The Wisconsin Multicube: A New Large-Scale
Cache-Coherent Multiprocessor

James R. Goodman
and
Philip J. Woest

Computer Sciences Technical Report #766

April 1988

The Wisconsin Multicube: A New Large-Scale Cache-Coherent Multiprocessor

James R. Goodman and Philip J. Woest

Computer Sciences Department
University of Wisconsin-Madison

Abstract-The Wisconsin Multicube, is a large-scale,
shared-memory multiprocessor architecture that employs
a snooping cache protocol over a grid of buses. Each pro-
cessor has a conventional (SRAM) cache optimized to
minimize memory latency and a large (DRAM) snooping
cache optimized to reduce bus traffic and to maintain con-
sistency. The large snooping cache should guarantee that
nearly all the traffic on the buses will be generated by 1/O
and accesses to shared data.

The programmer’s view of the system is like a multi -- a
set of processors having access to a common shared
memory with no notion of geographical locality. Thus
writing software, including the operating system, should
be a straightforward extension of those techniques being
developed for multis.

The interconnection topology allows for a cache-coherent
protocol for which most bus requests can be satisfied with
no more than twice the number of bus operations required
of a single-bus multi. The total symmetry guarantees that
there are no topology-induced bottlenecks. The total bus
bandwidth grows in proportion to the product of the
number of processors and the average path length.

The proposed architecture is an example of a new class of
interconnection topologies -- the Multicube -- which con-
sists of N=n* processors, where each processor is con-
nected to k£ buses and each bus is connected to n proces-
sors. The hypercube is a special case where n=2. The
Wisconsin Multicube is a two-dimensional Multicube
(k=2), where n scales to about 32, resulting in a proposed
system of over 1,000 processors.

1. Introduction

Shared-memory multiprocessors represent an effec-
tive means of providing substantial processing power at a
reduced cost. Cache coherent multiprocessors known as
multis, [Bell85] have the important advantage that cache
coherency can be maintained efficiently by hardware that
monitors the bus traffic, providing an elegant, simple view

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

of memory to the programmer. Since the coherency
mechanism generally relies on the ability of every cache
controller to observe every bus transaction, multis are res-
tricted to a single-bus implementation. Thus, this class of
multiprocessors is limited to some tens of processors.

Numerous large-scale multiprocessors based on
multi-stage interconnection networks have been studied
[GGKMS83, GKLS83, Butt85, PBGHS85, Lund87]. How-
ever, since there are no efficient mechanisms known for
maintaining hardware cache consistency among large-
scale multiprocessors, these architectures generally do not
allow shared data blocks to migrate from global shared
memory to local memories or caches. This requires sys-
tem programmers and/or compilers to be concerned with
explicitly mapping processes and data onto the various
processors and memories for efficient execution.

The hypercube architecture offers an attractive,
symmetric topology that can scale to a very large number
of processors. Unfortunately, the architectures based on
this topology to date have no notion of shared memory,
necessitating communication through messages and again
requiring explicit mapping of processes and data onto pro-
cessors and memory. Also, for a large number of proces-
sors, the number of intermediate nodes traversed is sub-
stantial (O (Ig,N)) for arbitrary paths, necessitating care-
ful analysis of algorithms and assignments for good per-
formance.

This paper presents a design for a new, large-scale
multiprocessor architecture -- the Wisconsin Multicube --
which employs a snooping cache protocol over a grid of
buses to produce an image of shared memory like that
provided by the multi. Memory requests which produce
cache misses typically require no more than twice as
many bus operations as that required for a single bus mul-
tiprocessor. Furthermore, the symmetry of the organiza-
tion allows bus traffic to be distributed uniformly across
the buses, reducing the probability of bottlenecks. The
architecture provides for a multi-level cache structure: a
conventional (SRAM) cache for reducing memory
latency, and a very large (DRAM) cache for minimizing
bus traffic.

The Wisconsin Multicube is a very attractive archi-
tecture for developing parallel applications. While pro-
viding a view of a single shared memory to the program-
mer, it imposes no notion of geographical locality. Furth-
ermore, this architecture may be viewed as a collection of
conventional multis connected by orthogonal sets of buses

which transparently extend the snooping cache protocol to
higher dimensions. This ensures that applications
developed for multis can be easily converted to this archi-
tecture. Thus, the Wisconsin Multicube is intended to be
a general purpose multiprocessor which supports a large
range of applications, such as high-transaction database
systems, large-scale simulation models, and artificial
intelligence applications, as well as a host of numerical
methods.

Currently, we are designing the memory hierarchy
(the caches and controllers, the cache coherency protocol
and the main memory), and other aspects of the system.
With little published data on the memory reference
behavior of parallel programs it is clear that further study
of this area will be mecessary to complete the design.
Even so, initial results using an approximate mean-value
analysis have been used to investigate effective execution
speed for various numbers of processors and rates of
shared data access, methods for reducing bus latency, the
effects of invalidation traffic, and other factors [LeVe38].
Some results from these studies are reported here.

The remainder of the paper is organized as follows.
Section 2 describes the architecture of the Wisconsin Mul-
ticube and section 3 describes its cache coherency proto-
col. Section 4 discusses efficient synchronization primi-
tive. Section 5 discusses a number of other important
design issues and modeling results. Section 6 introduces
the general Multicube topology and discusses the scalabil-
ity of the Wisconsin Multicube. Section 7 contains a sum-
mary. A formal description of the cache consistency pro-
tocol is contained in Appendix A.

2. System Architecture

The architecture employs a snooping cache system
over a grid of buses, as shown in figure 1. Each processor
is connected to a multi-level cache. The first level cache,
referred to as the processor cache,! is a high-performance
(SRAM) cache designed with the traditional goal of
minimizing memory latency. A second level cache,
referred to as the snooping cache, is a very large
(minimum size: 64 DRAMs) cache designed to minimize
bus traffic [Good83]. Each snooping cache monitors two
buses, a row bus and a column bus, in order to maintain
data consistency among the snooping caches. Con-
sistency between the two cache levels is maintained by
using a write-through strategy to assure that the processor
cache is always a strict subset of the snooping cache
[BaWa87].

