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Abstract

This paper presents results on the simulation of a connectionist network for stereo matching
on a shared-memory multiprocessor. The nodes in the network represent possible matches
between points in each image. Because we only consider matches between intensity edges, only
a few of these nodes actually represent candidate matches for a given pair of images;
consequently, only the active part of the network is ever constructed by the simulation. This
includes the nodes representing candidate matches and the connections between these candidate
matches as defined by a variety of constraints. Thus, the simulation involves constructing a list
of matches and a list of connections, and simulating the iterations of the network. Each of these
phases can be partitioned among a number of processors with very little interference between the
processors due to synchronization or mutual exclusion. The resulting parallel implementation
produced nearly linear speed-ups for up to the nine processors in our system.

The support of the National Science Foundation under Grant No. DCR-8520870 and NASA
under Grant No. NAGW-975 is gratefully acknowledged.






1. Introduction

Connectionist networks are a significant new model of computation for computer vision
research. Motivated by the computing organization of the brain, connectionist networks are
characterized by a large number of simple computing elements (nodes) and a massive
interconnection network between the nodes. At present, these networks must be simulated in
order to test them empirically. On a serial computer these simulations are cumbersome since
each update to the activation of one node requires gathering outputs from neighboring nodes,
scaling each output, and summing the scaled values. This process is repeated for each node in the
network at each iteration. Thus, because of their simple, regular computational requirements,

these simulations are obvious candidates for parallel implementation.

In this paper we investigate the parallel simulation of a connectionist network that is based
on the General Support Algorithm for stereo vision.” The Sequent Symmetry S81® was used to
implement and test the simulation. In stereo vision there are two cameras at different positions
recording images of a scene. In the stereo matching problem, pairs of points must be identified in
the two images that correspond to the same feature in the scene. The difference between the
positions of these points may then be used to obtain depth information about the underlying scene
feature. The General Support Algorithm solves the stereo matching problem using a
connectionist network model of computation. Each node in the network represents a possible
match between pairs of points in the images. Through repeated updates to the activations of the
nodes in the network, the correct matches are identified. These are the nodes with relatively large
activations when the iterations have been completed. The motivation, design and sequential

simulation results of this algorithm are described in Stewart.”

The Sequent Symmetry is a true shared-memory multiprocessor. It contains a number of

identical 32-bit microprocessors, a high speed data bus, and a single common memory.

Symmetry and DYNIX are registered trademarks of Sequent Computer Systems, Inc. UNIX is a
registered trademark of AT&T



Contention for the bus is reduced by 16 kilobyte caches that are local to each processor. The
caches are write-through, i.e. when one processor writes to a shared variable stored in a cache,
that write is echoed to main memory. This invalidates all other copies of the variable that might
be stored in other caches. More precisely, cache locations are allocated in small memory blocks

so that writes to any part of a block invalidates all copies of the block in other caches.

The software environment of the Symmetry system is controlled by the DYNIX operating
system, a distributed version of UNIX. There are two forms of parallelism available on the
system, function partitioning and data partitioning. Function partitioning involves simultaneous
activation of a set of distinct procedures; data partitioning involves multiple activations of the
same procedure. The most common instance of data partitioning occurs when a group of
identical procedures divides up the iterations of a large loop. In doing so there are two methods
for controlling the division of work. First, in static scheduling the iterations of the loop are
partitioned a priori. Second, in dynamic scheduling each process works on an iteration (or group
of iterations) and, upon completion, allocates more iterations from a central list. Data
partitioning requires more overhead, but it may be preferable for two main reasons: it
accommodates variations in the processing times of the individual iterations and it automatically
adjusts the workload when there is contention for the processors from other programs. As a final
feature of the software environment, synchronization and mutual exclusion in the DYNIX system

are realized using system primitives built on top of semaphores.

In the remainder of this paper we describe the parallel simulation of the General Support
Algorithm (GSA) in detail. Section 2 outlines the connectionist network design of the GSA.
Section 3 describes a simulation based on this network. Section 4 analyzes the parallel
implementation of the simulation. Finally, Section 5 discusses the results of testing the parallel

simulation on a Sequent Symmetry system with 10 processors.



2. The General Support Algorithm

In this section we define the stereo matching problem and outline the General Support

Algorithm, including the details of its connectionist implementation.

