MAGIC TEMPLATES: A SPELLBINDING
APPROACH TO LOGIC PROGRAMST

by

Raghu Ramakrishnan

Computer Sciences Technical Report #771

Revised January 1989

tAn earlier version appeared in Proc. SLP/ICLP, 1988.

Magic Templates: A Spellbinding Approach to L.ogic Programs
Raghu Ramakrishnan
University of Wisconsin-Madison
ABSTRACT

We consider a bottom-up query-evaluation scheme in which facts of relations are allowed to have
nonground terms. The Magic Sets query-rewriting technique is generalized to allow arguments
of predicates to be treated as bound even though the rules do not provide ground bindings for
those arguments. In particular, we regard as ‘‘bound’’ any argument containing a function sym-
bol or a variable that appears more than once in the argument list. Generalized ‘‘magic’’ predi-
cates are thus defined to compute the set of all goals reached in a top-down exploration of the
rules, starting from a given query goal; these goals are not facts of constants as in previous ver-
sions of the Magic Sets algorithm. The magic predicates are then used to restrict a bottom-up
evaluation of the rules so that there are no redundant actions; that is, every step of the bottom-up
computation must be performed by any algorithm that uses the same sideways information pass-
ing strategy (sips). The price paid, compared to previous versions of Magic Sets, is that we must
store relations with nonground facts; and we must perform unifications, rather than equijoins,
when evaluating the rules bottom-up. The method is applicable to general Horn clause logic pro-
grams.

1. Introduction

Several strategies have been proposed for evaluating recursive queries expressed using sets of
Homn clauses [BeR87, BMSU86, DW87, GMN84, HN84, KL86a, KL86h, KI.87, Na87, Na88,
RL85, SZ86a, SZ86b, UI8S5, V(G86, Vid6, Vi88, etc.]. (See [BaR86, BaR88] for a survey and
performance comparison.) It is our thesis that each of these strategies has two distinct com-
ponents - a binding passing or sideways information passing strategy (sip) for each rule and a
control strategy. A sip represents a decision on how information gained about some literals in a
rule is to be used in subsequently evaluating other literals in the rule. The control strategy imple-
ments this decision, possibly using additional optimization techniques. Thus, a given sip collec-
tion may be implemented by several control strategies, and a given control strategy may be used
to implement distinct sip collections. In particular, we show that simple bottom-up evaluation
may be used to implement any sip collection by first rewriting the given set of Horn clauses and
then evaluating the rewritten set.

Our result generalizes Generalized Magic Sets and other related strategies presented in [BeR87].
The importance of the generalization is that the bottom-up methods now apply to any Homn
clause logic program. The results presented here clarify the relationship between top-down stra-
tegies, such as that used in Prolog, and bottom-up strategies by showing that the execution of a
top-down strategy can be ‘‘mimicked’’ by rewriting the program and then evaluating the fixpoint
bottom-up. The rewriting introduces auxiliary ‘‘magic’’ predicates, and the ‘‘magic’’ facts (com-
puted during the bottom-up evaluation) correspond to the goals that would be generated by the
top-down strategy. Every other fact that is generated by the bottom-up evaluation is also gen-
erated by the top-down strategy in solving these goals. (We do not consider programs with
extra-logical predicates such as assert and retract, or the cut, or programs containing negation.

-2-

The approach can be used to evaluate some stratified programs containing negation, and we refer
the reader to [BNRST87], [BPR87].)

We believe that both Prolog-style evaluation and bottom-up approaches have their own advan-
tages and are likely to be preferable in certain important domains. In this paper, we show the
power of the bottom-up approach, and, by a careful separation of binding propagation and the
flow of control (following [BeR87}), we also clarify the relationship between top-down and
bottom-up evaluation strategies.

We also consider how these techniques can be used to implement Constraint Logic Programs
([JL871, [IM87], [HILMSYY86]). For example, consider the following rule:

p(X,Y) - X> Y.

This says that for all values x and y in the domain of the program, p(x,y) is true if the constraint x
< y holds. The difficulty here is that this information cannot be represented as a fact in the rela-
tion associated with the predicate p. Rather, each fact must now be viewed as conditional upon
an associated set of constraints. It is assumed that a constraint solver is given, and the problem is
therefore one of collecting appropriate sets of constraints as the computation progresses.

The paper is organized as follows. Notation and definitions are introduced in the rest of this sec-
tion. We define sips in Section 2. In Section 3, we consider nonground facts, and present an over-
view of our approach. In Section 4 we describe how to obtain an adorned program, and in Section
5, we present the Magic Templates algorithm for further rewriting the adomed program. We dis-
cuss several aspects of this algorithm through examples. In Section 6, we characterize the rela-
tionship between rewritten programs and the sips used in rewriting them, and also illustrate some
aspects of safety and termination.

1.1. Preliminary Definitions

We assume the usual definitions of Hom clause rules, terms and literals. A program is a finite
set of rules, P ={ ry, ...r,}. A database D is a finite set of finite relations. A relationp is a
collection of (possibly nonground) facts p(¢). Hence Py D is alogic program. Predicates that
name database relations are called base predicates; all other predicates are called derived.
Without loss of generality, we will assume that no base predicate appears in the head of a rule in
P, that is, the set of base predicates is disjoint from the set of derived predicates. This separation
of program from database allows us to consider equivalence of programs with respect to all possi-
ble databases. In the following, Greek letters such as 6 and ¢ are used to denote a vector of argu-
ments. We also use these letters to denote substitutions, and when we do so, we state this expli-
citly. The projection of a vector of arguments 8 on some subset of the set of argument positions
is defined to be the vector of arguments in those positions.

A substitution, 8= { V| «t}, V, & ts,...,V, 1, }, assigns terms to variables. Itis applied to
a syntactic object o (term, rule, etc.) by simultaneously replacing all occurrences ofeach V; ino
by ¢;, and the result o 8 is called an instance of o. The set of variables {Vy, ..., V, } is called the
domain of 8, and the set of variables appearing in {¢y, ... , #, } is called the range. We shall only
consider substitutions such that domain —~ range is empty, and this is understood unless other-
wise stated in the rest of this paper. Such substitutions are idempotent [LMMS88]. An element V;
« t; of a substitution is called a binding. We use the notation vars (o) to denote the set of all
variables in the object 0. (We follow (LMMS88] in this presentation.)

-3-

A unifier for two terms ¢, and ¢, is a substitution ¢ such that ¢, ¢ = t, 6. We call a unifier ¢ a
most general unifier (mgu) of ¢, and ¢, if it has the following property: Let 8 be any unifier for ¢,
and ¢,. Then, there is some substitution & such that t 6 =t ¢ «, for all terms ¢.

Given a program-query pair (P, Q) and a database D, the result of applying (P, Q) to D, which
we also refer to as the set of answers to the query on D, is the set of all facts ¢ which are
instances of the query Q, and are logical consequences of Py D. (See [VK76, LM83] for
fixpoint characterizations of the set of answers.) We say that two programs with queries (P, Q)
and (P, Q) are equivalent if, for every database D, P \ D and P‘ D produce the same
answers for their respective queries.

2. Sideways Information Passing

The notion of sideways information passing was studied in [BeR87], and we refer the reader to it
for a more detailed discussion. The discussion in this section follows the presentation there, but
with some important differences. The only bindings considered there were of the form X = c,
where X is some variable and c is some ground term. As we show later, this involves no loss of
generality given the requirement that every variable in the head of a rule should also appear in the
body. Without this requirement, which we relax in this paper, this definition of bindings pre-
cludes some information passing strategies. We therefore consider arbitrary bindings of the form
X =t, where t is any term.

A sideways information passing strategy, henceforth referred to as a sip, is an inherent com-
ponent of any query evaluation strategy. Intuitively, a sip describes how we evaluate a rule when
a given set of head arguments are bound (through unification with a goal, to possibly nonground
terms or variables). Our use of the term ‘‘bound arguments’ is perhaps more accurately
described by the term ‘‘potentially restricted’’. In particular, some confusion may arise since
““bound’’ is used in the logic programming and deductive database literatures in a somewhat dif-
ferent sense.

Let r be a rule, with head predicate p (), and let 8 denote the projection of 6 on the arguments
that are bound when the rule is invoked. The arguments that are not bound are called the free
arguments. Thus, if the head literal is p (X ,[51Y],Z,W), and we assume that the first two argu-
ments are bound when the rule is invoked, 0 is (X ,[51Y],Z), and 0% is (X,[51Y]). Similarly, we
define ' to be the projection of 8 on its free arguments - o is (Z,W) in the above example - and
follow these conventions in the rest of the paper. It is possible that a rule is invoked with more
than one pattern of bound arguments. We analyze each rule for each pattemn of bound arguments
with which it is invoked, and the details should become clear as we proceed. Let p, be a special
literal, denoting the head literal restricted to its bound arguments. Thus, the arguments of p, are
8”. Let P(r) denote the set of literals in the body. A sip for r, for a given set of bound head
arguments, is a labeled graph that satisfies the following conditions:

1. Eachnode is a subset of P (r) \ {pn}.
2. Each arc is of the form N — (g}, with label S, where N is a subset of P (r)\ {p»/, qis a
member of P(r), and S is a set of variables, such that each variable of S appearsin q.

