IPS-2: THE SECOND GENERATION OF A
PARALLEL PROGRAM MEASUREMENT SYSTEM

by
Barton P. Miller
Morgan Clark
Steven Kierstead
Sek-See Lim
Timothy Torzewski
Computer Sciences Technical Report #783

August 1988

IPS-2: The Second Generation of a
Parallel Program Measurement System

Barton P. Miller
Morgan Clark
Steven Kierstead
Sek-See Lim

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

f

Timothy Torzewski

Digital Equipment Corporation
310 Rockrimmon Blvd. South
Colorado Springs, CO 80919

Abstract

IPS is a performance measurement system for parallel and distributed programs. IPS’s model of
parallel programs uses knowledge about the semantics of a program’s structure to provide two important
features. First, IPS provides a large amount of performance data about the execution of a parallel program,
and this information is organized so that access to it is easy and intuitive. Second, IPS provides perfor-
mance analysis techniques that help to automatically guide the programmer to the location of program
bottlenecks.

IPS is currently running on its second implementation. The first implementation was a testbed for
the basic design concepts, providing experience with a hierarchical program and measurement model,
interactive program analysis, and automatic guidance techniques. This implementation was built on the
Charlotte Distributed Operating System. The second implementation, IPS-2, extends the basic system with
new instrumentation techniques, an interactive and graphical user interface, and new automatic guidance
analysis techniques. This implementation runs on 4.3BSD UNIX systems, on the VAX, Sun 4, and
Sequent Symmetry multiprocessor.

+ Kierstead's current address: AT&T Bell Laboratories, 5555 Touhy Avenue, Rm 178-6, Skokie, Illinois 600717.

Research supported in part by the National Science Foundation grant CCR-8703373, Office of Naval Research Contract N00O14-88-
K-0216, and Digital Equipment Corporation External Research Grant.

1. INTRODUCTION

IPS is a performance measurement system for parallel and distributed programs. IPS’s model of
parallel programs uses knowledge about the semantics of a program’s structure to provide two important
features. First, IPS provides a large amount of performance data about the execution of a parallel program,
and this information is organized so that access to it is easy and intuitive. Second, IPS provides perfor-
mance analysis techniques that help to automatically guide the programmer to the location of program

bottlenecks.

IPS is currently running on its second implementation. The first implementation [1,2,3], was a
testbed for the basic design concepts, providing experience with a hierarchical program and measurement
model, interactive program analysis, and automatic guidance techniques. This implementation was built on
the Charlotte Distributed Operating System [4]. The second implementation, IPS-2, extends the basic sys-
tem with new instrumentation techniques, an interactive and graphical user interface, and new automatic

guidance analysis techniques. This implementation runs on 4.3BSD UNIX systems.

The next section presents an overview of the IPS concepts and model. In this section we describe the
hierarchical program and measurement model of the IPS system. New techniques for instrumenting paral-
lel programs are described in Section 3, including of the overhead caused by using IPS-2. Section 4
describes the graphical user interface. This interface is used to specify the program to be measured and to
interactively inspect the performance results from the execution of the program. Section 5 discusses two
automatic guidance techniques. Critical Path Analysis [3] is reviewed and a new guidance technique,
called Phase Behavior Analysis, in presented. Section 6 presents our conclusions and mentions ongoing

research to develop new analysis techniques.

2. IPS OVERVIEW

IPS is based on a hierarchical model of parallel and distributed programs. A hierarchical model
presents multiple levels of abstraction, provides multiple views of performance data, and has a regular
structure. The objects in a hierarchical model are organized in well-defined layers separated by interfaces
that insulate them from the internal details of other layers. Therefore, we can view a complex problem at

various levels of abstraction. We can move vertically in the hierarchy, increasing or decreasing the amount

of detail that we see. We can also move horizontally, viewing different components at the same level of

abstraction.

In this section we review the sample hierarchy of IPS that is based on our initial target systems — the
Charlotte Distributed Operating System and 4.3BSD UNIX. Both systems consist of processes communi-
cating via messages. These processes execute on machines connected via high-speed local networks. The
hierarchy presented here served as a test example of our hierarchy model and reflects our current imple-
mentation. It is easy to extend these ideas to incorporate new features and other programming abstractions.
For example, in our Sequent multiprocessor implementation, we include light-weight processes (processes
in the same address space) to our hierarchy with little effort. Our hierarchical structure can be also applied
to systems such as HPC[5], which has a different notion of program structuring, or MIDAS(6], which has a

3-level programming hierarchy.