The proposed cache structure should reduce the bus
traffic to the point that nearly all operations are either
accesses to true shared data, or they are true [/O. A
write-back cache-coherency protocol will eliminate most
bus traffic due to writes. Similarly, the large snooping
cache should obviate nearly all bus traffic from

"This cache is external to the processor, which likely will include
an on-chip cache as well.

[t [Fom b =
1 1
E D ’
Sl
lrm:w! [Proosasec } (Frocesse | .
laf-l Iof-J = (oo |
= B
MO Ml M2 Mn

Figure 1: The Wisconsin Multicube

conventional cache misses on reads. The size of this
snooping cache is comparable to main memory on most
current machines, so for a comparable workload, conven-
tional cache miss traffic should be comparable to page

traffic in current systems.?

A computer system of this magnitude has massive,
varied I/O requirements. While providing high bandwidth
to memory, the cache consistency mechanism must not be
broken, nor can there be interference with the processor
demands upon the memory system. The solution to these
problems is to attach the I/O directly to some or all of the
processors, with DMA routed through the Processor’s
snooping cache. At the interconnection level, [/O is then
treated as any other processor request for shared data, thus
providing great flexibility in I/O capabilities, while avoid-
ing much of the double writing normally associated with
DMA on conventional bus systems. In the proposed
machine, I/O data may never actually be written to
memory, but be read directly across the bus into the cache
of the processor requesting it.

Many aspects must be considered in the design of
the proposed machine. The most significant component is
the design of an efficient protocol to extend the snooping
bus consistency mechanism to a grid of buses. A prelim-
inary design of the protocol is discussed below. Addi-
tional design issues, especially those related to synchroni-
zation and reducing bus latency, are presented in Sections
4 and 5.

20f course, the enormous total memeory and computing power of
this machine will permit the analysis of problems of unprecedented size.
How the memory of such a system might be used can only be a matter of
speculation.

3. A Multiple Bus Cache Consistency Protocol

In a multi, bus operations require certain actions to
be performed by one or all of the system’s snooping
caches. Read requests are satisfied by main memory, or
possibly by some other processor’s cache. In the Wiscon-
sin Multicube, each row of processors is similar to a
multi. To connect the rows, column buses are added so
that each processor is connected to two buses. Main
memory is located on the columns, interleaved by lines or
pages. Thus, each line of memory has a home column,
that is, a column bus through which it can be accessed
from main memory.

In this scheme a line is always in one of two global

states.® The line may be in the unmodified state, in which
case the value stored in memory is correct, but additional
copies may be in one or more caches throughout the sys-
tem. Or the line may be in the modified state, in which
case the value in memory is stale and the correct value
resides in exactly one cache. With respect to a particular
cache, a line may be in one of three local modes: shared
(global unmodified state), modified (global modified state
with the line present in only this cache), or invalid. A line
that is invalid, but was recently contained in the cache,
may be acquired (snarfed) in shared mode as it passes by,
but only if the line is in global state unmodified.

This organization allows a controller to issue a
request on its row bus that will require at most twice the
number of bus operations as in a conventional multicom-
puter. However, there are two main differences, both a
result of the inability of every controller to monitor every
bus operation. First, a write to a line that may be shared
requires an invalidation of all of the copies. This results
in a broadcast operation which requires a single column
bus operation followed by a bus operation on every row
bus. Second, when a request is made for a line that has
been modified, it is necessary to find which snooping
cache currently has that line.

The latter problem can be solved using two auxili-
ary memory structures. First, associated with each pro-
cessor is a modified line table, all of which are identical
for a given column. This table is used to store addresses
for all modified lines residing in caches in that column.
With this information it is possible to route a row bus
request either onto a specified column where the modified
line resides or to memory. Second, a single tag bit is
associated with each line in main memory indicating
whether the contents are valid or invalid, that is, modified.
This bit is necessary to prevent a request from acquiring
stale data from memory while the modified line tables are
in an inconsistent state.

A cache controller initiates four types of transac-
tions: (1) a READ transaction, indicating that the proces-
sor wishes to read from a line that is not present in its
cache, (2) a READ-MOD transaction, indicating that the
processor wishes to modify a line that is not in modified

3There are transition periods where the global state is indeter-
minant.

mode in its cache, (3) an ALLOCATE transaction, indi-
cating that the processor wishes to modify an entire line
without regard to its prior contents, and (4) a WRITE-
BACK transaction, indicating that main memory should
be made current and the line changed to global state
unmodified. A transaction requires multiple row and
column bus operations to acquire and return the desired
line. We will discuss each of these transactions in some
detail to demonstrate the main features of the cache con-
sistency protocol, which is presented formally in Appen-
dix A.

READ Transaction

A READ request is issued by a controller (e.g. con-
troller A in figure 1) on its row bus. Some controller in
the row always accepts the request, thereby accepting
responsibility for assuring that the request is satisfied. If
the requested line is in global state modified, then one
controller in the row will recognize this fact (after looking
in its modified line table) and will accept the request,
responding after a fixed delay. This controller (C) now
requests its column bus and transmits the request, which is
picked up by the controller holding the modified data (D).
A side effect of this column bus operation is that all the
controllers on the column delete the line address from
their modified line table. Controller D fetches the data
from its cache, changing its mode from modified to
shared, requests access to its column bus, and transmits
the data. Controller C accepts the data from the column
bus and transmits it on its row bus, where it is picked up
by the requesting processor A and by the home column
controller B. Controller B writes the line back to memory
(M1), changing it to the global state unmodified (i.e., set-
ting the valid bit in memory).

If the requested line exists in global state
unmodified, then the controller (B) on the home column
of the line accepts the request. If it has the line in its
cache, it requests the row bus and sends the data. If not, it
requests its column bus and sends the request to memory
(M1). When memory responds by sending the requested
data, the controller B copies the data (possibly inserting
the line into its own cache) and transmits it over the row
bus to the requesting controller.

READ-MOD Transaction

A READ-MOD transaction is handled somewhat
differently, beginning with the third bus operation. If the
line is in global state modified, the controller holding the
modified data (controller D in the example above) invali-
dates its copy of the line, and transmits the line on its row
bus, where it is picked up by the controller (E) in the same
column as the original requester (A). Controller E for-
wards the data over its column bus to A. A side effect of
the column bus data transfer is that all the controllers in
the column add the line address to their modified line
table. Controller A enters the line into its cache in
modified mode. Note also that main memory is not

updated.

