current iterate to form LCP(M?, ¢'). Solve this problem using a finitely convergent
iterative linear programming technique (inner loop). Then check a termination criterion and
repeat the process if the method has not converged (outer loop).

A precise description follows, where the iterates in the outer loop are indexed with a

superscript ¢ and in the inner loop by a superscript k.

2 Algorithm

Initialize: Given € > 0 and any point 2° = (2%, u®), set ¢ = 0.
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Outer loop: Given 2* = (2%, u’), calculate the following quantities

VL(z')

F(z'):= V()

, HY, M', and ¢’

(the last three given by (3)). Find z*+! by executing the inner loop(z). If || 2! — 2%|| <
€, then stop. Otherwise set : = ¢ + 1 and repeat the outer loop.
Inner loop(?)
Initialize: Find any basic feasible solution, say 2*° of the linear constraints in variable y
Miy+q¢ >0
y=0
and set £ = 0. (For example, use phase I of the simplex method.)

Tteration: Let
0:(z) = 2T (M'z + ¢)

Direction: Given z"*, use the primal simplex method to partially solve (2), with

(i, k): = V;(zF)

until
V(25 Ty < V(275 2% — ;(24F) (4)

Let y** be the basic feasible solution obtained satisfying (4). See [13] and the
definition of M* in (3) for justification of (4). Define

P = gk g
Steplength: Let ), satisfy

— ; Nour i,k
Ai gt = arg 2D 0;(z"" + Ap**)
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Set

zz,k-}-l:: zz,k + /\i,kpz'k

Termination: If

” h;(zi'k+1)l| < “min(zi, F(z‘))“
where h;(z) is defined by
hi(2): = min(z, Mz + ¢*)

and 7; is a sequence of scalars chosen to ensure convergence, then set zit1: = zk+1
and return to the outer loop. Otherwise, increase k£ by one and repeat the

iteration of the inner loop().

(Note that the function h; is vector—valued with “min” interpreted as a componentwise

minimum.)

We now give a broad motivation for the above method, cite relevant convergence results
and give computational results for a particular implementation of the above scheme. The

algorithm comes from a consideration of two methods in the literature, namely

1. Pang’s inexact Newton method for NLC P(F)[9].

2. Shiau’s iterative linear programming algorithm for LCP(M, ¢)[13].

We now proceed to describe the essential elements of these methods.

3 Pang’s inexact Newton method for NLCP(F)

Newton’s method for solving N LC P(F') generates a sequence {z‘} in the following way (see
Josephy[5] for details). Given z¢, define z'*! € IR®™™ to be an exact solution of the linear

complementarity subproblem:

F(z)+ VF(z)(z—2) >0, z>0
2ZI(F(2) + VF(2)(z - 2*)) =0




Under suitable assumptions, the sequence {z'} is well defined and converges locally and
quadratically to a solution z* of NLCP(F). However, there are several well-known draw-
backs of the method. The first is that the need to evaluate the Jacobian, VF(z%), is compu-
tationally expensive and the second is the need to solve the subproblems exactly can be time
consuming and sometimes impossible. In the first case, some headway has been made by
using approximations to the Jacobian (see the work by Josephy[6] on quasi-Newton schemes,
for example). We will not consider these methods here. For the second drawback, inexact
Newton methods have been proposed, offering a trade-off between the accuracy of solving
the subproblems and the amount of work needed to solve them. Pang[9] has described such
a scheme and we outline his results here since they apply directly to the method that we
propose. The method in its general form is given by:

Let 2* be the most recent iterate, then generate zit! € IR*™ as an approximate solution
of

F(z')+ VF(z)(z - 2) >0, 2>0
ZI(F(z) + VF(z)(z — 2)) =0

The approximation must satisfy the following rule
|z < i |min(e, F())] (5)
where 7; > 0 is some given scalar and
hi(z): = min(z, F(2*) + VF(2)(z — z%))

It is clear that 2* is a solution of NLC P(F') if and only if min(z*, F(z*)) = 0. Thus, under
suitable assumptions, the quantity ||min(z*, F(2!))|| measures how close 2’ is to a solution
of NLC P(F). The main advantage of a rule such as (5) is the savings in the solution effort

during the early iterations.

To state the convergence result we need to consider the notion of regularity.