2.1. The Program Hierarchy
An overview of our computation hierarchy is illustrated in Figure 2.1.
(A) Program Level

This level is the top level of the hierarchy, and is the level in which the distributed system accounts
for all the activities of the program on behalf of the user. At this level, we can view a distributed program
as a black box running on a certain system to which a user feeds inputs and gets back outputs. The general
behavior of the whole program, such as the total execution time, is visible at this level; the underlying

details of the program are hidden.
(B) Machine Level

At the machine level, the program consists of multiple threads that run simultaneously on the indivi-
dual machines of the system. We can record summary information for each machine, and the interactions
(communications) between the different machines. The machine level provides no details about the struc-

ture of activities within each machine.
(C) Process Level

The process level represents a distributed program as a collection of communicating processes. At

this level, we can view groups of processes that reside on the same machine, or we can ignore machine

Whole program level

Machine level

Process level

=L

R S OUpPHPI RO

~

Procedure level

level

Figure 2.1: IPS Program Hierarchy

boundaries and view the computation as a single group of communicating processes.

If we view a group of processes that reside on the same machine, we can study the effects of the
processes competing for shared local resources (such as CPUs and communication channels). We can
compare intra- and intermachine communication levels. We can also view the entire process population

and abstract the process’s behavior away from a particular machine assignment.
(D) Procedure Level

At the procedure level, a distributed program is represented as a sequentially executed procedure-call
chain for each process. Since the procedure is the basic unit supported by most high-level programming

languages, this level can give us detailed information about the execution of the program. The step from

the process to the procedure level represents a large increase in the rate of component interactions, and a
corresponding increase in the amount of information needed to record these interactions. Procedure calls

typically occur at a higher frequency than message transmissions.
(E) Primitive Activity Level

The lowest level of the hierarchy is the collection of primitive activities that are detected to support
our measurements. Our primitive activities include process blocking and unblocking by the scheduler,
message send and receive, process creation and destruction, procedure entry and exit. Each event is associ-
ated with a probe in the operating system or programming language runtime that records the type of the
event, machine, process, and procedure in which it occurred, a local time stamp, and event type dependent

parameters.

2.2. The Measurement Hierarchy

The program hierarchy provides a uniform framework for viewing the various levels of abstraction
in a distributed program. If we wish to understand the performance of a distributed computation, we can
observe its behavior at different levels of detail. We chose a measurement hierarchy whose levels
correspond to the levels in our hierarchy of distributed programs. At each level of the hierarchy, we define
performance metrics to describe the program’s execution. For example, we may be interested in parallel-
ism at the program level, or in message frequencies at the process level. We can look at message frequen-
cies between processes or between groups of processes on the same machine. This selective observation
permits a user to focus on areas of interest without being overwhelmed by all the details of other unrelated
activities. The hierarchical structure matches the organization of a distributed computation and its associ-

ated performance data.

2.3. The Structure of IPS

There are four basic components of IPS: instrumentation probes, data pool, analyst, and user inter-
face. The instrumentation probes generate trace data when interesting events happen during the program
execution. These probes are contained in the language runtime library and the operating system kernel.
The data pool stores the trace data and caches intermediate results from the analysts. The data pool is

resident in the memory of each machine. The analyst is a set of processes that summarizes and evaluates

the measurement data. The user interface interacts with the user and presents the results.

Each machine contains a slave analyst that analyzes the trace data generated by the processes on that
machine. The master analyst performs the program level analysis and coordinates with the slave analysts to
synthesize the measurement and analysis data. In addition, it provides an interface with the user for the

display of performance results. Figure 2.2 shows the basic structure of IPS.

3. INSTRUMENTATION TECHNIQUES

The overriding consideration in collecting performance data is efficiency. To efficiently gather data
we must minimize the overhead, both in time and space. Collecting the trace information must not need
much extra time, and the trace records must not take up much extra space, when compared to running the
same programs without tracing them. The current version of IPS is based on software instrumentation.
Hardware instrumentation facilities will be integrated into IPS as they become generally available. In this

section, we first discuss the implementation of the new instrumentation techniques, then present measure-

Slave Machine Slave Machine
[Process | [Process |
' ! :
Data Data Data
Pool Pool Pool
Slave Analyst Slave Analyst
5 Mastey
Master Analyst Machine
{ User Interface
USER

Figure 2.2: The Basic Structure of IPS

ments on the performance overhead incurred when using IPS-2.