2.1. Stereo Matching Problem

There are several stages to the binocular stereo problem. These include: (1) determining the
imaging geometry (we assume that this is known), (2) detecting features in each image for
matching, (3) finding the matches between these features (the correspondence problem), and (4)
interpreting the results. The focus here is the correspondence problem. Figure 1 shows the
typical model of stereo imaging geometry. The cameras are assumed to have point lenses and the
images are formed through perspective projection. The lines of sight of the cameras are normal
to the image plane, and are parallel to the z-axis in the x—z plane. This model provides an
important simplification that is used in many stereo algorithms: a given point (xo,yo) in one

image can only match points (x;, yo) in the other image. That is, the search for matches for a
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given point is limited to the same row in the other image. This is the horizontal epipolar

scanlines assumption.

As described above, the matching process involves finding features in each image and
matching them with the other image. The most common matching features, and the ones used in
the General Support Algorithm, are oriented edges. These edges are often detected and matched
at multiple resolutions. At coarse resolutions there are fewer edges, so matching is often less
ambiguous. At fine resolutions there are more edges and hence more possible matches, but the

position information at fine resolutions is more accurate.

The disparity of a match is the difference between the positions of the features in the two

images. Matches with large disparities indicate scene features closer to the cameras.

The selection of the valid matches from among the candidates has been studied by
numerous researchers. Most frequently they have proposed constraints to assist in this process.
These constraints depend on assumptions about the scene and its appearance in the two images.
Groups of matches meeting the requirements of the constraints are favored over other matches.
The GSA integrates the influence of a number of constraints. In the algorithm, the constraints are
defined as local interactions between pairs of matches. In addition, with one exception, these

constraints define only positive interactions between matches.

2.2. Connectionist Implementation of the GSA

The General Support Algorithm is implemented in a hierarchical connectionist network.
The lower levels of the network perform multiresolution edge detection and determine candidate
matches. The highest level is the matching network. In this network each node represents a
distinct possible match between a pair of image coordinate points. For a given pair of input
images, only a small percentage of the match nodes will be activated because edge detection
produces a sparse set of results. Connections between pairs of nodes in the matching network are

defined by the various constraints used.



A number of constraints are implemented in the network. The only one having negative
influence on a match node is the uniqueness constraint.3 Generally, uniqueness states that there
can be at most one valid match for each edge. In our formulation of it, there are two uniqueness
influences on a given match between a pair of edges, one from each image. One is the maximum
of the other matches for the edge from the left image. The other is the maximum of the other

matches for the right image edge.

The detailed match! constraint provides additional initial activation to those matches
where the areas around the edges in the two images have similar intensities. It does not require

any connections between candidate matches.

The remainder of the constraints define connections between pairs of candidate matches.
Multiresolution? specifies relations between matches at adjacent resolution levels. In our usage,
there are two forms of multiresolution support. In coarse-to-fine multiresolution, a match at one
resolution level can support a match at the next finer resolution when the two matches have
nearly the same position and disparity. In fine_to_coarse multiresolution, support occurs in the
opposite direction. The weights of these connections are defined by the parameters

BASE _COARSE TO_FINE and BASE_FINE TO_COARSE, respectively.

Figural continuity? defines support between pairs of nearby matches at the same resolution
that might be along the same contour in the two images. The weight of support is given by

BASE _FC |/ distance , where distance is the distance between the matches.

The disparity gradientS‘6 defines support between a pair of matches as follows. Let p;
and p, be two candidate matches with disparities d(p1) and d(p3), respectively. Then these

matches meet the disparity gradient requirement if

ld(p)—d(py)]
D(p1,p2) =1

where D (p1,p2) is the distance between the matches, D (p1,p2) < K, for constant X = 10. To

determine the connection weight for the disparity gradient, let d;2=1d(p;) —d(p2)|. Then the



weight is given by:

BASE DG 4 c
D (p1,p2) (di2+¢)

where ¢ = 1 1is a constant.

