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Abstract. Convergence is established for the multi-sweep asynchronous parallel
successive overrelaxation (SOR) algorithm for the nonsymmetric linear complemen-
tarity problem. The algorithm was originally introduced in [4] for the symmetric
linear complementarity problem. Computational tests show the superiority of the
multi-sweep asynchronous SOR algorithm over its single-sweep counterpart on both

symmetric and nonsymmetric linear complementarity problems.
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1. Introduction
Our concern here is the asynchronous parallel solution of the linear complemen-

tarity problem [3]
(1.1) Mz4¢>0,2>0, 2(Mz+q)=0

where M is a given real (possibly nonsymmetric) matrix in R"*" and ¢ is a given
vector in R™. The asynchronous parallel algorithm under consideration here was first
proposed in [4] and its convergence was established there for the case when the matrix
M is symmetric and the parallel processors were synchronized after a single sweep
through the variables of the problem. By contrast we shall establish here convergence
of the same algorithm with no assumption of symmetry on M and for the multi-
sweep case where the parallel processors are synchronized only after at most k sweeps
through the variables of the problem. The integer k is finite, but may be arbitrarily
large. Although synchronization is not essential for convergence, it provides a practical
means of enforcing the finite delay condition (2.2b) of Algorithm 2.1. In [4] the multi-
sweep algorithm was tested computationally on symmetric linear complementarity
problems, even though its convergence was not established there, and was found to be
superior to the single-sweep algorithm. Therefore it seems highly desirable to establish
convergence for the multi-sweep algorithm.

We briefly summarize now the results of the paper. In Section 2 we state the
multi-sweep asynchronous parallel algorithm (Algorithm 2.1) in a different format
from [4] and establish its convergence (Theorem 2.5) for a relaxation factor w interval
of (0,1] under the assumption that M has a positive diagonal and the comparison
matrix C(M) has a nonnegative inverse. (The comparison matrix C(M) is obtained
from M by taking absolute values of the diagonal elements and the negative of the
absolute values for the off-diagonal elements.) When M has a positive diagonal and is
strictly diagonally dominant, its comparison matrix C(M) has a nonnegativé inverse
[6, Theorem 6.2.17].

In Section 3 we give numerical test results carried on the Sequent Symmetry S81
multiprocessor [7]. These results indicate that the multi-sweep asynchronous algorithm

is superior to the single-sweep asynchronous algorithm.
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We briefly describe our notation now. For a vector z in the n-dimensional real
space R™, z4 will denote the vector with components (z+)i := max {2;,0},1 =
1,...,n. The scalar product of two vectors ¢ and y in R" will be denoted by zy.
The 2-norm (zz)? of a vector z in R™, will be denoted by ||z||. R} will denote the
nonnegative orthant or the set of points in R™ with nonnegative components, while
R™*" will denote the set of m x n real matrices. For A € R™*™, AT will denote the
transpose, A; will denote the ith row and A;; the element in row ¢ and column j. For
B € R**™, p(B) will denote its spectral radius. For a vector € R", |z| will denote
the vector with components |z;|, 7 = 1,...,n, and similarly for A € R™*", |A| will

denote the matrix with absolute value elements |4;;|,:=1,...,m, 7 =1,...,n.



2. The Multi-Sweep Asynchronous Parallel Successive Overrelaxation Al-
gorithm

In 4] a dynamic asynchronous successive overrelaxation (DASOR) was proposed
where the assignment of tasks to processors was done dynamically by employing the
first available processor for each task that arose. In DASOR the processors were
synchronized after a single sweep through the n components of the vector z, while in
DASORI10 [4] the processors were synchronized after 10 sweeps. We will now present
a model which will handle DASORE for any finite integer k. Unlike [4] where the
convergence proof was based on a forcing-function argument [5], the proof here is
based on the point-of-attraction result for asynchronous iterative methods of Baudet
[1]. Chazan and Miranker [2] first proposed this approach for linear equations. In [4]
the iterate is modeled by {2z}, where each z* denotes the new point after completion of
one (DASOR) or ten (DASOR10) sweeps through the components of z. Here instead
we shall use {z'} to denote all instances of the vector z, even including those in the
middle of a sweep. More specifically let 20 = 2%, and let t; <t3 <--- <t <---, be
the instants of time at which a new value of the component z;, becomes available at
t... Note that we do not exclude the possibility of more than one component becoming
available simultaneously, because t,4, can equal ¢,. Note also that the order in which
the components are computed is determined dynamically by the algorithms, that is
the component to be processed next by a freed processor is typically the component
z¢41 where ¢ is the highest index of a component being currently processed. We are

now ready to state our algorithm.

