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Abstract

Sustained memory bandwidth for a range of access patterns is a key to high-performance vector pro-
cessing. Interleaving is a popular way of constructing a high-bandwidth memory system. Unfor-
tunately, for some access patterns, conflicts reduce the bandwidth of a standard, low-order interleaved
memory. To improve memory bandwidth for a wide range of access patterns, alternate interleaving
schemes must be considered. This paper studies a family of alternate interleaving schemes called
permutation-based interleaving schemes. Permutation-based interleaving schemes can be imple-
mented with a small amount of additional hardware and with a minimal time overhead. A detailed
simulation analysis been carried out in this paper. The simulation analysis suggests that, with adequate
buffering, permutation-based interleaving schemes similar to those studied in this paper can be used to
implement a high-bandwidth memory system for vector processors. The resulting memory system sus-
tains its bandwidth for a wide variety of access patterns and for large bank busy times far better than a

memory system with standard interleaving.

Keywords

Vector Processing, Interleaved Memories, Sustained Throughput, Permutation-Based Interleaving

Schemes, Simulation Analysis.






1. Introduction

It is a well-established fact that the rate at which a CPU can process information is limited by the
rate at which the CPU can access information from the memory. An increase in the CPU speed is cou-
pled with a corresponding increase in the bandwidth requirements of the memory. Fortunately, several

schemes to improve the bandwidth of memory exist.

Cache memories provide an excellent means of improving the latency as well as the bandwidth
of the memory. However, their utility is limited by their size. In high-performance vector processing
machines, cache memories have not been proven to be useful in providing high-bandwidth access to

elements of large data structures.

To provide high-bandwidth access to large data structures, numeric processing machines rou-
tinely use parallel or interleaved memories. A parallel or interleaved memory consist of several
memory modules or banks. Parallel and interleaved memories improve memory bandwidth by allow-
ing elements in distinct banks to be accessed simultaneously. Unfortunately, the actual bandwidth of
the memory system may be less than the peak bandwidth because of collisions or conflicts. A bank

conflict occurs when the request is to a memory bank that is already busy servicing a previous request.

For our discussion in this paper, we distinguish between parallel and interleaved memories. By
parallel memories, we mean the memory modules of a SIMD array processor such as the Burroughs
Scientific Processor [1]. The memory modules of a parallel memory are connected to P processing
elements (PEs) via an interconnection network. In the array processing paradigm, each PE operates on
a different element of the same vector. The parallel memory system must, therefore, be capable of
supplying P elements of the same vector in every cycle. By interleaved memories, we mean the
memory modules of a SIMD vector processor such as the CRAY-1 [2]. In the SIMD vector process-
ing paradigm, a single PE operates on the elements of a single vector. Ideally, an interleaved memory
system for a SIMD vector processor would have a throughput of R elements (possibly from R dif-
ferent vectors) per cycle where R is the number of vector access streams that are active simultane-

ously.



The problem of conflicts in parallel and interleaved memories has been the subject of intensive
study [3-10]. For interleaved memories, most of the previous work has focussed on conflicts in the
memory system for a single vector access stream though recent work has also investigated conflicts in

multi-port memory systems that allow simultaneous, multiple vector access streams [8, 9].

This paper is concerned with high-bandwidth interleaved memories for vector processors. For
reasons of brevity, we restrict our discussion to single port interleaved memory systems with a single
vector access stream. An example of a computer with such a memory system is the CRAY-1. Of
course, the ideas presented in this paper can be extended to the design of a multi-port memory system
that allows multiple streams of access (such as the CRAY X-MP). Our goal is to design a memory

system that can sustain its peak throughput for a wide range of vector access pattems.

The outline of this paper is as follows. Section 2 discusses the basic concepts in the design of
interleaved memory systems for vector processors. Section 3 reviews alternate interleaving schemes
that have been studied by previous researchers both for parallel and interleaved memories. Section 4
discusses permutation-based interleaving schemes that use bit-wise Boolean operations to generate
memory addresses. Section 5 contains a detailed, comparative simulation analyéis of various inter-

leaving schemes. Section 6 contains a discussion and Section 7 presents some concluding remarks.

2. Interleaved Memories For Vector Processors

In the vector processing paradigm, computation is carried out on an entire chunk or a vector of
data. In order to carry out the computation, elements of the vector must be accessed from the memory.
If the vector machine has memory-memory vector instructions (such as the Cyber 205), the vector
computation instruction itself is responsible for fetching the data from the interleaved memory. If the
vector machine has register-register vector instructions (such as the CRAY-1), the vector computation
instruction must be preceded by a vector load instruction. In either case, to sustain peak vector perfor-
mance for a wide range applications, it is crucial that the memory system must have adequate

throughput for the vector accesses. Before proceeding further, some definitions are in order.

Definition 1: the stride of a vector access is the difference in linear memory addresses between




successive elements of the vector.

Definition 2: an interleaved memory system of M banks and M XN words is composed of N linear

subvectors. The M elements (X} of a linear subvector i are (X; | X; =ixN+j; 0sj<M -1}.

Let us suppose that the number of banks in the interleaved memory is M. In most interleaved
memories, M is a power of 2, i.e., M =2" where n is an integer. However, M need not be restricted
to a power of 2. Indeed, memory systems that have a prime number of banks have been studied[6] and
built [1]. However, in a memory system with an arbitrary value of M, the process of determining the
location of a desired data element is quite complicated [6]. By restricting M to be a power of 2, this
process is simplified greatly. We shall, therefore, restrict our discussion to memory systems with a

power-of-two number of banks.

The simplest and most common interleaving scheme, i.e., a low-order or standard interleaving '
scheme, uses the low-order n=log,M bits of an N -bit address to select the bank and the remaining
N-n bits to select the word within the bank. For such an interleaving scheme, the bank number in
which an arbitrary address i is located is specified by i mod M and the word within the bank for the
address i is i div M. Successive elements in the linear memory address space are placed in successive

banks.