3. There exists a partial ordering of the literals of P(r)\) {ps/} such that for each arc, all
literals at its tail precede the literal at its head, and such that the literals that do not appear in
the sip follow all those that appear in the sip.

-4.-

Since the head of a sip arc is always a singleton set, we omit the curly braces. We explain the
meaning of such a graph by explaining how the computation of a rule uses anarc N —y ¢, t and
then explaining the complete computation of a rule. This arc means that the variables in § are
bound to terms by solving the literals in N (a ‘‘join’’ in database terminology). Thus, if we con-
sider an arc p I(W X,Y), p2(Y .Z) -y 7 p(X,Z,[ZIU,V), and facts p 1(1,[213],3) and p 2(3.,4),
we have the binding X = (2I3], Z = 4. A binding for each variable in § partially instantiates the
literal q . The sip is to be interpreted as requiring that if a g -fact is a substitution instance of this
partially instantiated literal, and further, is a logical consequence of the program and database,
then it ought to be inferred. Thus, in our example, we have p ((213],3,[31U],V), and every p -
fact that is a logical consequence of the program and is a substitution instance of this p -fact ought
to be inferred. We observe that each partially instantiated q-fact corresponds to a goal in a top-
down Prolog-style execution, and the definition of a sip requires that each such goal should be
identified and all answers to it should be inferred. The sip provides a potential restriction of the
set of facts to be computed, since we are not required to compute any other g -facts in solving this
literal. When all the literals in the body of a rule have been solved, we obtain an instance of the
rule, and the instantiated head literal is a logical consequence of the program and database. This
is how new facts are inferred.

Suppose that we want to use the rule r, with some arguments of the head predicate bound. If an
argument is designated as bound, it means that we are only interested in evaluating the rule when
this argument is bound to one of a set of terms. The special node p, may be thought of as a rela-
tion with fields corresponding to the bound arguments of the head predicate. Each tuple in it
corresponds to a vector of bindings that is given for these arguments. Intuitively, each tuple con-
tains the vector of bindings for the bound arguments in some call of this adomed predicate in a
Prolog-style execution.

We emphasize that the above discussion of the interpretation of a sip is to be understood as an
abstraction that conveys what is done rather than how it is done. For example, Prolog does not
create special predicates p, to store bindings for head arguments, nor does it explicitly evaluate
the joins we mentioned. These operations are implicit in the way Prolog maintains variable bind-
ings through unification and backtracking. The above interpretation of a sip forms the basis for
the definition of a sip —strategy in Section 6.

Example 1: Consider the following rules:

sg(X,Y) :- flat(X,Y).
sg(X,Y) :- up(X,Z1), sg.1(Z1,22), lar(Z2,Z3), sg.2(Z3,Z4), down(Z4,Y).
Query: sg(john,X)?

This is a non-linear version of the same-generation program [BeR87, BMSU86]. We have num-
bered the sg occurrences in the second rule for convenience.

Given the query, the natural way to use the second rule seems to be to solve the predicates in the
indicated order, using bindings from each predicate to solve the next predicate. This information
passing strategy may be represented by the following sip:

S8p x Up;
Sgps Up 71 58.1;

+ For simplicity, we assume that there is at most one arc entering a given node ¢g. Multiple arcs can be dealt
with as in [BeR87].

58, up, 8.1 —zz flar;
58y, Up, sg. 1, flat —z458.2

We focus on the evaluation of derived predicates and we therefore ignore bindings that are passed
to base predicates (and which can be used to retrieve a subset of the corresponding relations) for
simplicity of exposition. [}

The previous example introduced the notion of sips, and the sips in it satisfy the earlier definition
of a sip in [BeR87]. The next example illustrates some differences.

Example 2:

p(X,Y) :- same(X,Y), q(X,Y).
same(X,X) :-
qes.Xx) -

This program would be disallowed in earlier approaches since the last two rules are not range-
restricted. (A rule is range-restricted if every variable in the head appears in the body.) However,
consider a query p(X,Z)?. This could be solved by solving the goal same(X,Y) to bind Y (to X)
and then solving the goal q(X,Y) to bind X (and therefore Y) to 5. This is in fact what Prolog
does, and the following sip describes this:

{same} —x y q

While this is a valid sip according to the definition presented in this paper, it is not a valid sip
according to the definition in [BeR87] since X and Y are not bound to ground terms in the arc
entering g. []

In the second condition defining a sip, if N — p is a sip arc with label S, we require that the vari-
ables in S should appear in arguments of p. This is simply a consequence of the fact that bind-
ings for other variables are of no interest when evaluating that predicate occurrence. However, we
depart from the definition of a sip in (BeR87] in an important way - we no longer require that
these variables also appear in arguments of predicates in N. Variables that appear in § but not in
N are essentially free variables, but as we see in the following example, they could still restrict
the set of p -facts that we must compute.

Example 3:
p(X,Y,Z) :- b(X,U,V), b(W,Y,Z).

Let b be a base relation. The first two fields of p contain the crossproduct of the first and second
fields of b. Consider the following rule:

qX) :- pX,X,Y).

Let the query be q(X)?, and let these be the only rules in the program. We only need to compute
p -facts that have the same value in the first two arguments. This can be expressed using the fol-
lowing sip for the second rule:

{}—-xp

If the relation b is large, the reduction in the number of inferences is significant. In later sections,
we see how this sip can be implemented using a bottom-up fixpoint computation. However, this
sip is clearly invalid according to the definition in [BeR87], and further, it cannot be implemented
using the algorithms presented there. (As we will show later, a bottom-up implementation of this
sip requires us to introduce rules that are not range-restricted.) This example illustrates the more
general notion of ‘‘binding’’ used in this paper, in contrast to the earlier work (where ‘‘bound’’

meant ‘‘bound to a ground term’’).]

An important difference between our definition of a sip and the earlier definition has to do with
partially bound arguments (i.e. arguments in which some variables are bound while others are
free). The following example illustrates this.

Example 4:

pX) :- q1(X,Y), Q2([YIZ)).
q12,0) :- .
q2([YIU)) :- q1(Y,U).

This program illustrates a sideways information passing strategy that is disallowed in [BeR87]
because it cannot be efficiently implemented using the rewriting methods presented there. (This
reflects a decision that is followed in most of the deductive database literature, and was first dis-
cussed in [U185].)

Consider a query p(X)? The following is a possible sip for the first rule:
{g1} —y q2

Thus, we compute the entire relation ¢ 1, but only a subset of ¢ 2. This is not a valid sip according
to the definition in [BeR87] since Z is not bound in the (only) argument of 2. []

2.1. Full Sips

Consider a rule r with a given set of arguments bound in the head literal p. There are, in general,
many sips that we could choose, and we now identify an important class of sips, called full sips.
A full sip is a sip in which: (i) there is a unique total ordering induced by the sip over all literals
inP(r) (px}, and (ii) there is exactly one arc N; —g {q;} entering the singleton node associ-
ated with each body literal ¢;; N; contains all predecessors of g;, and S contains all variables in
q;-

A full sip indicates that (the body literals are solved in the sip-induced order, and) in solving a
literal, all bindings made in solving preceding literals are used to restrict the goal. For each body
literal, every argument is considered bound. Thus, there is a unique full sip associated with each
distinct total ordering of the literals in P (r), For example, Prolog uses a full sip with a left-to-
right ordering of literals. The results in this paper hold for arbitrary choices of sips, but the case
of full sips for every rule simplifies some details and shows the intuition more clearly. We retumn
to this point at the end of sections 4 and 5.

3. An Overview of the Proposed Evaluation Strategy

This section has two main objectives: (i) to extend definitions of ‘‘rule application’’, *‘duplicate
elimination,”’ and other deductive database concepts to the case of nonground terms, and (ii) to
present an overview of our approach to evaluating logic programs.

We remarked earlier that the methods presented in this paper generalize previous work. Consider
a program, possibly obtained from a given program and query after applying some program
transformations, that is to be evaluated. The important restriction that is now relaxed is the
requirement that (in the final program) every variable in the head of a rule also appear in the
body. A central feature of this generalization is our (revised) notion of a tuple. A tuple is usually
defined to be a ground fact in a (derived or) base relation. We allow tuples to be possibly
nonground facts; so that tuple and fact are the same, for the purposes of this paper. It is easy t0

-7-

see that requiring rules to be range-restricted ensures that no relation contains a nonground fact.

Lemma 3.1: If every rule in a program is range-restricted, then every fact p (¢), where p is a
predicate appearing in the program, is ground.

