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A slice of a program with respect to a program point p and variable x consists of all statements of the program that
might affect the value of x at point p. This paper concerns the problem of interprocedural slicing — generating a slice
of an entire program, where the slice crosses the boundaries of procedure calls. To solve this problem, we introduce a
new kind of graph to represent programs, called a system dependence graph, which extends previous dependence
representations to incorporate collections of procedures (with procedure calls) rather than just monolithic programs.
Our main result is an algorithm for interprocedural slicing that uses the new representation.

The chief difficulty in interprocedural slicing is correctly accounting for the calling context of a called procedure.
To handle this problem, system dependence graphs include some data-dependence edges that represent transitive
dependencies due to the effects of procedure calls, in addition to the conventional direct-dependence edges. These
edges are constructed with the aid of an auxiliary structure that represents calling and parameter-linkage relationships.
This structure takes the form of an attribute grammar. The step of computing the required transitive-dependence edges
is reduced to the construction of the subordinate characteristic graphs for the grammar’s nonterminals.

It should be noted that our work concerns a somewhat restricted kind of slice: Rather than permitting a program to
be sliced with respect to program point p and an arbitrary variable, a slice must be taken with respect to a variable that
is defined at or used atp.

CR Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs — control structures,
procedures, functions, and subroutines; D.3.4 [Programming Languages]: Processors — compilers, optimization
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Additional Key Words and Phrases: program dependence graph, control dependence, data dependence, program slic-
ing, data-flow analysis, flow-insensitive summary information, attribute grammar, subordinate characteristic graph, pro-
gram debugging, program integration

1. INTRODUCTION

The slice of a program with respect to program point p and variable x consists of all statements and predi-
cates of the program that might affect the value of x at point p. The value of x at program point p is
directly affected by assignments to x that reach p and by the loops and conditionals that enclose p. An
intraprocedural slice is determined from the closure of the directly-affects relation.

This work was supported in part by the National Science Foundation under grants DCR-8552602 and DCR-8603356 as well as by
grants from IBM; DEC, and Xerox.

Authors’ address: Computer Sciences Department, University of Wisconsin — Madison, 1210 W. Dayton St., Madison, WI 53706.

An abridged version of this paper will appear under the same title in: Proceedings of the ACM SIGPLAN 88 Conference on Program-
ming Language Design and Implementation, (Atlanta, GA, June 22-24, 1988), ACM SIGPLAN Notices, June 1988.



Program slicing, originally defined in [Weiser84], can be used to isolate individual computation threads
within a program, which can help a programmer understand complicated code. Program slicing is also
used by the algorithm for automatically integrating program variants described in [Horwitz88]; slices are
used to compute a safe approximation to the change in behavior between a program P and a modified ver-
sion of P, and to help determine whether two different modifications to P interfere.

In Weiser’s terminology, a slicing criterion is a pair <p, V>, where p is a program point and V is a sub-
set of the program’s variables. In his work, a slice consists of all statements and predicates of the program
that might affect the value of variables in V' at point p. This is a more general kind of slice than is often
needed: Rather than a slice taken with respect to program point p and an arbitrary variable, one is often
interested in a slice taken with respect to a variable that is defined at or used at p. Ottenstein and Otten-
stein point out how well-suited program dependence graphs are for this kind of slicing and propose that
program dependence graphs be used to represent procedures in software development environments
[Ottenstein84].

This paper concerns the problem of interprocedural slicing — generating a slice of an entire program,
where the slice crosses the boundaries of procedure calls. Our algorithm for interprocedural slicing pro-
duces a more precise interprocedural slice than the one given in [Weiser84]. Our work follows the exam-
ple of [Ottenstein84] by defining the slicing algorithm in terms of operations on a dependence graph
representation of programs; however, [Ottenstein84] only discusses programs consisting of a single
monolithic procedure, and does not address the problem of slicing across procedure boundaries.

To solve the interprocedural-slicing problem, we introduce a new kind of graph to represent programs,
called a system dependence graph, which extends previous dependence representations to incorporate col-
lections of procedures (with procedure calls) rather than just monolithic programs. Our main result is an
algorithm for interprocedural slicing that uses the new representation.

The chief difficulty in interprocedural slicing is comrectly accounting for the calling context of a called
procedure. To illustrate this problem, and the shortcomings of Weiser’s algorithm, consider the following
example program, which sums the integers from 1 to 10:

program Main procedure A(x,y) procedure Add(a, b) procedure Increment (z)
sum :=0; call Add(x,y); a=a+b call Add(z, 1)
i=1; call Increment (y) return return
while i <11 do return
call A (sum, i)
od
end

Using Weiser's algorithm to slice this program with respect to variable z and the return statement of pro-
cedure Increment , we obtain everything from the original program. However, inspection reveals that com-
putations involving the variable sum do not contribute to the value of z at the end of procedure Increment ;
in particular, neither the initialization of sum nor the call to Add from procedure A (which adds the current
value of i to sum) should be included in the slice. The reason these statements are included in the slice
computed by Weiser’s algorithm is (roughly) the following: The statement “call Add(z, 1)” in procedure
Increment causes the slice to “descend” into procedure Add; when the slice reaches the beginning of Add
it “ascends” to all sites that call Add, both the site, in, Increment. at which it “descended” and the
(irrelevant) site in A .

A more precise slice consists of the following elements:




program Main procedure A (y) procedure Add(a,b) procedure Increment (z)
i=1 call Increment (y) a=a+b callAdd(z, 1)
whilei <11 do return return return
callA(i)
od
end

This set of program elements is computed by the slicing algorithm described in this paper.

To sidestep the calling-context problem, system dependence graphs include some data-dependence
edges that represent transitive dependencies due to the effects of procedure calls, in addition to the conven-
tional edges for direct dependencies. The cornerstone of our construction is the use of an attribute gram-
mar to represent calling and parameter-linkage relationships among procedures. The step of computing the
required transitive-dependence edges is reduced to the construction of the subordinate characteristic graphs
for the grammar’s nonterminals.

It is important to understand the distinction between two different but related “slicing problems:”

Version (1)
The slice of a program with respect to program point p and variable x consists of all statements and
predicates of the program that might affect the value of x at point p.

Version (2)
The slice of a program with respect to program point p and variable x consists of a reduced program
that computes the same sequence of values for x at p. That is, at point p the behavior of the reduced
program with respect to variable x is indistinguishable from that of the original program.

For intraprocedural slicing, a solution to Version (1) provides a solution to Version (2), since the “reduced
program” required in Version (2) can be obtained by restricting the original program to just the statements
and predicates found in the solution for Version (1) [Reps88].

For interprocedural slicing, restricting the original program to just the statements and predicates found
for Version (1) does not necessarily yield a program that is a satisfactory solution to Version (2). The rea-
son has to do with multiple calls to the same procedure: It is possible that the program elements found by
an algorithm for Version (1) will include more than one such call, each passing a different subset of the
procedure’s parameters. (It should be noted that, although it is imprecise, Weiser’s algorithm produces a
solution to Version (2).)

In this paper, we address Version (1) of the slicing problem. The interprocedural slicing algorithm
presented in this paper identifies a subgraph of the system dependence graph whose components might
affect the values of the variables defined at or used at a given program point p. A solution to Version (2)
requires defining a mapping from this subgraph to a program whose behavior at p is indistinguishable from
the original program. This mapping may involve duplicating code in order to specialize procedure bodies
to particular parameter-usage patterns.