Other interleaving schemes that use an arbitrary, but known, n bits of the address to select the
bank and the remaining N—n bits of address to select the word within the bank are also possible. For
example, a high-order interleaving scheme would use the high-order n bits of the address to select the
bank and the low-order N-n bits of the address to select the word with the selected bank. However,
they are not as popular as a standard interleaving scheme for vector processors because they do not

allow for peak-throughput access to a vector of stride 1.

If an interleaving scheme uses the low-order p bits to select the bank, address (2P xl+m) where
I is an integer greater than 0 and 0<m <2 -1 will map on to the same bank as address m and, there-
fore, the distribution pattern of addresses amongst the banks will repeat after 2° elements. In a stan-

dard interleaved memory, successive components of a vector with stride 1 fall in successive banks and,



therefore, can be accessed in a conflict-free fashion. However, successive components of a vector
with stride M lie in the same bank and will result in conflicts. Conflict situations can also arise for

other strides depending upon the bank busy time.

If the access patterns and the size of the data structures are known a priori at compile time,
array reshaping techniques can be used to minimize the possibility of memory bank conflicts. Array
reshaping involves the embedding of an array in a larger array in an attempt to make the "stride" of
access relatively prime to the number of banks. Memory bank conflicts for common reference patterns
are reduced at the expense of wasted memory. However, such techniques are of limited utility if
sufficient compile-time information is not available and we shall not consider them any further in this

paper. The interested reader is referred to[10] for some discussion on such techniques.

3. Data Skewing or Alternate Interleaving Schemes

Researchers have long realized the inadequacy of a standard interleaving scheme for parallel
memory systems. To reduce the probability of conflicts, data skewing schemes were introduced.
Several data skewing schemes have been proposed and analyzed in the literature [3,4,7,11,12]. Ina
memory system with a data skewing scheme, the mapping from the linear address space to the banks
of the memory system is specified by the skewing scheme. In this paper, any interleaving scheme
which uses a mapping function from the linear address space to the memory banks other than the map-

ping function used in standard interleaving shall be called an alternate interleaving scheme.

One of the first alternate interleaving schemes, linear data skewing schemes, were proposed for
parallel memories in[11] and analyzed in [4,7]. In a linear skewing scheme, element a; of a 2-
dimensional array A is stored in memory bank M = j*§, + k* 8, where 8, and 3, are integers. The
scheme generalizes for higher dimension arrays. However, to implement a linear skewing scheme, the
bank selection hardware needs the capability to carry out arithmetic operations. The time taken to

carry out arithmetic operations can easily become an impediment to memory system performance.

To simplify the implementation (eliminate the need for arithmetic operations), Frailong, Jalby

and Lenfant presented a family of interleaving schemes called XOR schemes or Boolean schemes for




parallel memories [12]. Such schemes rely on cheaper, bit-wise Boolean operations to determine the
memory module for an arbitrary address. Melton and Norton have shown how such schemes can be

used to achieve conflict-free access to a power-of-two stride in the IBM RP3 processor [13].

Traditionally, data skewing schemes were studied for parallel memories in SIMD array proces-
sors. Recently, however, Harper and Jump proposed and studied a linear data skewing scheme for an
interleaved memory in a vector processor [10]. In the I-Skew interleaving scheme proposed by Harper

and Jump, the bank number (M;) for an arbitrary address i in the linear memory is calculated as:

If M is a power of two (M=2"), the division and modulo operations are trivial and the bank number

calculation involves a single n -bit addition.

Consider the distribution of 128 elements (16 linear subvectors of 8 elements each) from the
linear address space amongst 8 banks using a 1-Skew storage scheme (see Figure 1). The elements of
a subvector that comprises word k in the memory banks are distributed in a regular fashion, i.e., the
only difference between word 0 and word k is that the first element of word k is placed in bank &
(mod 2™). Furthermore, since only 2n = 6 bits of the address are used to compute the bank, the distri-

bution pattern repeats after 2** = 28 = 64 elements (see Figure 1).

When compared to a standard interleaving scheme, the 1-Skew scheme eliminates conflicts for
strides such as stride 8 but introduces conflicts for some other strides, for example, stride 14. How-
ever, the degradation due to many of the conflicting strides can be reduced or even eliminated if
buffers are provided at the input and the output of each memory module. For example, if 3 buffer ele-
ments are provided at the input and the output of each memory bark, stride 14 accesses can proceed at
the rate of 1 element per cycle (see analysis in Section 6). Likewise, stride 7 accesses can proceed at
the rate of 1 element per cycle if 6 buffer elements were provided at the input and output of each
memory module. Harper and Jump provide a detailed analysis on the number of buffers that is needed

in [10].



Bank
Word

My M,y M, My M, Ms M¢ M,
0 0 1 2 3 4 5 6 7
1 15 8 9 10 11 12 13 14
2 22 23 16 17 18 19 20 21
3 29 30 31 24 25 26 27 28
4 36 37 38 39 32 33 34 35
5 43 44 45 46 47 40 41 42
6 50 51 52 53 54 55 48 49
7 57 58 59 60 61 62 63 56
8 64 65 66 67 68 69 70 71
9 79 72 73 74 75 76 77 78
10 86 87 80 81 82 83 84 85
11 93 94 95 88 89 90 91 92
12 100 101 102 103 96 97 98 99
13 107 108 109 110 111 104 105 106
14 114 115 116 117 118 119 112 113
15 121 122 123 124 125 126 127 120

Figure 1: Distribution of Elements Using 1-Skew Storage

Unfortunately, the 1-Skew interleaving scheme (or any other scheme that uses linear data skew-

ing) has an inherent disadvantage - it involves arithmetic manipulation of the address bits. This arith-

metic manipulation can degrade the memory latency’. However, the throughput achieved by skewing
the data in[10] suggests that an investigation of alternate interleaving schemes for SIMD vector pro-

cessors is worthwhile.

Before proceeding further, let us distinguish between conflict-free and peak-throughput access.
Conflict-free access occurs when references to the same memory bank do not occur within a time win-
dow determined by the busy time of the memory bank. Indeed, most alternate interleaving schemes

presented in the literature are concerned with conflict-free access to a particular set of strides,

Note, however, the use of a recursive expression to reduce this degradation for regular vector accesses in [10].