Proof: By induction. As the basis, every fact in a database predicate must be ground, since they
are range-restricted rules with empty bodies. If all facts derived in n or less steps are ground,
consider the derivation of a fact in n+1 steps. Consider the last step (i.e. rule application). Every
fact in the rule body must be ground, by the hypothesis. It follows that the head fact must be
ground since every head variable appears in the body, and is thus bound to a ground term. [] -

The notion of nonground facts is standard in the logic programming literature. To our knowledge,
however, the first use of such facts in the deductive database literature is in [KL87]. In that paper,
Kifer and Lozinskii present an evaluation method called Sygraf, and allow rules that are not
range-restricted, with the objective of dealing with general logic programs. The method does not
always fully restrict the search, but it should be possible to combine the ideas with more a sophis-
ticated version of the method, called Dynamic Filtering, defined earlier for range-restricted rules
[KL86b].

A rule application is defined as follows. Consider a rule

r. h I-bl,bz, ,bk
Let O be a substitution such that for each body literal b;, there is some fact f; and substitution o;
such b; 8 = f; o;. Further, if i # j, vars (f;) # vars (f ;). Then, rule r can be applied on the set of
facts {f , ..., fx } to generate the fact 1 ©.

Consider a logic program P _j D . We compute the least fixpoint of this program as follows. The
set of known facts is initially the set of facts in D . We repeatedly apply the rules in P to the set of

known facts and add the generated facts to the set of known facts, until no fact can be generated
which is not an instance of some known fact.

In practice, we can perform a generalized join operation on the relations (containing the known
facts) corresponding to the body literals, to generate a set of facts for the head. Thus, choosing the
body literals in some order, we unify each literal with a known fact, and apply the resulting sub-
stitution (the most general unifier, or mgu) to the rule. The composition of the mgus for all the
body literals, in order, corresponds to the substitution 0 in our description of rule application.

A fact containing variables is used to denote a (potentially infinite) set of facts. The set consists
of those facts that can be generated by a substitution that binds each variable X; in the given fact
to some term #;. The set is infinite if terms can be constructed using function symbols or if the
domain contains an infinite set of constants or variables. When a rule is used to generate a new
fact, the scope of a variable in it is precisely this fact. That is, facts are equivalent upto variable
renamings. Note that we do not maintain an environment of variable bindings, as for example, is
done in Prolog implementations, where a given variable may be ‘‘bound’’, or instantiated, to dif-
ferent terms in the course of program execution.

A fact ¢, is more general than a fact t, if there is some substitution of terms for the variables in ¢,
that makes it identical to ¢,. Thus, p(X,[Y!Z]) is more general than p(5,[6/U]), but is not more
general than p(5,U). p(U,V) is more general than p(X,[YIZ]), but p(5,V) is not. Also, p(X,Y) is
more general than p(U,V), but p(X,X) is not. (It may appear a little strange that p(X,Y) is more
general than p(U, V), but this is simply a consequence of the way we use this property. If p(U,V)
is a newly generated fact, and p(X,Y) is an existing fact, we only need to recognize that all the
facts denoted by p(U,V) are also denoted by p(X,Y). We don’t need to know that they denote the

same set of facts.)

When a fact is generated by applying a rule, we check whether the set of facts denoted by it is a
subset of the set of facts denoted by a previously generated fact. If not, we add the new fact to
the set of known facts. We observe that this operation is a generalization of duplicate elimination
in database operations. We also note that it is introduced only to allow us to detect termination. It
does not affect the completeness of bottom-up evaluation. It is possible to devise other termina-
tion conditions as well. For example, we could test whether some fact in p is identical to (rather
than more general than) the newly generated fact, upto a renaming of variables. That is, we
check if the two facts denote the same set of facts. While this can be checked more efficiently, it
fails to detect termination in some cases. We discuss the termination issue in more detail in sub-
sequent sections.

We now outline our approach to evaluating logic programs. The basic idea is to rewrite the given
program and then evaluate the fixpoint of the rewritten program by repeatedly evaluating each
rule (bottom-up) until no new facts are produced.' The objective of the rewriting is to produce a
program whose bottom-up evaluation reflects the sips chosen for the original program (that is,
only facts that agree with the values passed through sip arcs should be generated). The rewriting
algorithms we consider proceed in two phases. Given a logic program and a query, we first pro-
duce an adorned program. The generation of the adorned program is done in conjunction with the
choice of sips. Next, the final program is produced by a rewriting algorithm from the adomed
program and sips. We present a generalization of the Generalized Magic Sets rewriting algorithm
(IBMSUS86, BeR87]), called the Magic Templates algorithm. (The generalization is actually at
the level of sips and adornments. The rewriting algorithm is not affected, but we give it a dif-
ferent name to indicate the changed nature of the sips and adomed programs that it accepts and
the final programs that it produces.)

4, The Adorned Rule Set

An adornment for an n-ary predicate p is a string a of length n on the alphabet {b, f }, where b
stands for bound and f stands for free. Consider a literal p in the body of a rule, where S is the
set of variables in the labels of sip arcs entering this literal. By solving the literals in the tails of
these arcs, bindings are generated for the variables in S, and we wish to compute only those facts
for p that match these bindings. Thus, if a variable X in S appears in some argument of p , we are
only interested in facts in which this argument is bound to some term such that X is bound to one
of the bindings passed through the sip. The set of interesting bindings for this argument is there-
fore potentially restricted, and we designate such an argument as a bound argument. (It is impor-
tant to note that the solution of the predicates in the tail of a sip arc may leave a variable in the
label free - in particular, the tail may be empty - and such a variable is still designated as bound.)

Let a program P and a query ¢ (0)? be given. We construct a new, adorned version of the pro-
gram, denoted by P%4 . For each adomed predicate p?, and for each rule with p as its head, we
choose a sip and use it to generate an adorned version of the rule (the details are presented
below). Since the head of a rule may appear with several adornments, it follows that we may
attach several distinct sips to versions of the same rule, one to each version. The details are simi-
lar to the corresponding algorithm in [BeR87], but with some important differences that we

+ Seminaive fixpoint computation is a refinement that avoids repeating inferences in different iterations.
(See, e.g., [Ba85]. Note that non-linear rules are also treated.)

discuss after presenting the algorithm.

The process starts from the given query. The query determines bindings for ¢, and we replace ¢
by an adomed version, in which precisely the positions bound in the query are designated as
bound, say ¢°. In particular, we may treat as bound any argument position that contains a func-
tion symbol, constant or a repeated variable, since each of these could potentially restrict the
computation of the answers. As we proceed, we have a collection of adomed predicates, and as
each one is processed, we will mark it, so that it will not be processed again. If p? is an
unmarked adorned predicate, then for each rule that has p in its head, we generate an adorned
version for the rule and add it to P*?; then p is marked as processed. The adomed version of a
rule contains additional adorned predicates, and these are added to the collection, unless they
already appear there. The process terminates when no unmarked adomed predicates are left.
Termination is guaranteed, since the number of adorned versions of predicates for any given pro-
gram is finite.

Let r be a rule in P with head p. We generate an adomed version, corresponding to an
(unmarked) adomed predicate p?, as follows. The new rule has p® as a head. Choose a sip s, for
the rule, that matches the adornment a; that is, every argument in p,, for the sip is bound accord-
ing to a. Thus, the special predicate p, is the head p restricted to arguments that are designated
as bound in the adornment a. Next, we replace each derived predicate in the body of the rule by
an adorned version (and if this version is new, we add it to our collection). We obtain the
adorned version of a derived predicate in the body of the rule as follows. For each occurrence p;
of a derived predicate in the rule, let S; be the union of the labels of all arcs coming into p;. (If
there is no arc coming into p;, let S; denote the empty label.) We replace p; by pf, where an
argument of p; is bound in g; only if some variable appearing in it is in S;.

Example 5: (From [BeR87]) The following is the adorned rule set corresponding to the non-
linear same generation example, for the sip of Example 1.

1.sg¥ (X,Y) - fla(X,Y).

2.5g% (X,Y) - up(X,21), sg¥ (21,22), flar(Z2,Z3), sg¥ (Z,74), down(Z4,Y).

Query: sg¥ (john,Y)?

We will use these adorned rules to illustrate the rule rewriting algorithms presented later. (]
Example 6:

The adomed rule set corresponding to the program and sip in Example 2 is the following:
p¥ (X.Y) :- same¥ (X,Y), 4?2 (X,Y).

same¥ (X,X) :- .
qbb 6,X):-.

The adomed program contains a rule that is not range-restricted (rule 2). This program is disal-
lowed in [BeR87]. []

Example 7:

The adomed rule set corresponding to the program and sip in Example 3 is the following:

¢’ (X) - p? (XX,Y).

p* (X,Y.Z) - b(X,U,V), b(W,Y,Z).

This adorned program would not be produced at all by the algorithm in [BeR87]. Only the
adorned version p& would be considered for the occurrence of p in the first rule, since X is not

-10-

bound to the left of p in the rule. (As we will see later, this leads to a rule that is not range-
restricted in the rewritten ‘‘magic’’ program.) (]

Example 8:
The adomed rule set corresponding to the program and sip in Example 4 is the following:

pf (X) - qIX.Y), ¢ 2° (IYIZD).
ql(2,0) :-.
q2b((YIU]) :- qI(Y.U).

