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ABSTRACT

We show how Clark’s Completed Database (CDB) can be extended to include a
number of Prolog constructs usually considered to be outside of pure logic, while
still maintaining the known partial completeness results for SLDNF derivations.
We also prove that in the semantics provided by the CDB and SLDNF, there is no
definition of transitive closure which is strict and does not use function symbols.

§1. INTRODUCTION. We begin by reviewing briefly the current status of nega-
tion in logic programming. A general program clause is a clause whose head is a positive
literal and whose body consists of 0 or more positive or negative literals. A general program
is a finite set of general program clauses. A positive program is one in which all literals in
the bodies of all clauses are positive. By declarative semantics, we mean that the seman-
tics is defined in terms of standard logical notions, such as model and logical consequence.
Procedural semantics refers to the actual procedure by which queries are evaluated. As
Clark pointed out, we must realize that the program asserts more than its naive interpre-
tation would indicate. Given a program, P, he formed its completion, Comp(P), which
consists of some equality axioms plus a completed definition of each predicate symbol;
roughly, these completed definitions are obtained by replacing the Prolog “if” by an “iff”;
see, e.g., [8, 13, 17] for a precise definition. As is by now well known ([11,13,14,16,18]),
in order to capture the intended meaning of arbitrary general programs, it is necessary
to consider models within 3-valued logic, rather than 2-valued logic. This logic has three
truth values, t (true), f (false), and u (undefined). Following Kleene, the truth value u
corresponds to the notion of a computation which fails to halt. Since 3-valued logic is
somewhat unpleasant to deal with, there has been much investigation recently into finding
sufficient conditions on programs which allow one to use 2-valued models after all.

Within the framework of the above generalities, there are presently two competing
approaches to the semantics of logic programs. One, which we shall call the logical con-
sequence approach, says that a query is supported by the program, P, iff it is a logical
consequence of Comp(P) - i.e., true in all models of Comp(P). The other, which we shall

1 A shortened version of this paper will be presented at the Fifth International Conference Symposium on
Logic Programming, Seattle, 1988
2 This research was supported by NSF Grant DMS-8501521.
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call the canonical model approach, picks out one specific model of Comp(P), and says that
a query is supported iff it is true in that one model.

Regarding the logical consequence approach, we show in [13] how to build a
mathematically coherent semantics by considering the logical consequences of Comp(P)
within 3-valued logic. Then, in [14], we show that if P satisfies a strictness condition (see
also §2), then the 3-valued and 2-valued logical consequences of P are the same. If we take
this approach to the declarative semantics, then the appropriate procedural semantics is
given by the notion of an SLDNF derivation [17], which is essentially a formalization of
what Prolog does (actually, would do if it used a non-deterministic evaluation order). As
is well-known, SLNDF' is sound but not complete; that is, there are very simple examples
where a query follows logically from Comp(P), but is not supported by SLDNF. However,
[7,14] show certain sufficient conditions under which completeness holds. The approach
of [14] shows that if we take the 3-valued semantics as the “official” one, then the only
condition needed for completeness is allowedness (see §2); one can, then, add the strictness
condition if one wants completeness with respect to 2-valued logic. The completeness
results in [7,14] are stated with respect to pure logic. However, Prolog contains many
features which seem to go beyond pure logic. Some of these can be accounted for by
appropriate modifications to the definitions of Comp(P) and SLDNF; we discuss this
further in §4. In most cases, the needed modifications to SLDNF have already been
discussed by Naish [19] and implemented in NU-Prolog [26], but one must investigate
how these modifications affect completeness and soundness results. In the case of the
arithmetic and term comparison predicates, we can show (Theorem 4.2) that completeness
is maintained by an appropriate extension in the definition of “allowed”.

Regarding the canonical model approach, the problem is, of course, to pick out
the one specific model in a natural way. It is always natural to take the Herbrand universe
as the domain of discourse. The most general method of choosing a model is Fitting’s
[11], which, for an arbitrary P, gives a direct construction of a 3-valued Herbrand model of
Comp(P). However, here too, there is a preference for obtaining 2-valued models whenever
possible. In particular, if the program happens to be stratified, Apt-Blair-Walker [2] and
Van Gelder [27] present a natural construction of a 2-valued Herbrand model. Following
[2], we shall call this model the standard interpretation. In the case of positive programs,
the standard interpretation is precisely the van Emden - Kowalski [10] minimal model. The
procedural semantics appropriate to the standard interpretation is bottom-up evaluation,
as defined in [10] for positive programs and in [2, 27] for stratified programs. If there are no
function symbols, this evaluation procedure is amenable to many optimizations, both for
positive programs (see [6] for a survey and further references), and for general stratified
programs (see [5]). Especially in database applications, it is now common to take this
standard interpretation as the canonical model for stratified programs; that is, one says
that a query, @, is supported iff ¢ is true in the standard interpretation. For example, [4,15]
discuss knowledge base management in this framework.

These approaches to semantics are incompatible; for example, Przymusinski [22] points
out that standard definition of transitive closure, which optimizes (see [6]) to a very efficient
computation in the bottom-up setting, is not even correct in the logical consequence setting;
we prove (Theorem 3.1) that in this setting, there is no correct definition at all which is
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strict and does not use function symbols.