If no conflicts occur in accessing data, the data accesses can proceed at the maximum rate
allowed by the memory system, i.e., with peak-throughput. However, as observed by Harper and
Jump [10], peak-throughput access is possible even if the accesses are not conflict-free (see analysis
for strides 7 and 14 of Figure 1 in Section 6). If a conflict situation occurs and the conflicting request
can be buffered and succeeding requests might be able to proceed thereby allowing peak-throughput

access.

Since conflict-free access to a wide variety of strides is not possible [3], one can attempt to
improve the throughput for a wide variety of strides by using alternate interleaving schemes. Ideally,
the interleaving scheme would minimize the possibility of a long sequence of accesses to the same
bank. Then, by providing buffers, memory requests can be allowed to proceed even though previous
requests may be waiting (in the buffers) for a memory bank to become free. However, keep in mind
that the interleaving scheme should be simple enough that its implementation does not degrade

memory latency to a noticeable extent.

Fortunately, interleaving schemes that involve bit-wise logical operations on the address bits
seem to fit the above-mentioned requirements and, therefore, we shall investigate their use in a high-
bandwidth interleaved memory system. In this paper, we shall refer to such schemes as Permutation-
Based Interleaving (PBI) schemes and the resulting memory system as a Permutation Interleaved (PI)

memory system.

4. Permutation-Based Interleaving (PBI) Schemes

In order to locate a desired word in an interleaved memory system with M = 2" banks and 2"
words in each bank, we need to specify: (i) an n-bit bank number and (ii) an N~n bit address that indi-
cates the position of the word in the selected bank. In the PBI schemes that we use in this paper, the
position of the word within each bank (linear subvector number) is determined in the same way as itis
determined in a standard low-order interleaved memory, i.e., by using the high-order N—n bits of

address.



The power and the elegance of PBI schemes lies in the calculation of the bank number. Rather
than using only n bits of address to determine the bank number, we can potentially use all N bits of
address to determine the bank number as follows. If X is the N -bit address of the word and Y is the

n-bit vector that represents the bank number, then Y is calculated as:
Y=AX 0h)

where A is an nxN matrix of 0’s and 1’s. The inner product is a logical inner product with the "multi-
plication (*)" being a logical AND operation and the "addition (®)" being a logical EXCLUSIVE-OR
operation. Element Y; of Y is, therefore:

Y: = (A 0*X )@@ 1 *X1)D . ... B(Ai y-1*Xn-1) @
where X;; is the j th bit of the address.

A memory system using the PBI schemes described above can be viewed as a memory system’
consisting of 2¥™" subvectors each of 2" elements. The subvectors are distributed in a regular,
ordered fashion amongst the memory banks with one component of a subvector in each memory bank.
However, the distribution of the elements of a subvector amongst the memory banks can be quite
irregular thereby leading to an overall randomness. The name "PBI schemes” is derived from the fact

that the elements of the subvectors are permuted amongst the banks in different ways.

Notice that by modifying the contents of the A matrix, we can obtain PBI schemes or "hash
functions” that distribute the elements of a subvector across the memory banks in a non-regular
fashion. That is, the distribution of the elements of subvector(word) i have no clear relationship to the

distribution of elements of subvector(word) j.

In order to clarify a PBI scheme, consider the example of distributing the elements of a 64-

element vector in 8 banks. Suppose that the bank number Y,Y,Y, is given by:

]
,1 011010 X,
0 X
Yi[=[100110)|% 3)
Y
A lr1o01 1%

Xo




i.e., Y() = X4@X3@X1, Y1 = X5®X 1®X 1s and Yz = X5@X4@X1@X0, the distribution of 64 elements of
the linear address space amongst 8 banks is given in Figure 2. In this case, the bank selection process

involves 6 bits and, therefore, the distribution pattern repeats after 64 elements.

Before proceeding with an analysis of PBI schemes, let us discuss some issues in the design and
the properties of the A matrix. However, the main thrust of the paper is to present the use of PBI
schemes in a high-bandwidth PI memory and evaluate their effectiveness using a detailed simulation

analysis. Therefore, we shall keep theoretical discussion to a bare minimum,

‘We can rewrite equation (1) as:

Xy
f= |:AH | AL} - =AHX-H +AL)-(-L (4)

X

where }?H is the high-order N-n bits of the address and X-L is the low-order n bits of the address. The
reader should note that the standard low-order interleaving scheme is a special case of our more gen-
eral PBI schemes. For a standard interleaving scheme, A g is the zero matrix and A is the identity

matrix.

Bank
Word

My My M, M; My Ms M¢ M,
0 0 7 4 3 1 6 5 2
1 8 15 12 11 9 14 13 10
2 22 17 18 21 23 16 19 20
3 30 25 26 29 31 24 27 28
4 34 37 38 33 35 36 39 32
5 42 45 46 41 43 44 47 40
6 52 51 48 55 53 50 49 54
7 60 59 56 63 61 58 57 62

Figure 2: Distribution of Elements Using the Permutation Based Interleaving Scheme of Equation (3)
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A general PBI scheme must make sure that each memory address maps on to a distinct location
in the memory system, i.e., is a distinct word within a distinct bank. Since the word selection process
of our PBI schemes does not involve any Boolean operations other than simple bit selection, the word
within the selected memory bank for each memory address is unique and exactly 2" elements (the ele-
ments of a linear subvector) have the same word within the memory banks. The PBI scheme must
make sure that these 2" elements all fall into distinct banks, i.e., no 2 distinct elements from the linear
address space map into the same word within the same bank in the memory system. In order to do so,
the A; matrix must be chosen properly. The following theorem guides the selection of the A

matrix.

Theorem: A PI memory system has a unique location for each addressed element iff the associated

matrix A is of full rank with respect to the Boolean matrix multiplication operation.

Proof: We shall prove the necessary and sufficient conditions separately by making use of well-known

results in linear algebra.