Definition 1 (Robinson) Let z* be a solution of NLCP(F). z* is said to be regular if



there erists a neighbourhood N* of z* and a scalar 6 > 0 such that, for all vectors y with
lyll < 6

there is a unique vector z(y) € IR**™ in N* solving the perturbed linear complementarity
problem

F(z*)—y+VF(z*)(z —2*) 20, 220
Z(F(2%) —y + VF(z")(z = 27)) = 0

Moreover, z(y) is Lipschitz continuous in y, that is, there is a constant L > 0 so that

whenever ||y|| < 6 and ||y’|| < 8, we have

llz(y) — 2(¥")l < Ly — ¢

The above notion of regularity is due to Robinson[11] and is a generalization of a familiar
condition in the case of solving systems of nonlinear equations. Indeed, if the NLCP(F) is
viewed as an extension of finding a zero of the mapping F'(z), then the regularity condition
just defined can be thought of as generalizing the requirement that VF(Z) is nonsingular
where F(%) = 0.

We now quote two lemmas, given by Pang[9], which explain some terms he mentions in

his convergence proof of the inexact Newton method.

Lemma 2 (Pang) Let F' be Lipschitz continuous. Then there exists a constant p > 0 such

that for all z and 2’

[|min(z, F(2)) — min(z', F()|| < p]lz = 2/|| (6)

Condition (6) is used in the convergence proof. We include Lemma 2 to show that

condition (6) holds under weak assumptions.

Lemma 3 (Pang) Suppose that z* is a regular solution of NLC P(F') and that F is con-

tinuously differentiable in a neighbourhood of z*. Then there exist a scalar § > 0, two

7




neighbourhoods N1 and Ny of z*, and a constant L > 0 such that whenever z is in Ny and

llyll < &, there s a unique vector v(z,y) in Ny satisfying
v>20, w=F(z)—y+VF(z)(v—2)>0, and vT(w)=0
Moreover, if |ly|| < 6 and ||y’|| < 6, then

[v(z,9) —v(z,9)Il < Ly — ¢/l

The following theorem, due to Pang[9], gives the convergence of the inexact Newton

method (including rates of convergence) for the stopping rule (5).

Theorem 4 (Pang) Suppose that z* is a regular solution of NLC P(F) and that F is con-
tinuously differentiable in a neighbourhood of z*. Let 1 > 0 be such that condition (6) holds

for all z and 2’ in a neighbourhood of z*. Let L be the scalar as given in Lemma 3. Assume

that
n:(1 + max(L,1) ”I - VF(z’)”) < nmin(1,1/u) for all:

for somen < 1. Then

e there exists a neighbourhood of z* so that if 2° is chosen in it, the sequence, {z’},
produced by the inezact Newton method under the approrimate rule (5) is well defined

and converges to z*

e if, in addition

limn; =0
[t de ol
then the convergence is superlinear, that is

[



o if, in addition, VF is Lipschitz continuous in a neighbourhood of z* and if, for all i

sufficiently large
mi < | min(s, F ()|
for some v > 0, then the convergence is quadratic, that is

. 2
zz+1 _ Z*

<ec ”zi -2
for all i large enough and some ¢ > 0.

Pang[9] also gives results concerning inexact quasi-Newton schemes, but since these do
not relate to our implementation, we will not discuss them here. However, this does give an
indication that quasi-Newton schemes could prove to be computationally effective for our

method as well.

4 Shiau’s iterative linear programming algorithm

We now describe a method for solving linear complementarity problems when the underlying
matrix M is positive semidefinite. The method is due to Shiau[13]. Consider the following

quadratic programming problem

minimize 0(z):= zT(Mz + q) 4
Mz4¢>0 h (7)

subject to
z2>0

which is equivalent to solving LCP(M, ¢). In his thesis, Shiau[13] proposes the following
algorithm for the solution of the problem.

Initialize: Find any basic feasible solution of the constraints, say 2°. (For example, by

using phase one of the simplex method.)

Iteration: Repeat the following steps until z* is complementary, that is

(%) (MZ* +¢) =0




k

Direction: Given z*, use the primal simplex method and pivot on the problem,

minimize Vo(zF)Ty
M >0
subject to ytaz
y=0
until
VO(F)Ty < VO(F)T2F - 0(2*) (8)

(It is shown in [13] that if no point y satisfies (8) then z* is complementary.)
Let y* be the basic feasible solution obtained satisfying (8). Let the direction of

search be

k

p:Zyk—-Zk

Steplength: Let )\, be given by

A : k k
Ap:= arg min, 6(z" + Ap™)

Set,

2P = Ry /\kpk

and increase k by one.

