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Abstract. Let p be a prime number, F' be the finite field with p elements, and n be a positive integer.
We present new algorithms for finding irreducible polynomials in F[X] of degree n. We show that in
time polynomial in n and logp we can reduce the problem of finding an irreducible polynomial over F of
degree n to the problem of factoring polynomials over F'. Combining this with Berlekamp’s deterministic
factoring algorithm, we obtain a deterministic algorithm for finding irreducible polynomials that runs in
time polynomial in n and p. This is useful when p is small. Unlike earlier results in this area, ours does
not rely on any unproven hypotheses, such as the Extended Riemann Hypothesis. We also present a new
randomized algorithm for finding irreducible polynomials that runs in time polynomial in n and logp and
makes particularly efficient use of randomness. It uses nlogp random bits, and fails with probability less
than 1/p®™ where « is a constant between 0 and 1/4. This result is interesting in a setting where random

bits are viewed as a scarce resource.
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1. Introduction

Let p be a prime number, F the finite field GF(p), and n a positive integer. Counsider the problem of finding
an irreducible polynomial in F[X] of degree n. Irreducible polynomials in F[X] are used to implement
arithmetic in field extensions of F'. They have applications in coding theory, cryptography, and complexity.
Rabin has given a randomized algorithm for finding an irreducible polynomial over F of degree n that runs
in time polynomial in n and logp [Rabin]. Adleman and Lenstra have given a deterministic algorithm that
runs in time polynomial in n and logp assuming the Extended Riemann Hypothesis [Adleman/Lenstra)l.
Von zur Gathen has also given several deterministic algorithms that run quickly assuming some unproven
conjectures [von zur Gathen].

In this paper, we show that in time polynomial in n and logp we can reduce the problem of finding an
irreducible polynomial over F' of degree n to the problem of factoring polynomials over . Combining this
with Berlekamp’s deterministic factoring algorithm [Berlekamp], we obtain a new algorithm that runs in in
time polynomial in n and p. Our algorithm is completely deterministic and does not rely on any unproven
hypotheses. It is useful in the important special case where p is small. We also give a new randomized
algorithm that makes particularly efficient use of randomness, failing with probability exponentially small
in the number of random bits used.

In section 2, we shall prove

Theorem 2.1. Assume that for each prime g | n, ¢ # p, we are given a splitting field K of X% —1 over F' and
a ¢-th nonresidue in K. Then we can find an irreducible polynomial over F' of degree n in time polynomial

in n and logp.

The splitting field K of X? — 1 is the smallest extension of F' containing a primitive ¢-th root of unity.
This is just GF(p™) where m is the order of p mod g. The hypothesis of theorem 2.1 means that we are
given an irreducible polynomial f over F' of degree m and that K = F(a) where « is a root of f. Note that
all of the irreducible factors of the cyclotomic polynomial &, = X491 + ...+ 1 are of degree m.

The problems of factoring @, and finding ¢-th nonresidues in GF(p™) are discussed in [Huang]. Huang’s
analysis, however, assumes the Extended Riemann Hypothesis.

In section 3 we prove

Theorem 3.1. Given an oracle for factoring polynomials over F', we can construct an irreducible polynomial

over ' of degree n in time polynomial in n and log p.
Using Berlekamp’s deterministic factoring algorithm, we immediately obtain

Corollary 3.2. We can construct an irreducible polynomial over F' of degree n deterministically in time

polynomial in n and p.



In section 4, we present a new randomized algorithm for finding irreducible polynomials. The problem
that originally motivated this research was to find a randomized algorithm for finding irreducible polynomials
that used fewer random bits than Rabin’s algorithm. This problem is interesting in a setting where random
bits are viewed as a scarce resource. In this setting, a “random bit efficient” algorithm fails with probability
exponentially small in the number of random bits used. That is, for some constant «, the failure probability
is no more than 2=%* where b random bits are used. See [Shoup, Bach, Bach/Shoup] for other work along
these lines.

Rabin’s algorithm uses about nlogp random bits to generate a monic polynomial of degree n over F,
and then tests it for irreducibility. The probability of success is about 1/n. Obviously, Rabin’s algorithm is
not random bit efficient.

We present a new, random bit efficient algorithm for finding irreducible polynomials. We shall prove

Theorem 4.1. For any constant 0 < « < 1/4, there exists a randomized algorithm (depending on «) with
the following properties. It uses about n logp random bits, halts in time polynomial in » and log p, and upon
termination, it either outputs an irreducible polynomial over F' of degree n, or reports failure. Furthermore,

the probability that it fails is no more than 1/p®".