For a given linear subvector i, X, y is constant and fL can take on 2" distinct values. Therefore,
the term A H)'(-H in equation (4) is a constant. Since Y = AH)EH +A Lf(l , the submatrix A is solely
responsible for guaranteeing a one-one mapping between the 2" elements of the linear subvector i and
the 2" memory banks. To do so, A must be of rank n. If the rank of Ay, is m, Osm<n, then the 2"
elements of the subvector would be mapped to a subset of the memory which contains 2™ banks. This

proves the necessary condition.

Now we prove the sufficient condition. Since A is of rank n, the term A L)ZL will generate 2"
distinct bank numbers for the 2" elements of a linear subvector i (word within bank). Since Xy isa
constant for a given linear subvector i, A Xy is a constant and does not alter the one-one mapping.
Therefore, the bank selection process will generate a unique bank number for each element of a linear
subvector and consequently guarantee a unique location in the memory system for each addressed data

element. Q.E.D.
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While designing a PBI scheme, the only consideration is that A should be of full rank with
respect to the Boolean matrix multiplication operation. A y participates in the interleaving scheme by
permuting the elements of different subvectors in different ways (see the distribution of the elements
from different words in Figure 2). Any choice of Ay will result in a valid PBI scheme. Of course,
PBI schemes with different Ay submatrices will have different vector access performance for dif-

ferent strides.

4.1. Bank Number Calculation in a PI Memory

Let us see the hardware needed to calculate the position of an arbitrary word in the PI memory
system. Keep in mind that unless the hardware needed to implement the PI memory is extremely sim-

ple, cheap and fast, its use in a high-performance system is unlikely.

Recall that our PBI schemes use the high-order N—n bits of address to determine the word in
each bank. These bits are passed directly to the decoding logic within each bank and no additional
hardware (as compared to standard interleaving memory) is needed. The additional hardware needed

for a PI memory system is, therefore, the hardware needed to compute the bank number.

From equation (2) we see that each bit of the n-bit vector Y is determined by computing an
appropriate Boolean sum (parity) of the input address bits. The bits that participate in the Boolean sum
for bit Y; are indicated by row i of the A matrix. The n-bit vector Y then needs to be decoded to gen-
erate the appropriate bank select signals. The overall organization of the hardware needed to carry out

this task is shown in Figure 3.

In Figure 3, the N address bits are fed into n parity computation circuits that compute the
appropriate Boolean sum. Each parity circuit calculates the parity of a select number of input bits as
determined by the A matrix. These parity bits represent the n-bit bank number that contains the
addressed word. These parity bits are then input to a decoder which is responsible for generating the

2" bank select signals.

In a standard interleaved memory, n bits of the address are directly fed to the decoder. The

overhead for the PI memory is, therefore, the delay through the parity computation circuits. For a
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N-bit Address

|

I

Parity Circuit Parity Circuit | . . . . . Parity Circuit
Row 0 of A Row 1of A Rown-1of A
n parity bits
l ..... r—_.-
Decoder

2" Bank Select Signals

Figure 3: Hardware Organization for Determining the Bank Number
in a Permutation Interleaved Memory

simple PBI scheme such as the one described by equation (3), this overhead can be as little as the

delay through a single 4-input XOR gate.
For more complicated schemes that make use of an arbitrary number (a maximum of N) bits of

address, the N -bit parity circuit can be implemented with [log,,N“ levels of XOR gates where k is the

fan-in of each XOR gate. For k=4, the parity of up to 64 input bits can be computed with only 3 levels
of XOR logic. Therefore, we do not expect the degradation in memory latency to be a very significant

factor for PBI schemes.

The reader should note that in some cases, it may be possible to merge part or all of the parity
computation logic with the decoding logic. In other cases, it may be possible to incorporate some of
the parity computation logic within the address generation hardware itself (for example in the address

calculation adder) without increasing the length of the critical path. In such cases, the PI memory has
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no additional time overhead over a standard interleaved memory. In any case, the time overhead for
an arbitrary PBI scheme is not more than a few levels of logic and is far less than the overhead for
interleaving schemes that involve arithmetic calculations (a carry ripple) in the calculation of the bank
number. Furthermore, the additional hardware is of the order of a few XOR gates and is less than the

additional hardware needed to implement an interleaving scheme that uses linear data skewing.

5. A Simulation Analysis

To evaluate the relative performance of a PI memory system, we decided to carry out a detailed
simulation analysis. Our model of the memory system is the same as the one proposed by Harper and
Jump(10] and is shown in Figure 4. Before proceeding further with the experiments, let us describe

the memory system in some more detail.

Address
Source
Input Buffers
M 0 M 1 L S S ) M M~1
Qutput Buffers
Data
Sink Data
Sequencer

Figure 4: An Interleaved Memory System With Input and Output Buffers
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5.1. The Memory System

In the memory system, an address is generated by the address source at a maximum rate of one
address per clock cycle. The addresses are transmitted to the input buffer of the selected bank for ser-
vice. All requests pass through the input buffer; no request is forwarded to the bank directly even if
the bank is free. The address source also provides a sequence number for each memory request. The
sequence number is used by the data sequencer to return the data back to the data sink in the same
order as the addresses generated by the address source. The input buffers can be implemented using a

bank of tri-state latches or by a set of latches and a multiplexor.

Each memory bank services requests from its input buffer in the order that they were submitted
to the buffer. A serviced request, along with its sequence number, is placed in the output buffer of the

bank. The output buffers can be constructed in a manner similar to the input buffers.

The data sequencer keeps track of the sequence number of the next element to be returned to the
data sink. It monitors the sequence numbers in the output buffers of the banks. When match results,
the corresponding data item is sent to the data sink, the relevant output buffer is updated and the
sequence number in the data sequencer is also updated. Both the address source and the data sink
maintain their sequence numbers by starting out with a zero valuex and incrementing their current
sequence number modulo a given number. To ensure correct operation, the number should be larger

than the maximum number of data requests that can be outstanding at any given instant.

Note that the input and output address latches of a standard interleaved memory can be regarded
as buffers of size one. Indeed, in our simulations, we treat the input address latch of each memory
bank as an input buffer of size 1. Likewise, a latch at the output of each bank is treated as an output

buffer of size 1.