It is hard to say which approach is “better”. Certainly, the logical consequence ap-
proach provides a better explanation of Prolog, but the problems with transitive closure
might lead one to suggest that Prolog be abandoned in favor of bottom-up evaluation. On
the other hand, if one wishes to use terms to represent data structures, then Prolog seems
preferable, since at least it corresponds to some evaluation procedure (SLDNF). In the
presence of function symbols, bottom-up evaluation, which involves a search through the
(infinite) Herbrand universe, is not an implementable procedure; in the worst case, the
standard interpretation is not even recursively enumerable, so that it does not correspond
to any evaluation procedure at all [3]. In the logical consequence semantics of [13], the set
of supported queries is always recursively enumerable, but one pays for this by requiring
the theory to consider non-Herbrand models. There are examples of queries which are true
in all Herbrand models (3-valued as well as 2-valued) of comp(P), but not in all models,
and thus are not supported by the logical consequence semantics. The examples in [13, 14]
seem somewhat artificial, but when we add in arithmetic predicates in §4, many natural
examples arise from the fact that computations cannot search through all numbers.

§2. SYNTACTIC NOTATION. We assume that our language for predicate logic
is fixed in advance, and contains, for each n > 0, a countably infinite set of n-place function
symbols and a countably infinite set of n-place predicate symbols. 0-place function symbols
are called constant symbols, and 0-place predicate symbols are called proposition letters.
In addition, our language has a symbol, ‘=", for equality; this symbol never occurs in a
program, but is used in forming Comp(P).

We follow the notation in [14] for describing data dependency relations, although these
notions, using different notation, occur much earlier. Let PRE D be the set of all predicate
symbols. We use 1 to denote immediate dependency; thus, if p,q € PRED, then p J g iff
P contains a clause in which p occurs in the head and ¢ occurs in the body. Let > denote
the least transitive reflexive relation on PRED extending _J; so, p > ¢ means that either
p is g or p hereditarily depends on gq.

A signed dependency is defined as follows. We say p J4; ¢ iff there is a clause in P
with p occurring in the head, and ¢ occurring in a positive literal in the body. We say
p J_1 qiff there is a clause in P with p occurring in the head, and g occurring in a negative
literal in the body. Let >4; and >_; be the least pair of relations on PRED satisfying:

P21 p

and
pliq&qg>;r = p>ijr.

So, p > ¢ implies that either p >41 ¢ or p >_; ¢ (or both).

Following [2], P is called stratified iff we never have both p > _; ¢ and ¢ > p — that
is, there are no dependency cycles through a negation. Following [2], P is called strict iff
we never have p >.; g and p >_; ¢. Following Sato [23], P is called call-consistent iff we
never have p >_; p. Since we always have p >41 p, call-consistency follows from either
strictness or from stratifiability.



For queries consisting of more than one literal, we need an addition to our definition
of strictness, which says, approximately, that we are considering the entire query to be a
new predicate. If ¢ is a query clause, we say ¢ >; p iff either ¢ >; p for some ¢ occurring
positively in ¢ or ¢ >_; p for some ¢ occurring negatively in ¢. We call P strict with
respect to ¢ iff for no predicate letter p do we have both ¢ >4; pand ¢ >_1 p. P could
be strict with respect to ¢ but not strict, since strictness could be violated by letters upon
which ¢ does not depend. The actual strictness condition used in [14] to conclude that a
given 2-valued consequence, ¢, of Comp(P), is also a 3-valued consequence, was that P be
strict with respect to ¢ and that the whole P be call-consistent.

For the completeness result (with respect to 3-valued logic) in [14], what was required
was that both the program and the query be allowed [24, 2]. P is allowed iff for each
clause, & :— A1,...\,, in P, and each variable, X, which occurs anywhere in that clause,
X occurs in at least one positive literal, A;, in that clause. Likewise, a query clause is called
allowed iff every variable which occurs in the clause occurs somewhere in a positive literal
in that clause.

§3. MODELS. Recall that we are always working with a fixed language in predicate
logic. A 3-valued structure, A, for the language consists of a non-empty set, A (the domain
of discourse), together with an assignment of an appropriate semantic object on A for each
of the predicate and function symbols of the language. More precisely whenever p is an n-
place predicate symbol other than ‘=" withn > 1, A(p) is a function from A" into {t,f, u};
if n = 0 (p is a proposition letter) then A(p) € {t,f, u}. In our models, the interpretation of
‘=" 1is always standard 2-valued identity, and function symbols are interpreted as functions
in the standard mathematical sense. Thus, the truth value u is never taken by a formula
which is made up of just ‘=" and function symbols.

We use Kleene’s truth tables of the propositional connectives other than ¢ <= ’, which
is given Lukasiewicz’s truth table — that is v <= wis t iff v = w and f otherwise. In
our applications, the connective <= will occur only as the “iff” in Comp(P). A more
detailed discussion of the choice of truth tables is given in [13].

If S is a set of sentences, a 3-valued model of S is just a 3-valued structure in which
all sentences of S have truth value t. A sentence ¢ is a 3-valued consequence of S iff ¢ has
value t in all 3-valued models of S. A 2-valued structure is simply a 3-valued structure in
which the value u is never taken. Thus, any 3-valued consequence of S is also a logical
consequence of S in the standard, 2-valued sense — namely, true in all 2-valued models of
S. In the i-valued logical consequence approaches (where i is 2 or 3), a query, ¢, is said to
be supported by P iff ¢ is an i-valued consequence of Comp(P); equivalently, iff ¢ has truth
value t in all i-valued models of Comp(P). Thus, if ¢ is supported under the 3-valued
semantics, it is also supported under the 2-valued semantics, and the converse is true as
well under the strictness condition. Note that the semantics is defined without any regard
to possible procedures for constructing models; in proving theorems, as in [11,13,14], it is
often useful to build models by iterating a 3-valued analogue of the van Emden - Kowalski
[10] Tp operator.