3.1. Implementation Issues

The initial version of IPS was limited in the type of performance data that it collected. Data for pro-
cess, machine, and program level events was collected by tracing; that is, every important event was col-
lected and recorded. Data for procedure level events was collected by periodic sampling. Events at the
procedure level (specifically, procedure entry and exit events) occurred much more frequently than events
at the other levels and sampling was used to keep the instrumentation space and time overhead manage-

able. The result of using sampling is that information at the procedure level was only approximate.

IPS-2 has improved the efficiency of event tracing so that we now use traces at all levels. This has
two benefits. First, we get exact performance results at all levels of the hierarchy. Performance results at
the procedure level have the same precision as results at the other levels. Second, IPS-2 has been extended
to shared-memory, multiprocessor machines. The process interactions on such systems occur at a higher
frequency than on loosely-coupled systems. The techniques used to trace procedure level events are used

in the shared-memory environment to trace process interaction events.

We use several techniques to reduce both time and space requirements of event tracing. The most
significant problem with the cost of tracing is the time needed to collect timestamps for each trace record.
Each event that is traced by IPS requires the elapsed time (real time) and CPU time to be recorded. These
times are typically accessed by using a operating system kernel call. Kernel calls are several orders of
magnitude slower than procedure calls and add intolerable overhead if used for tracing procedure call

events.,

The solution to this problem is to access clock values with simple memory references. The clock on
most machines is stored either in the kernel’s address space as one or more integer values or is accessible
via memory-mapped clock device registers. In our VAX implementation, we provide a kernel facility to
map the clocks (both the process’s CPU time and real time) into a process’s address space (read-only).
Processes read the clock at memory access speed. In our implementation for the Sequent Symmetry mul-
tiprocessor we use an auxiliary clock provided by the Sequent architecture. This is a hardware 1 MHz

clock that can be mapped into a process’s address space and read directly. The performance benefit of

using memory-mapped clocks is quantified in Section 3.2, where we compare the overhead of reading a

clock from memory to the overhead of reading it with a kernel call.

We use two methods to reduce the size of the traces. The first method addresses procedure calls and
returns, which are usually the most frequently occurring traces. Process level traces (corresponding to ker-
nel calls) generally need auxiliary information, such as return codes or message sizes, but procedure calls
and returns need no information other than the timestamps and an identifier of the procedure that was
called. Therefore procedure call traces are smaller than other types of traces. The second method is to
shorten every trace record by encoding some of the information. To generate timestamps we read a two-
\\;ord (64 bit) clock. We then compress the two words into a one-word timestamp for the trace records, and
recreate the original timestamp at analysis time. No significant information is lost by this method, since the

time between any two traces will not exceed the time represented in a single word.

Directly reading clocks can cause anomalies. One problem involves reading a multi-word clock.
The clock might be updated between reads of the separate words. Detection and correction of this problem
is straightforward, because the interval between a correct timestamp and a following incorrect timestamp
appears to be negative. The incorrect value can be easily corrected. A second problem arises when dif-
ferent clocks have different resolutions. For example, in our Sequent implementation, the real time has a 1
microsecond resolution, while the process time has only a 10 millisecond resolution. This can cause a
discrepancy when the process time is rounded to a value greater than was actually used. This problem is

easy to detect, but hard to correct as the precise value of the process time is not known.

Tracing shared-memory inter-process communication is difficult. In the most general case, we
would need to trace every memory reference in any shared areas in the processes’ address spaces. This
would be difficult, and would require extensive hardware support. Instead we opted to trace only kemel
calls relating to shared-memory synchronization mechanisms. For example, the Sequent supports sema-
phore operations. We trace semaphore blocking and restarting of blocked processes, but we do not trace

memory references inside shared regions protected by semaphores.

Operations that directly involve the operating system can cause problems when creating traces. For
example, to trace the times when a process is blocked awaiting a free processor, the scheduler inside the

operating system kernel will generate trace records. A potential race condition arises, as both the operating

system and the process may be trying to write a trace record. This issue will be addressed in an upcoming

version of IPS that includes scheduler blocking time measurements.