Shiau[13] gives a closed form for the above steplength as

A= =VO(F)pF /20" Mp* if0< <1

1 otherwise

Ak =

under the assumption that V8(z*)p* < 0. He also proves that the algorithm terminates
at an optimal solution in a finite number of steps. We cite Shiau’s result now. Note that
the hypothesis of the theorem is satisfied trivially under our assumption that M is positive

semidefinite, but the given theorem is more general.
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Theorem 5 (Shiau) Assume that there exists a solution z of LCP(M, q) such that
(y~2)TM(y—2)>0 for all feasible y
Then there exists N > 0 such that
0(z°) > 0(z)) > --->6(z") =0
where {z*} is generated by the above algorithm.

The algorithm we proposed at the beginning of this section is now seen to be precisely
an inexact Newton method for the solution of NLC P(F'), using an adaptation of Shiau’s
method to (inexactly) solve LCP(M?,¢'). These observations lead directly to the following

result.

Theorem 6 Under the assumptions of Theorem 4, the algorithm of Section 2 converges

linearly, superlinearly or quadratically, depending on the choice of stopping criterion n;.

In passing, we make the following note. The subproblems generated by the inexact New-
ton method are in fact linear complementarity problems whose solution gives the Karush-
Kuhn~-Tucker conditions of the quadratic subproblems generated in the following iterative

quadratic programming method:
Initialize: Given 2° = (2%, u%), set i = 0.
Iteration: Given z' = (zf,u'), find 2**! = (zi+!,4**!), a Karush-Kuhn-Tucker point for

the following linearly constrained quadratic program

minimize Vf(z)T(z — z*) + 1/2(z - z})TG(z*)(z — =)
9(z*) + Vg(z')(z — ) <0 (9)
>0 p

subject to

Here G(z') is some approximation to the Hessian of the Lagrangian of (1).
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Termination: If some convergence criterion such as ||zi+! — z'|| < ¢ is satisfied, then stop.

Otherwise, set 7 = 7 + 1 and repeat the iteration.

If we formulate the Karush-Kuhn-Tucker conditions of (9) as a linear complementarity
problem, then it can be seen that at iteration ¢, the subproblem is equivalent to finding
z € IR**™ gatisfying
Miz4+¢ >0, z>0
zZT(Miz+4¢") =0

Note that M* and ¢* are given by

oo | G Ve
i —Vg(z?) 0

i [ Vi) - ()

~g(z') + Vg(z*)e*

Thus if we take G(2') = H', the exact Hessian of the Lagrangian, the subproblems of this
method can be viewed as the same subproblems as those given in our algorithm (see (3)).
The idea of replacing the exact Hessian in these methods by an approximation has been
the subject of much research. These are motivated by the iterative quadratic programming
algorithm of Garcia Palomares and Mangasarian[2], Han[3] and Powell[10]. Second order in-
formation is used by this class of algorithms through various approximations to the Hessian of
the Lagrangian function for the problem. For inexact quasi-Newton methods for NLC P(F),

the paper by Pang[9] gives a convergence proof under the assumption of regularity.

5 Computational Results

The method described above has been implemented using the exact Hessian formulation of
the algorithm. The linear programming subproblems were solved using a reduced tableau
implementation of the simplex method. The subproblems were started from an advanced

basis, namely the one given by the previous iterate.
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Problem Size | Outer | Inner | Pivots | Basis | CPU

m X n | loops | loops pivots | (secs)
Rosenbrock[12] 4 x2 6 7 2 281 0.10
Himmelblau[4] 2x4 16 16 0 51| 0.17
Wright[g] 3x5 6 6 ol 52| 015
Colvillel[1] 10 x 5 3 4 4l 25| 0.28
Colville2[1] (Feas) |5 x 15 10 18 13 141 | 1.48
Colville2[1] (Infeas) | 5 x 15 7 8 6 9 | 1.18

Table 1: ILP on standard test problems

Table 1 gives computational results when the algorithm was applied to several standard
test problems of the literature. The column labelled ‘basis pivots’ gives the number of
pivots that were required to regenerate the basis given by the previous outer loop iteration.
Obviously, for a more sophisticated implementation of the simplex method, this can be
accomplished more cheaply. All figures reported are totals given by adding the relevant
figures per outer loop. The stopping rule (5) was used, with

mi = 0.2 |min(z, F(2))