The throughput of the memory system can be calculated in two ways. The first method of calcu-
lating throughput is to divide the number of data elements accessed by the number of cycles taken by
the address source to generate all the addresses and submit them to the banks for service. Thus, if the
address source took 1024 cycles to supply the addresses of 1024 elements, the throughput would be 1

element per cycle even though the access operation takes more than 1024 cycles to complete. In this
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method, the time taken to flush the memory banks and buffers and return the last data item to the data
sink is ignored.

If no buffers are present in the memory system, the time taken to flush the memory system is
constant; the address source blocks when a bank is busy and the access operation is complete B cycles
after the last request is issued where B is the bank busy time. However, if buffers are present and the
access pattern is not highly deterministic (as is the case in the 1-Skew and PBI schemes), requests can
queue up at the input of a single bank (consider, for example, stride 14 access in Figure 1) and the time
taken to flush a sequence of requests may be quite significant. A more realistic measure of the

throughput would, therefore, make use the total time taken to access the data elements.

The second method for calculating throughput is to divide the number of cycles that would
ideally be taken to access the vector in a conflict-free fashion (vector length + bank busy time + time
through buffers) by the total number of .cycles that are actually taken to access the vector. This
method provides a more realistic measure of the throughput and, therefore, we shall use it to calculate

the throughput for all our experiments.

5.2. Simple Interleaving Schemes

Our first set of experiments compares standard interleaving with 1-Skew interleaving and a sim-
ple PBI scheme. We do not attempt to analyze various PBI schemes in this paper. For the experi-
ments of this section, we use the 6-bit PBI scheme described by equation (3), i.e., the bits (Y5, Y1, ¥¢)
of the bank number Y are determined as: Yy=X0X®X;, Y,=XPX,®X,, and
Y, =X s®X X ®X, Our choice of the PBI scheme for this experiment was quite arbitrary; the main
criterion was to involve 6 bits of address in the computation of the bank number - the same as in a 1-
Skew scheme (indeed, other 6-bit logical skewing schemes that we considered had very similar perfor-
mance). In section 5.3, we investigate PBI schemes that use more address bits to compute the bank

number.

To prevent an explosion in the number of experiments, we do not attempt to evaluate the orthog-

onal effect of the number of memory banks on the throughput. Clearly, if more banks are available
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with the same bank busy time, the probability of bank conflicts is reduced and the average throughput
is increased. All the experiments in this paper are carried out on a memory system with 8 banks. We
chose a base memory system of 8 banks and 4 clock cycle bank busy time because these parameters

correspond to the memory system parameters of the original CRAY-1 machine.

For the memory system parameters described above, we evaluated the throughput for the three
interleaving schemes. The stride of the input vectors was varied from 1 to 64 and the length of each
vector was 1024 elements (in Section 5.2.2 we consider the effect of different vector lengths). The
busy time of each memory bank was 4 clock cycles (in Section 5.2.1 we consider different bank busy
times) and the number of input and output buffers with each bank was varied form 1 to 3 (the number
of input buffers is equal to the number of output buffers). The results for this set of experiments are
presented in Table 1. The cases for which a throughput of 1 cannot be achieved have been shown (the

entries with a * have a throughput of 1). Let us discuss the results of Table 1 in some detail.

With 8 memory banks, a standard interleaving scheme uses only the low-order 3 bits of address
1o select the bank and, therefore, the pattern of throughput repeats after a stride of 8. Any stride that is
a multiple of 8 has a throughput of 0.25 elements per cycle and any stride that is a multiple of 4 (but
not of 8) has a throughput of 0.5. Since the pattern of bank conflicts is regular, there are no transients

and buffers are of no use.

Both the 1-Skew and PBI schemes use 6 address bits to compute the bank number and, there-
fore, the throughput pattern repeats after a stride of 64. In the 1-Skew scheme, many of the conflicts
that arise are transient in nature and the degradation due to such transients can be reduced by the use of
buffers. Consider, for example, stride 5 accesses (refer Figure 1). Addresses 40 and 55 both lie in
bank 5 and, therefore, will result in a conflict if the bank busy time is more than 4 clock cycles. How-
ever, other stride 5 accesses, i.e., 5, 10, 15, 20, 25, 30 and 35 are to distinct banks and do not cause a
conflict. If a buffer is provided, the request to address 55 can be buffered till bank 5 is available. The
address source can proceed with generating addresses 60, 65, 70, etc., without waiting for bank 5 to

become free, thereby allowing the memory system to have a throughput of 1 element per cycle. Like-




Table 1: Throughput vs. Stride For Various Interleaving Schemes

Interleaving Scheme Used
Standard 1-Skew PBI
Stride
Input/Output Buffer Size || Input/Output Buffer Size || Input/Output Buffer Size
1 2 3 1 2 3 1 2 3
1 * *® * * * * * * *
2 % * %* * * * * L] *
3 * * * 5 * * % * *
4 0.50 0.50 0.50 * * * * * *
5 * * * * * * 0.94 * *
6 * * * % * * * * *
7 * * * 0.31 0.36 0.44 0.80 0.99 0.99
8 0.25 0.25 0.25 * * * * * *
9 * * * * * * 0.76 0.99 0.99
10 * * * * * * % % *
1 1 % * * * * * 0.89 * *
12 0.50 0.50 0.50 * * * * * *
13 * * * * * * 0.76 0.99 0.99
14 * * * 0.40 0.67 0.99 0.80 * *
1 S * * * % * * 0.91 * %
16 0.25 0.25 0.25 * * * * * *
17 * E * * * * 0.94 & *
1 8 * % * £ * * % * %
19 * * * 0.86 0.99 0.99 0.80 0.99 0.99
20 0.50 0.50 0.50 * * * * * *
21 * * * 0.57 0.99 0.99 0.89 * *
22 * * * * * * 0.73 0.99 0.99
23 * e * * * * 0.89 *
24 0.25 0.25 0.25 * * * * * *
25 * * * 0.73 0.99 0.99 0.89 * *
26 % * * * * * 0.80 & *
27 * E ] * * * * 0.80 * *
28 0.50 0.50 0.50 * * * * * *
30 * * A4 * * E * * *
3 1 #* * * * * * * * *
32 0.25 0.25 0.25 0.50 0.50 0.50 0.50 0.50 0.50