The following variant of the program in Example 4 illustrates a subtle point:

p(X) - qI(X,Y), Q2([YIZ)).
ql(2,0) :-.

q2([YU]) :- q1(Y,Z), q2(U).
q2([]) :-.

Let the same sip be chosen for the first rule. Thus, the adornment q2° is reachable, that is, it
appears in P4, Consider the recursive rule defining ¢2. With g2% as the head, we can choose
the following sip for this rule: g2, —y ¢ 2, and thereby bind the argument of ¢ 2 in the body of
this rule. This gives us the following adomed program:

p’ (X) - qI(X.Y), ¢ 2° ([Y1Z]).

q1(2,0) :-.

q2°((YIU)) - q1(Y.2), g 2° ().

q2° (D :- .

The adonment that we use for the occurrence of ¢ 2 in the body of the second rule is optimistic.
The adormment g 2° was chosen in the first rule since Y was bound in [YIZ]. By using this adorn-
ment for the head of the second rule, we (optimistically, and alas, mistakenly) assume that U is
bound. (Technically, it is bound to a free variable. Recall that ‘‘bound’’ is to be understood as
“‘potentially restricted’’. As we will see, the set of answers is still computed correctly.) (]

In general, it is important to remember the sips that were used to generate the adomed program,
since they are used in the subsequent rewriting. Note that a single adorned version of a rule is
chosen for each adorned version of the head predicate. Thus, all goals whose binding pattemn
matches the adomment in an adorned head predicate are solved using the same adorned version
of the rule, chosen at compile time.

4.1. The Case of Full Sips

The number of adomed versions of a n-ary predicate p is 2". However, the number of adorned
versions that are reachable from the query, i.e., that appear in P is typically much smaller. In
particular, if a full sip is chosen for each rule in the program P, all adomments are strings of bs.
Thus, P and P are identical, with the understanding that in P%?, each n-ary predicate is
adorned with a string of n bs.

5. Magic Templates

Henceforth, we only consider the adomed set of rules, P*. The next stage in the proposed
transformation is to define additional predicates that compute the values that are passed from one
predicate to another in the original rules, according to the sip strategy chosen for each rule. Each
of the original rules is then modified so that it applies only when values for these additional

-11 -

predicates are available. These auxiliary predicates are called magic predicates and the sets of
facts that they compute are called magic templates. ' The intention is that the bottom-up evalua-
tion of the modified set of rules simulate the sip that we have chosen for each adorned rule, thus
restricting the search space.

The rewriting algorithm to be described in this section is from [BeR87]. However, the evaluation
of the rewritten programs, the notion of program equivalence, and the proofs of the theorems and
lemmas characterizing the rewritten programs, all differ due to the different interpretations of sips
and adomments presented in this paper, and must be reconsidered. In order to keep this paper
self-contained, we present below the description of the rewriting algorithm:

1. We create a new predicate magic_p® for each p? in P (Thus, we create magic predicates
only for derived predicates, possibly only for some of them.) The arity of the new predicate is the
number of occurrences of b in the adomment a, and its arguments correspond to the bound argu-
ments of p?.

2. For each rule r in P°¢, and for each occurrence of an adorned predicate p® in its body, we
generate a magic rule defining magic_p“ (see below).

3. Each rule (with head, say, p?(8)) in P is modified by the addition of the literal
magic_p®(6°) to the body.

4. We create a seed fact magic_q° (¢°) from the query g (9)?.
We now explain the second step in more detail. Consider the adomed rule:

rr p?@):- 910,450, ...,q."(8,)

Let s, be the sip associated with this rule. Assume that the predicates in the body are ordered
according to the sip. (Those that participate in the sip precede those that do not, and the predi-
cates in the tail of an arc precede the predicate at the head of the arc.)

Consider g;. Let N — g; be the only arc entering g; in the sip. We generate a magic rule
defining magic_gf as follows. The head of the magic rule is magic_g®(8?). If q i, J<i,isinN,
we add qj‘-” (8;) to the body of the magic rule. If ¢; is a derived predicate and the adornment a;
contains at least one b, we also add magic_q"(6 }’) to the body. If the special predicate denotin%
the bound arguments of the head is in N, we add magic p* (¢%) to the body of the magic rule.
(Note that every argument of the magic predicate corresponds to a b in adomment g;, and that
the f's, which correspond to free arguments in ¢/, do not correspond to any arguments of the
magic predicate. Thus, magic_gf is to be thought of as ‘‘the magic predicate of ¢{’’, rather than
as a predicate magic_g; with adomment a;.)

The restriction on programs in [BeR87] can be stated in terms of the rewritten programs produced
by the rewriting algorithms: ‘‘Every rule in the rewritten program should be range-restricted.”’
The restrictions on sips (in particular, the restriction that in a sip arc N —g p, every variable in §
should appear in N) and adornments (the restriction that partially bound arguments should be
considered free arguments) in [BeR87] are necessary to ensure this. We now illustrate the rewrit-
ing algorithm through several examples.

+ Hence the name for the strategy. The earliest version was called Magic Sets [BMSU86], and a generaliza-
tion to arbitrary range-restricted rules is called Generalized Magic Sets [BeR87].

+ We do not consider the case of multiple arcs entering a predicate; also, some rules defining magic predi-
cates can be simplified by dropping some occurrences of magic predicates in the body. The treatment is simi-
lar to that in {BeR87], and in particular, the simplification is dealt with in Proposition 4.2 of that paper.

-12-

Example 9: Using the sips presented in Example 1, the Generalized Magic Sets strategy rewrites
the adomed rule set corresponding to the non-linear same generation example into the following
set of rules. (The rule numbers refer to the adomed rule set.)

magic_sg” (john) [Seed; from the query rule]
magic_sg% (Z1) :- magic_sg® (X), up(X,Z1) [From rule 2, 2nd body literal]
magic_sg® (23) :- magic_sg® (X), up(X,Z1), sg¥ (Z1,22), flaZ2,Z3)
[From rule 2, 4th body literal]
sg¥ (X,Y) - magic_sg¥ (X), flat(X,Y) [Modified rule 1]
sg¥ (X,Y) - magic_sg* (X), up(X,Z1), s¢ ¥ (Z1,22), flav(Z2,Z3)
sg¥ (23,74), down(Z4,Y) [Modified ule 2] (]

In the above example, we observe that some joins are repeated in the bodies of the rules defining
magic _sg¥ (that are generated from rule 2) and the body of rule 2. There is a variant of Magic
Sets, called Supplementary Magic Sets, presented in [BeR87], that avoids this duplication of
effort by storing the results of these joins, after projecting out unnecessary arguments. We remark
that the Supplementary algorithm is easily generalized along the lines indicated in this paper.
Although we focus on the Magic Templates algorithm in this paper since it is easier to see the
intuition behind it, the Supplementary variant may well be the rewriting algorithm of choice.

Example 10:
The rewritten program corresponding to the adorned program in Example 7 is the following;:

pf (X,Y) - samef (X,Y), ¢°°(X.Y).
samef (X, X) :-.

q bb (5,X) :- magic_q kb (5,%).
magic_q® (X,Y) :- samef (X,Y).

The rewritten program contains a rule that is not range-restricted (rule 2). This program is disal-
lowed by the restrictions in [BeR87]. The execution of this program proceeds as follows. The last
rule can be applied to generate magic_q® (U,U). The third rule can then be applied to generate
¢%(5,5), and the first rule can then be applied to generate p (5,5). We observe that no other
facts are generated, and the program then halts. (]

Example 11:

The rewritten program corresponding to the adorned program in Example 8 is the following:

¢’ (X):- p®¥ X, X,Y).

b (X,Y,Z) :- magic_p® (X,Y), b(X,U,V), b(W,Y,2).

magic_p® (X,X) :- .

As we mentioned earlier, this program has a rule that is not range-restricted (the third rule). This
is because the sip contained an arc ({ }—x p) in which a variable in the label (X) did not appear

in the tail of the arc. Since such arcs always lead to rules that are not range-restricted in the
rewritten program, such arcs were disallowed by the definition of sips in [BeR87]. []

Example 12:
The rewritten program corresponding to the first adomed program in Example 9 is the following:
pf (X) - qIX.Y), g 28 ((Y1Z)).

ql(2,0) :-.
q2° ([YIU)) :- magic_q2°([YIU)), q1(Y,U).

-13-

magic_q2° (1Y1Z]) :- q1(X.Y).

The execution of this program would proceed as follows. The last rule is applied to generate
(only) the fact magic_q 2°([01Z)). The third rule is now prevented from producing any facts.
Therefore, the first rule cannot produce any facts either, and so the computation halts.

The rewritten program corresponding to the second adomed program in Example 9 is the follow-
ing:

pf (X) - qUX.Y), g 22 ((Y1Z)).

q12,0) :-.

q28 ((UIV]) :- magic_q2° ([UIV]), q1(U,W), g2 (V).

q2° (1) :- magic_q 2" (1)).

magic_q2° ((YIZ)) :- q1(X,Y).

magic_q 2°(V) - magic_q 22 (ruivy).