2. Reduction to Constructing Cyclotomic Extensions and Finding Nonresidues

Let F' = GF(p). We want to construct an irreducible polynomial of degree n over F'. This section is devoted

to a proof of

Theorem 2.1. Assume that for each prime ¢ | n, g # p, we are given a splitting field K of X7 —1 over F' and
a q-th nonresidue in K. Then we can find an irreducible polynomial over F' of degree n in time polynomial

in n and logp.

The splitting field K of X? — 1 is the smallest extension of F' containing a primitive ¢g-th root of unity.
This is just GF(p™) where m is the order of p mod ¢. In particular, m | ¢ — 1. Since ¢ | p™ — 1, the set of
g-th residues form a proper subgroup of K*. We assume that we are given an irreducible polynomial f over
F of degree m and that K = F(«) where « is a root of f.

Let n = ¢§*---¢¢" be the prime factorization of n. We first construct irreducible polynomials over F
of degree ¢§* for i = 1,...,7. We then “combine” these polynomials to form an irreducible polynomial of

degree n.

Step 1: Constructing Irreducible Polynomials of Prime Power Degree

Let 1 < ¢ < 7 be fixed, and let ¢ = ¢;,e = e;. We want to construct an irreducible polynomial in F[X] of

degree ¢¢. We break the problem down into three cases: (1) ¢ #2,# p, (2) ¢=2,# p, and (3) ¢ = p.
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Case 1: ¢#2,#p

We will make use of the following very general theorem {rom [Lang, p. 331, theorem 9.1].

Lemma 2.2. Let k be a field and » an integer > 2. Let a € k,a # 0. Assume that for all prime numbers ¢

dividing n, we have a ¢ k?, and if 4 | n then a ¢ —4k*. Then X" — a is irreducible in k[ X].

Let m be the order of p mod g. We assume that we have an irreducible polynomial f of degree m. Let
K = F(«) where « is a oot of f. Then {1,a,...,a™ '} is a basis for K as a vector space over F'. We are
also given a € K that is a g-th nonresidue. By lemma 2.2, the polynomial X 9° — a € K[X] is irreducible.
We can represent the field £ = GF(p"™°) by K(f), where f is a root of X4 —a. Then {1,8,...,5 "1} is
a basis for E as a vector space over K. Therefore, B = {a!ff :i=0,...,m—-1;7=0,...,¢° — 1} isisa

basis for E as a vector space over F. Now, H = GF(p?") is a subfield of E. We have the following picture:

E = K(f)

/O

K = F(e)

We will make use of the trace map. The trace T from GT(s?) to GF(s) is given by T(z) = = + z° +
z5 4 +2°°"" . The main fact we need to know about T is that it is a GF(s)-linear map from GF(s?) onto
GF(s) (see [Ireland/Rosen, p. 158, proposition 11.2.1]).

Let 7" be the trace from E to H. If we apply T to the basis set B, we get a set T'(B) that spans H as
a vector space over F. In particular, H is generated as a field by T(B), i.e. H = F(T(B)). We claim that
there is a single element vy € T(B) such that H = F(y). To prove this, observe that the intermediate fields
between H and F form a tower ' = Fy C Fy C -+ C Fe_1 C F, = H, where [Fi41 : Fj] = ¢. Now, since
H = F(T(B)), it is clear that H = F,_1(T(B)), and so if we pick v to be any element in T(B) that is not

in F._q, then we must have H = Fe_1(7). The following lemma establishes the claim.

Lemma 2.3. Let Fy be a finite field. Consider a tower of fields Fy C Fy C -+ C F, where [Fiq1 : Fi] = ¢
and ¢ is prime. Suppose that for some 0 < i < e and v € F, we have F, = Fi(7). Then Fe = Fo(y).

Proof. If i = 0, the assertion is trivial. Assume i > 0. Let d = [F;_1(7) : Fi—1]. Consider the following
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diagram.
Iy = Fi(7)
/ \qa—i
F;

Fi_1(7) i
d\ / ,
Fiq

Now, we know that d = ¢*~% or d = ¢*~**! [Lang p. 305, corollary 1.13]. In either case, F;—i(vy) must
contain Fj as a subfield, by the uniqueness of intermediate fields of a given degree. But then F, D Fi.1(v) D

Fi(y) = Fe. Therefore, F, = Fi_1(v). The proof is finished by induction. m

So we now have a primitive element v for H over F'. The minimum polynomial g for v over F' is of degree

g¢. We can compute g by multiplying together conjugates, obtaining g = (X — 7)(X — )+ - (X — 7pq°—1).