2.1 k-Sweep Dynamic Asynchronous SOR (DASORF%) Let z° € R} . Then

(2.1) ot =

<a:;'- i) #

(a:; - ij]-(ij" + q]-))+ otherwise

where j, is the index of the component being currently computed, E is a positive
diagonal matrix, y* is the vector of components of previous iterates used for computing

mjﬂ , that is

(220 v 00, 230D, a0, g
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and
(2.2b) min {0, ¢ — k} < s(3,€) <¢ Ve, ¢

Furthermore, each index j € {1,...,n} appears infinitely often in the sequence {j-}.
One way to implement (2.2b) in a parallel environment is to synchronize the
processors after at most k sweeps through the variables.
Note that both DASOR and DASORI10 of [4] are special cases of Algorithm 2.1,
and that z* of [4] is a subsequence of {z'} of the above algorithm. In view of Theorem 1
of Baudet [1], the sequence {z*} of (2.1) converges if the following operator of iteration

(2.1) is a contraction:
(2.3) F(z) = (z —wE(Mz + q))+

For clarity, we state below a weaker version of Baudet’s theorem suitable for our

purposes.

2.2 Theorem (Baudet [1]). Let the sequence {z'} be generated by the asynchronous
iterative method with bounded delay defined by Algorithm 2.1. If F(z), as defined by
(2.3), is a contracting operator, that is there exists a nonnegative matrix A € R"*"

with spectral radius p(A) < 1 such that for all z, y € R"
(2.4) |F(y) = F(z)| < Alz —yl,

then {z;} converges to the unique fixed point Z = F(Z) of F' from any starting point

z0.

We shall derive sufficient conditions for (2.4). We begin with two lemmas.

2.3 Lemma Let M have a positive diagonal D, let E = D~!. Then
|F(z) = F(y)l < (1 ~w)] +wD L+ Ul)|z |

for all z,y, and 0 < w < 1, where L and U are respectively the strictly lower and

upper triangular submatrices of M.

Proof
F(z) - F(y) = (z —wE(Mz + q))+ - (y-wE(My + q))+
< (I -wEM)(z —y)), (Since ay —by < (a—0b)4).
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Taking the plus function of both sides gives

(F(z) - F(y)), < (I -wEM)(z -y)),

Similarly by exchanging z and y, we have

(F(y) - F(.’B))+ < ((I - wEM)(y - $))+
Summing up these two inequalities, we have (since a4 + (—a)+ = |a|)

|F(z) = F(y)| < (I - wEM)(z —y)|
<|(I-wE(D+L+U)l |z -yl
=|I-wl—-wD Y (L+U)||z—y| (Since E= D)
<(Q-w)I+wD ML+ U|)|z—y| 1

2.4 LemmaFor 0<w<1,

(2.5) p(Aw) £ (1 —w) +wp(B)
where
(2.6) A,:=(1-w)+wB, B:=D'|L+U|

Proof By the definition of A, it suffices to show that
(2.7) A< (1= w) +wp(B)
for all eigenvalues A of A, . Let

Ajz =Xz, z#0

Then
(1 -—w)+wB)z =z
and
Bz = .)‘_'_"_(1__—__“1)_ z
w




Hence i\—'-'—(-i:-ﬂ is ‘an eigenvalue of B and therefore |i\—:%-_—‘i)-i < p(B), from which
(2.7) follows. W

Recall that the comparison matrix C(M) of M is defined [6]
|Mii| i i=
(2.8) C(M)ij = e .
—|Mi| i i# g
That is C(M) = |D| — |L + U|. By using results on regular splitting of matrices [6]
and the above lemmas, we obtain our principal convergence theorem.
2.5 DASORk Convergence Theorem Let M have a positive diagonal and let ei-
ther M be strictly diagonally dominant, or let C(M) be an M -matrix (i.e. C(M)™! >
0). Then

(i) p(B) < 1, where B is defined by (2.6).

(i) For 0 < w < 1, p(A,) < 1 and F is a contracting operator, where 4, and F
are defined by (2.6) and (2.3) respectively.

(iii) The sequence {z'} of Algorithm 2.1 converges to the unique solution of the linear
complementarity problem (1.1).
Proof By Theorem 6.2.17 of [6] strict diagonal dominance implies that C(M) is an
M -matrix. Hence we need establish the theorem under this assumption only.
(i) By the Regular Splitting Theorem 7.1.3 of [6], p(B) < 1.
(ii) This follows from (i) and the last two lemmas.