Table 1(continued)

Interleaving Scheme Used

Standard 1-Skew PBI
Input/Output Buffer Size || Input/Output Buffer Size | Input/Output Buffer Size
1 2 3 1 2 3 1 2 3
* * * * % * * % *
* * % % 3 * % * %*
* & * * £ % 0'91 * *
0.50 0.50 0.50 * * * * * *
* * * % % L 0.80 L *
* * % % % * 0.80 * *
* * * 0.73 0.99 0.99 0.89 * *
0.25 0.25 0.25 * * * * * *
L * * * * * 0.89 E g %
* * * * * * 0.73 0.99 0.99
* * * 0.57 0.99 0.99 0.89 * *
0.50 0.50 0.50 * * * * * *
* * * 0.86 0.99 0.99 0.80 0.99 0.99
sk #* L3 #* % % % % *
* * * * * * 0.94 * *
0.25 0.25 0.25 * * * * * *
* % % % * % 0.91 % L3
* * * 0.40 0.66 0.99 0.80 * *
* * * * * * 0.76 0.99 0.99
0.50 0.50 0.50 * * * * * *
* L 3 s * # * 0.89 % %
%* E £ * * * % & *
* * * * * * 0.76 0.99 0.99
0.25 0.25 0.25 * * * * * *
* * * 0.31 0.36 0.44 0.80 0.99 0.99
* * L 3 * * * * % £ 3
* * % * * * 0'94 & *
0.50 0.50 0.50 * * * * * *
* * % % He 3 % * *
% * * * * % £ 3 * *
£ * * * E 3 * * * *
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25




19

wise, the throughput for other strides can be increased. For example, the throughput for strides 7 and
57 peaks out at 0.98 if the number of buffers is equal to 6. Therefore, if 1-Skew interleaving is used
and adequate buffering is provided, strides that are multiples of 64 have a throughput of 0.25 elements
per cycle, strides that are multiples of 32 (but not 64) have a throughput of 0.5 elements per cycle, all

other strides have a peak or near-peak throughput.

The simple PBI scheme used in our experiments does not perform very well without buffers in
addition to the address and data latches. However, this is not in conflict with our goals. As with the
1-Skew scheme, the conflicts that occur are of a transient nature and the degradation due to such
conflicts can be alleviated by the use of additional buffers. As we can see from Table 1, with only 2
buffers at the input and output of each bank, the overall throughput is superior to the throughput of
both the standard and the 1-Skew interleaving schemes. For the simple 6-bit PBI scheme, with ade-
quate buffering, strides that are 32 modulo 64 have a throughput of 0.5, strides that are a multiple of 64

have a throughput of 0.25 and all other strides have peak or near-peak throughput.

5.2.1. Effect of Bank Busy Time

It is quite obvious that in an interleaved memory system, as the busy time of each memory bank
is increased, the throughput of the memory system degrades. However, because of the non-regular
access pattern and the presence of buffers, we hope that the degradation will not be very significant in

the 1-Skew and PI memories.

In order to evaluate the effect of bank busy time on throughput, we carried out another set of
experiments. For this set of experiments, we considered a memory with 8 banks and evaluated the
average throughput achieved in accessing 1024 element vectors for the different interleaving schemes.
The average throughput is the average of the throughputs for each stride (note that since the number of
elements accessed is constant, the arithmetic and harmonic means are the same). We realize that stride
1 accesses are most important. However, all the interleaving schemes achieve peak-throughput access
for stride 1 and, therefore, the average throughput provides a good metric for measuring the perfor-

mance of the memory system for the remaining strides. We should point out that the "average”
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throughput would increase if more weight is given to stride one access as in [10].

Figure 5 presents the results of our experiments for bank busy times varying from 1 to 8 clock
cycles. A bank busy time of 1 clock cycle is the trivial case since all memory requests can proceed
with peak throughput. Bank busy times of greater than 8 clock cycles were not considered because
there is no hope of achieving a throughput of 1 element per clock cycle if the bank busy time is greater

than the number of memory banks, regardless of the interleaving scheme used.

From Figure 5 one can see that, while the performance of a standard interleaved memory
degrades considerably as the bank busy time is increased, both the 1-Skew and PI memories retain
their performance for large bank busy times. The result is not counter-intuitive. If the access pattern
is not regular, one can tolerate larger bank busy times by increasing the amount of buffering available.
We consider this aspect of alternate interleaving schemes to be very important for memory system
design in current vector processing supercomputers. With clock speeds shrinking more rapidly than
memory speeds, the relative bank busy times are increasing?. To allow for adequate vector access
throughput using standard interleaving, the number of memory banks would have to be increased con-
siderably [14]. Increasing the number of banks arbitrarily is not an attractive option. Alternate inter-
leaving schemes that can achieve peak throughput with a relatively large bank busy time are, therefore,
quite attractive. This trend has been verified for a memory system with 64 banks and with bank busy

times ranging from 16 to 64 clock cycles. We do not present the results here for reasons of brevity.

5.2.2. Effect of Vector Length

In the 1-Skew and PBI schemes, several elements may be queued at the input of a memory bank
when the address source finishes generating requests. Depending upon the number of queued requests
and the relative vector length, the time taken to flush the memory system can be of significance. In the
experiments so far, we have used a vector length of 1024 elements and because of the relatively long
vector length, the flush time penalty is minimal. However, the flush time overhead can be significant if

the vectors are short. To evaluate the flush time overhead, we carried out another set of experiments.

2 For example, the bank busy times for the CRAY-2 and the NEC SX-2 are of the order of 50 clock cycles.
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For this set of experiments, we consider a memory system with 8 banks and 4 clock cycle bank busy
time. Table 2 presents the average throughput of the memory system using different interleaving

schemes as the vector length is varied from 64 to 1024 elements.