The second rule defining magic_q2° is produced because of the occurrence of g 2% in the body of
the rule defining g2°. We observe that this rule produces the fact magic_q 2°(V). Thus, every
fact is in this relation, and magic_gq 2% becomes a trivial filter that does not restrict the computa-
tion. This is exactly what should happen since the argument of ¢2° in the body of the rule
defining g 2% was really a free variable, as discussed in Example 9. []

The previous examples illustrated the nature of the extension from Magic Sets to Magic Tem-
plates. The ability to deal with rules that are not range-restricted in the rewritten program pro-
vides an elegant solution to the problem of utilizing partially bound arguments (examples 4, 8
and 12). Example 11 illustrated another situation - repeated free variables - in which the ability
to deal with such rules allowed us to extend the range of sips that can be implemented by
bottom-up strategies. This ability is also required to utilize some standard logic programming
techniques, such as difference lists.

Example 13:

The following is a program that appends two lists in constant time. However, the input lists must
be represented as difference lists. A difference list is a term representing a list as the *‘difference’’
of two lists. For example, consider a list L composed of the elements 1, 2 and 3 in that order.
We can think of it as the difference of the list composed of 1, 2, 3 and X, where X is some list,
and the list X. We use the syntax dlist([1, 2, 3IX], X) to denote this term.

append(dlist(X,Y), dlist(Y,V), dlist(X,V)) :-.

We expect this rule to be used with the first two arguments bound to (difference) lists. The third
argument in the (only) resulting fact is the list obtained by appending the second list to the first.
Thus, the adomed version of this rule is:

append® (dlist(X,Y), dlist(Y,V), dlist(X,V)) :- .

The call append(dlist([1,21U],U), dlist([4,51V],V),Z)? succeeds by generating the fact
append””f (dlist([1,21U],U), dlist([4,5V],V), dlist([1,2,4,51V],V)). The computation makes the
binding U = [4,5iV], through unification. This rule is range-restricted. However, in the input argu-
ments, the variables Y and V must be (bound to other) free variables. The rule that generates the
fact(s) containing the input argument lists must therefore generate facts with free variables in
them. This implies that the program must contain at least one rule that is not range-restricted.

-14 -

Let us consider another program that uses this technique. The following program, from [MW88],
breaks a list into two parts. The problem is that we may not know where to break the list until we
process the first part. To do this efficiently without stepping through the list in the first part, we
use difference lists. (For a better appreciation of the power of difference lists, the reader is
referred to [MW88] for an altemnative program that does not use difference lists.)

all(dlist(W,R)) :- firstpart(dlist(W,M)), secondpart(dlist(M,R)).
firstpart(dlist([1, 2IX], X)) :- .

When executed as a Prolog program, the only argument of a/l is bound to a difference list. Con-
sider the call all (dlist([1,2,3,4,5], (1))? This generates the goal firstpart (dlist(W,M))?, which is
solved with firstpart (dlist([1,2,3,4,5], [3,4,51)). Thus, the input list has been (processed and) bro-
ken. We then solve the goal secondpart (dlist([3,4,5], [1))? (using rules defining secondpart, that
are not included here).

We can realize this by rewriting the program:

all® (dlist(W R)) :- magic_all® (dlist(W,R)),
firstpart® (dlist(W,M)), secondpart® (dlist(M,R)).
ﬁrstpart” (dlist([1,2IX], X)) :- magic _ﬁrstpartb (dlist({1,21X], X).
magic jrswartb (dlist(W,M)) :- magic_all b (dlist(W,R)).
magic_secondpart® (dlist(M,R)) :- magic_all® (dlist(W R)), firstpart® (dlist(W,M)).
magic_all® (dlist([1,2,3,4,5], [])).

The last rule is the seed, and is obtained from the call. We have not presented the details of the
sip chosen, or the intermediate adorned program, but these should be clear. The point to note is
that the rule defining magic_firstpart® is not range-restricted (M appears in the head but not in
the body). The bottom-up execution of this program mimics the Prolog execution, as the reader
can easily verify. (Notice that the generation of ‘‘magic’’ facts corresponds to the generation of
goals in the Prolog execution.)]

We now consider the correctness of the transformation. Let P™ denote a program obtained from
P by the ‘‘magic’’ transformation. We must first resolve a small detail. For the given query,
we have a seed definition for the magic sets. If we choose a different query with the same query
form, the same magic predicates, magic predicate definitions and modified rules will result, but
the seed will be specific to the query. Therefore, let us consider the seed to not be a part of P™.

With respect to the original program P, an adorned predicate p can be viewed as a query form.
It represents queries of the form p (8), in which all arguments corresponding to b’s in adomment
a are bound. We say that (P, p®) and (P, p®) are equivalent if the two programs produce the
same results for every instance of the query form p?, if the corresponding seed is added to P™ .
We must show that (P, q¢) and (P™8, ¢*) are equivalent, where ¢¢ is the given query form. This
follows from the stronger result presented below. We remind the reader that we only consider
pure Hom clause programs without negation.

Theorem 5.1: Let P%, P™ be as above, and let p® be a predicate that appears in P*. Then
(P, p?)is equivalent to (P™, p?).

Proof: First, we note that for each ‘‘modified’’ rule (i.e., those produced in step (3) of the
transformation) of P™¢, if the predicate adornments and the magic literal corresponding to the
head are dropped, we obtain a rule of P. Further, only the modified rules contain predicates from
P in the head. It follows that if a modified rule of P™ is applied to some facts to produce 2
new fact, then the corresponding rule in P can be applied to the unadomned versions of those facts

-15 -

to generate the corresponding new unadomed fact. By induction, if an adorned version of a fact
is generated in a bottom-up computation of P™¢, then the unadomned version of the same fact is
generated in a bottom-up computation of P . Thus, the answer set for (P™, p?) is contained in
the answer set for (P, p?).

For the other direction, if p(¢) is generated by a computation of P, then there exists a
derivation tree forit. The fact p(¢) is at the root of the tree, the leaves are base facts, and each
internal node is labeled by a fact, and by a rule (in P) that generates this fact from the facts label-
ing its children. We prove, by induction on the height of derivation trees in P, that given a
derivation tree for a fact p(c) in P, if p® is in P4 there is a derivation tree in P™ u |
magic p°(c b) } for p?(c). The basis of the induction is the set of derivation trees of height one.
These are simply base facts, and they are also derivation trees for P™ . Let the hypothesis, which
we will refer to subsequently as hypothesis (1), hold for trees of height less than n. Consider now
a derivation tree of height n, and assume that the rule used to derive its root is the following:

r: p(©):- q1(01), 72002, qx (D)

We use the notation ¢ and J,- to denote vectors of arguments in the rule instance in order to dis-
tinguish them from the corresponding arguments in the text of the rule. Let the rule instance
corresponding to the derivation of the root using rule r be:

P@ = qid), 42y, .. 4, (dy)
The modified rule for rin P™ has the form:
s p®(8):- magic_p®©®"), q1' (01, 45 @2, - . ., 42" (@n)
The corresponding rule instance is:
p*(©) - magic_p* (@), 4% (d), 45 (@), (d,)

Each fact g; (éii_), i =1 to n, is the root of a derivation tree in P of height less than n. To show
that there is a derivation tree in P™ _j { magic_p°(c b) } for p?(c), we have to show that there
exist derivation trees for the facts q{"(cf).i=11on. If ¢g; is a base predicate, there is a derivation
tree of height 1. If ¢; is a derived predicate, this follows from induction hypothesis (1) if we
show that there is a derivation tree (in P™¢ \ { magic_p“(c %y }) for the facts magic_q? (El_i—b), i
=1ton

The proof that there is a derivation tree for these magic facts is by induction on the position of the
predicate occurrence in the body of rule r. As the basis case, let g, (¢;) be the first derived predi-
cate occurrence in the body. By construction, there is a rule, say rl, in P™ with head
magic_q®(®?), such that the body only contains base literals that occur to the left of ¢, (¢;) in r,
and magic_p*° 0%). T The corresponding facts in the body of the rule instance for r’ can be used in
the body of rule rl to obtain an instance of rule r1 with head fact magic_g* (5,7’). Thus, there is
a derivation tree in P™ y { magic_p®(C %Y } for magic_gf(d;®). 1t follows from induction
hypothesis (1) that there is also such a derivation tree for gf*(d;).

Let g,,(9,,) be the jth derived predicate occurrence in the body of rule r, and let the hypothesis,
which we will refer to as hypothesis (2), hold for derived predicate occurrences 1 t0 j-1. By

+ Without loss of generality, we assume that the body literals are ordered according to the partial order in-
duced by the sips.