(iii) Tt follows by (ii) and Theorem 2.2 that {z;} converges to the unique fixed point
of F. By Lemma 2.1 of [5] such a fixed point is a solution of the linear comple-

mentarity problem (1.1).

By minor modifications of the above arguments we can show that the Convergence
Theorem 2.5 also holds for 0 < w < -1-;273—), where B is defined by (2.6). Note that

under the assumption of Theorem 2.5, we have that 2 > -1+—§(-73—) > 1.



3. Computational Results

Computational testing of the k-Sweep Asynchronous SOR Algorithm 2.1 was
carried out on the Sequent Symmetry S81 multiprocessor [7] with 14 tightly coupled
32-bit 80386 Intel microprocessors that share a 40-Megabyte physical memory (256-
Megabyte virtual) and a single copy of DYNIX, an enhanced version of the UNIX
operating system. Each 80386 processor is accompanied by an 80387 floating point
unit, 64-Kilobyte cache memory and a Weitek 1167 floating point accelerator chip.

All test problems were randomly generated with either strictly diagonally dom-
inant matrices or not, and with a prescribed density d of nonzero randomly placed
elements in each row except for one fully dense row. The role of the fully dense row was
to simulate imbalance in problem data. All nonzero matrix elements were picked from
a uniform distribution on [-0.1, 0.1]. Four sets of test results are depicted in Figures 1
to 4 for a linear complementarity problem with a nonsymmetric real matrix of order
100,000 x 100,000 and row density of 0.01%, except for one fully dense row. The relax-
ation factor w used in all runs was 0.9. All the conditions of the linear complementarity
problem (1.1) were satisfied to an accuracy of 10™® by all the solutions obtained. Fig-
ures 1 and 2 are for a strictly diagonally matrix with M;; = 1.0012 | M | for all 2.
For test problems of Figure 1, the fully ?=nse row was placed in posig:n n—1, whereas
for problems of Figure 2, the fully dense row was randomly placed. As expected, the
improvement in algorithm performance as a function of number of sweeps before syn-
chronization was more pronounced when the dense row was placed in the next to the
last row in the matrix. The reason for this is that for this case all processors except
the one processing the dense row have to wait (for the processing of the dense row)
more frequently when the number of sweeps is smaller. For the case of the randomly
placed dense row, the wait is not as long, because many sparse rows can be processed
in each sweep while the dense row is being processed. Hence increasing the number of
sweeps before synchronization may not have as pronounced an improvement as in the
case of Figure 1. Nevertheless a downward trend in time versus number of sweeps is

still noticeable in the graph of Figure 2 for the case of randomly placed dense row.

In Figures 3 and 4 we give re:ults for test problems similar to those of Figures

1 and 2 except that the matrix M is not strictly diagonally dominant, thus M;; =
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0.42 |M;;| for all . The results for these problems are similar to those for the
i#j
diagonally dominant test cases of Figures 1 and 2.

We make the following conclusions regarding our computational results:

(a) Improvement of as much as 29% in computation time can be achieved by increasing

the number of sweeps before processors are synchronized.

(b) The Dynamic Asynchronous SOR Algorithm 2.1 is sufficiently robust to converge

even for problems with matrices which are not diagonally dominant.

(¢) Average efficiency of the parallelization on speedup (that is actual speedup divided
by ideal speedup) is in the 68% to 71% range.
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n = 100,000; d = 0.01%; w =

LOZOOMmYy Ze~ mMT e

5 6 7 8 9 10

NUMBER OF SWEEPS

0.9

Average time versus number of sweeps of 5 cases below

Prob. 1 proc 10 processors

# 1 sweep 1 sweep 2 sweeps 3 sweeps 5 sweeps 7 sweeps 10 sweeps
it sec it sec it sec it sec it sec it sec it sec

1 24 328.08 | 24 57.86| 25 55.17| 25 51.37 | 24 48.49 | 24 4772 | 24 4747

2 24 33412 24 6728 25 5981 | 25 54.73| 24 50.57| 24 50.25| 24 49.15

3 23 316.69 | 23 64.15| 23 54.71| 23 50.43 | 23 4843 | 23 48.50 | 23 46.90

4 23 30750 | 23 55.47 | 23 49.70 | 23 46.06 | 23 46.33 | 23 45.84 | 23 45.90

5 21 275.28 | 21 4868 | 21 4461 | 22 4510 21 41.97| 22 4464 | 21 40.94

ave. I 23.0 312.33 l 23.0 58.69 l 23.4 52.80 l 23.6

49.54 | 23.0 47.16 | 23.2 47.39 | 23.0

46.07

Row number of dense row = n-1

M;; =1.001 Z I M;; i

i#]