The remainder of the paper is organized as follows: Section 2 defines the program dependence graphs
used to represent programs in a language without procedure calls; this definition is a slight refinement of
the one given in [Horwitz88]. Section 2 also defines the operation of intraprocedural slicing on these pro-
gram dependence graphs. Section 3 extends the definition of dependence graphs to handle a language that
includes procedures and procedure calls. The new graphs are called system dependence graphs. Section 4
presents our slicing algorithm, which operates on system dependence graphs and correctly accounts for the
calling context of a called procedure. It then describes how to improve the precision of interprocedural
slices by using interprocedural summary information in the construction of system dependence graphs, how



to handle programs with aliasing, and how to slice incomplete programs. Section 5 discusses the complex-
ity of the slicing algorithm. Section 6 discusses related work.

2. PROGRAM DEPENDENCE GRAPHS AND PROGRAM SLICES

Different definitions of program dependence representations have been given, depending on the intended
application; nevertheless, they are all variations on a theme introduced in [Kuck72], and share the common
feature of having explicit representations of both control dependencies and data dependencies. The
definition of program dependence graph presented here is a slight refinement of the one given in
[Horwitz88]; it is similar, but not identical, to the program dependence representations used by others, such
as the “program dependence graphs” defined in [Ferrante87] and the “dependence graphs” defined in
[Kuck81].

The definition of program dependence graph presented below is for a language with scalar variables,
assignment statements, conditional statements, while loops, and a restricted kind of “output statement”
called an end statement. An end statement, which can only appear at the end of a program, names one or
more of the variables used in the program; when execution terminates, only those variables will have
values in the final state. Intuitively, the variables named by the end statement are those whose final values
are of interest to the programmer.

2.1. The Program Dependence Graph

The program dependence graph for program P, denoted by Gp, is a directed graph whose vertices are con-
nected by several kinds of edges.! The vertices of Gp represent the assignment statements and control
predicates that occur in program P. In addition, Gp includes three other categories of vertices:

(1) There is a distinguished vertex called the entry vertex.

(2) For each variable x for which there is a path in the standard control-flow graph for P [Aho86] on
which x is used before being defined, there is a vertex called the initial definition of x. This vertex
represents an assignment to x from the initial state. The vertex is labeled “x := InitialState (x).”

(3) For each variable x named in P’s end statement, there is a vertex called the final use of x. It
represents an access to the final value of x computed by P, and is labeled “FinalUse(x)”.

The edges of Gp represent dependencies among program components. An edge represents either a con-
trol dependency or a data dependency. Control dependency edges are labeled either true or false, and the
source of a control dependency edge is always the entry vertex or a predicate vertex. A control depen-
dency edge from vertex v, to vertex v,, denoted by v, —>, v,, means that during execution, whenever the
predicate represented by v, is evaluated and its value matches the label on the edge to v,, then the program
component represented by v, will be executed (although perhaps not immediately). A method for deter-
mining control dependency edges for arbitrary programs is given in [Ferrante87]; however, because we are
assuming that programs include only assignment, conditional, and while statements, the control depen-
dency edges of Gp can be determined in a much simpler fashion. For the language under consideration
here, a program dependence graph contains a control dependency edge from vertex v, to vertex v of Gp
iff one of the following holds:

OB S o

‘A directed graph G consists of a set of vertices V(G) and a set of edges E(G), where E(G)gV(G)xV(G). Each edge
(b.c)e E(G)is directed from b to ¢; we say that b is the source and ¢ the target of the edge.
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i) v, is the entry vertex, and v, represents a component of P that is not subordinate to any control
predicate; these edges are labeled true.

ii) v, represents a control predicate, and v, represents a component of P immediately subordinate to the
control construct whose predicate is represented by v,. If v, is the predicate of a while-loop, the
edge v, —>. v, is labeled true; if v, is the predicate of a conditional statement, the edge v, —>, v, is
labeled true or false according to whether v, occurs in the then branch or the else branch, respec-
tively.?

A data dependency edge from vertex v, to vertex v, means that the program’s computation might be
changed if the relative order of the components represented by v, and v, were reversed. In this paper, pro-
gram dependence graphs contain two kinds of data-dependency edges, representing flow dependencies and
def-order dependencies.

A program dependence graph contains a flow dependency edge from vertex v, to vertex v, iff all of the
following hold:

i) v, is a vertex that defines variable x.
ii) v, isa vertex that uses x.

iii)  Control can reach v, after v, via an execution path along which there is no intervening definition of
x. That is, there is a path in the standard control-flow graph for the program by which the definition
of x at v; reaches the use of x at v,. (Initial definitions of variables are considered to occur at the
beginning of the control-flow graph.)

A flow dependency that exists from vertex v, to veriex v, will be denoted by v, —>f v,.

Flow dependencies can be further classified as loop carried or loop independent. A flow dependency
vy —>f v, is carried by loop L, denoted by v —> .V, if in addition to i), ii), and iii) above, the follow-
ing also hold:

iv)  There is an execution path that both satisfies the conditions of iii) above and includes a backedge to
the predicate of loop L.

v)  Bothv; and v, are enclosed in loop L.

A flow dependency v, —> v, is loop independent, denoted by vy —> j; v, if in addition to i), ii), and iii)
above, there is an execution path that satisfies iii) above and includes no backedge to the predicate of a
loop that encloses both v, and v,. It is possible to have both vy — .y v and vy —>; va.

A program dependence graph contains a def-order dependency edge from vertex v, to vertex v, iff all of
the following hold:

i) v, and v, both define the same variable,
ii) v, and v, are in the same branch of any conditional statement that encloses both of them.
iif) There exists a program component v3 such that vy —> vy and vy —>f va.

iv) v, occurs to the left of v, in the program’s abstract syntax tree.

?In other definitions that have been given for control ‘dependency edges, there is an additional edge from each predicate of a while
statement to itself labeled true. By including the additional edge, the predicate’s outgoing true edges consist of every program ele-
ment that is guaranteed to be executed (eventually) when the predicate evaluates to true. This kind of edge is left out of our definition
because it is not necessary for our purposes.



ok

A def-order dependency from v, to v, is denoted by vi —> 4, ¢, Vo

Note that a program dependence graph is a multi-graph (i.e. it may have more than one edge of a given
kind between two vertices). When there is more than one loop-carried flow dependency edge between two
vertices, each is labeled by a different loop that carries the dependency. When there is more than one def-
order edge between two vertices, each is labeled by a vertex that is flow-dependent on both the definition
that occurs at the edge’s source and the definition that occurs at the edge’s target.

Example. Figure 1 shows an example program and its program dependence graph. The boldface arrows
represent control dependency edges; dashed arrows represent def-order dependency edges; solid arrows
represent loop-independent flow dependency edges; solid arrows with a hash mark represent loop-carried
flow dependency edges.

The data-dependency edges of a program dependence graph are computed using data-flow analysis. For
the restricted language considered in this section, the necessary computations can be defined in a syntax-

program Main
sum = 0;
i=1;
while i <11 do
sum = sum+i ;
=i+l
od
end(sum, i)

Figure 1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable sum, and its
program dependence graph, The boldface arrows represent control dependency edges, dashed arrows represent def-
order dependency edges, solid arrows represent loop-independent flow dependency edges, and solid arrows with a hash
mark represent loop-carried flow dependency edges.




directed manner.