An Herbrand model is a model whose domain of discourse is the set of all closed
terms, with function and constant symbols having their natural interpretations. Because
of the equality axioms, any model of Comp(P) contains an isomorphic copy of an Herbrand
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model; but it may properly extend the Herbrand universe — that is, it may contain objects
which are not the denotations of any closed terms. As is well-known (see, e.g., [13, 14]), it
is in general necessary to consider non-Herbrand models; that is, there can be a ¢ which
is true in all Herbrand models of Comp(P) but not true in all models; then, of course, by
soundness, ¢ will not be supported by SLDNF; in fact, this can even happen with positive
programs if we allow the query to be negative.

In the case of positive programs with positive queries, one can restrict oneself to
Herbrand models, and furthermore, iterating the original (2-valued) T’» produces a minimal
model of Comp(P); that is, any positive query which is not supported is already f in this
minimal model. In this case, then, we have two equivalent procedures for evaluating
queries: top-down (SLD), or bottom-up (iterating T').

However, as soon as we allow negative queries to our positive program, the two ap-
proaches lead to incompatible views of negation [2, 25]. Roughly, what has happened here
is that the truth values u and f in the 3-valued Comp(P) semantics both got identified
to f in the minimal model. In the 2-valued approach, we have our truth values ordered
f < t, which has the effect of making f the default value. In the 3-valued approach, our
truth values have u < t and u < f, with no relationship between t and f; this has the
effect of making u the default value, and creating a symmetry between the values t and f.
For a trivial example, suppose that P consists of the one clause, p :— p. Then Comp(P)
is p <> p and supports neither p nor -p, whereas —p is t in the minimal model and is
supported by bottom-up evaluation.

When we add negation into the program, there is not in general any way to choose
a canonical model in 2-valued logic. For example, the completion of {p:— —p} has no
2-valued models at all. Even when the strictness conditions are met (see §2), so that we
can replace 3-valued by 2-valued models, there is no natural choice of a 2-valued model.
For example, if P is {p:— =¢, ¢ :— —p}, 2-valued models of Comp(P) must have exactly
one of p,q being t, and there is no natural way to choose which one. Of course, with
3-valued models, the minimal (and natural) model makes both p and ¢ u.

In the case of stratified programs, however, there is a natural construction of a 2-
valued model by induction on the levels of the stratification [2, 27]; following [2], we refer
to this model as the standard interpretation. These methods extend to provide natural
2-valued models for certain non-stratified programs as well [21].

Since the standard interpretation reduces to the minimal model in the case of positive
programs, the trivial program, {p :— p}, already points out the difference between this
approach and the logical consequence one. For a more interesting example, consider the
problem of defining a 2-place predicate, tc, to be the transitive closure of another 2-place
predicate, p. Of course, transitive closure is not first-order definable in general, but we
have in mind a more modest goal. Let us call a fact about p any ground unit clause with
p as its predicate symbol. If p is any finite relation on (i.e. set of ordered pairs from) the
Herbrand universe, let F, be the finite set of facts which encode it into p:

Fp = {p(a,B) : apf} .

Let p* be the transitive closure of p; this is also finite. Let D be any finite set of clauses
not having p as their head predicate symbol. We say that D defines tc to be the transitive
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closure of p with respect to a given semantics iff for every such p and all closed terms, a
and #: tc(a, B) is supported by the program D U F, if ap*f, and —tc(a, 8) is supported
otherwise.

The most obvious solution is to take D to be:

te(X,Y) :— p(X,Y).
te(X,2) :— p(X,Y), (Y, Z).

If we use the standard interpretation as our semantics, D does indeed define tc to be the
transitive closure of p in the above sense. In fact examples like this one are commonly used
to illustrate the success of query optimization methods [6] with bottom-up evaluation in
this setting.

However, as is pointed out in [22], D does not correctly define transitive closure with re-
spect to the logical consequence semantics. For example, say F, = {p(a, b), p(b, a), p(c,a)},
and we query the system 7— tc(a,c). Procedurally, we get an infinite loop. Declara-
tively, neither tc(a, ¢) nor its negation follows from Comp(D U F,). The obvious model of
Comp(D U F,) has tc(a, ¢) false, but there is another model in which #c is true of all pairs
from {a,b, c}.

One might hope that since this program is correct (both procedurally and declara-
tively) in the case that p happens to be acyclic, some minor modification of it will work
for a general p, but this is not true.

3.1. Theorem. Suppose D is strict and does not use any function symbols (except
for constants). Then D cannot define tc to be the transitive closure of p with respect to
the logical consequence semantics.

We defer the proof until the end of this section. The proof makes use of the fact,
from model theory, that the transitive closure of a relation is not ezplicitly definable by a
first-order formula (see [1]). However, we cannot simply quote this fact, since the program
might provide an implicit definition, perhaps making use of auxiliary predicates. In fact,
the following three remarks show that minor variants of the theorem are false, indicating
that it is unlikely that the theorem could be deduced in a really trivial way from general
model-theoretic facts.

(1) If we allow function symbols, then it is possible to write a correct definition
of transitive closure which is both strict and stratified. For example, one may use the

standard Prolog definition of member, together with the following, borrowed from §7.2 of
Clocksin-Mellish [9]:

tC(X7Y) e gO(X7 Ya [])

go(X,Y,L) :— ~member(X,L),p(X,Y), -member(Y, L)
go(X.Y, L) i ~member(X, L), (X, 2), golZ,Y, [X|L])
go(X,X,L) :— -member(X,L),p(X,Z),g90(Z,X, L)

The auxiliary predicate go(X,Y, L) “says” that L is a list and there is a path from
X to Y whose intermediate nodes do not contain any members of L. The correctness of
go(X,Y, L), when called with XY, L ground, can be proved by induction on the number
of nodes not listed in L.