The second set of test problems that were attempted can be described as follows. We

look at the approximation of a given set of data {z;,y;} by a function
£(z) = ach®

where « and £ are to be chosen in order to minimize some error in the approximation. We

choose a 1-norm approximation, namely

minimize “yi — aebsi ”
a,8 1
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and reformulate this problem as

minimize Yo %
oz

—z; < y; — aefm < g
subject to ke ‘ =
fore=1,...,n

We were then able to generate many nonlinear test problems of this form. The computational
results of the proposed algorithm are given in Table 2 for a particular set of problems and
are to be compared with those given by MINOSJ8], reported in Table 3. Both methods
were initialized at five different starting points which were generated randomly, under the
condition that they lie in some ball about the (approximately known) solution point. The
reader should compare the number of outer loops in Table 2 to the number of major iterations
taken by MINOS. ILP does perform much better in this respect, although this may be due to
the use of exact second order information. The pivot column of Table 2 should be compared
with the number of minor iterations of Table 3. Again, ILP outperforms MINOS. It is difficult
to compare function and constraint evaluations of the two methods since, on each inner loop,
ILP calculates the function and constraints just once because it has the Hessian available
in closed form. MINOS, however, uses an estimation scheme which, by its very nature, will
be more expensive on the function and constraint calls. The CPU times are comparable,
although ILP does take more time on the larger problems. This is due mainly to the inefficient
scheme which was used to generate the advanced basis, whereby the previous known basic
variables were pivoted into an artificial basis. It is conjectured that a more sbphisticated
implementation of the simplex method will enable these times to be dramatically reduced
by constructing the new basis more efliciently. Furthermore, we hope to implement such a
scheme and incorporate this into a quasi~-Newton method to estimate the Hessian.

It is hoped that further research can be carried out on this class of methods, particularly

with regard to schemes involving approximations of the Hessian of the Lagrangian.
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Problem | Outer | Inner | Pivots | Basis | CPU

size | loops | loops pivots | (secs)
3 7.6 9.6 9.6 63.8 0.37
4 11.2 1 14.0 14.4 | 130.4 0.83
5 84| 11.8 18.2 | 110.6 0.88
6 8.6 | 12.8 22.0 1 1334 1.25
7 8.2 12.2 27.8 | 137.0 1.59
8 6.8 9.8 24.3 | 122.5 1.62
9 76| 114 35.0 | 157.2 2.45

10 9.6 15.0 46.8 | 232.8 | 4.07
11 85| 158.5 46.8 | 223.0 | 5.07
12 9.2 17.6 64.0 [ 266.0 [ 6.37
13 8.6 | 14.2 42.6 | 256.8 | 6.30
14 7.8 14.2 59.8 | 242.2} 7.12
15 94| 164 76.4 | 321.2 | 10.22
16 74| 12.2 57.4 | 254.0 | 8.77
17 76| 13.8 77.0 | 285.4 | 12.13
18 7.0 11.6 80.2 | 205.4 | 15.50
19 9.0 15.6 90.4 | 380.8 | 20.01
20 7.8 11.2 79.0 | 289.8 | 16.81

Table 2: ILP on approximation test problems
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Problem Major Minor Function | Constraint | CPU
size | iterations | iterations | evaluations | evaluations | (secs)
3 14.4 46.6 118.4 1185 | 1.32

4 13.0 41.2 99.0 99.0 [ 1.37

5 11.3 35.3 83.8 83.8 [ 1.27

6 13.6 39.8 89.8 90.2 | 1.61

7 10.6 52.2 103.8 104.0 | 1.80

8 12.6 50.0 103.0 103.5 | 1.98

9 18.2 52.6 120.0 1204 | 2.55
10 16.2 51.8 110.8 110.8 | 2.54
11 23.4 63.4 135.0 137.0 | 3.70
12 13.0 60.6 126.4 128.0 | 3.02
13 18.6 77.8 176.6 176.8 | 4.52
14 11.6 75.8 163.2 164.2 | 4.59
15 32.0 113.6 451.4 453.2 | 10.78
16 10.0 58.8 105.2 106.0 | 3.44
17 15.8 94.8 188.2 189.4 | 5.65
18 37.6 174.6 961.2 964.4 | 26.34
19 17.2 117.0 229.2 229.8 | T7.25
20 13.0 103.0 168.2 170.1 | 6.52

Table 3: MINOS on approximation test problems
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