2.2. Program Slices

For vertex s of program dependence graph G, the slice of G with respect to s, denoted by G /s, is a graph
containing all vertices on which s has a transitive flow or control dependence (i.e. all vertices that can
reach s via flow and/or control edges): V(G /s)=(w IweV(G)A w =, ;s ). We extend the
definition to a set of vertices S = k‘) s; as follows: V(G /S)=V(G /( k‘J 5) = k‘) V(G Is;). Figure 2 gives

a simple worklist algorithm for computing the vertices of a slice using a program dependence graph.

The edges in the graph G /S are essentially those in the subgraph of G induced by V(G /§), with the
exception that a def-order edge v —> 4,y w is included only if G /S contains the vertex u that is directly
flow dependent on the definitions at v and w. In terms of the three types of edges in a program dependence
graph we define
EGIS)= ((v>w)l(v—>,w)eEG)A vweV(G/S))

= w12 weEG)A vweV(G/S))
V(v —=20uW) 1V 5wW)EEG)A uyweV(GI/S))

Example. Figure 3 shows the graph resulting from taking a slice of the program dependence graph from
Figure 1 with respect to the final-use vertex for i.

We say that G is a feasible program dependence graph iff G is the program dependence graph of some
program P. Forany § ¢ V(G), if G is a feasible program dependence graph, then the slice G /S isalsoa
feasible program dependence graph; it corresponds to the program P’ obtained by restricting the syntax
tree of P to just the statements and predicates in V(G /§) [Reps88].

procedure MarkVerticesOfSlice(G, S)
declare
G : a program dependence graph
S: asetof vertices in G
WorkList : a set of vertices in G
v, w: vertices in G
begin
WorkList =S
while WorkList # & do
Select and remove vertex v from WorkList
Mark v
for each vertex w such thatedgew —, v oredgew —>. v isin G do
if w is unmarked then Insert w into WorkList fi
od
od
end

Figure 2. A worklist algorithm that marks the vertices in G /S. Vertex v is in G /S if there is a path along. flow
and/or control edges from v to some vertex in S. .



program Main
i=1;

whilei <11 do
i=i+1
od
end(i)

0 while i <11 @

Figure 3. The graph and the corresponding program that result from slicing the program dependence graph from Fig-
ure 1 with respect to the final-use vertex for i.

The significance of an intraprocedural slice is that it captures a portion of a program’s behavior. The
programs P and P, corresponding to the slice G /S and the graph G, respectively, compute the same final
values for all variables x for which FinalUse (x) is a vertex in § [Reps88].

3. THE SYSTEM DEPENDENCE GRAPH: AN INTERPROCEDURAL DEPENDENCE GRAPH
REPRESENTATION

We now turn to the definition of the system dependence graph. The system dependence graph, an exten-
sion of the dependence graphs defined in Section 2.1, represents programs in a language that includes pro-
cedures and procedure calls.

Our definition of the system dependence graph models a language with the following properties:
(1) A complete system consists of a single (main) program and a collection of auxiliary procedures.

(2) Procedures end with return statements instead of end statements (as defined in Section 2). A
return statement does not include a list of variables.

(3)  Parameters are passed by value-resuit: - - - -
It should become clear that our approach is not tied to the particular language features enumerated above.
Modeling different features will require some adaptation; however, the basic approach is applicable to

languages that allow nested scopes and languages that use different parameter-passing mechanisms. The
definition of system dependence graphs presented in this section relies on the absence of aliasing; Section




4.3 discusses how to convert a program with aliasing into one that is alias free. In the absence of aliasing,
global variables can be treated simply as additional parameters to each procedure; thus, we do not discuss
globals explicitly in this section.

A system dependence graph includes a program dependence graph, which represents the system’s main
program, procedure dependence graphs, which represent the system’s auxiliary procedures, and some
additional edges. These additional edges are of two sorts: (1) edges that represent direct dependencies
between a call site and the called procedure, and (2) edges that represent transitive dependencies due to
calls.

Section 3.1 discusses how procedure calls and procedure entry are represented in procedure dependence
graphs and how edges representing dependencies between a call site and the called procedure are added to
connect these graphs together. Section 3.2 defines the linkage grammar, an attribute grammar used to
represent the call structure of a system. Transitive dependencies due to procedure calls are computed using
the linkage grammar and are added as the final step of building a system dependence graph.

In the sections below, we use “procedure” as a generic term referring to both the main program and the
auxiliary procedures when the distinction between the two is irrelevant.

3.1. Procedure Calls and Procedure Linkages

Extending the definition of dependence graphs to handle procedure calls requires representing procedure
linkages: the passing of values between procedures. In designing the representation of procedure linkages
we have three goals:

(1) It should be possible to build an individual procedure’s procedure dependence graph (including the
computation of data dependencies) with minimal knowledge of other system components.

(2) The system dependence graph should consist of a straightforward connection of the program
dependence graph and procedure dependence graphs.

(3) It should be possible to extract efficiently a precise interprocedural slice by traversing the graph via
a procedure analogous to the procedure Mark VerticesOfSlice given in Figure 2.

Goal (3) is the subject of Section 4.1, which presents our algorithm for slicing a system dependence graph.

To meet the goals outlined above our graphs model the following non-standard, two-stage mechanism
for run-time procedure linkage: When procedure P calls procedure Q, values are transferred from P to Q
by means of an intermediate call linkage dictionary, 8y . Values are transferred back from Q to P through
a return linkage dictionary, &,. Before the call, P copies values into the call dictionary; Q then initializes
local variables from this dictionary. Before returning, Q copies return values into the return dictionary,
from which P retrieves them.

This model of procedure linkage is represented in procedure dependence graphs through the use of five
new kinds of vertices. A call site is represented using a call-site vertex; information transfer is represented
using four kinds of linkage vertices. On the calling side, information transfer is represented by a set of pre-
and post-processing vertices. These vertices, which are control dependent on the call-site vertex, represent
assignment statements that copy values into the call dictionary and out of the return dictionary, respec-
tively. Similarly, information transfer in the called procedure is represented by a set of initialization and
finalization vertices. These vertices, which are control dependent on the procedure’s entry vertex,
represent assignment statements that copy values out of the call dictionary and into the return dictionary,
respectively.
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Using this model, data dependencies between procedures are limited to dependencies from preprocessing
vertices to initialization vertices and from finalization vertices to postprocessing vertices. Connecting pro-
cedure dependence graphs to form a system dependence graph is straightforward, involving the addition of
three new kinds of edges: (1)a call edge is added from each call-site vertex to the corresponding
procedure-entry vertex; (2) a linkage-entry edge is added from each preprocessing vertex at a call site to
the corresponding initialization vertex in the called procedure; (3) a linkage-exit edge is added from each
finalization vertex in the called procedure to the corresponding postprocessing vertex at the call site. (Call
edges are a new kind of control dependency edge; linkage-entry and linkage-exit edges are new kinds of
data dependency edges.)

Another advantage of this model is that flow dependencies within a procedure can be computed in the
usual way, using data flow analysis on the procedure’s control-flow graph in which each procedure call is
replaced with the appropriate sequence of assignments to the call dictionary followed by the appropriate
sequence of assignments from the return dictionary.