-16 -

construction, P™ contains a rule, say 12, with head magic_g," (02), such that the body only con-
tains magic_p° (8%), base literals, derived predicate occurrences 1 through j-1, and the
corresponding magic literals. Thus, the facts corresponding to these literals in the instance of rule
r’, which are generated according to induction hypothesis (2), can be used in rule r2 to construct a
derivation tree for magic_q2(d,,”) as well. It follows that there is a derivation tree for ¢ (d,,)
also. This completes the proof of Theorem 5.1. []

5.1. Magic Programs for Full Sips

There is some syntactic simplification possible in that we need not explicitly indicate the adorn-
ments of predicates, since every argument is considered bound. We note that certain arguments,
although designated as bound, really provide no restriction. Consider the original program. If
argument position i of a body literal, say ¢ (8), in rule r contains just a variable, and this variable
appears nowhere else in this literal or in preceding literals of P (r) _j ps ., then this argument pro-
vides no restriction. The magic rule generated from this literal occurrence has magic_q () as the
head literal, and the variable in the i th argument can be replaced by a ‘‘don’t-care’’ variable. (In
fact, we can reduce the arity of the magic predicate by considering such arguments to be free, but
this would obviously mean sacrificing the simplicity of having just one reachable adornment - a
string of b s - for each predicate.)

We also observe that an argument position is potentially restricted in all other cases - if the vari-
able appears in a preceding literal, more than once in the given literal, or if the position contains a
non-variable term.

6. Properties of Magic Programs

In the previous section, we showed that the Magic Templates algorithm transformed the given
program into an equivalent program with respect to the query. The fixpoint of the transformed
program is computed using a bottom-up iteration, possibly with some refinements as in Sem-
inaive evaluation (e.g. [Ba85]). In this section, we consider some properties of the fixpoint
evaluation of the transformed program.

6.1. Optimality of the Magic Implemention of Sips

Our main result concems the optimality of the Magic Templates strategy, in the sense that it
implements a given set of sips by computing the minimum set of facts. We first define the class
of strategies for which this claim of optimality is made, following [BeR87]. Our definition gen-
eralizes that in [BeR87] by including strategies that generate nonground facts. Essentially, the
definition seeks to capture the work that must be done to establish that every answer has been
computed; and to preclude strategies that behave like ‘‘oracles™, in that they work with
knowledge other than the logical consequences of the rules and the facts in the database. It also
limits consideration to strategies that follow the given set of rules, according to the given collec-
tion of sips.

Accordingly, we define a sip-strategy for computing the answers to a query expressed using a set
of Hom clause rules, and a set of sips, one for each adornment of a rule head, as follows. We
assume that a strategy constructs queries, and for each query it constructs answers by using the
rules in the program to compute new facts. The set of queries and the set of facts generated during
a computation must satisfy certain conditions, which express the requirement that the strategy
follow the sips in computing the answers.

-17 -

A sip-strategy takes as input
i. Aquery,and

ii. A program with a collection of sips, where for each rule, there is exactly one sip per head
adornment.

The computation must satisfy the following conditions:
1. Ifp(0)?is aquery, and p (¢) is an answer, then p (¢) is computed.

2. If p(0)? is a query, then for every rule with head predicate p, a query is constructed for
every predicate in the rule body according to the sip for the rule.

A sip-strategy is initially called with the given set of rules, the facts in the database, and the given
query. The first condition requires that it computes all answers to each query that it generates.
The second condition describes how answers are generated for a query. For every rule head
matching the query, we invoke the rule, thus determining an adomment, and selecting a sip to fol-
low. Next, the rule’s body is evaluated. For every body literal, subqueries are generated accord-
ing to the sip. Consider a body literal p®(8), and let p®(¢)? be a subquery generated from it. The
vector of bound arguments ¢ in the subquery is obtained from 8° by substituting, for the vari-
ables in it, terms that are passed through the sip arc entering the node corresponding to this literal.
Each free argument in ¢ is a unique variable; the subquery does not restrict the terms that may
appear in the free argument positions. (In defining adomments and passing bindings, an argu-
ment must be considered bound if any variable in it is bound.) For each subquery generated, there
is a set of answers. These are used to pass bindings, as per the sip, to create additional
subqueries. By combining the answers to all these subqueries, we generate answers for the origi-
nal query involving the rule head.

A sip-optimal strategy is defined to be a sip-strategy that generates only the facts and the queries
required by the above definition for the predicates in the program.

We have the following theorem:.

Theorem 6.1: Consider a query over a set of rules P, where a sip is associated with each adorn-
ment of a rule’s head. Let P™ be the set of rewritten rules produced by the Magic Templates
method. The bottom-up evaluation of P™ is sip-optimal.

Proof: Denote the collections of queries and facts in conditions 1 and 2 in the definition of a
method by Q and F respectively.

Let us consider a bottom-up computation of P™ . First, we need to identify the facts generated in
such a computation. The magic seed is a generated fact. Further, suppose that f, ... f,, are gen-
erated facts corresponding to derived predicates in the body of a rule, and g4, ..., g; are facts in
base predicates in the body, such that the body is satisfied and generates the fact f for the head.
Then f is also a generated fact.

It remains to show that every fact generated for a predicate in a bottom-up computation of P™ is
an answer to a query in Q, or denotes a query in Q. More precisely, we claim that for each gen-
erated fact, if it is a magic fact magic_p®(¢), then there is a query p°®(8)? in Q, such that ° = ¢;
and if the generated fact is a fact p®(¢), then there is a query p®(0)? in Q such that ¢ is an
instance of 6.

The proof is by induction on the height of derivation trees. For the basis of the induction, we have
the seed, say magic_q°(¢), which corresponds to the given query.

-18 -

Suppose the claim holds for all facts generated using a derivation tree of height n or less. Con-
sider a fact f that is generated using a rule r with derived facts f {, ... , f» in the body that all
have derivation trees of height n or less. If the fact f is p®(¢), where p® is in P4, then one of
the f;, say f |, must be magic - p®(¢?), by construction of the ‘‘modified’’ rules in P™. By the
induction hypothesis, magic_p®(¢?) corresponds to a query p®(8) in Q, such that 6° = ¢°. Since
0/ is a vector of distinct variables, ¢ must be a substitution instance of 0, and the claim holds for
fact f as well.

If the fact f is a magic fact magic_p®(¢), generated using a rule r with head, say, magic_p“(0),
then consider the adorned rule in P°?, say r 1, and sip arc N — p, that produced the magic rule
r. By construction of magic rules in P™, if ¢ is a predicate in N, and corresponds to the literal
q®'(m) in r1, then ¢°'(n) and magic_q®'(n®) appear in the body of r.1 Further, each of these
facts corresponds to a query in Q or an answer to a query in Q, by the induction hypothesis. From
the interpretation of a sip, the terms that are substituted for the variables in 0 to obtain ¢ must be
passed through the sip arc entering the node for p® as bindings for those variables. By condition
(2) in the definition of a method, the query p°(¢)? must be in Q. This completes the proof of
Theorem 6.1. []

We consider the significance of this result. First, our definition tries to capture the intuitive idea
of a strategy that evaluates a program using a given sip collection. A method that does not gen-
erate some of the queries or facts in Q and F cannot be considered as using the given collection of
rules and sips. For if it does, then there must be a stage in the computation (corresponding to the
missing queries or facts) where it is ‘‘guessing’’, or using an oracle. However, there are strategies
which use auxiliary information to avoid generating all answers to some subqueries, and these are
not covered by our definition of a ‘‘method’’. An example of such a method is QoSaQ [Vi88],
when ‘‘global optimization’’ is used. (An appropriate comparison with such methods must weigh
the advantage of inferring fewer facts and goals with the cost of maintaining and using the auxili-
ary information.) There are also strategies that do not proceed by generating subgoals on the
given program, and these strategies are not covered either. Examples of such methods include
Counting [BeR87, BMSU86, SZ86a, SZ86b], the methods proposed in [HN84, Na87, Na88].
Typically, such methods seek to exploit the structure of the rules in some way that goes beyond
sideways information passing, and are less generally applicable.

However, our definition is sufficiently broad to include a large number of proposed strategies.
These include Prolog, versions of top-down evaluation with memoing such as QSQ [Vi86] and
Extension Tables [DW87], Static and Dynamic Filtering [KL86a, KL86b], and several parallel
evaluation strategies proposed in the logic programming literature including those in [Ka87,
VG86].

A strategy may generate additional queries, or facts, in addition to those that must be generated
by conditions (1) and (2), and then we have good reason to consider it inferior to a sip-optimal
strategy such as Magic Templates. Sip-optimality does not imply that facts and queries are not
generated more than once. However, if the bottom-up computation is done using Seminaive
evaluation (e.g., [Ba85]), no fact is inferred twice using the same derivation. (In general, it is not
possible to avoid inferring the same fact by two distinct derivations without sacrificing complete-
ness of the evaluation strategy.) Prolog does not have this property, and the importance of this
distinction between Magic Templates and Prolog is emphasized by the study in [BaR86, BaR88].

+ For simplicity of exposition, we assume here that base predicates are also adorned.

-19-

(In the examples considered there, Magic Templates is identical to Generalized Magic Sets,
which is the method used in the comparison. Also, there are some examples in which that study
assigns a lower cost to Prolog, in terms of the number of facts inferred. We note that this does not
contradict the results in this paper since the goals generated were counted in the cost for Magic
Sets, since they are facts generated by rules in P™ , but not in the cost for Prolog, since they are
not facts generated by rules in P, which is the program used by Prolog.)