3.2. Performance

This section presents measurements of the overhee{d on application programs caused by using IPS-2.
The results presented were taken from Microvax-II workstations and from the Sequent Symmetry multipro-

Cessor,

Two programs were measured, a parallel sort program and a parallel solution to the Traveling Sales-
man Problem [7]. The sort program was based on a divide-sort-merge algorithm. It was run on randomly
generated lists, from 1000 to 8000 records. Each run of the sort program was repeated 10 times (with a dif-
ferent randomly generated list of records), so actual sort times are 1/10 those reported. The Traveling
Salesman program used a branch-and-bound algorithm. This program was run for a problem size (number
of cities) of 16, over several input data sets. The sort program was run on the Microvax and the Traveling

Salesman program was run on both the Microvax and Sequent. For each input/problem size, all programs

Untraced 1PS gprof
Elapsed | CPU ||Elapsed | CPU | Overhead| Trace ||Elapse| CPU | Overhead || Proc. Calls/
Records|| Time |Time| Time |Time Size || Time | Time Second
1000 395 | 3.38| 491 | 484 24% 206568| 5.60 | 530 42% 2325
3000 7.34 | 833 1035 |12.40| 41% 541852} 12.05 |13.60| 64% 3590
4000 9.39 (10.86|| 13.39 {1625 43% 709056 15.82 [17.83| 68% 3764
5000 || 11.61 |13.49) 1594 [20.02| 37% 888664 19.40 |21.94| 67% 3811
6000 || 13.27 |16.00|| 19.28 |23.82| 45% |1062116| 22.13 [25.83| 66% 3750
7000 || 15.61 [18.74|| 22.11 |27.56| 41% |1233348| 2620 |3043| 67% 3955
8000 || 17.87 |21.42| 2533 |32.00] 41% [1408264| 30.37 |34.69| 69% 3911

Figure 3.1: Overhead Measurements — Parallel Sort

All times in seconds; trace size in bytes. Program run on 2 Microvaxes,
connected via an Ethernet.

- 10 -

Untraced IPS gprof
Elapsed | CPU |[Elapsed | CPU | Overhead| Trace ||[Elapse| CPU | Overhead| Proc. Calls/
Config Time |Time|| Time |Time Size || Time | Time Second
VAX 50.60 | 9.05| 5549 (1142 10% |441592| 53.80 |10.54 6% 142
Sequentw/ | 791 |7.18i 8.51 | 8.05 7% |443008|] 825 | 7.52] 4% 906
mem-map
clock
Sequent w/o 11.16 11084 41% 443008
mem-map
clock

Figure 3.2: Overhead Measurements — Traveling Salesman
All times in seconds, trace size in bytes. Microvax version run

in 1 process, Sequent version run in 8 processes (on 8 CPUs).
Problem size of 16 cities.

were run three times: (1) without any tracing, (2) with IPS tracing, and (3) with UNIX “‘gprof’’ [8] pro-
cedure call profiler tracing. For each run of a program, elapsed time and CPU time were recorded. Pro-
cedure call rates and trace log sizes were also calculated from the IPS runs. These results are summarized

in Figures 3.1 and 3.2.

The first result to examine is the percent overhead (as calculated from the elapsed times). These
overhead for programs run under IPS-2 range from 10-45%. This compares favorably with the overhead
from the standard UNIX profiler, gprof. The percent overhead under IPS-2 increased, predictably, with the
frequency of procedure calls. The two test programs that we measured consisted of relatively small pro-
cedures (average size, 25 lines, including white space and comments), so we should expect overhead

results for other programs to be as good or better than those in the figures.

Note the two sets of IPS-2 performance times in Figure 3.2. Each program on the Sequent was run
twice, once with instrumentation code using a memory-mapped clock to sample CPU time and once using a
kernel call (*‘getrusage()’*) to obtain CPU time information. We can see the substantial penalty in having

to enter the operating system for timing information.

-11-

Figures 3.1 and 3.2 also shows the size of the trace generated by the various program runs. Exam-
ples range from 206K bytes, to a relatively large trace of 1.4 Mbytes in 25 seconds. The maximum rate at
which traces were generated in these runs was about 56K bytes/second. At these rates, memory can hold a

substantial part of the trace and the disk write operations needed to flush the trace buffer are infrequent.

4. USER INTERFACE

The first version of IPS had a simple textual user interface. This interface provided access to the IPS
facilities, but was limited in two ways. First, the interface did not allow the programmer to visualize the
program model. The hierarchical model has an intuitive visual representation and the textual interface
could not use this. Second, the textual interface did not allow for graphical display of performance results.
The ability to graph performance metrics over time and to graphically compare performance results gives

the programmer valuable information.

The IPS-2 interface allows the programmer to specify both the structure of the program to be meas-
ured and the performance results to be displayed. The programmer starts in a graphic editor mode. The
editor allows the programmer to modify the structure of the program, save and re-edit it, or execute the
program. After the program has executed, the programmer interacts with a flexible user interface to
display any combination of performance metrics for nodes in the program tree. The programmer can
display performance metrics in tabular or graphical form, or use the automatic guidance techniques, Criti-
cal Path Analysis and Phase Behavior Analysis. Figures 4.1 and 4.2 show an example of a session with
IPS-2.