An important question is which values are transferred from a call site to the called procedure and back
again. This point is discussed further in Section 4.2, which presents a strategy in which the results of inter-
procedural data flow analysis are used to omit some linkage vertices from procedure dependence graphs.
For now, we will assume that all actual parameters are copied into the call dictionary and retrieved from
the return dictionary. Thus, the linkage vertices associated with a call from procedure P to procedure Q
are defined as follows (Gp denotes the procedure dependence graph for P ).

In Gp, subordinate to the call-site vertex that represents the call to Q, there is a pre-processing ver-
tex for each actual parameter e of the call to Q. The pre-processing vertices are labeled 8y (7) :==e,
where r is the formal parameter name.

For each actual parameter a that is a variable rather than an expression, there is a postprocessing ver-
tex. These are labeled a := &’y (r) for actual parameter a and corresponding formal parameter r.

The linkage vertices associated with the entry to procedure Q and with the return from procedure Q are
defined as follows (Gg denotes the procedure dependence graph for 0 ):

For each parameter of O, Gy contains an initialization vertex and a finalization vertex. These ver-
tices are labeled r =8, (r), and &' (r) = r respectively, where r is the formal parameter name.

Example. Figure 4 repeats the example system from the Introduction and shows the corresponding pro-
gram and procedure dependence graphs connected with linkage-entry edges, linkage-exit edges, and call
edges. (In this figure, as well as in the remaining figures of the paper, def-order edges are not shown.)
Edges representing control dependencies are shown in boldface and are not labeled (all such edges would
be labeled true); edges representing intraprocedural flow dependencies are shown using arcs; linkage-entry
edges, linkage-exit edges, and call edges are shown using dashed lines.

3.2, The Linkage Grammar: An Attribute Grammar that Models Procedure-Call Structure

The linkage grammar is an attribute grammar that models the call structure of each procedure as well as the
intraprocedural transitive flow dependencies among the procedures’ linkage vertices. Interprocedural tran-

- sitive low- dependencies among a system dependence graph’s linkage vertices are determined from the ...

iukage giammar using a standard attribute-grammar construction: the computation of the subordinate
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program Main procedure A (x) procedure Add{a, b) procedure Increment (z)
sum = 0; call Add (x, y); a=a+b call Add(z,1)
im=1; call Increment (y) return return
whilei <11 do return
call A (sum, i)
od
end(sum, i)

Figure 4. Example system and corresponding program and procedure dependence graphs connected with linkage-
entry, linkage-exit, and call edges. Edges representing control dependencies are shown (unlabeled) in boldface; edges
representing intraprocedural flow dependencies are shown using arcs; linkage-entry edges, linkage-exit edges, and call
edges are shown using dashed lines.
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characteristic graphs of the linkage grammar’s nonterminals.? In this section, we describe the construction
of the linkage grammar and the computation of its subordinate characteristic graphs.

The context-free part of the linkage grammar models the system’s procedure-call structure. The gram-
mar includes one nonterminal and one production for each procedure in the system. If procedure P con-
tains no calls, the right-hand side of the production for P is &; otherwise, there is one right-hand-side non-
terminal for each call site in P.

Example. For the example system (shown in Figure 4) the productions of the linkage grammar are as
follows:

Main — A A — Add Increment Add —¢ Increment — Add

The attributes in the linkage grammar correspond to the parameters of the procedures. Procedure inputs
are modeled as inherited attributes; procedure outputs are modeled as synthesized attributes (see Appendix
A). For example, the productions shown above are repeated in Figure 5, this time in tree form. In Figure
5, each nonterminal is annotated with its attributes; a nonterminal’s inherited attributes are placed to its left;
its synthesized attributes are placed to its right.

More formally, the program’s linkage grammar has the following elements:
° For each procedure P, the linkage grammar contains a nonterminal P .

® For each procedure P, there is a production p : P — f3, where for each site of a call on procedure Q
in P there is a distinct occurrence of @ in .

® For each initialization vertex of P, there is an inherited attribute of nonterminal P.

Main xin yim A x_ out y out
! - -~ ~
' e - S~ ~
¥ P ~So
i . - - ~ -~ -
I - L ~ -
xin yin A xout y out ain b_in Add a_out b_out z_in Inc z_out
ain b_in Add a_out b_out z_in Inc  z_out
| i
' t
' 1
i i
1 1
€ ain bin Add aout b_out

Figure 5. The productions of the example linkage grammar shown in tree form. Each nonterminal is annotated with
its attributes; a nonterminal’s inherited attributes are placed to its left; its synthesized attributes are placed to its right.

3A summary of attribute-grammar terminology can be found in Appendix A.
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) For each finalization vertex of P, there is a synthesized attribute of nonterminal P.

Dependencies among the attributes of a linkage-grammar production are used to model the (possibly
transitive) intraprocedural dependencies among the linkage vertices of the corresponding procedure. These
dependencies are computed using (intraprocedural) slices of the procedure’s procedure dependence graph.
For each grammar production, attribute equations are introduced to represent the intraprocedural dependen-
cies among the linkage vertices of the corresponding procedure dependence graph. For each attribute
occurrence a, the procedure dependence graph is sliced with respect to the vertex that corresponds to a.
An attribute equation is introduced for a so that @ depends on the attribute occurrences that correspond to
the linkage vertices identified by the slice. More formally:

For each attribute occurrence X.a of a production p, let v be the vertex of the procedure dependence
graph Gp that corresponds to X.a. Associate with p an attribute equation of the form
Xa=f(..,Y.b,...) where the arguments Y.b to the equation consist of the attribute occurrences of
p that correspond to the linkage vertices in Gp /v.

(The actual function on the right-hand side of the equation is unimportant because the attribute grammar is
never used for evaluation; all we are concerned about is that the equation represent the dependence
described above.) One property of the above definition is that the attribute dependency graph for each pro-
duction is transitively closed.

It is entirely possible that a linkage grammar will be a circular attribute grammar (i.e. there may be attri-
butes in some derivation tree of the grammar that depend on themselves). This does not create any
difficulties as the linkage grammar is used only to compute transitive dependencies and not for attribute
evaluation.

Example. Figure 6 shows the productions of the grammar from Figure 5, augmented with attribute
dependencies. Note that there is an immediate cycle in the dependencies for the production Main — A.

Transitive dependencies from a call site’s preprocessing vertices to its postprocessing vertices are com-
puted from the linkage grammar by constructing the subordinate characteristic graphs for the grammar’s

Main xin yin A xout Yy out
/J\ f .
X_| in yin A xout y_ out ain bin Add aout b_out zin Inc  z_out
an bin Add aout b_out zin Inc  z_out
T ——, )
1 i
w :
1 ]
1 !
€ ain b_in Add a_out b_out

Figure 6. The productions of Figure 5, augmented with attribute dependencies.
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nonterminals. The algorithm we give exploits the special structure of linkage grammars to compute these
graphs more efficiently than can be done for attribute grammars in general. For general attribute gram-
mars, computing the sets of possible subordinate characteristic graphs for the grammar’s nonterminals may
require time exporiential in the number of attributes attached to some nonterminal. However, a linkage
grammar is an attribute grammar of a restricted nature: For each nonterminal X in the linkage grammar,
there is only one production with X on the left-hand side. Because linkage grammars are restricted in this
fashion, for each nonterminal of a linkage grammar there is one subordinate characteristic graph that cov-
ers all of the nonterminal’s other possible subordinate characteristic graphs. For such grammars, it is possi-
ble to give a polynomial-time algorithm for constructing the (covering) subordinate characteristic graphs.