If the requested line is in global state unmodified, it
is necessary to ensure that copies of the line, which may
exist in any of the caches in the system, are purged. This
is accomplished in four steps. First, the READ-MOD
request is accepted by the controller (B) on the home
column. Second, this controller forwards the request to
main memory (M1). Third, memory transmits a line
invalidate request along with a copy of the data (which it
then marks invalid) on its column. Fourth, each controller
in the column requests its row bus and transmits the line
invalidate command, after which each controller in the
system (other than the originator) checks for the presence
of the line in its cache, purging it if found. The controller
(B) on the same row as the originator sends the requested
data along with the line invalidate request. A final bus
operation is required (by controller A) to insert an entry
into each modified line table in its column,

In case of a race between two requests for the same
cache line (where at least one of the requests is a READ-
MOD), the first request appearing on the home column (in
the case of an unmodified line) or on the modified column
(in the case of a modified line) determines the winner.
The losing request is retransmitted (by the controller that
previously accepted the request) on the row bus, where it
is treated exactly as if it were a new request (but destined
for the original requester). The reader is referred to the
Appendix for details.

ALLOCATE Transaction

An ALLOCATE request is issued by a controller
(e.g. controller A in figure 1) on its row bus when it
receives a processor hint of an intention to modify the
entire line, implying that the controller might wish to
acquire local control of the line in modified mode. The
ALLOCATE request is identical to the READ-MOD
request, except that an acknowledge, rather than data, is
returned to the requester. Thus, ALLOCATE is an optim-
ization of READ-MOD that reduces bus traffic.

The allocate hint must be used carefully, because if
there is any possibility that two processors might try to
write parts of the same line simultaneously, the
modifications of one may be lost. It is intended
specifically for cases where entire blocks are to be writ-
ten. It may be implemented in a manner that allows the
processor to write a line before receiving the acknowledge
of the ALLOCATE. Much of the benefit can be obtained
by its inclusion in a few places, such as in I[/O handlers,
loaders, and memory allocators.

The cost of implementation is some additional com-
plexity and an additional cache line state which signifies
that the line can be written locally, but that the modified
line table has not been updated. The allocate hint can be
ignored entirely by the controller, since a succeeding
write will then result in a READ-MOD transaction.
Because of this and the fact that it is a minor variation of
the READ-MOD transaction, it is not included in the for-
mal protocol.

WRITE-BACK Transaction

A WRITE-BACK transaction is initiated by placing
an operation on the column bus to remove the entry for
that line from the modified line table. The controller may
then proceed to write the line to memory. The table entry
is removed first in order to avoid the problem where an
outstanding request attempts to acquire the line, only to
discover that it has already been writien to memory.

Timing Considerations

The race occurring between two requests, at least
one of which is a READ-MOD (or ALLOCATE),
requires careful attention to ensure correct behavior.
Notice that, in any given situation, exactly one column
bus must be accessed to acquire the line exclusively.
Thus, the normal bus arbitration mechanism may be used,
just as in a single-bus mult, to resolve the race condition.

The valid bit in memory provides a robustness in
the protocol that can greatly simplify the controller
design. The only time that a controller is required to
respond in a fixed time is when it must indicate on its row
bus that the requested line resides in modified mode in its
column, thus designating that column to be used instead
of the home column. However, if the controller fails to
respond under such a circumstance, the request is routed
(incorrectly) onto the home column. As in the case of the
losing home column READ-MOD request, this request
will also be transmitted to main memory on the home
column and retransmitted by main memory, since the line
in memory is invalid. It is then forwarded onto the row
bus of the originator, just as if it were an original request.

This robustness means that a controller can, on
occasion, simply discard such requests without breaking
the protocol. We expect that this feature will greatly sim-
plify certain aspects of the controller design.

4. Synchronization

In a shared-memory multiprocessor where multiple
processes are cooperating closely, it is imperative that
efficient synchronization mechanisms be provided, i.e.,
the operating system must not be involved routinely, and
bus bandwidth must not be squandered. The techniques
appropriate for a single-bus multi involve operations such
as Test-and-Test-and-Set [RuSe84] which translate to
multiple broadcast operations in the multiple bus multi, or
involve a separate interface [BeKT87], which may not
scale to hundreds or thousands of processors. Thus, better
mechanisms are necessary. We have tentatively identified
one such mechanism, which supports efficient implemen-
tations of test-and-set and can be readily extended to
include combining operations [Rudo82]. The primitive is
a remote test-and-set operation, which is executed wher-
ever the modified line resides, or in memory if
unmodified. It is implemented as an additional bus tran-
saction, a variant of READ-MOD.

The test-and-set transaction returns a succeed/fail
value to the processor. On success, the line addressed by

the test-and-set is moved to the cache of the successful
processor. On failure, only the notification of failure is
returned -- the line remains in the remote cache.

This mechanism works well for many locks, where
contention is rare. In situations where test-and-set tran-
sactions would frequently fail -- causing excessive bus
traffic -- it is desirable to queue up requests for mutually
exclusive access to the same line. Such contention might
arise, for example, with single-writer/single-reader syn-
chronization, work queues, and barrier synchronization.
A blocking operation is desirable, but such a primative
introduces the problem of queuing requests and the neces-
sity of handling queue overflow. However, cache incon-
sistency can be exploited by implementing a distributed
queue with a linked list, occupying a single word in dif-
ferent copies of the line. A node joins the tail of the
queue by allocating space in its local cache for the line
(marked reserved), clearing the designated word in its
copy of the line, and initiating a SYNC transaction. The
node with the copy at the end of the queue (or the
modified copy, if there is no queue) receives the request
and enters the id of the requesting node into the desig-

nated word of the line.* The entry in the modified line
table is moved to the column of the new tail of the queue,
so that a subsequent request will be routed to the correct
node. When the node at the head of the queue is notified
by its processor that it should release the line, it checks its
copy to see if there is anything in the queue. If so, it for-
wards the line to the requesting node and deletes its copy.
If not, it does nothing.