The connections define relations between nodes in the matching network. The nodes have
real-valued activations and outputs. The computation in the network involves iterative changes
to these values. The equations defining the node activation and output functions in the
connectionist network are as follows. The activation of a node depends on the combined
influences of the supporting constraints, uniqueness, decay and the node’s prior activation. The

supporting input to a match is a weighted, linear combination of the constraint input, given by:

N,
I = O: wi
[ ]}__% J Wi
where the O; are outputs from other match nodes, and the wj; are the connection weights.
Uniqueness input is given by:
B; =B max (0; | j € Left;) + B max (O | k € Right;)

where Lef't; is the set of cornpeting matches for the left edge of match i, and Right; is the set of

competing matches for the right edge. The new activation is:
A =( - A; +1; +B;

where & is a decay parameter. Decay contributes an additional negative influence that forces a
match to have continued support throughout the network’s iterations. The output, O; is simply a

threshold function of the activation:

where ¢ is a threshold parameter. The activation is limited to the range [-1..1], and the output is

allowed to be in the range [0..1]. When the activation of a node reaches 1.0 it is said to be



saturated, and it remains at 1.0 for the duration of the matching procedure.

3. Simulation of the General Support Algorithm

The connectionist network described above is extremely large and therefore quite expensive
to simulate directly. Our encoding scheme8 requires L k N2 nodes, where L is the number of
resolution levels, & is the number of discrete disparity values, and the images are each of size N
by N. In addition, each node has a large number of connections. However, for a given pair of
images, the nodes that actually represent candidate matches are sparsely distributed. We use this
observation to structure the simulation as follows. For each pair of images we construct only the
active part of the network. This contains only those nodes representing candidate matches and
only those connections between pairs of candidate matches. The result is subnetwork that is

functionally isomorphic to the entire network for the given pair of images.

The simulation involves two phases of processing: the first phase builds the three main data
structures, and the second phase simulates the iterations of the network. The data structures
consist of the edge images (note that we do not consider edge detection as part of the simulation),
the list of candidate matches (i.e. the match nodes), and a list of connections between these
matches. During the iteration phase of the simulation, the network alternately and synchronously
updates all nodes’ activations and outputs. This process repeats either for a fixed number of
iterations or until a small percentage of the nodes have an intermediate output value (e.g.

025 < 0; < 0.75).

The three main data structures are shown in Figure 2. The edge images are represented as
two-dimensional arrays. Those positions having no edges are represented as null entries. Each

entry contains a pointer to a list of candidate matches for that edge (the "Match ptrs" in Figure 2).

The match nodes list actually consists of three separate lists: the node activations ("A" in
Figure 2), the node outputs ("O" in Figure 2), and the descriptions of the nodes. Each description

includes the image coordinates for the edges in the match and a pointer to the list of input
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Figure 2. Diagram of the three main data structures used in the simulation. See the text for dis-
cussion.

connections to the match. Candidate matches are determined by searching the edge images.
When a candidate is identified, a location in the match node list is allocated and the initial
activation and output of the match are computed. In addition, the match is added to the linked

list of matches for both the left and right edges. This list facilitates the uniqueness computation.

The third data structure, the connections list, requires the most space. Each entry in this list
contains the weight of the connection and the index of the output match node. Empirically, we
found that there are approximately 150 active connections per match. This varies, of course, with
the density of edges in the images. Determining the active incoming connections to a given
match requires examining both the edge images and match list for other matches that meet the

requirements of a given constraint. Fortunately, many of the time consuming computations, such



as the distance functions and the weight values in the disparity gradient, can be precomputed and
stored in a look-up table. When the list of input connections to a match is complete, space for the

connections is allocated in a contiguous block in the connections list.

After the three data structures are built, the simulation of the network iterations begins. At
each iteration the new activations of all of the nodes are computed. Once this completes these
activations are used to compute the new outputs from the nodes. During the activation
computation for a given match, the previous activation for the match, the list of its connections in
the connections array, and the list of competing matches for both the left and right edges are
needed. The list of connections is used to access various locations in the output list to compute
the weighted input to a match. During the output computation of an iteration, the activation of a
node is read and then its new output value is stored. Other details of the match description are

not needed during the output computation.

4. Parallel Implementation

The simulation described in the previous section was designed so that it could be
implemented in parallel. In this section we describe the details of this implementation including:
synchronization and mutual exclusion among the parallel loop iterations, static vs. dynamic
allocation of the iterations, the number of consecutive loop indices allocated by each processor at
once, and some additional hardware contention issues. In making the choice between static and
dynamic allocation for a given loop of the simulation, and in choosing the number of iterations
allocated at once, we used simulation results for a test random-dot stereogram. After the best
choices were identified we measured the speed-up of the parallel implementation compared to the
sequential version of the simulation. In the remainder of this section we consider each of the

above issues beginning with the parallel structuring of the individual parts of the simulation.