The computation is performed by an algorithm that is a slight modification of an algorithm originally
developed by Kastens to construct approximations to a grammar’s transitive dependency relations
[Kastens80]. The covering subordinate characteristic graph of a nonterminal X of the linkage grammar is
captured in the graph TDS (X) (standing for “Transitive Dependencies among a Symbol’s attributes™). Ini-
tially, all the TDS graphs are empty. The construction that builds them up involves the auxiliary graph
TDP (p) (standing for “Transitive Dependencies in a Production™), which expresses dependencies among
the attributes of a production’s nonterminal occurrences.

The basic operation used in ConstructSubCGraphs is the procedure
“AddEdgeAndInduce(TDP (p),(a,b))”, whose first argument is the TDP graph of some production p and
whose second argument is a pair of attribute occurrences in p. AddEdgeAndInduce carries out three
actions:

(1) Theedge (a,b)isinserted into the graph TDP (p).
(2) Any additional edges needed to transitively close TDP (p) are inserted into TDP (p ).

(3) In addition, for each edge added to TDP (p) by (1) or (2), (i.e., either the edge (a, b) itself or some
other edge (c,d) added to reclose TDP (p)), AddEdgeAndInduce may add an edge to one of the
TDS graphs. In particular, for each edge added to TDP (p) of the form (X y.m ,Xy.n), where X is
the left-hand-side occurrence of nonterminal X in production p and (X.m,X.n)¢ TDS (X), an edge
X.m,X.n)is added to TDS (X ).

An edge in one of the TDS (X)) graphs can be marked or unmarked, the edges that AddEdgeAndInduce
adds to the TDS (X) graphs are unmarked.

The TDS graphs are generated by the procedure ConstructSubCGraphs, given below in Figure 7, which
is a slight modification of the first two steps of Kastens’s algorithm for constructing a set of evaluation
plans for an attribute grammar [Kastens80]. ConstructSubCGraphs performs a kind of closure operation on
the TDP and TDS graphs. Step 1 of the algorithm — the first two for-loops of ConstructSubCGraphs —
initializes the grammar’s TDP and TDS graphs; when these loops terminate, the TDP graphs contain
edges representing all direct dependencies that exist between the grammar’s attribute occurrences. At the
end of Step 1, TDP (p) is a (transitively closed) graph whose edges represent the direct dependencies of
production p. The TDS graphs contain unmarked edges corresponding to direct left-hand-side-to-left-
hand-side dependencies in the linkag'e grammar’s productions.

In Step 2 of ConstructSubCGraphs, the invariant for the while-loop is:
If a graph TDP (p) ¢oni4ing ‘an"édge e’ that corresponds to a marked edge e in one of the TDS
graphs, then e has been induced in all of the other graphs TDP (g).
When all edges in all TDS graphs have received marks, the effects of all direct dependencies have been

induced in the TDP and TDS graphs. Thus, the 7DS (X) graphs computed by ConstructSubCGraphs are
guaranteed to cover the actual transitive dependencies among the attributes of X that exist at any
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procedure ConstructSubCGraphs(L )
declare
L: alinkage grammar
p: aproduction in L
X,.X,,)f: nonterminal occurrences in L
a,b: attributes of nonterminals in L
X: anonterminal in L
begin
/* Step 1: Initialize the TDS and TDP graphs */
for each nonterminal X in L do
TDS(X) := the graph containing a vertex for each attribute X.b but no edges
od
for each production p inL do
TDP(p ) := the graph containing a vertex for each attribute occurrence X;.b of p butno edges
for each attribute occurrence X;.b of p do
for each argument X;.a of X;.b do
Insert edge (X;.a,X;.b) into TDP(p )
let X be the nonterminal corresponding to nonterminal occurrence X; in
ifi =0and j =0 and (X.a,X.b)¢ TDS (X) then Insert an unmarked edge (X.a,X.b) into TDS(X) fi
ni
od
od
od
/* Step 2: Determine the sets of induced transitive dependencies */
while there is an unmarked edge (X.a,X.b) in one of the TDS graphs do
Mark (X.a,X.b)
for each occurrence X of X in any production p do
if X.a,X.b)¢ TDP (p) then AddEdgeAndInduce(TDP (p), X.a,X.b)) fi
od
od
end

Figure 7. Computation of a linkage grammar’s sets of TDP and TDS graphs.

occurrence of X in any derivation tree.

Put more simply, because for each nonterminal X in a linkage grammar there is only a single production
that has X on the left-hand side, the grammar only derives one tree. (For a recursive grammar it will be an
infinite tree.) All marked edges in 7DS represent transitive dependencies in this tree, and thus the TDS (X)
graph computed by ConstructSubCGraphs represents a subordinate characteristic graph of X that covers
the subordinate characteristic graph of any partial derivation tree derived from X, as desired.

Example. The nonterminals of our example grammar are shown below annotated with their atiributes
and their subordinate characteristic graphs.
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xin yin A x out y out a_in b_in Add a_out b_out z_in Inc

z_out

= NG A

3.3. Recap of the Construction of the System Dependence Graph
The system dependence graph is constructed by the following steps:
(1)  For each procedure of the system, construct its procedure dependence graph.

(2) For each call site, introduce a call edge from the call-site vertex to the corresponding procedure-
entry vertex.

(3) For each preprocessing vertex v at a call site, introduce a linkage-entry edge from v to the
corresponding initialization vertex in the called procedure.

(4) For each postprocessing vertex v at at call site, introduce a linkage-exit edge to v from the
corresponding finalization vertex in the called procedure.

(5) Construct the linkage grammar corresponding to the system.
(6) Compute the subordinate characteristic graphs of the linkage grammar’s nonterminals.

(7)  Atall call sites that call procedure P, introduce flow dependency edges corresponding to the edges
in the subordinate characteristic graph for P.

Example. Figure 8 shows the complete system dependence graph for our example system. Control
dependencies, which are shown unlabeled, are represented using medium-bold arrows; intraprocedural
flow dependencies are represented using arcs; transitive interprocedural flow dependencies (corresponding
to subordinate characteristic graph edges) are represented using heavy bold arcs; call edges, linkage-entry
edges, and linkage-exit edges (the edges that connect program and procedure dependence graphs together)
are represented using dashed arrows.

4. INTERPROCEDURAL SLICING

In this section we describe how to perform an interprocedural slice using the system dependence graph
defined in Section 3. We then discuss modifications to the definition of the system dependence graph to
permit more precise slicing and to extend the slicing algorithm’s range of applicability.

4.1. An Algorithm for Interprocedural Slicing

As discussed in the Introduction, the algorithm presented in [Weiser84], while safe, is not as precise as pos-
sible. The difficult aspect of interprocedural slicing is keeping track of the calling context when a slice
“descends” into a called procedure.