Finally, sip-optimality does not necessarily imply that the computation is efficient in the
resources it consumes. In particular, it does not reflect the overhead associated with a given
method in inferring a new fact or goal from given facts and goals. For example, bottom-up
evaluations offer the potential advantage of utilizing efficient set-at-a-time join algorithms, espe-
cially for relations containing only ground facts. On the other hand, each fact and query (i.e.,
magic fact) must be stored, and each new fact must be checked to see if it is previously generated.
This is an overhead that is not incurred by Prolog. Of course, this has other consequences for Pro-
log, including repeated inferences and potential looping.

We observe that in this paper we have assumed that all answers to a query are required. If only
one answer, or a subset of answers, is desired, the ability to explicitly direct the search as in Pro-
log may be useful. We have also restricted our discussion to pure Hom clause programs without
negation.

6.2. Termination Issues

We now consider the question of whether the bottom-up evaluation of P™ terminates after com-
puting all answers to the query. We have the following corollary from Theorem 6.1.

Corollary 6.2: Consider a query over a set of rules P, where a sip is associated with each adom-
ment of a rule’s head. Let P™ be the set of rewritten rules produced by the Magic Templates
method. The bottom-up evaluation of P™ terminates if any terminating sip-strategy exists for
evaluating P according to the associated sips. []

Further, the bottom-up evaluation of P™ terminates if the set of goals and facts to be generated
is finite. Thus, it always terminates for program that do not contain function symbols.

The following example illustrates some aspects of termination that arise due to our consideration
of nonground terms. We compare Prolog and bottom-up evaluation. (The latter with and without
rewriting).

Example 14:

pX) :- p((XIXD).
p([[SNES1D :-

We consider three queries: (1) p(X)? (2) p([51)? (3) p([6])?

Prolog does not terminate on any of these queries. If the program is evaluated bottom-up without
any rewriting, it terminates after producing the single new fact p([5]), regardless of the query.
(Not rewriting can be thought of as rewriting according to a sip that contains no arcs. That is, it
simply reflects a certain choice of sips.)

Suppose we rewrite this program using the same sip as Prolog: p, —x p. This gives us the fol-
lowing adorned program for query (1):

pf (X) - p? ((XIX]).
pf (ISMSID =- .

=20 -

pb(Y) = p® ((YIYD.
pb (LSS -

The rewritten program is:

pf (X) - p? ((XIXD).

pf S5 -

p?(Y) :- magic_p®(Y), p® (YIYD).
p® ([[511(5)]) :- magic_p® ([[ST5]D).
magic_p®((XIX]) :- .
magic_p®((YIY)) :- magic_p®(Y).

The execution proceeds as follows. We can apply the last rule to produce
magic_p®(([UIU]I[UIU]]), but this can be generated from magic_p®([X\X]) by assigning X =
[UIU]. Thus, magic _pb ([XIX]) is more general and magic_ _p" ([[UIUIfUtU}) is discarded. We can
apply the fourth rule to produce p”([[S]l[S]]). We can then apply the first rule to produce pf {sh.
No further new facts can be produced, and the computation halts.

Consider the second query. The adorned program is:

pe(Y) - pP ((YIYD).
PP SIS -

The rewritten program is:

pb(Y) :- magic_p®(Y), pb([YIY)).
pb (USISID) :- magic_p® ((SIST)).
magic_p® ((YIY]) :- magic_p®(Y).

The seed is magic p®((5]). The last rule can be repeatedly applied to produce
magic_pb([[S]l[S]]), magic_p”([[[5‘]|[5]]![[5]i[5]]]), etc. However, once we apply the first rule to
produce p b([5]), it is easy to see that the computation can be stopped since this is the only answer
fact.

Consider the third query. The adomned and rewritten programs are the same as for the second
query, but the seed is now magic _pb ([6]). The last rule can be repeatedly applied to produce
magic_p®([SNI51)), magic_p® ([[SNSINIISIS]ID, etc. In this case, the fact p®([6]) will never
be produced, but there is no way to stop the computation, which produces facts for magic_p b for-
ever. We note that this is a faithful implementation of the Prolog sip - in the first two queries, the
bottom-up computation terminated due to its duplicate elimination or because the only answer
had been generated. In this case, the computation mimics Prolog all too faithfully. (]

We do not consider how to test whether bottom-up evaluation terminates on a given program. We
refer the reader to [APPRSU86, KL.87, KRS88] for some work on this problem.

7. Constraint Logic Programming

We now describe how Constraint Logic Programming (CLP) can be implemented using the
bottom-up approach we described in earlier sections. The ability to deal with rules that are not
range-restricted is crucial. Given this ability, the extension to deal with CLP programs is natural:
essentially, with each fact we now associate a set of constraints. As we observed earlier, a fact
with variables in it denotes a (possibly infinite) set of facts. Constraints limit this set of facts by
excluding those which violate the set of constraints associated with the fact. Obviously, facts
which do not contain variables have no associated constraints (and represent a single fact).

-21-

Consider the following rule:

pX,Y) - X<Y.

Given the query p(X,Y)?, a CLP system returns the constraint X < Y as the ‘‘answer’’. That is,
the answer is a constrained fact, **(X,Y) where X < Y.

The notion of constraints is not really new - we have been using some form of constraints
throughout the paper. For example, the fact p([XIY]) can be thought of as a constrained fact
““‘p(Z) where there exist some X,Y such that Z = [XIY]"". Indeed, the rule *‘p(X) :- b(X).”’ can be
thought of as a constrained fact *‘p(X) where b(X) is true’’. However, it is useful to distinguish
these from constraints such as *‘X < Y"’, which are resolved using a specialized constraint solver.
Henceforth, we use ‘‘constraint’’ to refer only to these new forms of constraints; while all our
examples are of arithmetic constraints, this is not necessary, so long as we have a sound and com-
plete constraint solver. We use where as a keyword to associate constraints with facts; for exam-
ple, p(X,Y) where X < Y.

A rule in a CLP program contains a set of constraints in addition to a conjunction of literals. As
for logic programs, applying a rule bottom-up involves taking the join of the body literals to gen-
erate facts for the head predicate, but now generated facts which do not satisfy the constraints in
the rule are discarded. This is a slight simplification since each fact that is unified with a body
literal may have a set of constraints associated with it. These constraints, after applying the unify-
ing substitution, must be added to the set of constraints associated with the rule in order to gen-
erate a new constrained fact corresponding to the head.

Example 15:
Consider the following program:

ql(X.,Y) - q3(Z,Y), 2(X,2).

@(X,Y) - 3X,Y), @3(U V), X=U, Y= V.
g5(X,Y) :- @2(X,U), q2(V,Y), q3(U,V).
g3(X.Y) - q6(X,Y).

g6(X,Y) - X<Y.

q2(1,2) :-.

q2(1,5) :-.

q2(4,3) :-.

We assume that no rewriting is done, in order to focus on the basic properties of CLP programs
and their (bottom-up vs. top-down) execution. Consider the query q1(X,Y)? By using the rules
defining ¢3 and ¢ 6, we generate ¢ 3(U,V) where U < V. Now, using the facts for 2, we can
generate the facts ¢ 1(1,Y) where Y > 2, ¢ 1(1,Y) where Y > 5, and ¢ 1(4,Y) where Y > 3. It is
easy to see that the second fact is subsumed by the first. This is a natural extension of our
definition of when a fact is more general than another, and (depending on how intelligent the con-
straint solver is) we can discard the second fact.

Consider the query q4(X,Y)? By substituting the (only) fact for ¢ 3 into the rule defining g4, we
have ¢3(X,Y), X <Y, q3(V,U),V<U,X=U,Y = V. If the constraint solver can now detect that
there is a conflict, no facts are produced for g4. This query also allows us to make an important
comparison between top-down and bottom-up strategies. A top-down strategy would solve each
q 3 goal independently. Thus, the fact in ¢ 3 (and also ¢ 6) is derived twice. The bottom-up stra-
tegy only infers it once. With recursion, this effect could have a major impact on performance.

-22-

Consider the query g5(X,Y)? The answer is just the fact ¢5(1,3). We leave it to the reader to
work out the details of the execution. []

Example 16:

We rewrite the following program to reflect a top-down execution, and compare the bottom-up
and top-down approaches with respect to termination.

ql(X,Y) :- 2(X,2), q1(Z,Y).
q1(10,10) :-.
RXY)-X<Y.

Query: q1(5,Y)?

The rewritten program is:

g 1% (X,Y) :- magic_q1% (X), ¢2% (X,2), 1% (Z,Y).
q1%(10,10) :- magic_q 1% (10,10).

q2% (X,Y) :- magic_q2¥% (X),X<Y.

magic_q 1% (Z) :- magic_q1¥ (X), 2% (X,2).
magic_q2% (X) - magic_q 1% (X).

magic_q 1% (5).