The programmer starts with a single window showing a program level node (the triangle node in the
window with the tree in Figure 4.1). To this program node, the programmer can add machine nodes. Each
machine node represents a host machine on which the processes of the program will run. In the example,
these machines are called *‘grilled’’ and ‘‘obatzter”’. The programmer can also specify parameters (using
pop-up property sheets), such as account names and home directories, for these machines. Next, the pro-
grammer specifies the initial processes to run on each machine (‘‘test2a.swb’’ and ‘“‘test2b.swb’’). For
each process, the programmer can specify the executable file to be run in the process, parameters to the

process, and input and output files. Figure 4.1 shows the program tree with the property sheet for machine

.12

Program Tree EX

grilled obatzter

f

test2b,swb

Editing

Edit the Machine

The new machine name
lobatzter]

. Your login to the new machine
M {ips 1

".

~.

Rccept

Tue Jul 12 133144100 1988

Figure 4.1: An IPS-2 Measurement Session: Edit Phase

-13-

““obatzter’’. After the program specification is completed, it can be saved for later use.

IPS-2 can now be used to run the program. IPS-2 will transfer (if necessary) each executable file to
the correct host machine, start the processes, monitor them, and report back when they have completed. A
new program tree will be displayed with additional information from the program execution. New process
nodes may appear as a result of dynamic process creation and procedure level nodes will appear for each

procedure executed in the program (nodes such as “‘getData’ and ““calc1’’ in Figure 4.2).

The table at the bottom, left corer of Figure 4.2 shows a table for process ‘‘test2a.swb’, Various
performance metrics have been displayed for this process. Added to this table was a list of all child nodes,
i.e., the procedures that ran in this process. Any combination of nodes and metrics can be displayed in a

table.

In the center of the screen is a graph of the *‘CPU Time’’ metric for the whole program (out of
200%, because there are 2 machines), and superimposed on this display is the graph of the same metric for
machine “‘grilled”’. The graphs can be zoomed to get more detail, panned to examine individual portions
of the program history, and enlarged to show more detail. The window on the bottom right hand comer of

the screen displays graphs of multiple metrics, message rate and CPU time.

An important aspect of this interface is its simplicity. There are few commands and menus, and the

structure of the commands and displays matches a programmer’s notion of the structure of the program.

5. AUTOMATIC GUIDANCE TECHNIQUES

A major goal of the IPS system is to provide program performance analysis techniques that guide the
programmer in the search for performance problems. We provide the programmer with information to
directly locate performance bottlenecks. In this section, we briefly outline our first guidance technique

(Critical Path Analysis) and then describe a new technique called Phase Behavior Analysis.

5.1. Critical Path Analysis
Our first guidance technique was based on identifying the path through the program that consumed
the most time [3]. This critical 7 dentifies the parts of the program responsible for its length of execu-

tion (based on traces of the program’s execution history). This information is more precise than just a

-14 -

Program Tree Process-level Critical Path
statistic time (ms) Ltime
CPU: obatzter:test2a,swb 7940 98, 32
CPU: grilled:test2b,swb 130 1,61
Msg: obatzte test2a->grilled:test2b 6 », ne
obatzter =Y Procedure-level Critical Path EE==34
machineiprocess func name Xtime
obatzt:test2a cale2 84,57
test2b, swb obatzt:test2a atan2 5,32
obatzt:test2a sockstuff 4,83
obatzt:testla calcl 2.23
grillestest2b getData i.61
° obatzt:testla main 1.36

=24 Total CPU Time

XCPU Butes/sec

xCPY 2007 1000001
200 T]
150 H 1s0] 80000
100 /’A’,\ E 1001 6000011\
50 40000 f: 12 n
, . 0 | : Y
0l 'N\’ LA /\’j\ L 501 20000+ j y
6 7 ‘
Seconds 0- 0 > T