The key element of our approach is the use of the linkage grammar’s characteristic graph edges in the
system dependence graph. These edges represent transitive data dependencies from preprocessing vertices
~ to postprocessing vertices due to procedure calls. The presence of such edges permits us t¢ sid
“calling context” problem; the slicing operation can move “across” a call without having w s

Our algorithm for interprocedural slicing is given in Figure 9. In Figure 9, the computation of the slice
of system dependence graph G with respect to vertex set § is performed in two phases. Both Phases 1 and
2 operate on the system dependence graph using essentially the method presented in Section 2.2 for per-
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Figure 8. Example system’s system dependence graph. Control dependencies, which are shown unlabeled, are
represented using medium-bold arrows; intraprocedural flow dependencies are represented using arcs; transitive inter-
procedural flow dependencies (corresponding to subordinate characteristic graph edges) are represented using heavy
bold arcs; call edges, linkage-entry edges, and linkage-exit edges (the edges that connect program and procedure depen-
dence graphs together) are represented using dashed arrows.



- 18-

procedure MarkVerticesOfSlice(G, §)
declare
G : a system dependence graph
S,8’: sets of verticesin G
begin
/* Phase 1: Slice without descending into called procedures */
MarkReachingVertices(G, S, {def-order, linkage-exit})

/* Phase 2: Slice called procedures without ascending to call sites */
S’ = all marked vertices in G
MarkReaching Vertices(G, S’, {def-order, linkage-entry, call})

end

procedure MarkReachingVertices(G, V', Kinds)
declare
G : a system dependence graph
V: asetof vertices in G
Kinds: a set of kinds of edges
v, w: vertices in V
WorkList: a set of vertices in G
begin
WorkList ==V
while WorkList # @ do
Select and remove a vertex v from WorkList
Mark v
for each vertex w that is a predecessor of v in G such that there is an edge w — v whose kind is not in Kinds do
Insert w into WorkList
od
od
end

Figure 9. The procedure MarkVerticesOfSlice marks the vertices of the interprocedural slice G /§ . The auxiliary pro-
cedure MarkReachingVertices marks all vertices in G from which there is a path to a vertex in V' along edges of kinds
other than those in the set Kinds.

forming an intraprocedural slice — the graph is traversed to find the set of vertices that can reach a given set
of vertices along certain kinds of edges. The traversal in Phase 1 follows flow edges, control edges, call
edges, and linkage-entry edges, but does not follow def-order edges or linkage-exit edges. The traversal in
Phase 2 follows flow edges, control edges, and linkage-exit edges, but does not follow call edges, def-order
edges, or linkage-entry edges.

Figures 10 and 11 illustrate the two phases of the interprocedural slicing algorithm. Figure 10 shows the
vertices of the example system dependence graph that are marked during Phase 1 of the interprocedural
slicing algorithm when the system is sliced with.respect to the finalization vertex for parameter z in pro-
cedure Increment. Edges “traversed” during Phase 1 are also included in Figure 10. Figure 11 adds (in
boldface) the vertices that are marked and the edges that are traversed during Phase 2 of the slice.
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Figure 10. The example program’s system dependence graph is sliced with respect to the finalization vertex for
parameter z in procedure Increment. The vertices marked by Phase 1 of the slicing algorithm as well as the edges
traversed during this phase are shown above.
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Figure 11. The example program’s system dependence graph is sliced with respect to the finalization vertex for
parameter z in procedure Increment. The vertices marked by Phase 2 of the slicing algorithm as well as the edges
traversed during this phase are shown above in boldface.

The resuii of an inicrprocedural slice consists of the sets of vertices identified by Phase 1 and Phase 2,
and the set of edges induced by this vertex set. Figure 12 shows the completed example slice.

N T
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Figure 12. The complete slice of the example program’s system dependence graph sliced with respect to the finaliza-
tion vertex for parameter z in procedure Increment .

Given the goal of slicing sils,tem dépendéncje graph G with respect to vertex s in procedure P, Phases 1
and 2 can be characterized as follows:

Phase 1
Phase 1 identifies vertices that can reach s, and that are either in P itself or in a procedure that calls
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P. The effects of procedures called by P are not entirely ignored; the presence of flow dependence
edges from preprocessing to postprocessing vertices (subordinate characteristic graph edges) permits
the discovery of vertices that can reach s only through a procedure call, although the graph traversal
does not actually “descend” into the called procedure.

Phase 2
Phase 2 identifies vertices that can reach s from procedures called by P or from procedures called by
procedures that call P,

4.2. Using Interprocedural Summary Information to Build Procedure Dependence Graphs

The slice shown in Figure 12 illustrates a shortcoming of the method for constructing procedure depen-
dence graphs described in Section 3. The problem is that including both a pre- and a post-processing ver-
tex for every argument in a procedure call can affect the precision of an interprocedural slice. The slice
shown in Figure 12 includes the call vertex that represents the call to Add from A ; however, this call does
not in fact affect the value of z in Increment. The problem is that a postprocessing vertex for argument y
in the call to Add from A is included in A's procedure dependence graph even though Add does not
change the value of y.

To achieve a more precise interprocedural slice we must use the results of interprocedural data flow
analysis when constructing procedure dependence graphs in order to exclude vertices like the post-
processing vertex for argument y.

The appropriate interprocedural summary information consists of the following sets, which are com-
puted for each procedure P [Banning79]:
GMOD(P):
the set of variables that might be modified by P itself or by a procedure (transitively) called from P.

GREF(P ):
the set of variables that might be referenced by P itself or by a procedure (transitively) called from
P.

GMOD and GREF sets are used to determine which linkage vertices are included in procedure depen-
dence graphs as follows: For each procedure P, the linkage vertices subordinate to P ’s entry vertex include
one initialization vertex for each variable in GMOD(P) u GREF(P), and one finalization vertex for each
variable in GMOD(P). Similarly, for each site at which P is called, the linkage vertices subordinate to the
call-site vertex include one preprocessing vertex for each variable in GMOD(P) v GREF(P), and one
postprocessing vertex for each variable in GMOD(P). (It is necessary to include a preprocessing and an
initialization vertex for a variable x that is in GMOD(P) and is not in GREF(P ) because there may be an
execution path through P on which x is not modified. In this case, a slice of P with respect to the final
value of x must include the initial value of x; thus, there must be an initialization vertex for x in P, and a
corresponding preprocessing vertex at the callto P .)

Example. The GMOD and GREF sets for our example system are:

procedure | GMOD | GREF
A X,y X,y ,
Add a a,b e lihas
Inc z z

Because parameter b is not in GMOD(Add), Add’s procedure dependence graph should not include a
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finalization vertex for b, and the call to Add from A should not include the corresponding postprocessing
vertex.

Figure 13 shows A ’s procedure dependence graph as it would be built using GMOD and GREF informa-
tion. The postprocessing vertex for argument y of the call to Add is omitted, and the flow edge from that
vertex to the preprocessing vertex “&;,.(z) :=y” is replaced by an edge from the initialization vertex
“y :=8,(y)” to “85,.(z) :==y”. The new edge is traversed during Phase 1 of the interprocedural slice
instead of the (now omitted) flow edge from “y :=&'44;(a)” t0 “8;,.(z) :=y”, thus (correctly) bypassing
the call to Add in procedure A.

4.3. Procedure and System Dependence Graphs in the Presence of Aliasing

The problem of interprocedural slicing in the presence of aliasing can be reduced to the problem of inter-
procedural slicing in the absence of aliasing at the expense of the time and space needed to convert the ori-
ginal program into one that is alias free. (These costs may, in the worst case, be exponential in the max-
imum number of non-local variables — globals and parameters — visible to a procedure.)