The actual operations on the line must also include
a standard test-and-set operation to guarantee coOIrectness.
This will normally be very efficient, however, since a line
that has been reserved locally with the SYNC transaction
(but is not yet writable) will be recognized when a test-
and-set operation is initiated, and the test-and-set will fail
without requiring a bus operation. Whenever anything
goes wrong -- for example, if a node is forced to purge a
line to make room for a new one, or a process inadver-
tently writes in a line it shouldn’t, breaking the locking
protocol -- the scheme quickly degenerates to remote
test-and-set, which guarantees correctness if not
efficiency. Thus the sync primitive may be regarded as a
cache hint, and the SYNC transaction can be left unimple-
mented. Unpredictable results may occur if a software
locking protocol is not implemented correctly, but the
underlying consistency protocol will guarantee that non-
synchronizing operations will execute correctly.

This scheme provides an efficient mechanism for
serial, mutually exclusive access to a line, collapsing bus
traffic to a very low level. It has the nice property that it
allows processors to spin-wait using test-and-set, yet (usu-
ally) provides first-come-first-served order of access.
Thus processes can, for example, spin for a short time,
then block if they wish. It also allows an unlimited

“If the line is globally unmodified, the request degenerates to a
normal READ-MOD.

number of queues to be implemented, since it requires no
extra hardware or memory. Queue overflow will not
occur because each node allocates space for any queue it
joins. There are simple methods to avoid overflow even if
two processes on the same node attempt to join the same
queue, although strict FIFO order is no longer guaranteed.

A variation of the technique of exploiting the incon-
sistency of the caches can be used to implement barrier
synchronization efficiently. This technique is currently
being developed. Thus the entire synchronization exten-
sion to the protocol has not yet been included in the for-
mal protocol.

Like some modern commercial multiprocessors, the
Wisconsin Multicube does not guarantee complete serial-
izability [FuKH87]. There are circumstances under which
read operations and write operations may be observed to
occur in a different order by different processors. Syn-
chronization in such cases can only be ensured by the use
of test-and-set. Thus, this operation must be carefully
implemented to guarantee correct behavior.

5. Design Issues

There are many additional architectural and
software issues to be addressed in the design of the
Wisconsin Multicube. Among the most important are: (1)
the selection of the processor and the design of the
floating-point coprocessor and processor cache, (2) design
of the snooping cache and controller, (3) design of the
memory and I/O subsystems, (4) methods for reducing
bus latency, (5) refinement of the cache consistency proto-
col, (6) analysis of packaging constraints, and (7) operat-
ing system and compiler issues. While a prototype system
can be used to investigate software and synchronization
issues, hardware design choices must be made before the
prototype can be built. This requires the use of either
simulation or analytical modeling.

Simulation has the advantage that it can be used to
model a high degree of detail in an existing or proposed
system. However, since very little data has been publish
on the memory reference behavior of parallel programs,
the simulation must be based on statistical distributions of
references and reference types. In this case, the frequency
and percentages of READ and READ-MOD requests on
modified and unmodified data must be specified. While
an analytical model requires the same information, it is
often easier to implement, evaluate, and modify such a
model. For these reasons, a mean-value performance
model has been developed and used to measure the per-
formance of the Wisconsin Multicube and to explore vari-
ous design issues. The results of these studies and an
explanation of the model can be found elsewhere
[LeVe88]. Some of the results are reproduced here to
demonstrate the impact of several important design
choices. Continued analytical modeling and simulation
are planned.

Preliminary Performance Analysis

The snooping cache is comparable in size to the
main memory of many contemporary machines. Thus,
one would expect bus traffic due to cache misses on
private data to be comparable to page traffic on a conven-
tional processor.” This should limit bus traffic essentially
to shared data and I/O. All of the results in this section
attempt to show the effect of bus request rates on perfor-
mance for various design choices.

Figure 2 shows the predicted performance of the
architecture for various rates of bus requests and various
numbers of processors. Requests are assumed to be non-
overlapping. Since our goal is to support 1K processors at
roughly ninety percent utilization, the modified line table

1.0 g-smmzmmpmmmmee e mamqmmmmmmge e emp e

0.94---c---

o
oo
L

e et R &

j NORUURUR S

o
Q
N

154
o
3

dimmmd e

Jomm e d e kL

o
'S
M

LoD OO mrheal]
o
th
M

bttt Bl Sl St

0.3 4-memne R forommen

0.2 e el e NN ;

P U S

0.1 4------- LR S

L
16 32 64 128 256
Bus Request Rate (req/ms)

R

0.0

E=Y
o0 A---=-

Figure 2: Efficiency versus Number of Processors per
Row [LeVe88]. The numbers of processors per row are,
from top to bottom, 8, 16, 24, and 32. The total number
of processors is equal to the number per row squared.
Efficiency is defined as the effective speedup compared
to a system with no bus or main memory latency. A
block size of 16 words is assumed. The probability that
the requested data is in global state unmodified is 80 per-
cent, and the probability that an invalidation operation is
required for a write miss to unmodified data is 20 per-
cent. The data is transferred at a rate of 1 bus word
every 50 ns. The latency of both the snooping cache and
main memory is 750 ns.

The bus traffic may be lower because the line size will probably
be smaller than typical page sizes.

must be large enough and shared data accesses must be
infrequent enough to produce an average access rate of
less than twenty-five requests per millisecond per proces-
sor. This corresponds to a snooping cache miss rate of
0.25 percent for a processor generating 10 million
memory requests per second.

Figure 3 shows that the effect of invalidations
grows as bus request rates increase. The curves begin to
converge as invalidations increase to the point where they
saturate the available bus bandwidth. However, in the
range of ninety percent processing power, the effect of
increasing invalidations is very small. Thus, other factors
are likely to dominate the level of performance.

Figure 4 shows the effect of increasing the block
size on performance. However, block size and bus
request rate are not independent. The two dashed lines
represent the extreme cases where doubling the block size
does not change the bus request rate (vertical line) and
where doubling the block size halves the bus request rate
(sloping line). Leutenegger and Vernon argue (LeVe88]
that, for a more reasonable relationship between block
size and bus request rate, a block size of 16 or 32 words
would yield the best performance.

The degradation in performance for large blocks is
primarily due to the increase in latency of each hop in the

1,().1 M s m e e s e
: 1 '
' 1 1 ¢
¥ 1 b]
' ' : \
094--vunva- . F I, Lommaam 1
" 1)] +
' 1 ' '
' ' ' \
t t + v
+ 3 ¥ +
OB4--uccmm- L Jmmmam Lo 1
1] ' 1 1
' ' : :
' ' ! |
' ' i I
' ‘ ‘ I
074----=--- . A ['
1] ' il
' ' I)
: l : I
' ' ! ¢
' ' ¢ :
064 ------- = Amm o m e P '
) Ll il
]] '
' 1 1
¥ 1 *
1 1)
.