(2) Even if we ban function symbols, there are properties which are uniformly defin-
able from p by strict (in fact, positive) programs under the logical consequence seman-
tics which are not first-order definable. For example, one can define “has a cycle” by:
cyclic :— te(X, X), plus the two clauses above in the definition of tc. That is, if the pro-
gram, P, consists of these three clauses, together with a finite number of ground facts
about p (representing some finite relation p), then either:

a. p has a cycle, in which case in every 3-valued model of comp(P), cyclic has
truth value t (since te(X, X) is t at some value of X), or

b. p is acyclic, in which case in every 3-valued model of comp(P), tc has it’s
expected (2-valued) interpretation, so cyclic is f.

However, “has a cycle” is not uniformly first-order definable from p.
(3) If one adds in @< (lexical order), as described in §4, then one can define tc by the
positive program:

te(X,Y) :— q(X,Y, A, B).
(X, Y,A,B) :— p(X,Y),node(A),node(B), AQ< B.
9(X,Y,A,B) :—
p(X, Z),node(A),node(B),node(C), AQ< C,CQ< B, ¢(Z,Y,C, B).
node(A) :— p(4, B).
node(A) :— p(B, A).

Here, ¢(X,Y, A, B) “says” that AQ< B and there is a p-path from X to Y of length no
longer than the number of Q< steps from A to B.

In (1) and (3), the programs actually work (very slowly!) in standard Prolog. Likewise
in (2) if the graph is acyclic; if the graph has a cycle, the program would have to list
the cycle first in the definition of p for the standard (left-right) evaluation of Prolog to
terminate.

In light of these remarks, it would be interesting to know whether there is a general-
ization of Theorem 3.1 which is not specific to the special case of transitive closure. Also,
we do not know whether the strictness condition is necessary in the theorem. We conclude
this section with the promised proof.

Proof of 3.1. We assume that D does so define tc, and derive a contradiction. Our
assumption implies that for every p as above, and every model of Comp(D U F,), the
interpretation of tc in the model is the transitive closure of p. By strictness, we can have
at most one of t¢ >4y p and tc >3 p; from now on, we shall assume tc¢ >41 p, since
the other possibilities can be refuted by a similar (but easier) argument. We may further
assume that tc > ¢ for all predicates appearing in D, since, following [14], if we succeed in
building a model for all predicates on which tc depends, we may always expand it later to
correctly interpret also the predicates on which tc does not depend. Likewise, from now on
in this proof, we may ignore all other predicate symbols, and just concentrate on building
models which interpret the predicate symbols occurring in D. For each such ¢, we may
define a sign S(q), where S(q) is the ¢ € {+1, —1} such that tc >; ¢; so, S(tc) = S(p) = +1.
We may use S, as in [14], to convert 3-valued models to 2-valued models — namely, if an
atom has value u, its value is changed to t if the sign of its predicate symbol is +1, and
to f if the sign is —1.



Since there are no function symbols, the construction of models is a little simpler than
in the general case. Let C be the set (possibly empty) of constant symbols used in the
program D. Suppose A is a set of constants disjoint from C. A base structure built from A
is a 3-valued structure, Ay, whose domain of discourse is AUC, and in which all predicates
except (possibly) p are everywhere u. As a special kind of base structure, if p is a relation
on A, we may interpret p to give p(a, b) value t if apb and f otherwise; call this structure
Ao(p). For any such A, let T be the 3-valued van Emden - Kowalski operator [11, 13, 14]
associated with the program D; as in [14], we define T' to affect only the interpretations
of predicates other than p (recall that clauses in D do not have p as their head predicate
symbol). Starting with some base structure, Ay, we may iterate T to produce a sequence
of structures, Ag, Ay, ... (where A41 = T(Ar)); all these structures interpret p the same
way, but may differ in their interpretations of other predicates. Since there are no function
symbols, if A is finite then there is some finite n such that A, is a model of Comp(D). If
we start with an Ag(p), then, in addition, A,(p) will be a model of Comp(D U F),).

Now, for each finite I, let Ax be the set of constants {ai,...,ax} U {b1,...,bx},
and we consider three possible base structures built from Ag. Let px be the relation

{(ai,aj) 1<, j<K}U {(bz,b]) :1<4,j <K}
Let o be the relation
{(ai,azq_l) 1 <1< I(} (@] {(bz'ybi—i—l) 1 <i< KU {(aK—,al),(bK,bl)} .

Let B{ be the 3-valued structure built from Ag in which all p(a;, a;) and p(b;,b;) have
value u, and p is f on all other pairs.

The transitive closure of ok, 0%, is px, which is already transitive. The fact, from
model theory, that transitive closure is not definable, can be stated with respect to the ox
as follows:

3.2 Lemma. There is no first-order formula, ¢(z,y), which uniformly (independently
of K) defines o}, in the structures Ag(ok). =

This can be proved either by a compactness argument, or by a direct quantifier elim-
ination, as in Aho-Ullman [1], which proves a slightly different result. We shall eventually
use 3.2 to derive a contradiction.