The conversion is performed by simulating the calling behavior of the program (using the usual
activation-tree model of procedure calls [Banning79]) to discover, for each instance of a procedure call,
exactly how variables are aliased at that instance. (Although a recursive program’s activation tree is
infinite, the number of different alias configurations is finite; thus, only a finite portion of the activation tree
is needed to compute aliasing information.) A new copy of the procedure (with a new procedure name) is
created for each different alias configuration; the procedure names used at call sites are similarly adjusted.
Within each procedure, variables are renamed so that each set of aliased variables is replaced by a single
variable.

This process may generate multiple copies of a vertex v with respect to which we are to perform a slice.
If this happens, it is necessary to slice the transformed program with respect to all occurrences of v.

Example. Consider the following program in which aliasing occurs:

Figure 13. Procedure A's procedure dependence graph built using interprocedural summary information. The post-

processing venex for argument y of the call to Add has been omltted, and the flow edge from that vertex to the vertex .

el

*“Bpne () =y has been replaced by an edge from the vertex *y := 8, (y)” to the vertex “8;,.(z) :=y".
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program Main procedure P (x)

global var a,b,¢ x =0;
b =0 a:=x+b;
callP(b); call P(c)
callP (a) return

end

Figure 14 shows the portion of this program’s activation tree that is used to compute alias information for
each call instance. We use the notation of [Banning79], in which each node of the activation tree is labeled
with the mapping from variable names to storage locations. The transformed, alias-free version of the pro-
gram is shown below:

program Main procedure P (x)
global var a,b,c x =0
b:=0; a:=x+b;
callP(b); call P(c)
call P (a) return
end
Main
a: locl
b: loc2
c: loc3
P P
a: locl ax:loc1
bx:loc2 b: loc2
c: loc3 c: loc3
P P
a: locl a: locl
b: loc2 b loc2
c,x:loc3 c,x:loc3
P
a: locl
b: loc?2
c,x:loc3

Figure 14. A program with aliasin 4rid the portion’of its activation tree needed to compute all alias configurations.
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program Main procedure P 1(bx) procedure P 2(cx) procedure P 3(ax)
global var a,b,¢ bx :=0; cx =0; ax :=0;
b :=0; a :=bx +bx; a:=cx +b; ax =ax +b;
call P1(b); call P2(c) call P2(cx) call P2(c)
call P3(a) return return return
end

If our original goal had been to slice with respect to the statement “a :=x + b” in procedure P, we must
now slice with respect to the set of statements:

" &

{“a=bx +bx”,"a =cx +b",“ax =ax +b"}.

4.4. Slicing Partial System Dependence Graphs

The interprocedural slicing algorithm presented above is designed to be applied to a complete system
dependence graph. In this section we discuss how to slice incomplete system dependence graphs.

The need to handle incomplete systems arises, for example, when slicing a program that calls a library
procedure that is not itself available, or when slicing programs under development. In the first case, the
missing components are procedures that are called by the incomplete system; in the second case, the miss-
ing components can either be not-yet-written procedures called by the incomplete system (when the pro-
gram is developed top-down), or possible calling contexts (when the program is developed bottom-up).

In either case, information about the possible effects of missing calls and missing calling contexts is
needed to permit slicing. This information takes the form of (safe approximations to) the subordinate
characteristic graphs for missing called procedures and the superior characteristic graphs for missing cal-
ling contexts.

When no information about missing program components is available, complete bipartite subordinate
and superior characteristic graphs must be used. This is because the slice of the incomplete system should
include all vertices that could be included in the slice of some “completed” system, and it is always possi-
ble to provide a call or a calling context that corresponds to a complete bipartite subordinate or superior
characteristic graph.

For library procedures, it is possible to provide precise subordinate characteristic graphs even when the
procedures themselves are not provided. For programs under development, it might be possible to compute
characteristic graphs, or at least better approximations to them than complete bipartite graphs, given
specifications for the missing program components.

5. THE COMPLEXITY OF THE SLICING ALGORITHM

This section discusses the complexity of the interprocedural slicing algorithm presented in Section 4.1. In
the absence of aliasing, the cost is polynomial in (various) parameters of the system. In the presence of
aliasing, the costs increase by an exponential factor that reflects the number of aliasing patterns in the pro-
gram. The increased cost is due to the blow-up in program size that can occur when a program with alias-
ing is converted to one that is alias free. Below we assume that such conversion has already been accom-
plished; the measures of system size used below are those associated with the alias-free system.

. TuNuiat, i PR
CERMCHILN i



-26—

5.1, Cost of Constructing the System Dependence Graph

The cost of constructing the system dependence graph can be expressed in terms of the parameters given in

the following tables:
Parameters that measure the size of an individual procedure
Vv the largest number of predicates and assignments in a single procedure
E the largest number of edges in a single procedure dependence graph
Params  the largest number of formal parameters in any procedure
Sites the largest number of call sites in any procedure

Parameters that measure the size of the entire system

P the number of procedures in the system
( = the number of productions in the linkage grammar)
Globals the number of global variables in the system

TotalSites <P - Sites __the total number of call sites in the system

Interprocedural data flow analysis is used to compute summary information about side effects. Flow-
insensitive interprocedural summary information (e.g. GMOD and GREF) can be determined particularly
efficiently. In particular, in the absence of nested scopes, GMOD and GREF can be determined in time
O (P%+ P - TotalSites) steps by the algorithm described in [Cooper88].

Intraprocedural data flow analysis is used to determine the data dependencies of procedure dependence
graphs. For the structured language under consideration here, this analysis can be performed in a syntax-
directed fashion (for example, using an attribute grammar) [Horwitz87]. This involves propagating sets of
program points, where each set consists of program points in a single procedure. This computation has
total cost O (V?).

The cost of constructing the linkage grammar and computing its subordinate characteristic graphs can be
expressed in terms of the following parameters:

Parameters that measure the size of the linkage grammar

R =Sites +1 the largest number of nonterminal occurrences in a single production
G =P + TotalSites the number of nonterminal occurrences in the linkage grammar

<P R

=P . (Sites +1)
X =Globals + Params the largest number of attributes of a single nonterminal
D <R -X the largest number of attribute occurrences in a single production

= (Sites +1)

- (Globals -+ Params)

To determine the dependencies among the attribute occurrences in each production, its corresponding pro-
cedure is sliced with respect to the linkage vertices that correspond to the attribute occurrences of the pro-
duction. The cost of each slice is linear in the size of the procedure dependence graph; that is, the cost is
bounded by O (V +E). Consequently, the total cost of constructing the linkage grammar is bounded by
0@ -X - (V+E)).

It remains for us to analyze the cost of computing the linkage grammar’s subordinate characteristic

wdwi.cographs. Because there are at most D edges in each TDP (p) relation, the cost of AddEdgeAndlnauce,. s

which re-closes a single TDP (p) relation, is O (D?). The cost of initializing the TDP relations with all
direct dependencies in ConstructSubCGraphs is bounded O (P - D?).
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In the inner loop of procedure ConstructSubCGraphs, the AddEdgéAndInduce step is executed once for
each occurrence of nonterminal N. There are at most X 2 edges in each graph 7DS (V) and G nonterminal
occurrences where an edge may be induced. No edge is induced more than once because of the marks on
TDS edges; thus, the total cost of procedure ConstructSubCGraphs is bounded by O (G - X?.-D?
[Kastens80].

5.2. Slicing Costs

An interprocedural slice is performed by two traversals of the system dependence graph, starting from
some initial set of vertices. The cost of each traversal is linear in the size of the system dependence graph,
which is bounded by O (P - (V + E) + TotalSites - X).