W ODE -0 =T
<
W
"

T R R S\ S s
034------ SR o ST \\\ W SRR i
02 - p T T T RN 5!
i ') H : 02!
YT S S |
' H ' ' : 0.5
' : X ; X)
0.0 ¥ + ¥ + g !
4 8 16 32 64 128 256

Bus Request Rate (req/ms)

Figure 3: The Effect of Invalidations on Performance
with 1K Processors [LeVe88]. The percent of write
misses to shared data are, from top to bottom, 10, 20, 30,
40, and 50 percent. Other parameters are the same as
those for Figure 2.

b
n
M

OB (3 e h (T
<o
th
+
i
'
s
.
'
4
1
1
'
|
t
'
1

0.3 4

‘oo
i

(=]
[=,)
N
i
1
'
t
i
N S RO SOHUUUUE. DUPpRL RPN ATOUU AP,

0.2 4

-

0.1 4 --3

12

0.0

16 32 64
Bus Request Rate (req/ms)

s
o0

Figure 4: Effect of Block Size on Performance with 1K
Processors [L.eVe88]. The block sizes are, from top to
bottom, 4, 8, 16, 32, and 64 bus words. Other parame-
ters are the same as those for Figure 2.

path along which data is sent back to the requesting cache
(the analysis assumes no overlapping of bus operations on
sequential hops). A secondary effect is to increase the
latency that competing requests experience due to the
relatively long time for which a bus is held while the data
is transferred. However, an effect which is not shown in
figure 3 is that a large block size will reduce total waiting
time for sequential, non-overlapped memory requests.
Also, a larger block size will significantly lower invalida-
tion traffic, since many operations (particularly I/O) will
require one invalidation per block of data being refer-
enced.

Techniques for Reducing Bus Latency

The selection of a line, or block, size actually
involves two choices: the transfer block size and the
coherency block size. The transfer block is the minimum
amount of data transferred through the buses as a result of
a memory request. The coherency block is the amount of
data over which a single consistency check is performed.
While coherency blocks must have a fixed, system-wide
size, transfer blocks can be of variable size if, for exam-
ple, the request specifies how much data should be
returned. The only restriction seems to be that the transfer
block size can be no larger than the coherency block size,
in order to avoid multiple coherency checks for a single
bus transaction [Good871.

The preliminary performance studies showed that
large transfer blocks create long bus latencies and limit
effective processing power, while large coherency blocks
reduce invalidations. Thus it may be desirable to choose a
transfer block, at least for certain transactions, that is
much smaller than the coherency block.

The protocol as initially developed for the Wiscon-
sin Multicube assumes that coherency and transfer blocks
are the same size. Although the extensions are relatively
straightforward, choosing blocks of different sizes results
in substantial added complexity in the snooping protocol.
Because the complexity of the snooping cache controller
is of paramount importance, it is highly desirable to
choose all transfer blocks and coherency blocks to be the
same size.

A large coherency block size may result in

inefficiencies due to false sharing®. However, a larger
size will reduce the cost of invalidation operations, since
an invalidation operation must generally be performed for
each coherency block containing the structure being
modified. Furthermore, the size of the modified line table
is proportional to the number of coherency blocks, and
therefore, inversely proportional to the coherency block
size. Thus, the optimal coherency block size will be sub-
stantially larger than the small transfer block size needed
to reduce bus latency. The problem then becomes one of
achieving the low latency of small transfer blocks with the
efficiency of large coherency blocks, but without the
added complexity.

Data supplied in READ and READ-MOD transac-
tions will traverse two buses (occasionally only one bus).
Thus, the returned data will experience one full transfer
block latency on the first leg, and an average of one half
transfer block latency on the second leg. The first latency
can be mostly eliminated by forwarding the data onto the
second bus as soon as the first word arrives on the first
bus. The second latency can be mostly eliminated by
transmitting the requested word first. In fact, supplying
words out of order is the only way of eliminating this
delay (besides using small coherency blocks). These
techniques introduce complexity at several levels. Thus
their contributions to performance must be weighed care-
fully against their cost.

Forwarding requests has an additional disadvantage
in that requests will still experience the queuing delays
associated with long transfer blocks. An alternative
scheme is to send the line in unequal parts. Supplying the
requested word (and maybe a few more) in one operation
and the rest of the line in a second operation will lead to
the same problems. The use of two transfer block sizes
may complicate the bus controller and the request may
still experience long queuing delays. Another solution is
to send the requested line in small fixed-size pieces. This

SFalse sharing occurs when two processors altemately read or
write different parts of the same coherency block, resulting in the block’s
being moved repeatedly between the two processors as if the data were
shared when in fact no sharing is occurring.

size can be optimized to reduce the bus latency while
keeping bus header overhead to an acceptable level.
Although the requesting processor may be delayed some-
what if it immediately accesses another word in the
requested line, this effect should outweigh the bus latency
caused by long transfer blocks.

Some of the latency reduction techniques have been
analyzed elsewhere [LeVe88].

6. Architecture Scalability

The Wisconsin Multicube is a special case of a
more general class of interconnection networks. The gen-
eral Multicube consists of N=n* processors, where each
processor is connected to k buses and each bus is con-
nected to n processors. Figure 5 shows a Multicube for
n=4 and k=3. A multi is a Multicube for which k=1. A
hypercube is a Multicube for which n=2. The multiple
broadcast capability proposed by Kumar and Raghaven-
dra [KuRa87] superimposes a multicube on a mesh-
connected computer (MCC). The Wisconsin Multicube is
a two-dimensional Multicube (k=2). If 32 processors can
be accommodated on a bus, the system can be extended to
1024 processors.