——ee—em s pr0g (CPU Time) 8
sprogigrilled (CPU Time} Seconds
PAN s pr0g (CPU Time)
' ————prog (Bytes per sec)
3 Tabular Data 77T Boundary Curve

prog prog prog
obatzter obatzter obatzter

test2a.swb test2a,.swb test2a.swb test2a.swb test2a.sub test2a,swb

atan2 calel calc2 main sockstuff '-._’
Total Time 14,29 0.49 0.23 8.63 0.87 4,04 _:' % ",_
CPU Time 7.98 0,43 0.18 6.83 0.11 0.43 B -
Watt Time 0.3 0 0 0 0.3 0 “ =
Utilization 0.558432 0,877551 0,782609 0.791425 0,126437 0.106436 T
Bytes/sec 8256.19 0 0 0 552,874 29084,2 o 30 14706100 4968
Procedure Calls 1058 1012 15 15 i 15

Figure 4.2: An IPS-2 Measurement Session: Analysis Phase

-15-

profile of the execution times of each part of a program. The critical path identifies the parts of the pro-
gram (including CPU times, synchronization and communication delays) that cause the execution time. If

we speed up the events along the critical path, we speed up the whole program.

Critical Path Analysis (CPA) can identify program parts that occur most frequently in the critical
path, and can further identify the most frequent sequences of events along the critical path. The ability to
locate frequent sequences allows us to detect bottlenecks spread across several procedures or across several
processes or machines. The results of the Critical Path Analysis can be displayed at the different levels of
abstraction: we can observe the most frequent elements of the path at the program, machine, process, and

procedure levels.

To perform CPA, we construct a graph of the program’s activities (a Program Activity Graph, or
PAG) from the trace information generated during execution. This graph represents the time dependencies
among the various parts of the program and is built from the program traces using only those records that
show an interaction between two processes (inter-process communication and process creation events).
Other records only appear in the PAG as elapsed time. Nodes in the PAG represent events (e.g., inter-

process communication and process creation) and arcs represent observed timings.

A slave analyst handles the traces from the processes on its machine. It first builds one subgraph per
process, and then uses the trace information to combine these subgraphs with the subgraphs for the other
processes (on the same machine and on others). Finally, we add global initial and final nodes to combine

all the subgraphs into a single PAG for the whole program.

After constructing the PAG, we find the critical path (the longest time-weighted path through the
graph) using a distributed algorithm based on one by Chandy and M;sra[9] and adapted to our problem for
the original version of IPS [11. The adaptation focused on two areas. First, Chandy and Misra represented
each node with an analyst process. Since PAG’s can contain tens of thousands of nodes, that number of
processes would be unworkable on current operating systems. In our implementation, a single slave
analyst represents the PAG subgraph for all processes that ran on that slave’s machine. Second, Chandy
and Misra designed their algorithm to find the shortest path through a (directed) graph. Since the PAG is
acyclic (all arcs represent a forward progression of time), shortest path algorithms apply equally well to the

problem of searching for the longest path through the PAG.

-16 -

Figure 5.1 illustrates a simple PAG. In this figure, time progresses from top to bottom. Processes A
and B ran on one machine, and Process C on another. Arcs are weighted with time values, and the critical

path is marked with double lines.

The master analyst is responsible for requesting that the Critical Path Analysis be performed, conso-
lidating the information gathered from that analysis, and presenting it to the user. Since it is impractical to
consider a graphical display of the thousands of nodes that can make up the critical path, we present critical
path information to the user statistically. For example, at the process level, we present a table, sorted by
percentage of total time, of how much of the critical path execution time was due to CPU time in each pro-
cess, and how much was due to inter-process communication between each pair of processes. Similar
presentations are available at the program, machine and procedure levels. The windows at the top, right

corner of Figure 4.2 show critical path results for the process and procedure levels of our test program.

Proce

Create (Y 6 Process B

Process C

Recv

Send

Exit é

Figure 5.1: Sample Program Activity Graph

-17-

1t is possible to have a PAG in which the longest and second longest paths do not overlap (except at
beginning and end). In this case, improving the critical path may have little affect on the program’s perfor-
mance. Fortunately, experience has shown that the longest path and second longest path have substantial
overlap. There is still the question: how much improvemgnt will we really get by fixing something that lies

on the critical path?

While this question can not be answered in general, the critical path analysis provides a feature that
can help. This feature is that, for any element(s) on the critical path, we can change their weight to zero
and recalculate the critical path. We can then compare the length of the new path with the original critical
path. This is only an approximation of the affect of a change to the program, but it provides some insight

about the change.

5.2. Phase Behavior Analysis

Programs go through different phases during the course of their executions. For example, a
master/slave parallel program might have the following phases: (1) the master process sets the initial prob-
lem, (2) the slave processes are initialized, (3) the master distributes pieces of the problem to each slave,
{4) the slaves compute their piece of the program, (5) the master reaps the partial results and combines
them. Steps (3)-(5) are repeated until a solution is reached. Each of these phases has different execution
characteristics. The goal of the Phase Behavior Analysis is to automatically identify phases in the
program’s execution history. Once these phases are identified, we can then use our other analysis tech-
niques, focusing on each phase as a separate problem. Each phase represents a simpler subproblem, which

should be easier to evaluate and improve its execution.