First, starting from B{, the fixedpoint BX must have the values of tc(a;, b;) being f;
since if te(a;i, bj), were u or t, we could apply S and obtain a 2-valued model of Comp(D U
F,,) in which tc(a;, b;) were t, contradicting the assumption that D correctly defines
transitive closure. At first sight, n would appear to depend on K. However, observe that
in all the intermediate BX all relations must be invariant under permutations of the a;
and the b;; since we are considering only finitely many predicates, the number of such
invariant 3-valued structures is bounded independently of I; thus there is actually an n
independent of K such that BX is a fixedpoint of T'. Consider this n to be fixed from now
on.

By monotonicity of T, it follows that each tc(a;, b;) has value f in A,(ox) as well.
Perhaps n is not large enough for A, (o k) to be a fixedpoint, but the tc(a;, a;) and te(bs, b;)
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must be either t or u in A,(ok), since these values eventually become t. It follows that
the transitive closure, 0%, is first-order definable on Ag(ok) (in a way which does not
depend on K); namely, it is defined by a formula, ¢(z,y), which “says” that the truth
value of tc(z,y) in stage n of iterating T' is not f. This contradicts Lemma 3.2. m

Observe that Theorem 3.1 would remain true even if we strengthened the logical
consequence semantics to consider only Herbrand models of Comp(P), since the proof only
deals with how the predicate tc behaves on the constant symbols used in the definition of p.
Also, in the literature, there are two distinct definitions of “Herbrand model”, depending
on whether we build it using all possible Prolog constants and functions, or using only the
ones appearing in the program and the query; see Shepherdson [25] for further discussion.
It is easy to see that Theorem 3.1 will be true under either interpretation.

§4. EXTENDING THE LOGICAL CONSEQUENCE SEMANTICS. There
are a number of Prolog constructs which, although usually though of as going beyond pure
logic, can in fact be considered to be within the logic. As we point out below, this requires
revisions to the definition of comp(P) if even the most elementary completeness results are
to hold. Also, this requires, for soundness, that the Prolog evaluation (SLDNF') be revised
to return error messages under a greater proportion of circumstances than it now does;
this is an extension of the classical requirement that Prolog flounder [8] after an improper
call to negation. It is important to emphasize that floundering is not the same as failure
(returning “no”).

We first consider a numeric predicate, the Prolog ¢s. Syntactically, this is simply a
binary predicate symbol, and the semantics is usually handled informally as follows: In
addition to the program, P, we assume that there is an implicit set of facts, Fis, containing
all clauses of the form is(z, a) such that z is a machine representable number and « is a
ground numeric term whose value is . We then consider the semantics to be defined with
respect to the set of clauses, P U F;,. Numbers themselves are considered constants. Since
1s now has an obvious natural interpretation as a relation on the Herbrand universe, the
canonical model approaches have a trivial extension to this new situation.

However, there are problems for the logical consequence semantics, both declaratively
and procedurally, brought on by the fact that the (implicit) program, P U F;,, now contains
infinitely many facts about is (since there are infinitely many terms). Procedurally, we
have a problem because there is no natural order in which to backtrack through solutions
to a query such as 7— 7s(X,Y"); likewise, we cannot say that 7— 1s(X,Y"), 7p(X,Y) fails
finitely even if p(z, ) happens to be true for all ground z and «. So, we must revise our
definition of SLDNF to cause these queries to flounder, and we must revise the definition of
allowed to not include these queries. In this sense, 13(X,Y") behaves very much like a non-
ground negative literal. The procedural problems are echoed in the declarative semantics,
since the completed definition of ¢s would be an infinitely long sentence; so we must revise
the definition of Comp(P) as well.

The appropriate revisions (below) are invoked by declaring the predicate is to be
special, with the second place declared unbounded. More generally, we explain what it
means for an n-place predicate, p, to be special, with places 7 through n unbounded. First,
we mean that in the user’s program, P, we do not allow any clauses with p as their head
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predicate symbol. Second, we consider that P is always augmented by a fixed, possibly
infinite, set, Fy, of facts (ground atomic clauses) about p. Third, we modify the definition
of Comp(P U F}) by making the completed definition of p contain the following: Fj, plus
all =p(ai,...,an) such that p(ai,...,a,) is ground and is not in Fj, plus, if ¢ > 1, all
sentences of the form

VX]...Xi_l(p(Xl,...,Xi_l,Oli,...,an) =

\/{(Xl :/81 /\"'/\Xi—l zﬂi—l): p(ﬂla“'76i—17ai7-"aan) € FP})

whenever «;,...,a, are ground terms; in this case, we demand that for each ground
Q... 0, there are only finitely many such f1,...,8i—1 (if there are none, then the
empty disjunction is replaced by false). Fourth, in the revised definition of SLDNF, we
demand that whenever a literal with p as its predicate is chosen for evaluation, then that
literal must be ground in all places with respect to which p is special; as usual, if there is
no legal choice of a literal to evaluate, the evaluation flounders.

For example, a typical sentence in the completed definition of ¢s would be VX (X s 2+
3 <= X =5). Procedurally, SLDNF must flounder if asked to evaluate something like
5 1s Y. With this in mind, standard Prolog is sound in its handling of arithmetic, if one
ignores roundoff and overflow problems. However, it gives up (returns an error) in more
places than it needs to; for example, it would be sound to fail with 7— X s ¢, rather than
return an error as most Prolog systems do.

Likewise, numeric comparison operators such as =:= and < may be considered to
be special with both places unbounded. This approach to semantics is general enough to
allow various implementations of numbers. There could be finitely many integers (say, all
with B bits, with + and * defined modulo 27), or there could be infinitely many integers
(i.e., implementing infinite precision arithmetic). Or, we could consider our numbers to be
floating point representations.