From Table 2 we observe that the standard interleaving scheme has a near-uniform throughput
for varying vector lengths. The minor difference arises because of the flush penalty for conflicting
strides. For example, a stride 8 access of a 64-element vector will have a throughput of

[ 64+4+2

TSIV =O.27} (64 elements plhus 4 cycles through bank plus 2 cycles through the buffers) while

a stride 8 access of a 1024-element vector will have a throughput of [ 1024+4+2 0.25] .

1024x4+4+2

Both the 1-Skew and PBI schemes suffer a slight penalty if the vector length is small. In partic-
ular situations, if the vector length of the machine is not adequate, the flush penalty might be of con-
cern. However, for large vector lengths, the flush penalty is minimal. Also note that the flush penalty
is important because we calculate the throughput in completing the operation. Of course, the effects of

Table 2: Average Throughput For Different Vector Lengths;
Bank Busy Time = 4 Clock Cycles.

Interleaving | Vector Number of Buffers
Scheme Length

1 2 3 4 S5 6 7
64 || 084 1084 ] 084 | 084 | 0.84 | 0.84 | 0.34
128 |/ 0.84 | 084 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84
Standard 256 || 0.85 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84
512 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85
1024 ] 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85
64 11091 [ 093 1094 [ 095 | 095 | 095 | 0.95
128 |{ 091 | 094 | 095 | 096 | 0.96 | 097 | 0.97
1-Skew 256 || 091 | 095 | 096 | 096 | 0.97 | 097 | 0.97
512 || 091 | 095 | 0.96 | 096 | 0.97 | 098 | 0.98
1024 {1091 | 095 | 096 | 097 | 0.97 | 098 | 0.98
64 [[0.83 10931093 093 ]093 093|093
128 {{ 089 [ 095 | 095 | 095 | 095 | 095 | 0.95
PBI 256 || 090 | 097 | 097 | 097 | 097 | 097 | 0.97
512 || 0.90 | 097 | 097 | 097 | 0.97 | 097 | 0.97
1024 | 090 | 098 | 098 | 098 | 0.98 | 098 | 0.98
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this penalty can be minimized even for small vector lengths by overlapping consecutive vector
accesses since the address source can proceed with requests from another vector access while requests

from a previous access are still queued in the buffers of the memory system.

5.3. Higher Order Interleaving Schemes

The 1-Skew scheme and the 6-bit PBI scheme discussed above make use of only 2n = 6 address
bits to determine the bank number. Since the distribution pattern repeats after 2P elements, where P is
the number of low-order address bits used in the bank selection process, by involving more address
bits in the bank selection process, i.e., by increasing P, we can reduce the number of strides for which

peak throughput access cannot be achieved.

It is possible to extend the 1-Skew scheme to a linear skewing scheme that uses more than 2n
bits to select the bank. For example, a linear skewing scheme in which the bank number (M;) for an

arbitrary address i is calculated as:

uses 4n address bits to compute the n-bit bank number. Unfortunately, both the hardware and the
time overheads increase for linear skewing schemes as more and more bits are involved in the bank
selection process. This is because several n bit arithmetic operations must be carried out (3 serial n-
bit additions with a single n-bit adder or 2 serial n-bit additions with 2 n-bit adders in the above
example). Therefore, higher-order linear skewing schemes are of limited utility in a high-performance

memory system.

In a PI memory, involving more bits in the bank selection process is quite easy. As pointed out
in Section 4.1, a PBI scheme that uses N bits of address can be implemented in log, N levels of XOR
logic where k is the fan-in of each XOR gate. Therefore, we investigated a PBI scheme that uses 12
address bits (4 sets of 3 bits) to compute the bank number. The 3x12 A matrix for the interleaving

scheme was:
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111110100100
A=(100111110010
110100111001

ie., Yo=X 110X 0DX sPX sDX 10X DX, Y =X DX DX ,0X DX sBX 48X and
Y, =X 110X (®X 4@X ;X ,0X 50X ,. Many 3x12 A matrices are possible, each affecting the overall
stride access pattern in a different way. We are mainly concerned with a scheme that allows peak-

throughput access in the presence of buffers and, as we shall see, the above matrix fulfills the criterion.

We used the following reasoning in its construction. Starting from a standard interleaved
memory with 8 banks, involving X5 in the calculation of Y, eliminates stride 2 conflicts. Likewise,
involving X 4 in the calculation of Y and Y eliminates stride 4 conflicts and involving X5 in the calcu-
lation of Yy, ¥, and Y, eliminates stride 8 conflicts. This process can continue in several ways. The
path we chose is to involve address bits in such a manner that each bit ¥; of the bank number computes
parities of approximately the same number of address bits. This is done to make sure that the bank
calculation circuit is not lop-sided. The resulting matrix eliminates conflicts for strides that are powers
of two (up to ?.“). While conflict situations do occur for other strides, the conflict pattern is of a tran-
sient nature and, by using buffers to smooth out the transients, near-peak throughput access can still be

obtained.

Using the above matrix, we calculated the performance of a PBI memory with 8 banks and a
bank busy time of 4 cycles. Since 12 bits of address are used, the throughput pattemn repeats after a
stride of 212=4096; strides that are multiples of 2'? = 4096 have a throughput of 0.25 elements per
cycle and strides that are a multiple of 2! = 2048 but not of 4096 have a throughput of 0.5 elements
per cycle. With adequate buffering, the remaining 4094 strides (and their multiples) have peak or
near-peak throughput. Rather than present the throughput pattern for 4096 strides, we present the
results in a slightly different fashion in Table 3. The table presents the number of strides that have a
throughput of less than 0.95 elements per cycle (number of strides row) and also the average
throughput of the memory system as the buffer size is varied from 1 to 7 elements. The average is cal-

culated assuming that each stride has an equal weight and the vector length is 1024 elements.