In the Wisconsin Multcube, main memory is
divided up among the column buses. In general the place-
ment of the memory is relatively unimportant, since very
few of the bus requests require interaction with main
memory. However, it is important that each line of
memory have a home bus in order to assure sequentiality

\

A% A
N
\/
N

[\

]

=
Z
<z

‘A
N

‘-‘.‘
[
W
N ’
|

AN
N

AN
/
\\/
N

N

//\/

N
N

I\
/
¢

/

Figure 5: A 64-Processor/48-Bus Multicube with 3 Di-
mensions. Processors are represented as nodes. Buses
are represented by straight lines.

of access in cases of competing, mutually exclusive
requests. The memory can be divided up on the bus, how-
ever, with each processor responsible for a piece of i,
even incorporating it as part of its snooping cache that
cannot be purged.

The cache coherency protocol presented in Section
3 guarantees that, except under unusual circumstances, no
more than four bus accesses are required for READs to
unmodified lines (five if the requested line is modified).
Likewise, READ-MODs to modified lines also require
four bus accesses. However, in the case that a READ-
MOD (or ALLOCATE) request is for an unmodified line,
a broadcast operation is required. This includes n+1 row
bus accesses and 3 column bus accesses. Fortunately,
except for returning the data, all of these operations are
very short, since they contain only an address and com-
mand information.

Given appropriate structures to locate modified
data, the protocol can be extended. In a k-dimensional
system, the number of buses that must be monitored by
each snooping cache is k. The total number of buses is
kn ":1. Thus the bandwidth per processor grows as
""N = —n"— d for fixed n, the bandwidth grows in pro-
portion to k, precisely the rate at which the normal path
length grows. Thus the architecture scales to provide the
bandwidth needed for the common operations.

Several features of the Wisconsin Multicube, how-
ever, do not scale with k. The size of the modified line
table must be large enough to recognize all modified lines

of all the processors in a column.” The obvious extension
requires the modified line table to recognize all modified

lines in " processors, although techniques have been

identified for reducing the size with small increases in bus
traffic under most circumstances. Invalidation operations

scale less favorably, requiring approximately %/_Ell bus

operations. Furthermore, the buses in different dimen-
sions are not likely to be of the same speed.® While these
factors tend to decrease the performance of a multidimen-
sional system, there are other factors which have the
opposite effect. READ requests to unmodified data are
likely to be satisfied by some cache along the path to
memory. Also, synchronization primitives, discussed in
Section 4, allow for efficient sharing. Thus, these factors
may be balanced in a multidimensional Multicube archi-
tecture to achieve scalable performance. This topic is a
subject for future research.

™If the table is not large enough, modified lines will, on occasion,
have to be written to main memory and changed to global state
unmodified. This is why the modified line table is likely to be imple-
mented as a cache.

SThis packaging constraint can be overcome by adjusting the
number of processors (and buses) in different dimensions so that the bus
bandwidth per processor is constant in each dimension.

7. Summary

We have presented a large-scale, very-high-
performance, shared-memory multiprocessor architecture
that employs' a snooping cache protocol over a grid of
buses. The system presents the simplest known view of
memory to the programmer: that of a single, coherent
shared memory with no notion of geographical locality.
Preliminary analysis suggests that this is a robust architec-
ture, capable of good performance over a wide range of
applications. Design and analysis of the Wisconsin Muld-
cube are continuing,.

We have identified a class of interconnection topo-
logies -- the Multicube, of which the Wisconsin Multicube
is a two-dimensional example. The topology scales to a
very large number of processors, extending the simple
programming model presented by the muld. Software
developed for multis should be easily modified to run on a
Multicube.

8. Acknowledgements

This work was supported in part by the National
Science foundation, under grant DCR-8604224. We wish
to acknowledge our colleagues Mary Vernon, Mark Hill,
and Andrew Pleszkun for extensive discussion, comments
and advice about the architecture and the paper. Scott
Leutenegger and Mary Vernon have contributed much to
our understanding of the architecture through their model-
ing efforts and the questions they forced us to address.
Rae McLellan offered many key suggestions during the
very early design. Dan Frank and Men-chow Chiang
have made substantial contributions early in the Wiscon-
sin Multicube project. Dave James pointed out the impor-
tance of being able to discard certain bus operations occa-
sionally.

References

[BaWa87] Baer, J. L., and W. H. Wang, ‘‘Architectural
Choices for Multilevel Cache Hierarchies,”
Proc. of the 1987 Int. Conf. on Parallel Pro-

cessing, August 1987, pp 258-261.

Beck, B, B. Kasten, and S. Thakkar, ‘“VLSI
assist for a multiprocessor,”” Proc. 2nd Int.
Conf. on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems (ASPLOS-II), October 1987, pp 10-20.

Bell, C. G., ‘“Multis: a New Class of Mul-
tiprocessor Computers,”” Science, Vol. 228,
April 26 1985, pp. 462-467.

Butterfly Parallel Processor Overview, BBN
Laboratories, Inc., 1985.

Fu, J., J. B. Keller, and K. J. Haduch,
*“ Aspects of the VAX 8800 C Box design,”
DEC Technical Journal, Number 4, Febru-
ary 1984, pp. 41-51.

Gajski, D., D. Kuck, D. Lawrie, and A.
Sameh, “CEDAR -- a large scale

[BeKT87]

[Bell85]

[Butt85]

[FuKH87]

[GKL.S83]

[Good87]

[Good83]

[GGKMB&3]

[KuRa87]

[LeVe88]

[Lund87]

[PBGH85]

[Rudo82]

[RuSe84]

multiprocessor,”” Proc. of the 1983 Int.
Conf. on Parallel Processing, August 1983,
pp. 524-529.

Goodman, J. R., ‘‘Coherency for Multipro-
cessor Virtual Address Caches,”” Proc. 2nd
Int. Conf. on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems (ASPLOS-II), October 1987, pp 72-81.

Goodman, J. R., ‘“Using Cache Memory to
Reduce Processor/Memory Traffic,” Proc.
10th Int. Symp. on Computer Architecture,
June 1983, pp. 124-131.

Gottlieb, A., R. Grishman, C. P. Kruskal, K.
M. McAuliffe, L. Rudolph, and M. Snir,
““The NYU Ultracomputer -- designing an
MIMD shared memory parallel computer,’’
The 5th ACM SIGACTISIGOPS Symp. on
Principles of Distributed Computing, August
1986.

Kumar, V. K., and C. S. Raghavendra,
“‘Array processor with multiple broadcast-
ing,”” Journal of Parallel and Distributed
Computing, Vol. 4, (1987), pp. 173-190.