During the input of the edge image, a separate process is created for each resolution level
for each of the left and right images. The edge data for each of these images reside in separate

files. Thus, there are 2 L different processes created, where L is the number of resolution levels.



The duration of these processes will vary according to the number of edges in a given input file,
but since input is sequential, no further division of work is possible. When there are fewer than

2 L processors available, each processor must handle multiple input images sequentially.

The construction of the match list is not as straightforward as the image input. As noted
above, space to store the matches is allocated from a shared array. In a parallel implementation,
multiple processes need to allocate matches simultaneously. In addition, the linked list of
matches for a given edge must be updated for each match node. Both of these issues can
potentially cause significant problems because each requires some form of mutual exclusion. For
the most part, however, these problems can be avoided by making use of the epipolar scanline
assumption discussed in Section 2. That is, because all matches for the edges in a row must be in
the same row in the other image, one processor will locate all of the matches for the row. The
processor finds the candidate matches and stores them in its local data area. When all of the
matches have been found within a row, the processor allocates enough contiguous space in the
shared match list and then copies the local data into this list. Note that while copying, mutual
exclusion is unnecessary. This allocation method reduces contention for access to the match list
because large blocks are allocated at once. It also completely eliminates the need for mutual
exclusion in updating the linked list of matches for each edge because all of the matches for an

edge are found and stored sequentially by a single process.

The parallel construction of the connections list works in much the same way as the
construction of the match list. One process finds all of the connections for a single match node.
In doing so it temporarily stores these connections in a local buffer. After it finds all of the
connections for the node, it allocates space in the global connections list and copies the local data
into this list. This method has the additional advantage that the connections for a node are always

stored consecutively in the global list.

Once the data structures are initialized in shared memory, the simulation of network

iterations begins. During the iterations there is no need for mutual exclusion among the parallel

10



processors. In the activation computation for a node, a processor must reference the outputs of a
group of other nodes. However, during the activation computation, the node outputs are read-
only, so mutual exclusion in referencing them is unnecessary. During the output computation for
a node, only the activation and output values of the node are referenced, so mutual exclusion is

unnecessary here as well.

Synchronization does not cause significant delays at any part of the simulation. It must
occur after each phase of building the data structures, between each iteration of the network, and
between the activation and output computations of each iteration. The synchronization between
activation and output computations is realized using a DYNIX program primitive called a
"barrier” that all processes must reach before any of them proceeds to the output computation. In
all other cases synchronization is handled implicitly. This occurs because processes initiated in

parallel from a DYNIX procedure must all end before that procedure may continue.

Next, consider the issues of dynamic vs. static allocation of loop iterations and loop
allocation size. Generally, in the tests we ran, there was little difference between the different
options. (The results below show the average time using nine processors when there were no
other users active on the system.) Clearly, there is no need for dynamic allocation of the output
update computation during the network iterations. In each of the other parts of the computation
the time required for each iteration varied, but this did not greatly affect the performance of the
simulation. For the match list construction, dynamic allocation in small blocks (2 rows at a time)
was nearly the same as static allocation (1.58 seconds vs 1.53 seconds). For the construction of
the connections list, dynamic allocation of single iterations was slightly faster than static
allocation (36.83 seconds vs. 37.35 seconds). The performance using dynamic allocation was
improved by increasing the number of loop iterations allocated at once each processor to 8 (36.40
seconds). Finally, the activation computation was only marginally improved by dynamic
allocation of larger blocks, i.e. static allocation required 25.02 seconds whereas 24.85 seconds

were required for dynamic allocation of blocks of 4 iterations. Thus, in our experiments,
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although dynamic allocation improved the performance of the algorithm slightly, the differences

were not very significant.

As a final consideration in the parallel simulation, the major potential hardware problem
involves contention for the main memory bus. (When there are multiple users, main memory
allocation and paging may be issues, but we do not consider them here.) The caches local to each
processor are designed to alleviate this somewhat. However, the simulation of the GSA is
significantly larger than the combined size of the caches (the example used here required
approximately 16M bytes). This implies that there is a potential for bus contention when a large
number of processors is used. As will be shown in the next section, this problem did not occur

for our experiments. With larger numbers of processors this may become a problem.