Intuitively, a phase is a period of time when the program is performing the same activity. For our
performance tool, we define the phase as a period of time where some combination of performance metrics
maintain consistent values. For example, in the graph in the center of Figure 4.2, CPU time is displayed for
an entire program. For this single metric, we can observe periods of low CPU usage and periods of high
CPU usage. In the Phase Behavior Analysis, we take several such graphs (for different metrics, such as
message frequency or procedure call frequency, or for different parts of the program) and identify common

periods between these graphs.

~-18-

Our detection algorithm inputs raw metric curves that are derived from the trace data generated by
the instrumented programs. Each metric curve is represented by a list of discrete values for a finite number
of points in time, summarized from the total execution period of the program. The algorithm works in
three steps: smoothing, segmenting, and combining. The smoothing step reduces spikes from the raw
metric curves. The segmenting step determines the potential segment boundaries in the execution history
graph for a single performance metric. The combining step identifies the phases in the overall program

execution from the common segment boundaries in a list of metrics.

5.2.1. Smoothing

The goal of the smoothing step is to simplify the segmenting step by reducing spikes in the perfor-
mance data. The current smoothing function is a sliding window average, weighting the center point most
and the edges of the window least. A window size of 9 (empirically determined) suppresses spikes that
results from the fine granularity of the trace data collected. The smoothing function has the same effect as
a low pass filter. Increasing the window size effectively lowers the cutoff frequency. Each smoothed
curve is normalized with respect to the maximum value of that metric (as constrained by physical and
operating systems characteristics of the machines). The smoothed and normalized metric curve is then

used to compute segment boundaries.

5.2.2. Segmenting

An execution history graph, G,,, for metric m can be divided into segments, S,, ;, where S, ; starts at
time #; and ends at #;,; (¢; < t,-+1)’f. A new segment is started at time ; when values for the metric m during

Sm,i-1 differ significantly from the values immediately after time ¢;.

To derive segments, we define a boundary curve, B,,, for metric m that shows the likelihood that any
given point on the metric curve is at the end of a segment. To calculate B,,, we first calculate a step func-
tion to show the range of values for m. The step function, h,, ;, for metric m at time ¢; is the difference in
value of m between the previous minimum {maximum) and the following maximum (minimum). Figure
5.2a shows the step function for the metric curve in Figure 5.2b. Next, we define two variables for comput-

ing the first derivative of the metric curve: time and value increments. The time increment, A4, is the

+ The notations here are used to represent discrete data rather than some continuous function of time.

.19

difference between the present time, ¢;, and the previous time, £;, in which the metric was sampled. The
value increment, AV,, ;, is the difference in the value of the metric m at time #; and ¢;_;, as shown in Figure

Vo i

5.2a. Thus, the first derivative of the metric curve at time ¢; is approximated by

i
The boundary curve is derived by multiplying the absolute value of the first derivative of the metric

curve with the step function, A,, ;. Thus the boundary curve, B,,, at time #;, is defined

AV i
Bm',- = abS(—Zr") x h,,,_,-

The greater the value of B,, ;, the greater the probability that the corresponding point on the metric curve is
at the end of a segment. We identify segment boundaries as the peaks of the boundary curve that are

greater in value than some threshold.

5.2.3. Combining

After the boundary curves for each metric have been computed, they must be combined. If B, ; is
high at time # for most of the metric curves, then there is a high probability that ¢; is an endpoint of a

phase. The combining function identifies the most common boundaries and generates the program phases

(a) Step function, h,

(b) The curve for metric m

Figure 5.2: Definitions Used in Boundary Curve Calculation

<20 -

based on this combined list of metrics. The combining function sums up the boundary curves of each of
the graph to compute the segment boundaries from the aggregate boundary curve. Hence, the aggregate

boundary curve, B, at time ¢;, is defined

B;= ZB."";' zabs(

AV,
meM meM At

j)X’l,u'
i

where M is the set of all the metrics used.