A similar discussion can be given for term comparison predicates, such as a@< f
(which says that a precedes f lexically), except that most Prolog systems are not longer
sound here, since they allow comparison of variables. To borrow the standard example
from negation, if the program contains the single statement, p(b,a), then most Prologs
(e.g., C-Prolog — see the manual, [20]) will succeed with 7— XQ< Y, p(X,Y"), and fail with
?7— p(X,Y), X@< Y this cannot be sound under any semantics in which A is commutative.
This problem was already pointed out by Naish [19], and is addressed correctly in NU-
Prolog [26] (this uses a different symbol, termCompare, for the logically correct term
comparison predicate, and maintains the old @< with its incorrect semantics). In our
notation, we declare @< to be special with both places unbounded, so that queries such as
?—- XQ@< Y should flounder, not return “yes”. Because of the unsound behavior of Q<,
the C-Prolog manual is probably correct in listing Q< as a “meta-logical” predicate, along
with var and nonvar; i.e., the procedural behavior of these predicates depends on the
binding environment at the time they are called, and they have no declarative meaning.

Note that our notation allows that a special predicate have all of its places unbounded,
but not that it have none of its places unbounded; this latter situation is of no interest
here. That is, a special predicate with no unbounded places is simply a predicate which
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the user is not allowed to define, but which behaves as if it were defined by a fixed finite
set of clauses. Since the completed definition would be formed in the standard way for
these predicates, there is no semantic issue here, and their introduction is simply a matter
of convenience. Examples of these are true (whose implied definition is {¢true.} — that is,
it always succeeds), fa:l (whose implied definition is empty — that is, it always fails), and
repeat (whose implied definition is {repeat :— repeat. repeat.}). There is some confusion
in the literature about the proper status of such predicates. For example, the C-Prolog
manual [20] correctly lists ¢rue under the heading “convenience”, but lists repeat and fasl
under “extra control”, along with some declaratively meaningless control features such as
cut and unsound negation.

To state our completeness result, we must make first the appropriate modification in
the definition of allowed. Let us consider first a few examples. The query 7— X is 347
should certainly be allowed. So should ?7— ¢(Y), X is Y, since, assuming all the program
clauses are allowed, ¢(Y") should succeed only with ground values for Y (see [7,14]). Like-
wise, the program clause earns_more(X1,X2) :— salary(X1,S51), salary(X2,52),52 <
S1 should be allowed. The query 7— X 15 Y,Y is X should not be allowed, but 7— X 15 34
7,—p(X) should be. With these examples in mind, we give a precise definition. Call a vari-
able, X, focused in a literal, A, iff A is positive, X occurs in A, and (in the case that the
predicate of X is special), all terms in unbounded places in A are ground. Call a query
clause allowed iff every variable occurring in a negated literal or in an unbounded place
in a special predicate in the clause is focused in some (other) literal in the clause. Call
a program clause allowed iff its body is allowed and every variable occurring in the head
also occurs in the body.

As another example, the program in the third example in the discussion of Theorem
3.1 is allowed.

In the following theorems, we assume that the appropriate revisions have been made in
Comp(P) and SLDNF for any predicates having been declared special. As usual, we state
our official result with respect to the 3-valued semantics, but remark that this reduces to
the 2-valued semantics under the appropriate strictness conditions, as discussed in §2. That
is, if P is call-consistent and is strict with respect to ¢, and V¢o is a 2-valued consequence
of Comp(P), then V¢o is a 3-valued consequence of Comp(P). The proof is as in [14].

4.1 Theorem. SLDNF is sound with respect to the 3-valued semantics; i.e., if SLDNF
returns a substitution o for a query ¢, then V¢o is a 3-valued consequence of Comp(P),
and if SLDNF fails the query ¢, then V—¢ is a 3-valued consequence of Comp(P).

4.2 Theorem. If P and ¢ are allowed, then SLDNF is complete; that is, if ¢o is a
3-valued consequence of Comp(P) (which implies that ¢o is ground), then SLDNF will
return o, and if V-¢ is a 3-valued consequence of Comp(P), then SLDNF finitely fails 4.

As with most soundness proofs, Theorem 4.1 is proved by an easy induction. Theorem
4.2 requires some modifications to the proof in [14]; we provide some more details at the
end of this section.

Observe that one must use some care in the formulation of the completion in order
to get a theorem such as 4.2. It is also important that our semantics allows non-Herbrand
models. For example, let P be the program
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g:— p(X),Xis X+1

p(X) :— p(X)
P is allowed by our definition, and the query 7— —¢ does not produce an answer under
our SLDNF, so it is important that —¢ not be supported by the semantics, as it would be

if we naively copied the standard definition and took the completed definition of is to be
a sentence such as

VXVY (X is Y = \/(X =2:AY =) ,

where the a; enumerate either all or a finite subset of numeric terms, and each z; is the
numeric value of a;. Our definition of Comp(P) allows a non-Herbrand model which
contains an object, b, for which (b is b+ 1) and p(b) (and hence also ¢) are true; such
a b cannot be in the Herbrand universe. Thus, our formal semantics corresponds with
what Prolog does, in that it does no logical inferencing about the consistency of arithmetic
equations, but simply uses the built-in machine evaluations as a black box.