Case 2: ¢=2,#p

We want to find an irreducible polynomial of degree 2¢. In this case, as in case 1, we make use of lemma 2.2.
Since p is odd, p = =1 (mod 4). Suppose p = 1 (mod 4). Then (—1)(P=1)/2 = 1, and so —1 has a square root
in F. Therefore, if we have an element a € F that is not a square, then we certainly cannot have a = —4b4,
since —4b? is a square. Thus, the hypotheses of lemma 2.2 are already satisfied, and so X2° —a is irreducible.

Now suppose p = —1 (mod 4). In this case, we can quickly find an irreducible polynomial of degree 2°
deterministically. We have (—1)(?=1)/2 = —1, so —1 does not have a square root in F', and therefore X2 + 1
is irreducible. If e = 1, we are done. Qtherwise, we can proceed as follows. Let ¢ = v/=1, and represent
GF(p®) as K = F(¢). Since —1 has a square root in K, if we find an ¢ € K that is not a square, then
X2*7" — ¢ is an irreducible polynomial in K[X] (by reasoning identical to that in the previous paragraph).
Let « be a root of X2 — a and E = K(a). By lemma 2.3, E = F(«), and so it will suffice to compute
the minimum polynomial of @ over K, which has degree 2¢. Let o be the automorphism on F(7) defined by
i =+ —i. Then the minimum polynomial for o over F' is just (X2°7" — a)(X2" — a9).

So we have reduced the problem to finding a quadratic nonresidue in F'(z). This is easily done as follows.
F(i)* is a cyclic group of order p? — 1. Write p® — 1 = 12%, 1 odd. If we take k — 2 successive square roots
of 7, we will obtain a primitive 2*-th root of unity in F(¢). This must be a quadratic nonresidue; otherwise,
its square root would be an element of order 2¥*! in F(¢)*, which is impossible by Lagrange’s theorem. So
we are left to solve equations of the form (z + yi)? = a + bi where b # 0. Expanding the left hand side and

equating coeflicients, we have a system of equations

-y’ =a 22y = b.



We must have z # 0, since & = 0 implies b = 0. Substitute y = b/(22) into the first equation, set z = z?,
and we obtain 22 — az — % = 0. To solve this we need to compute the Va2 + b2, and then compute z = /z.
So we have reduced the problem to finding square roots in F'. But since p = —1 (mod 4), this is easy

to do. The group of quadratic residues in F has order (p — 1)/2; therefore, if u is a quadratic residue,

(u(P+1)/4)2 = ulPt1)/2 = 4. So we can compute \/u directly as u(P+1)/4,

Case 3: ¢g=7p

We want to construct an irreducible polynomial of degree p¢. In this case, we don’t need any randomness at

all. We make use of the following theorem from [Lang, p. 325, theorem 6.4].

Lemma 2.4. Let k be a field of characteristic p. Given a € k, the polynomial X? — X — a either splits into

linear factors in k or is irreducible over k.

Suppose, inductively, that we have an irreducible polynomial f of degree p®. We show how to construct
an irreducible polynomial of degree p°t'. We can represent the field K = GF(pP") by F(a) where « is a root
of f. Then {1,a,...,aP""1} is a basis for K as a vector space over F. Our first task is to find an irreducible
polynomial in I{[X] of degree p.

For any a € K, lemma 2.4 implies that if X? — X —a does not have a root in K, it is irreducible. Suppose
that X? — X — g has a root b in K. Let T be the trace from K to F. Then we have T'(a) = T(b? — b) = 0.
But, since T' is an F-linear map from K onto F, it must map one of the basis elements 1,c,...,a? !
to something other than zero. Thus, we can easily find an a such that T(a) # 0, and hence X? — X ~a
irreducible.