Applying the rule defining magic_q 1%, we can produce the facts:

magic_q 1% (U) where U > 5,
magic_q 1% (U) where U>V and V > 5,
etc.

The first fact is more general than the second. If the constraint solver is able to establish this, we
can discard the second fact, and the computation of magic_gq 1% facts stops after producing the
fact magic_q 1% (U) where U > 5. Using this fact in the first rule, we can produce the fact
q 1% (X,10) where X > 5. (Using the fact magic_q 1% (5), we also generate the fact ¢ 1% (5,10),
which is the only fact in the answer.) The computation then terminates. In contrast, the top-down
strategy sets up goals forever (corresponding to the infinite set of ‘‘magic’’ facts listed above)
without ever producing the answer fact. We note that even if the constraint solver is not smart
enough to detect that the first fact in magic_gq 1% is more general than others (which would cause
the bottom-up strategy to produce an infinite number of magic facts and therefore not terminate),
the bottom-up strategy still produces the one answer fact. []

From a binding propagation standpoint, as we have shown, the distinction between top-down and
bottom-up strategies is blurred since any top-down strategy can also be implemented bottom-up
through rewriting. The appropriate control strategy depends upon the problem. While there are
applications where a top-down strategy (say, Prolog) performs better, there are also cases where
bottom-up strategies perform better, and, ideally, the choice must be made using careful cost esti-
mates. However, bottom-up strategies have one important virtue: completeness. As we saw in the
above example, all facts in the answer are eventually produced, unlike in the top-down strategy.
Depending on the constraint solver, the bottom-up strategy often also terminates in cases when
the top-down strategy does not.

-23-

8. Conclusions

We have presented a bottom-up strategy that is applicable to general Hom clause programs. The
method is sound and complete, and also efficient in that it computes no facts or goals that are not
also computed by a top-down strategy such as Prolog. Further, by virtue of the underlying Sem-
inaive fixpoint evaluation, no fact is inferred twice using the same derivation, and in this respect
it is superior to Prolog. The method often terminates when Prolog does not, and in particular, it
always terminates if the program contains no function symbols. Bottom-up fixpoint evaluation
also offers an opportunity for efficient set-oriented operations, such as joins. Thus, the method
has several attractive properties. On the other hand, it requires that we store more facts, the rela-
tive real costs of inferences in the two approaches are hard to measure, and backtracking offers
some advantages when we are only interested in one answer to a query.

Another contribution of this paper is that sideways information passing, or binding propagation,
is distinguished from the control strategy used to implement it, thus providing insight into the
relationship between top-down and bottom-up methods.

9. Acknowledgements

Catriel Beeri has had a great influence on the development of the ideas presented in this paper,
and in particular, the idea of using sips to guide rewriting strategies arose in joint work with him,
presented in [BeR87]. Discussions with Joxan Jaffar and Jean-Louis Lassez were helpful in in
seeing the applicability of these results to Constraint Logic Programs. Jeff Ullman made several
helpful comments on an earlier version, and revised the abstract. Michael Kifer commented on a
draft, gave pointers to his work with Lozinskii, and clarified it in discussions. Saumya Debray
provided extensive comments that greatly improved the paper. I thank them all for their help.

10. References

[APPRSUS86] F. Afrati, C. Papadimitriou, G. Papageorgiou, A. Roussou, Y. Sagiv and J.D. Ull-
man, ‘‘Convergence of Sideways Query Evaluation,”” Proc. ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, 1986.

[Ba85] F. Bancilhon, ‘A Note on the Performance of Rule Based Systems,’” MCC Techn-
ical Report DB-022-85, 1985.

[BaR86] F. Bancilhon and R. Ramakrishnan, ‘‘An Amateur’s Introduction to Recursive
Query Processing Strategies,”” Proc. SIGMOD, 1986.

[BaR88] F. Bancilhon and R. Ramakrishnan, ‘‘Performance Evaluation of Data Intensive
Logic Programs,”” In Foundations of Deductive Databases and Logic Program-
ming, Ed. J. Minker, Morgan Kaufman, 1988.

[BeR8&7] C. Beeri and R. Ramakrishnan, ‘‘On the Power of Magic,”” Proc. ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, 1987.

[BMSU86] F. Bancilhon, D. Maier, Y. Sagiv and J. Ullman, ‘‘Magic Sets and Other Strange
Ways to Implement Logic Programs,’’ Proc. 5th ACM SIGMOD-SIGACT Sympo-
sium on Principles of Database Systems, 1986.

[BNRST86] C. Beeri, S. Naqvi, R. Ramakrishnan, O. Shmueli and S. Tsur, ‘‘Sets and Negation
in a Logic Database Language (LDL1),”’ Proc. ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, 1987.

[BPR87]

[DW8T]

(GMN84]

[HN84]

[JL87]

[Ka87]

[KL.86a]

(KL86b]

[KL87]

[KRS88]

(LM8&3]

(LMM88]

(MW388]

[Na87]

[Nag8]

[RLK86]

[SZ86a]

[SZ86b]

[U185]

[VK76]

224 -

I. Balbin, G.S. Port, and K. Ramamohanarao, ‘‘Magic Set Computation of
Stratified Databases,’’ Technical Report 87/3, University of Melbourne, 1987.

S.W. Dietrich and D.S. Warren, ‘‘Extension Tables: Memo Relations in Logic
Programming,’’ Proc. Symposium on Logic Programming, 1987.

H. Gallaire, J. Minker and J.-M. Nicolas, ‘‘Logic and Data Bases: A Deductive
Approach,”” Computing Surveys, Vol. 16, No 2, June 1984.

L. Henschen and S. Naqvi, ‘‘On Compiling Queries in Recursive First-Order Data
Bases,”' JACM, Vol 31, January 1984, pp 47-85.

J. Jaffar and J-L. Lassez, ‘‘Constraint Logic Programming,”’ Proc. Conference on
Principles of Programming Languages, 1987.

L.V. Kale, ‘‘The Reduce-Or Process Model for Parallel Evaluation of Logic Pro-
grams,’’ Proc. Intl. Conf. on Logic Programming, 1987.

M. Kifer and E. Lozinskii, ‘‘Filtering Data Flow in Deductive Databases,’’ Proc.
Intl. Conf. on Database Theory, 1986.

M. Kifer and E. Lozinskii, ** A Framework for an Efficient Implementation of
Deductive Databases,”’ Proc. Advanced Database Symposium, Tokyo, 1986.

M. Kifer and E. Lozinskii, ‘‘Implementing Logic Programs As a Database Sys-
tem,”’ Proc. Intl. Conf. on Data Engineering, 1987.

R. Krishnamurthy, R. Ramakrishnan and O. Shmueli, ‘‘A Framework for Testing
Safety and Effective Computability of Extended Datalog,’’ Proc. SIGMOD, 1988.

J-L. Lassez and M.J. Maher, ‘‘Closures and Faimess in the Semantics of Program-
ming Logic,”” Theoretical Computer Science.

J-L. Lassez, M.J. Maher, and K. Marriott, ‘‘Unification Revisited,*/n Foundations
of Deductive Databases and Logic Programming, Ed. J. Minker, Morgan Kauf-
man, 1988.

D. Maier and D.S. Warren, ‘‘Computing wiih Logic: Logic Programming with
Prolog,”’ The Benjamin/Cummings Publ:shing Company, 1988.

J.F. Naughton, ‘‘One-Sided Recursions,’’ Proc. ACM SIGMOD-SIGACT Sympo-
sium on Principles of Database Systems, 1987.

J.F. Naughton, ‘‘Compiling Separable Recursions,’’ Proc. Sigmod, 1988.

J. Rohmer, R. Lescoeur and J.M. Kerisit, ‘‘The Alexander Method: A Technique
for the Processing of Recursive Axioms in Deductive Databases,”” New Genera-
tion Computing 4, 3, 1986.
D. Sacca and C. Zaniolo, ‘*‘On the Implementation of a Simple Class of Logic
Queries for Databases,”” Proc. ACM SIGMOD-SIGACT Symposium on Principles
of Database Systems, 1986.

D. Sacca and C. Zaniolo, ‘*The Generalized Counting Method for Recursive Logic
Queries,’’ Proc. Intl. Conference on Database Theory, 1986.

1.D. Ullman, ‘‘Implementation of Logical Query Languages for Databases,”’
TODS, Vol. 10, No. 3, pp. 289-321, 1985.

M.H. Van Emden and R.A. Kowalski, ‘‘The Semantics of Predicate Logic as a
Programming Language,’’ JACM, 23,4, Oct 1976.

[VG86]

[Vig6]

[Vi88]

-25-

A. Van Gelder, ‘‘A Message Passing Framework for Recursive Query Evalua-
tion,”” Proc. SIGMOD, 1986.

L. Vieille, ‘‘Recursive Axioms in Deductive Databases: The Query/Subquery
Approach,”’ Proc. Intl. Conference on Expert Database Systems, 1986.

L. Vieille, ‘“‘From QSQ Towards QoSaQ: Global Optimization of Recursive
Queries,”’ Proc. Intl. Conf. on Expert Database Systems, 1988.