Although no one would ever write the program P, we feel that elaborations on it form
a class of examples which arise in programming practice. For the trivial p(X) :— p(X), one
could substitute a more complex recursive definition of p for which 7— p(X) fails to bind X.
For the trivial X + 1, one could substitute an arbitrarily complicated numeric expression.
One might suggest a different semantics, in which numeric variables are intended to range
over the standard real numbers, and in which the interpreter would realize that X = X 41
has no solution and fail; in fact, the system CLP(R) [12] does something like this (for
arbitrary collections of linear equations and inequalities); however, this cannot work in
general situations, since the question of the existence of a solution X = « is expensive
to decide for polynomial «, and undecidable if « is allowed to contain transcendental
functions. To extend our semantics to CLP(R), perhaps the right approach would be
expand Comp(P) to contain the (decidable) first-order theory of linear algebra.

The partial completeness result in Theorem 4.2 indicates that the semantics is on the
right track, there is much to be done in the following two directions.

First, the completeness results should be strengthened to include a greater proportion
of the kinds of programs people write in practice; this problem was already apparent with
the results in pure logic [7, 14], but is even more noticeable here. Perhaps the results
should take into account the kind of query being posed. Often, one programs chains of
computations which can be seen, by ad hoc arguments, to be complete for certain classes of
queries. For example, a quadratic equation solver may be programmed by the non-allowed
definition,

solve(4,B,C,S1,52) :—
—(A =:=0),
Dis sqgrt(B*xB—4+«A+C), D >0,
S1is (=B + sqrt(D))/2/A, S21is (—B — sqrt(D))/2/A
It is easy enough to see here that completeness holds for queries ?7— solve(a, 8,4, S1, 52),

where a, 3, are ground, but it is not so easy to find a simple and elegant sufficient
condition which covers all programs of practical interest.
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Second, although we have given a logically coherent semantics for these special pred-
icates, it is not the only possible one. In the case of @<, for example, a better procedural
semantics would be the one suggested by Naish [19], in which the query 7— g(X)Q< f(Y)
is allowed to fail rather than flounder. There is, in fact, a more general phenomenon at
work here, which we now describe, although we do not know if it leads to better general
completeness results. If p is an n-place predicate, call a p-atom any atomic formula of
the form p(a,...,ay), where the a; are terms, not necessarily ground. If S is a set of
p— atoms, call S C S a base for S iff every atom in S is an instance of some atom in S°.
Declaring p to be special means that the user is not allowed to define p, that the system
has implicitly defined p by a (possibly infinite) set, F}, of p-atoms, and furthermore, that
the system has partitioned the set of all p-atoms into two subsets, called floundering and
non-floundering. For each p-atom, +, let U, be the set of all § € F}, such that v and
6 are unifiable (after renaming § with disjoint variables). We require that for each non-
floundering p-atom, =, there is a finite base, S, for U,. A possible special case would be
that Uy = Sy = 0, but even if U, is finite, or even empty, it is not required that v be
non-floundering; for example, with is, Urx 45 x41) = Uz 45 241) = 0, but (X is X +1) is
floundering and (2 ¢s 24 1) is non-floundering. We also require that if v is non-floundering,
then so is yo for every substitution o. Procedurally, SLDNF is revised so that if it chooses
a non-floundering p-atom, v, as the literal to evaluate, then it examines the (finitely many)
unifications with v and members of S,. Declaratively, we now revise the completed defi-
nition of p to contain, for each non-floundering p-atom v, a sentence ¢~ defined as follows:
Say Xi,...,Xm are the variables in v, Sy = {61,...,65}, and o0; is an mgu of v and &;,
chosen so that yo; uses only variables taken from a set, {Y7,...,Y;}, which is disjoint from

{X1,..., Xm}. Then ¢, is

VX1 Xm(y = /I V(X =X10i A A Xy = Xioy)

1=1

As usual, the empty disjunction is replaced by false. It is easily seen that the definition of
#~ is independent of the particular choice of the finite base S,; that is, a different choice,
5!, will lead to a ¢! which, using the equality axioms, may be proved equivalent to ¢..
There is a certain redundancy in our definition; it would be equivalent to have these ¢
just for v ranging over a base for the non-floundering p-atoms.

One could even generalize the notion of special still further to include the situation
where the implicit definition of p need not consist merely of unit clauses, but we do not
see an application of this generalization.

In the case of @<, @< f is non-floundering iff ao compares lexically the same way
to Bo for all ground substitutions o, in which case a@< f is put into Fac iff these ac
are lexically less than the corresponding fo. Two other predicates common in Prologs
which may be cast in this light are integer(X) (testing whether X is an integer) and
name(X, L) (X is a constant symbol and L is the list of ASCII codes of the characters
with which X is printed). Fipeger is the obvious set of ground atoms. As with @<,
integer(a) would have to be revised to flounder unless « is not a variable; in which case
its completed definition is either V-integer(a) if « is not an integer, or integer(a) if a is
an integer. As with @<, Prologs usually fail integer(X), leading to the unsound behavior
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that 7— X ¢s 3,integer(X) succeeds but ?— integer(X), X ¢s 3 fails. Thus, as discussed
above, the C-Prolog manual [20] is correct in listing integer and @< as “meta-logical”,
along with var and nonvar. Curiously, name is also listed as “meta-logical”, although its
behavior is completely sound. Paraphrasing the manual in our terminology, name(a, §) is
non-floundering iff either « is a constant symbol or £ is a ground list of ASCII codes; Frame
is the obvious set of ground name-atoms. As sample S,: Sf(x)acg(x) is {f(X)Q< g(X)},
Syxyecfx) 18 0, and Spame(foo,1) 15 {name(foo,[102,111,111])}. Note that if S, = 0,
then ¢ is equivalent to V-y, and if S, = {v}, then ¢, is equivalent to V.