Table 3: Comparative Performance of a 12-bit PBI Scheme
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Interleaving Number of Buffers
Scheme Metric
1 2 3 4 5 6 7
#of Strides || 1024 | 1024 | 1024 | 1024 | 1024 | 1024 | 1024
Standard
Throughput || 0.85 | 085 | 085 | 085 | 0.85 | 085 | 0.85
# of Strides || 768 384 256 256 256 128 128
1-Skew
Throughput || 091 | 095 | 096 | 097 | 0.97 | 098 | 098
# of Strides || 3901 | 1050 | 168 21 6 2 2
PBI
Throughput || 0.85 | 096 | 098 | 099 | 0.99 | 099 | 099

Consider the results for the three interleaving schemes for a buffer size of 6 elements. In a stan-

dard interleaving scheme, all strides that are a multiple of 4 have a throughput of less than 0.95 ele-

ments per cycle. There are 1024 such strides in the range 1-4096 (4,8,12,16.,....,4096). For 1-Skew

interleaving, strides that are multiples of 32 have a throughput of less than 0.95. There are 128 such

strides in the range 1-4096(32,64,96....,4096).

For the 12-bit PBI scheme, only 2 strides (2048 and 4096) have a throughput of less than 0.95.

All other strides have a throughput of greater than 0.95. A throughput value of 0.95 was chosen as a

cut off. Indeed, of the 4094 strides with a throughput greater than 0.95, 4091 had a throughput of 0.97

or greater and 4049 had a throughput of 0.98 or greater with a buffer size of 6 elements. These results

indicate that, with adequate buffering, higher-order PBI schemes can be used to construct a memory

system that achieves peak or near-peak throughput vector accesses for a wide variety of strides. More

address bits can easily be incorporated into the PBI scheme. We do not do so for reasons of brevity.
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6. Discussion

The memory system that we have used throughout this paper (Figure 4) has 3 places which have
additional hardware as compared to a standard interleaved memory: (i) the address source, (ii) the
input/output buffers and (iii) the data sequencer. As we have emphasized throughout this paper, the
cost of each of these components is not very high and the time penalty introduced by them is minimal.
However, let us discuss in more detail some of the issues involved in the design of each one of these

components.

The address source has an address generation mechanism and a control mechanism that monitors
the input buffers of the banks. Address generation (bank number calculation) is carried out using a set
of parity computation circuits (see Figure 3). The parity computation circuits that we have discussed
so far implement a particular PBI scheme, i.e., compute parities based using a given A matrix. The
address generation can be made more flexible by having a programmable PBI scheme, i.e., by allow-
ing the A matrix to be altered under program control. This feature can be useful if some a priori
knowledge about the access patterns is available (for example, we would like to alter the interleaving

to standard interleaving if we know that all the strides of access are odd).

Fortunately, extending the bank-selection hardware of Figure 3 to allow for arbitrarily pro-
grammable schemes is quite straight forward and does not have much additional hardware overhead.
All that we have to do is to design each parity computation circuit to compute the parity of all N input
bits but modify the input bits to the parity circuit by ANDing the address bits with a mask as shown in
Figure 6. The mask is simply a row of the A matrix and can be altered under program control. We
should point out that the memory must start out in a "clean state" before the A matrix can be altered,

i.e., the memory must be flushed and reloaded with the data if the A matrix is altered.

The control mechanism for the address source needs to determine the status of the input buffer
associated with the selected bank before it can submit the request to the banks for service. It does so
by monitoring a busy bit associated with each input buffer. The busy bit is set if all the elements in the
buffer are full. In a standard interleaved memory, the busy bit is associated with the memory bank.

Because of the precise, pre-determined timing of a standard interleaved memory, it is possible to
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Mask i
Rowi of A

N -bit Address

Ll

AND circuit

U

N -bit Parity

Bit { of Bank Number

Figure 6: Bank Selection in a Programmable Interleaved Memory

incorporate the busy bits associated with the banks in the address source control logic itself. For
example, in the CRAY-1, the address generation logic determines whether it should generate full-,
half- or quarter-speed accesses simply by looking at the stride of the vector access. This is not possi-
ble in a PI memory (it is also not possible in a more sophisticated memory system such as the memory

system of the CRAY X-MP).

The additional overhead for the buffers includes the latches for the buffer elements, multiplexors
and the control logic needed to enforce a queue mechanism. Of course, the width of each buffer ele-
ment would be increased by the size of the tag needed to hold the sequence number for the data refer-

ence.

The data sequencer by far requires the most amount of additional hardware. However, the addi-
tional hardware is quite simple. The data sequencer needs to compare its current sequence number
with the sequence numbers of the data elements at the head of each output buffer. To do so, it requires

M comparators. The data sequencer also needs an incrementer. Other control logic associated with
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the data sequencer is trivial.

7. Summary and Conclusions

In this paper, we discussed the design of high-bandwidth interleaved memory systems for vector
processors. The goal of such a design is to achieve a throughput of 1 element per clock cycle for a
wide variety of strides and for a relatively large bank busy time for a single vector access stream. In
order to do so, aliernate interleaving schemes that use several address bits to determine the bank

number must be used.

This paper discussed permutation-based interleaving schemes and their application to the design
of a permutation interleaved memory. Permutation-based interleaving schemes allow the distribution
of data in the memory banks in a non-regular fashion so that the probability of a regular pattern of
conflicting requests is reduced. By buffering conflicting requests, the throughput of the memory sys-
tem can be enhanced considerably. The elegance of permutation-based interleaving schemes lies in
the fact that the process of locating an addressed data element in the memory system relies solely on
the logical manipulation of the address bits and does not involve any arithmetic calculations. Such

schemes can, therefore, be implemented without a noticeable increase in the memory latency.

We carried out a detailed simulation analysis of an example permutation interleaved memory
system and compared it to an equivalent memory system with standard interleaving and a memory sys-
tem with 1-Skew interleaving. The simulation results indicate that the performance of a permutation
interleaved memory system is superior to other memory systems that have been proposed for vector
processors. Moreover, permutation interleaved memories can maintain near-peak throughput access as
the relative bank busy time is increased. Based upon the results presented in this paper, we believe
that permutation interleaved memories can be designed to provide a sustained peak throughput for a

wide variety of strides and their use should be considered for high-performance vector processors.
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