There is a phase boundary for the program at time f; if the first derivative of the aggregate boundary
curve is zero and B; is greater than some threshold. The programmer interacts with the IPS-2 to determine
a reasonable threshold value. If the threshold is too low, there will be too many phases and the resuits will
not be useful. If the threshold is too high, there will be too few phases. Figure 5.3 shows a close-up of the
graph of the CPU time and message frequency metrics for the program, and the corresponding boundary

curve,

_—- -
=e——————"-—"" (omposite Metrics EEFFrre——————

ACPU Bytes/sec

T 2004 100000 -

H j

n 150- 80000

E 600004 {

S 100 HE .
g 40000 ¥ 517 2
L 501 200004] 0
D ¢ M

0 0

Seconds

tprog (CPU Time)
~~~~~~~~~~ —-sprog (Bytes per sec)
------------------ Boundary Curve

PAN

Figure 5.3: A History Curve with Corresponding Boundary Curve



-21-

Note that the only manual step in identifying phases is setting the threshold. This is done by adjust-
ing the slide bar on the left side of Figure 5.3. We are currently experimenting with heuristics to set this
value automatically. Once we have identified the phases, we use the performance metrics and Critical Path
Analysis to study these phases. We are investigating thc; use of Phase Behavior Analysis to find patterns

and periods in a program’s phases.

6. CONCLUSIONS

IPS-2 is a running system whose design and features benefited from the experience gathered in the
first (Charlotte Distributed Operating System) implementation. The first implementation of IPS provided
useful insights in how to design a parallel program performance measurement tool. Using the semantic
structure of the program produces a hierarchical model for the program and performance data. This model
resulted in a system that was intuitive to use and provided large amounts of information. The model also
allowed for the construction of analysis techniques that help guide the programmer to the cause of program

bottlenecks.

IPS-2 uses this foundation to make several new advances. The new instrumentation techniques pro-
vides more detailed and precise information about the program. The implementation now includes both
distributed and shared-memory systems. The graphical user interface simplifies use of the system and
significantly improves the presentation of performance results. The Phase Behavior Analysis presents a

new type of guidance technique: a focusing technique that allows more precise use of other analyses.

IPS-2 has been used in several small performance studies, and we are in the process of gaining
experience with larger applications. The Critical Path Analysis seems to have a real benefit, reducing the
need to look through piles of statistics. We are just beginning to get experience with the Phase Behavior
Analysis. Initially, we are using the phase analysis to display the critical path (at any level of hierarchy)
for a particular phase in the program’s execution. We are using the tabular displays to show the value of

performance metrics over a single phase.

IPS-2 is an evolving system. We are expanding the user interfaces to relate performance results to
program source code, extending the Phase Behavior Analysis, and investigating new guidance techniques

to analyze scheduling and interference effects between parts of parallel programs.




-22.

7. REFERENCES

f1]

(2]

[3]

(4]

(5]

(6]

(7]

(8]

9]

B. P. Miller and C.-Q. Yang, ‘‘IPS: An Interactive and Automatic Performance Measurement Tool
for Parallel and Distributed Programs,’” 7th Int’l Conf. on Distributed Computing Systems, Berlin,
(September 1987).

C.-Q. Yang, ““A Structured and Automatic Approach to the Performance Measurement of Parallel
and Distributed Programs,”’ Ph.D. Dissertation, Univ. of Wisconsin-Madison (August 1987).

C.-Q. Yang and B. P. Miller, “‘Critical Path Analysis for the Execution of Parallel and Distributed
Programs,”” 8th Int’l Conf. on Distributed Computing Systems, pp. 366-375 San Jose, Calif., (June
1988).

Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel, ‘‘Interprocess Communication in Char-
lotte,”’ IEEE Software, (1987).

T.J. LeBlanc and S.A. Friedberg, ‘‘Hierarchical Process Composition in Distributed Operating Sys-
tems,’’ Proc. of the 5th Int’l Conf. on Distributed Computing Sys., pp. 26-34 (May 1985).

C. Maples, “‘Analyzing Software Performance in a Multiprocessor Environment,”’ IEEE Software,
pp. 50-63 (July 1985).

N. Lai and B.P. Miller, *‘The Traveling Salesman Problem: The Development of a Distributed Com-
putation,”” Proc. of the 1986 Int'l Conf. on Parallel Processing, pp.417-420 St Charles, I11., (August
1986).

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick, ‘‘gprof: a Call Graph Execution
Profiler,”” Proceedings of SIGPLAN ' 82 Symposium on Compiler Construction, pp. 120-126 (1982).

K. M. Chandy and J. Misra, ‘‘Distributed Computation on Graphs: Shortest Path Algorithms,”” Com-
munications of the ACM 25(11) pp. 833-837 (November 1982).