Leutenegger, S., and M. K. Vernon, “A
Mean-Value Performance Analysis of a
New Multiprocessor Architecture,”” ACM
SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, May
1988.

S. F. Lundstrom, ‘‘Applications Considera-
tions in the System Design of Highly Con-
current Multiprocessors,”” IEEE Trans. on
Computers, Vol. C-36, No. 11, November
1987, pp. 1292-1309.

Pfister, G. F., W. C. Brantley, D. A. George,
S. L. Harvey, W. J. Kleinfelder, K. P.
McAuliffe, E. A. Melton, V. A. Norton, J.
Weise, ‘“The IBM Research Parallel Proces-
sor Prototype (RP3): Introduction’ and
Architecture,” Int. Conf. on Parallel Pro-
cessing, August 1985.

Rudolph, L., “‘Software Structures for Ultra-
parallel Computing,”” Ph.D. Thesis, Courant
Institute, NYU, 1982.

Rudolph, L., and A. Segall, ‘‘Dynamic
decentralized cache schemes for MIMD
parallel processors,”’ Eleventh Int. Symp. on
Computer Arch., June 1984, pp. 340-347.

Appendix A
Formal Description of the Cache Consistency Protocol

There are four types of transactions -- READ,
READMOD, ALLOCATE, and WRITEBACK -- which
are initiated by the cache controller. Each transaction
consists of a number of row and column bus operations
necessary to satisfy the request. A bus operation contains
up to four fields: a type, an originating node id (for rout-
ing replies), a line address, and possibly the contents of
the line.

The formal protocol consists of a set of procedures,
each of which directly corresponds to a specific bus
operation. A transaction type is used as the procedure
name, which is followed by a list of parameters specifying
what specific actions are to be taken. Instead of one large
procedure for each transaction type, each unique combi-
nation of transaction type and operations used in the pro-
tocol is defined separately. On a bus operation, all nodes
on the bus, including the originator of the operation, exe-

cute the appropriate procedure.” The * symbol is placed
in front of lines if (and only if) the memory unit is to exe-
cute that line.

It should be noted that the protocol presented here
is memoryless. That is, once a node responds to a bus
operation and performs the appropriate local actions
(which may include queuing another bus operation) it can
forget about the bus operation which it just processed. No
extra state information needs to be kept. The only excep-~
tion is for outstanding processor requests issued locally,
some of which require information to be kept until the
transaction is completed. Thus, the memoryless property
is instrumental in reducing the complexity of the protocol.

The protocol assumes that, for all queues, opera-
tions are handled in a strict first-in, first-out (FIFO) order.
This removes the problem of comparing or updating
queue entries when operations such as data cache purges
are performed. These properties allow hardware queues
to be implemented efficiently and further reduces the
complexity of the protocol.

The protocol also assumes the existence of a special
row bus line called the modified line. It is used for
requests to signify that some node has determined (by
checking its modified line table) that the desired line
resides in mode modified in a cache on its column. This
signal is a logical OR of all of the nodes on the row, and is
supplied (by at most one node) a fixed number of bus
cycles after the request is placed on the bus.

Terminology used in the protocol is briefly
described below. Procedures for the ALLOCATE tran-
saction are not included since they contains only minor
variations with respect to those used for READMOD.

SMany opportunities for optimization result from cases in which a
node may be sending to itself, or can supply data to two nodes (one of
which may be memory) at once. These have been included in the proto-
col, although they may be excluded from the implementation for simpli-

city.

10

Terminology
Transactions

READ result of a read miss

READMOD result of a write miss

WRITEBACK result of a data cache replacement of a
modified line

Bus Operation Parameters

ROW row bus operation

COLUMN column bus operation

REQUEST request for a line

REPLY reply containing the line or an ack-
nowledge

INSERT insert entry into modified line table

REMOVE remove entry from modified line table

UPDATE bus operation requiring a memory
update

PURGE bus operation requiring a line purge

NOPURGE (indicates that no purge is needed on a
column bus reply to a READ request)

MEMORY bus operation destined for memory

Test Conditions

id match check if this node is transaction origi-
nator

row match check if on same row as originator

column match check if on same column as originator

check line mode (valid, invalid,
shared, modified)

line is 'mode’

no modified signal check if modified signal was supplied
on home column check if this is the home column
table entry found check for entry in modified line table

table overflow check for modified line table overflow

check if table overflow line in data
cache

overflow line in cache

check if table remove operation suc-
ceeded

remove failed

Local Operations
write cache line write line into data cache
write memory line write line into memory

mark line 'mode’ mark mode of line in memory or a data

cache (valid, invalid, shared, modified)

indicate that the entry was found in the
modified line table

select data cache line for replacement

supply modified signal

select victim line
remove table entry remove entry from modified line table
insert table entry insert entry into modified line table

wait for data cache line replacement
(WRITEBACK transaction) to com-
plete

wait for continue

continue request signal to continue processor request

READ Transaction Protocol

/* Initiate a READ transaction with a row bus request; first reserve space
in the data cache (if necessary) with a WRITEBACK transaction */

¢ READ
if (line is invalid) then

select victim line

if (victim line is modified) then
WRITEBACK (COLUMN, REMOVE)
wait for continue

mark line invalid

READ (ROW, REQUEST)

/* row bus READ request for data; the request is either forwarded to the
column where it resides in global state modified or to the home column
*/

e READ ROW, REQUEST)

if (table entry found) then
supply modified signal
READ (COLUMN, REQUEST, REMOVE)
else if (on home column) and (no modified signal) then
if (line is shared) then
READ (ROW, REPLY)
else
READ (COLUMN, REQUEST, MEMORY)

/* column bus READ request for modified data; removing the modified
line table entry guarantees access to the data; losing requests are reissued
*/

e READ (COLUMN, REQUEST, REMOVE)

remove table entry
if (remove failed) then
if (row match) then
READ (ROW, REQUEST)
else if (line is modified) then
if (on home column) then
READ (COLUMN, REPLY, UPDATE, MEMORY)
else if (row match) then
READ (ROW, REPLY, UPDATE)
else
READ (COLUMN, REPLY, UPDATE)
mark line shared

/* column bus READ request for unmodified data; memory supplies the
desired data if the line is valid, else it reissues the request */