5. Results

This section presents the results of the parallel simulation on the random-dot stereogram
shown in Figure 3. Each image was 128 by 128 pixels and represented three different surfaces at
disparities O, 6 and 12. (Disparity 12 is closest to the viewer, and is represented by the darkest
points in Figure 3b.) There were 11,090 active nodes and 1,637,570 active connections for this

stereogram. The algorithm produced 97% correct matching decisions.

Our version of the Sequent Symmetry configuration used 10 Intell 80386 processors linked
via a bus and sharing common memory. The caches local to each processor contain 16 kilobytes,
and the main memory was large enough to hold the entire simulation (> 16 megabytes). All but

one of the processors can be allocated for parallel execution.

Our results show the speed-ups achieved in executing the simulation using different
numbers of processors, ranging from 1 to 9. For each number of processors, the simulation was
run three times with no other active users on the system, and the results were averaged. The
times for the simulation were separated into times for input, match list building, connections list

building, and the time to run 10 iterations of the network. These are shown in Table 1. The
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(b) Disparity image results for the finest resolution and the left image (disparity is encoded as in-
tensity).

Figure 3. Random-dot stereogram with three layers. The darkest points in the disparity image (b)
represent points that are closest to the viewer.
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Simulation Times for N Processors

Num Phases of the Simulation Total
Processors || Input | Match | Connections | Iterations || Time
1 1743 4.54 297.3 213.9 533.1

2 11.87 2.67 150.8 105.6 270.9

3 9.23 1.98 101.6 71.2 184.0
4 7.67 1.68 76.8 54.2 140.5
5 6.56 1.54 62.1 44.6 114.8
6 5.13 1.48 52.3 36.3 95.2

7 5.14 1.47 454 31.5 83.5
8 5.21 1.49 40.6 27.9 75.2

9 5.15 1.53 36.4 25.0 67.0

Table 1. Timing results for the parallel simulation.

results are graphed for building the match list, building the connections list, and simulating the
network iterations in Figures 4, 5 and 6, respectively. Figure 7 shows the overall speed-up
obtained. In each figure, the dark curve shows the actual times and the broken lines shows the
optimal speed-ups. Speed-ups are measured in terms of the effective number of processors. That
is, for N processors, the effective number of processors is T(1)/T(N), where T (i) is the

execution time when using { processors.

As shown in Figure 4, the match list building did not approach the optimum speed-up, and
performance actually degraded slightly after 7 processors. Since the loops of match list building
were relatively independent, the only likely explanation is that the speed-up was limited by the
non-trivial time required to initiate processes. With images requiring more active match nodes,
the allocation will require more time and so speed-ups will probably continue to be obtained
beyond 7 processors. Due to current memory size restrictions we have been unable to test larger

images.

The speed-ups for building the connection list and for the iterations of the network were
both almost optimal. This is encouraging since these steps required by far the greatest percentage
of the total time. Building the connections list required 56% of the sequential processing time,
and 54% when 9 processors were used. Ten iterations required 40% and 37% of the time

respectively.
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Figure 4. Speed-ups obtained for building the list of candidate matches. The dark curve shows
the actual speed-ups and the broken lines shows the optimal speed-ups. Speed-up is measured in
terms of the effective number of processors. That is, for N processors, the effective number of
processors is T(1) /T (N), where T (i) is the execution time when using i processors. Note that
the best processing time is obtained for 7 processors. See the text for the discussion of this.
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Figure 5. Speed-ups obtained for building the connections list.
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Figure 6. Speed-ups obtained for the iterations of the network.

Because the connection list building and the iterations dominate the processing time, the
parallel speed-up for 9 processors was nearly optimal. Increasing the number of processors is
likely to continue improving the performance. The decrease in time due to increases in the
number of processors may flatten for large N because of either: (1) contention for the memory
bus, or (2) mutual exclusion in allocating space in the shared memory. Based on our data, it is

not possible to predict the point at which this will occur.

In summary, the results presented here have shown the effectiveness of a parallel
implementation of the simulation of the General Support Algorithm, a connectionist network for
stereo vision, on a Sequent Symmetry S81 shared-memory multiprocessor. This was realized by

careful development of the simulation so that there was little contention in terms of mutual
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Figure 7. Speed-ups obtained for the entire simulation.

exclusion and synchronization. This performance shows that the study of connectionist network
vision algorithms can be greatly facilitated through parallel simulation on shared-memory

multiprocessors.
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