Suppose we have X? — X — a irreducible. Let B be a root and consider the extension E = K(f). By
lemma 2.3, E = F(8). The minimum polynomial for 8 over F' is of degree p¢*!, and can be computed by
multiplying together conjugate factors

pe—-1

II x? - x —a®).
1=0

Step 2: “Combining” Irreducible Polynomials of Prime Power Degree

Suppose we have constructed irreducible polynomials fi,..., fr € F[X] of degrees ¢;*,...,¢¢". We show
how to deterministically construct an irreducible polynomial in F'[X] of degree n = ¢f* - - - q¢~. It will suffice
to solve the following problem: given two irreducible polynomials f,g € F[X] of degrees a and b, where
ged(a, b) = 1, find an irreducible polynomial of degree ab.

Suppose f and g are given as described above. Let o and 7 be roots of f and g, respectively, in the

algebraic closure F' of F'. Consider the fields F'(«r), F'(f), and the compositum F'(«, §). We have the following
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picture.

F(e, B)

F(a)/ \F(ﬂ
\ F / b

Let d = [F(a,B) : F]. Since a | d, b | d, and ged(a, b) = 1, we must have ab | d. Therefore, d = ab. It follows
that B has degree b over F(a) and a has degree a over F(f). Therefore, f remains irreducible over F'(5)
and g remains irreducible over F'(a).

Now we move from the abstract to the concrete. Using f, we construct the field F[X]/(f) = F(«), where
« be a root of f. Since g remains irreducible over F'(a), we can construct the field F(w, f) = F(a)[X]/(9),
where £ is a root of g. Thus, we no longer view o and 3 as elements of F, but rather, they are elements of

these concrete fields.
Lemma 2.5. F(a, ) = F(ap).

Proof. First note that of has degree a over F(f). Indeed, if we have an equation 0 = (af)' +
ci-1(B)(af)t=1 + -+ 4 co(B), then since a has degree a over F(f), we must have t > a. Similarly, «f
has degree b over F(«). Let d = [F(af) : F]. Consider the following diagram.

F(ap, B)

N
A/

Now, by Galois theory (see [Lang, p. 305, corollary 1.13]), a | d. Exchanging the roles of @ and b, we see
that b | d. Therefore, ab | d. We conclude that d = ab, and F(af) = F(x, (). m

F(p)

Once again, we compute the minimal polynomial for a8 over F'. This has degree ab.

3. Reduction to Factoring

Again, let F' = GT(p) where p is prime, and let n be a positive integer. This section is devoted to a proof of
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Theorem 3.1. Given an oracle for factoring polynomials over F', we can construct an irreducible polynomial

over F' of degree n in time polynomial in n and logp.
Using Berlekamp’s deterministic factoring algorithm, we immediately obtain

Corollary 3.2. We can construct an irreducible polynomial over F' of degree n deterministically in time

polynomial in n and p.

Let g be a prime, ¢ | n,q # p. Let m be the order of p mod g. By theorem 2.1, it will suffice to find an
irreducible polynomial f of degree m, and a g-th nonresidue in F(a) where « is a root of f.

The basic idea is to factor the cyclotomic polynomial &, = X9=! + ...+ 1, obtaining an irreducible
polynomial of degree m. This gives us GF(p™) and a primitive g-th root of unity £ in GF(p™). Now, GF(p™)"
is a cyclic group of order p™ — 1. Write p™ — 1 = I¢g*¥ where ged(l,¢) = 1. If we take k — 1 successive g-th
roots of €, we obtain a primitive ¢¥-th root of unity in GF(p™). This must be a g-th nonresidue; otherwise,
its g-th root would be an element of order ¢**! in GF(p™)*, which is impossible by Lagrange’s theorem. So
we have reduced the problem to finding roots of polynomials of the form X? — ¢ over GF(p™). [Berlekamp]
gives a reduction from factoring in GF(p™)[X] to factoring in GF(p)[X]. We give an explicit construction,
tailoring Berlekamp’s reduction to our particular application.

We proceed iteratively as follows. At the beginning of stage i, i = 1,..., k, we have an extension F(£(9)
over F' of degree m where where ¢(9) is a primitive g’-th root of unity, and F( is the minimal polynomial

for £ over F. Initially, f() is an irreducible factor of ®@,.

Stagei (1 <i<k):
€ is a ¢-th residue. Let o be the Frobenius automorphism & + z? on F (&), This naturally extends to
an automorphism on F(E)[X]. Put g = X7 — () and compute h = gg? ---¢°"" . Now, g = X¢ — () =

(X — ;) (X — o) where the a,’s are primitive g**1-th roots of unity. So we have

m

q
h=gg” g I_I

u:]

X—a")—Hhs,
s=1

where each &, is the minimal polynomial for a; over F', and has degree m. We see that & is a polynomial

over F of degree gm. We then extract an irreducible factor h; and put FG+L) = o for the next stage.