¢ READ (COLUMN, REQUEST, MEMORY)
* if (line is invalid) then
* READ (COLUMN, REQUEST, REMOVE)
*
*

else
READ (COLUMN, REPLY, NOPURGE)

/* column bus reply to a READ request indicating that memory should
be updated */

» READ (COLUMN, REPLY, UPDATE)

if (id match) then
write cache line and mark line shared
READ (ROW, UPDATE)

else if (row match) then
READ ROW, REPLY, UPDATE)

11

/* column bus reply to a READ request indicating that the memory on
this colurnn should be updated */

e READ (COLUMN, REPLY, UPDATE, MEMORY)

if (id match) then

write cache line and mark line shared
else if (row match) then

READ (ROW,REPLY)
* write memory line and mark line valid

/* column bus reply from memory to a READ request; no purge is re-
quired for a READ transaction */

» READ (COLUMN, REPLY, NOPURGE)

if (id match) then

write cache line and mark line shared
else if (row match) then

READ (ROW, REPLY)

/* row bus reply to a READ request */
» READ (ROW,REPLY)

if (id match) then
write cache line and mark line shared

/* row bus reply to a READ request indicating that memory should be
updated */

» READ (ROW,REPLY, UPDATE)

if (id match) then
write cache line and mark line shared
if (on home column) then
READ (COLUMN, UPDATE, MEMORY)

/* READ (ROW, UPDATE) and READ (COLUMN, UPDATE,
MEMORY) are the same as WRITEBACK (ROW, UPDATE) and
WRITEBACK (COLUMN, UPDATE, MEMORY) */

READMOD Transaction Protocol

J* Initiate a READMOD transaction with a row bus request; first reserve
space in the data cache (if necessary) with a WRITEBACK transaction */

¢ READMOD
if (line is invalid) then
select victim line
if (victim line is modified) then
WRITEBACK (COLUMN, REMOVE)
wait for continue
mark line invalid
READMOD (ROW, REQUEST)
else if (line is shared) then
READMOD (ROW, REQUEST)

/* row bus READMOD request for data; the request is either forwarded
to the column where it resides in global state modified or to the home
column */

» READMOD (ROW, REQUEST)

if (table entry found) then
supply modified signal
READMOD (COLUMN, REQUEST, REMOVE)
else if (on home column) and (no modified signal) then
READMOD (COLUMN, REQUEST, MEMORY)

/* column bus READMOD request for modified data; removing the
modified line table entry guarantees access to the data; losing requests
are reissued */

o READMOD (COLUMN, REQUEST, REMOVE)

remove table entry
if (remove failed) then
if (row match) then
READMOD (ROW, REQUEST)
else if (line is modified) then
if (column match) then
READMOD (COLUMN, REPLY, INSERT)
else
READMOD (ROW, REPLY)
mark line invalid

/* column bus READMOD request for unmodified data; memory sup-
plies the desired data if the line is valid, else it reissues the request */

o READMOD (COLUMN, REQUEST, MEMORY)
= if (line is invalid) then
* READMOD (COLUMN, REQUEST, REMOVE)
* else

* READMOD (COLUMN, REPLY, PURGE)
* mark line invalid

/* row bus reply to 2 READMOD request */
¢ READMOD (ROW, REPLY)

if (id match) then
write cache line and mark line modified
READMOD (COLUMN, INSERT)

else if (column match) then
READMOD (COLUMN, REPLY, INSERT)

/* column bus reply from memory to a READMOD request; a purge of
all copies of the line is required; the data cache on the home column must
be purged first */

e READMOD (COLUMN, REPLY, PURGE)

if (id match) then
write cache line and mark line modified
READMOD (COLUMN, INSERT)
READMOD (ROW, PURGE)
else
mark line invalid
if (row match) then
READMOD ROW, REPLY, PURGE)
else
READMOD (ROW, PURGE)

/* column bus reply to a READMOD request indicating that an entry
should be inserted into the modified line table; on a table overflow an en-
try should be purged and the cache holding the modified line for that en-
try should write the line back to memory */

s READMOD (COLUMN, REPLY, INSERT)

if (id match) then
write cache line and mark line modified
insert table entry
if (table overflow) then
if (overflow line is modified) then
if (on home column) then
WRITEBACK (COLUMN, UPDATE, MEMORY)
else
WRITEBACK (ROW, UPDATE)
mark overflow line shared

12

/* row bus reply to a READMOD request also indicating that all shared
copies of the line should be purged on the row; the home column data
cache has already been purged */

» READMOD (ROW, REPLY, PURGE)

if (id match) then
write cache line and mark line modified
READMOD (COLUMN, INSERT)
else if (not on home column) then
if (line is shared) then
mark line invalid

/* row bus operation to purge all shared copies of a line; the home
column data cache has already been purged */

e READMOD (ROW, PURGE)

if (not on home column) then
if (line is shared) then
mark line invalid

/* insert an entry into the modified line table for this line; on a table
overflow an entry should be purged and the cache holding the modified
line for that entry should write the line back to memory */

o READMOD (COLUMN, INSERT)

insert table entry
if (1able overflow) then
if (overflow line is modified) then
if (on home column) then
WRITEBACK (COLUMN, UPDATE, MEMORY)
else
WRITEBACK (ROW, UPDATE)
mark overflow line shared

WRITEBACK Transaction Protocol

/* Initiate a WRITEBACK transaction for a modified line by issuing a
column bus REMOVE operation to delete the corresponding entry from
all modified line tables in the column */

e WRITEBACK

if (line is modified) then
WRITEBACK (COLUMN, REMOVE)
wait for continue

mark line shared

/* write the line to memory; if the modified line table remove operation
fails then some other bus operation will remove the data; in either case
signal the processor request to continue */

® WRITEBACK (COLUMN, REMOVE)

remove table entry
if (id match) then
if (remove succeeded) then
if (on home column) then
WRITEBACK (COLUMN, UPDATE, MEMORY)
else
WRITEBACK (ROW, UPDATE)
continue request

/* forward the memory update request to the home column */
e WRITEBACK (ROW, UPDATE)
if (on home column) then
WRITEBACK (COLUMN, UPDATE, MEMORY)
/* write a line into memory */
e WRITEBACK (COLUMN, UPDATE, MEMORY)
* write memory line and mark line valid