Figure 1: Test results for the k-Sweep Dynamic Asynchronous Algorithm 2.1: Strictly diagonally
dominant matrix with dense row in position n-1.
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n = 100,000; d = 0.01%; w = 0.9
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1 2 3 4 5 6 7 8 9 10
NUMBER OF SWEEPS

Average time versus number of sweeps of 5 cases below

Prob. 1 proc 10 processors

# 1 sweep 1 sweep 2 sweeps 3 sweeps 5 sweeps 7 sweeps 10 sweeps
it sec it sec it sec it sec it sec it sec it sec

1 98 40049 | 28 60.55| 29 60.47| 25 49.28 | 28 56.13 | 24 47.56 | 28 55.64

2 599 29927 | 22 41.66| 23 43.94| 22 41.63| 22 41951 22 43.13 | 22 41.80

3 24 333.60 | 24 47.75| 25 49.35| 25 47.24 | 24 46.70 | 24 46.52 | 24 46.73

4 04 326.04| 24 54.18| 25 52.44| 25 49.43 24 48.08 | 24 46.91 | 24 47.17

5 23 31050 | 23 43.68 | 23 43.62 33 4263 | 23 43.87| 23 4444 | 23 4331

ave. | 24.2 333.94 | 242 49.56 [ 25.0 49.96 242 46.04 [ 242 47.35[23.4 45.71]242 46.93

Row number of dense row randomly generated
Mj; =1.001 Y | My; |
i#i
Figure 2: Test results for the k-Sweep Dynamic Asynchronous Algorithm 2.1: Strictly diagonally
dominant matrix with dense row randomly placed.
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n = 100,000; d = 0.01%; w = 0.9
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4 5 6 7
NUMBER OF SWEEPS

Average time versus number of sweeps of 5 cases below

Prob. 1 proc 10 processors
# 1 sweep 1 sweep 2 sweeps 3 sweeps 5 sweeps 7 sweeps 10 sweeps
it sec it sec it sec it sec it sec it sec it sec
1 112 1514.89 | 112 307.62 | 113 260.98 | 115 248.26 | 112 229.80 | 113 223.44 | 112 220.23
2 82 1087.55 | 82 225.07] 83 191.05| 8 187.30 ) 82 167.01 | 82 162.38 | 82 160.49
3 80 1002.721 80 179.57 | 81 165.25| 82 166.35] 81 155.52 | 85 160.42 | 81 151.82
4 81 102030 ] 81 183.12} 81 16530 | 76 15239 | 81 155.53 | 76 146.25| 81 152.05
5 75 97519 | 75 172.69 | 75 155.10 | 76 151.70 | 76 147.03 | 71 139.98 | 75 141.79
ave. | 86.0 1120.13 I 86.0 213.61 | 86.6 187.51 ]_87.0 181.20 l 86.4 170.98 | 85.4 166.49 | 86.2 165.28

Row number of dense row = n-1

.Aﬂg==04:§: INﬂjl

#]

Figure 3: Test results for the k-Sweep Dynamic Asynchronous Algorithm 2.1: Matrix not diag-
onally dominant matrix with dense row in position n-1.
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= 100,000; d = 0.01%; w = 0.9
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1 2 3 4 5 6 7 8 9 10
NUMBER OF SWEEPS

Average time versus number of sweeps of 5 cases below

Prob. 1 proc 10 processors
# 1 sweep 1 sweep 2 sweeps 3 sweeps 5 sweeps 7 sweeps 10 sweeps
it sec it sec it sec it sec it sec it sec it sec
1 71 960.88 71 149.73 | 71 14297 | 67 130.11 | 71 137.09 | 68 131.26 | 71 135.76
2 76 997.02 76 140271 77 14168 73 133.69 | 76 140.01 | 80 147.19| 76  140.20
3 84 111430 | 84 161.87| 85 160.27| 79 14899 | 84 157.08 | 80 148.53 | 84 155.78
4 71 935.03 70 151.65| 73 14582 76 14655 | 71 136.69 | 85 15897 | 71 135.14
5 74 __S_)il_.99 74 136.87 | 75 138.27 138.80 | 74 136.18 | 78 143 80| 74 135.93
ave. | 75.2 997.84 | 75.0 148.08 [76.2 145.82 | 742 139.63 | 75.2 141.41 | 782 145.95 [ 752 140.56

Row number of dense row randomly generated

M; =10.4 Z ! M,’j I
1#]

Figure 4: Test results for the k-Sweep Dynamic Asynchronous Algorithm 2.1: Matrix not diag-
onally dominant matrix with dense row randomly placed.
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