Actually, in all our applications, S, is either empty or a singleton, but one can imagine
situations where it has size larger than 1. For example, one might have an algebraic equa-
tion solver, solve(X, L); then solve(f, a) is non-floundering iff « is a ground list of floating
point numbers, and the procedural semantics will then attempt to unify g with the roots
of the polynomial whose coefficients are L; thus, for example, if v is solve(X,[1,—3,2]),
then S, has two elements, ¢, is VX (solve(X,[1,-3,2]) <= X =1V X = 2), and the
query, solve(X,[1,—3,2]), X > 3 fails finitely, since 1 > 3 and 2 > 3 fail. In fact, it would
be reasonable to allow users to customize such special predicates, programming them in,
say, C or Fortran. Many Prologs have some facility for linking in compiled object modules
from another language, but we know of none which allows this sort of direct integration
with Prolog’s backtracking and negation-as-failure mechanism. As with all special predi-
cates, the Prolog semantics would treat solve as black box, and would not be responsible
for verifying that its implicit definition correctly reflects the intentions of the programmer.

With our extended definitions, soundness (Theorem 4.1) is still true. However, com-
pleteness (Theorem 4.2) becomes false, since now the completed definition of a special
predicate can now contain a literal of the form Vv where v is not ground, so that -~y
becomes false of an infinite set of objects. In the case of @<, we have strengthened both
the procedural and declarative semantics, but the procedural semantics is not sufficiently
strengthened to handle every allowed query supported by the new declarative semantics.
For example, if the program is {g(X) :— ¢(X)}, then the query 7— ¢(X), =(f(X)@< ¢(X))
now fails by our declarative semantics, but does not fail under our SLDNF'.

One could state a version of Theorem 4.2 which handles situations where the implied
definition of a special predicate consists only of ground atoms, and in fact we could then
weaken the definition of “allowed” somewhat. We do not bother to state such a theorem
formally, but an example of this situation would occur with the predicate name, which
can be used to determine an output in either direction, so it is enough to require that the
variables in either one of its arguments be focused. Under the old definitions, name would
have to be considered to have both its places unbounded, so that name(X, L), ¢(X) and
name(X, L), ¢(L) would not be allowed query clauses, but in fact, we could consider them
to be allowed (assuming ¢ is non-special).

We conclude with a proof of Theorem 4.2. We assume here that the reader has at
hand the proof in [14], and just explain what needs to be changed.

Proof of Theorem 4.2. The proof in [14] used the fact, from [13], that the queries
supported by Comp(P) in 3-valued logic are exactly those which become true at some finite
stage in Fitting’s [11] (transfinite) iteration, which was based on the Herbrand universe.
This result is false here, as the above example with (X is X + 1) shows. Rather, we
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start iterating with a structure, Ap, whose domain of discourse, A, properly extends the
Herbrand universe. We assume that Ay satisfies Clark’s equality axioms, that Ay interprets
all non-special predicates to be identically u, and that special predicates are interpreted so
as to make their completed definitions true. We further assume that the structure contains
an element, b, at which all special predicates are undefined as possible. More precisely, say
p is special, 71, ..., T, are terms, and v is the truth value of p(7y,...,7,) when all variables
are interpreted as the object b; then we assume v is u unless all 7; in unbounded places are
ground, in which case v is (must be) f unless all the 7; are ground; thus, (b is b+ 1) and
(b is b) have value u, while (b ¢s 2 4 1) has value f. Furthermore, we simply assume that
the structure Ay is N;-saturated, so that iterating the appropriate 3-valued T' produces a
3-valued model for Comp(P) at stage w.

Let Agy1 = T(Ag). By induction on k, verify the following: Whenever ¢ is allowed,
in variables Xy, ..., X,, then there are only finitely many (ay,...,a,) in A at which ¢ has
truth value t, and, furthermore, all these a; are denotations of ground terms.

The definitions of R and F must be revised to include the cases where a special literal
is evaluated. In the definition of negative rank, one must consider all instantiations of
¢ in A, not just instantiations by ground terms. With these changes in definitions, the
inductive hypothesis, H(7) is stated as before. Regarding the four cases in the proof:
Along with R+, we add an R+%*, which is the case that we reduce some special literal,
p(71,-..,Tm), where the 7; in unbounded places are all ground. Likewise, there is an F+*,
where we fail a special positive literal, except here the component of 7 corresponding to
this literal is irrelevant. The case R~ is unchanged.

The case F— requires more substantial revision. To avoid excess notation, say ¢ is
o, 3,7, where a is positive and non-special, f is positive, and v is positive and special; a
similar argument will handle the case where there are several literals of each type. Now,
i is (n1,ng,n3). As before, we may assume n; = 0, since otherwise we could reduce by
F+, and we may assume n3 = 0, since special predicates do not change in value. We may
also assume that v contains a variable, X, in some unbounded place, since otherwise we
could reduce by F+*. As before, it is enough to show that 8 is ground, but we cannot use
the previous argument, since, unlike «, v is not totally undefined in Ay. Instead, we use
our object b € A described above, and consider the truth values of «, 3, and v at b (i.e.,
when all variables are interpreted as b). By virtue of X, v must be u at b in Ay, and «
must be u everywhere in Ay, so (by definition of negative rank), § must be t at b in A,,.
If B is special, it must be ground, by our assumptions about b, while if # is non-special, it
must be ground, since otherwise, being allowed, it could never become t at a non-Herbrand
object. m
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