Stage k:

£() is a g-th nonresidue.



4. A New Randomized Algorithm

Again, let F' = GF(p) where p is prime, and let n be a positive integer. This section is devoted to a proof of

Theorem 4.1. For any constant 0 < « < 1/4, there exists a randomized algorithm (depending on «) with
the following properties. It uses about nlog p random bits, halts in time polynomial in n and log p, and upon
termination, it either outputs an irreducible polynomial over F' of degree n, or reports failure. Furthermore,

the probability that it fails is no more than 1/p*™.

Let ¢ be a prime, ¢ | n,q # p. Let m be the order of p mod ¢. By theorem 2.1, it will suffice to find an
irreducible polynomial f of degree m, and a ¢-th nonresidue in F(o) where « is a root of f.

We obtain an irreducible polynomial f of degree m by factoring ®,. Using about nlogp random bits, we
can construct a list p of n numbers between 0 and p—1 with an almost-uniform distribution (see [Bach/Shoup,
section 4] for details). Let 0 < ¢ < 1 be a constant. Algorithms in [Bach/Shoup] will completely factor &,
with failure probability < 1/p(1=93" using n random field elements in time polynomial in n and logp. We
can use our list p as the source of random field elements.

Having obtained f, we construct the field X = GF(p™). Now we need to find a g-th nonresidue in K.

To do this, we make use of the following

Lemma 4.2. Let K = GF(s) and let d | s — 1, d # 1. Let k = [Llogys]. Suppose c1,...,c; € K are
distinct constants. Then if z € K is chosen at random, the probability that 2 -+c¢y,z -+ca,...,z 4+ ¢, are all
in K9 is at most

%—logds+2
s1/2

Proof. Let 7 be the probability that @ +e¢1, ...,z +¢p are all d-th powers. Consider the system of equations

$+c1:y§i

2+ = yf

Let N be the number of tuples (=, y1,...,yx) satisfying (). We want to get an upper bound on N. Let
x be a character of order d on K. For fixed ¢ € K, the number of solutions to the equation y¢ = a is

1+ x(a) + -+ -+ x% 1(a). Therefore,

k
N=3 JIa+x@+e)+-+x*"e+a)
ze X i=1

= XX Mete)r(@ra))

0<ey,. ,ex<d-1 zEK



In this last expression, the term corresponding to e; = .-+ = e = 0 is 5. For the other terms, we can bound
the magnitude of each character sum by (k — 1)s*/2 (see [Schmidt, p. 43, Theorem 2C’)). Since there are

d* — 1 such terms, we have

N < s+ d¥(k - 1)s!/2

Dividing this by d*, we get a bound on the number of 2 € K for which there exist nonzero y1,...,y
satisfying (). Divide again by s to get the probability 7/ that z + ¢, ..., 2 + ¢ are all nonzero d-th powers.
So we have 7/ < 1/d¥ + (k — 1)/s'/2. Since 7 < k/s+ 7/, we have 7 < k/s + 1/d* + (k — 1)/s'/2. Plugging

in k = [1logys], and observing that k < s1/2) gives the desired result. m

Let s = p™. Then using m random elements of F' we can construct a random element of K. Using this
random element, we can find a g-th nonresidue with failure probability < ((}log, s 4+ 2)2/s)*/2. There is
constant C(e) such that for s > C(e), we have (£ log, s +2)* < s¢. Therefore, if s < C(€), we can find a ¢-th
nonresidue brute force search; otherwise, we can find a g-th nonresidue with failure probability < 1/p(1=9zm

Let w = |n/m]. Using p, we can perform u independent searches for a g¢-th nonresidue, obtaining
a failure probability bound of 1/p(t=95m% < 1/p(1=9)F7, this last inequality following from the fact that
mu > n/2.

If we reuse p for each of the randomized steps, the failure probability for the entire algorithm will be
no more than 1/p(1=97 times the number of random steps. There are at most 2 logn random steps (2 for
each ¢, of which there are no more than logn). So the failure probability is no more than 2logn/p(t=9)in,
For fixed 6 and sufficiently large p”, this is no more than 1/p(1=91=ain For small p® we can use brute

force search. Now choose € and 6 so that (1 — ¢)(1 — 6) < . This proves theorem 4.1.
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