6. RELATED WORK

In recasting the interprocedural slicing problem as a reachability problem in a graph, we are following the
example of [Ottenstein84], which does the same for intraprocedural slicing. The reachability approach is
conceptually simpler than the data-flow equation approach used in [Weiser84] and is also much more
efficient when more than one slice is desired.

The recasting of the problem as a reachability problem does involve some loss of generality; rather than
permitting a program to be sliced with respect to program point p and an arbitrary variable, a slice can
only be taken with respect to a variable that is defined at or used at p. For such slicing problems the inter-
procedural slicing algorithm presented in this paper is an improvement over Weiser’s algorithm because
our algorithm is able to produce a more precise slice than the one produced by Weiser’s algorithm. How-
ever, the extra generality is not the source of the imprecision of Weiser’s method; instead, the imprecision
is due to the lack of a mechanism to keep track of the calling context of a called procedure.

Weiser’s method for interprocedural slicing is described as follows (recall that, in Weiser’s terminology,

a slicing criterion is a pair <p, V>, where p is a program point and V is a subset of the program’s vari-
ables):

For each criterion C for a procedure P, there is a set of criteria UPo(C) which are those needed to

slice callers of P, and a set of criteria DOWNy(C') which are those needed to slice procedures called

by P. . . UP(C) and DOWN(C) can be extended to functions UP and DOWN which map sets of
criteria into sets of criteria. Let CC be any set of criteria. Then

UP(CC)= w UPK(C)
CceCC
DOWN(CC)= v DOWNC)
CcecCcC

The union and transitive closure of UP and DOWN are defined in the usual way for relations.
(UPUDOWN)® will map any set of criteria into all those criteria necessary to complete the
corresponding slices through all calling and called routines. The complete interprocedural slice for a
criterion C 1is then just the union of the intraprocedural slices for each criterion in

(UPUDOWN)*(C).
[Weiser84]
This method does not produce as precise a slice as possible; the use of the transitive closure operation fails
to account for the calling context of a called procedure.

[Myers81] presents algorithms for a specific set of interprocedural data flow problems, all of which
require keepirfg track of calling context; however, Myers’s approach to handling this problem differs from
ours. Myers performs data flow analysis on a graph representation of the program, called a super graph,
which is a collection of control-flow graphs (one for each procedure in the program), connected together by
call and return edges. The information maintained at each vertex of the super graph includes a memory
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component, which keeps track of calling context (essentially by using the name of the call site). Our use of
the system dependence graph permits keeping track of calling context while propagating simple marks
rather than requiring the propagation of sets of names. In particular, in Phase 1 of our interprocedural slic-
ing algorithm, the presence of the linkage grammar’s subordinate-characteristic-graph edges (representing
transitive dependencies due to procedure calls) permits the entire effect of a call to be accounted for by a
single backward step over the call site’s subordinate-characteristic-graph edges.

It is no doubt possible to formulate interprocedural slicing as a data flow analysis problem on a super
graph, and to solve the problem using an algorithm akin to those described by Myers to account correctly
for the calling context of a called procedure. One advantage of the approach described in this paper over
the one postulated above arises when one wishes to compute multiple slices of the same system. The sys-
tem dependence graph (with its subordinate characteristic graph edges) can be computed once and for all
and then used for each slicing operation. By contrast, the alternative approach would involve solving a
new data flow analysis problem from scratch for each slice.

The vertex-reachability approach we have used here has some similarities to a technique used in
[Kou77], [Callahan88], and [Cooper88] to transform data flow analysis problems to vertex-reachability
problems. In each case a data flow analysis problem is solved by first building a graph representation of
the program, and then performing a reachability analysis on the graph, propagating simple marks rather
than, for example, sets of variable names. One difference between our work and that cited above, is that
our work concerns a “demand problem” [Babich78] whose goal is to determine information concerning a
specific set of program points rather than an “exhaustive problem” in which the goal is to determine infor-
mation for all program points.

APPENDIX A: ATTRIBUTE GRAMMARS AND ATTRIBUTE DEPENDENCIES

An attribute grammar is a context-free grammar extended by attaching atributes to the terminal and non-
terminal symbols of the grammar, and by supplying attribute equations to define attribute values
[Knuth68]. In every production p: X¢ — X1,...,Xk, €ach X; denotes an occurrence of one of the grammar
symbols; associated with each such symbol occurrence is a set of attribute occurrences corresponding to
the symbol’s attributes.

Each production has a set of attribute equations; each equation defines one of the production’s attribute
occurrences as the value of an attribute-definition function applied to other attribute occurrences in the pro-
duction. The attributes of a symbol X , denoted by A (X), are divided into two disjoint classes: synthesized

attributes and inherited atiributes. Each attribute equation defines a value for a synthesized attribute

occurrence of the left-hand-side nonterminal or an inherited attribute occurrence of a right-hand-side sym-
bol.

An attribute grammar is well formed when the terminal symbols of the grammar have no synthesized
attributes, the root nonterminal of the grammar has no inherited attributes, and each production has exactly
one attribute equation for each of the left-hand-side nonterminal’s synthesized attribute occurrences and for
each of the right-hand-side symbols’ inherited attribute occurrences.

A derivation tree node that is an instance of symbol X has an associated set of attribute instances

" corresponding to the atributes of X. (We shall sometimes shorten “atribute instances™ and “attribute

occurrences” to “attributes;” however, the intended meaning should be ciear from the context). An attri-
buted tree is a derivation tree together with an assignment of either a value or the special token null to each
attribute instance of the tree. ’ '

:./l
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Ordinarily, although not in this paper, one is interested in analyzing a string according to its attribute-
grammar specification. To do this, one first constructs the string’s derivation tree with an assignment of
null to each attribute instance, and then evaluates as many attribute instances as possible, using the
appropriate attribute equation as an assignment statement. The latter process is termed attribute evalua-
tion.

Functional dependencies among attribute occurrences in a production p (or attribute instances in a tree
T) can be represented by a directed graph, called a dependency graph, denoted by D (p) (respectively,
D (T)) and defined as follows:

) For each attribute occurrence (instance) b, the graph contains a vertex b’.

° If attribute occurrence (instance) b appears on the right-hand side of the attribute equation that
defines attribute occurrence (instance) ¢, the graph contains an edge (b’,¢”), directed from b” to c”’.

An attribute grammar that has a derivation tree whose dependency graph contains a cycles is called a circu-
lar attribute grammar. The grammars that arise in this paper are potentially circular grammars.

A node’s subordinate and superior characteristic graphs provide a convenient representation of transi-
tive dependencies among the node’s attributes. (A transitive dependency exists between attributes that are
related in the transitive closure of the tree’s attribute dependency relation, or, equivalently, that are con-
nected by a directed path in the tree’s dependency graph.) The vertices of the characteristic graphs at node
r correspond to the attributes of r; the edges of the characteristic graphs at r correspond to transitive
dependencies among r’s attributes.

The subordinate characteristic graph at r is the projection of the dependencies of the subtree rooted at r
onto the attributes of r. To form the superior characteristic graph at node r, we imagine that the subtree
rooted at r has been pruned from the derivation tree, and project the dependency graph of the remaining
tree onto the attributes of r. To define the characteristic graphs precisely, we make the following
definitions:

® Given a directed graph G =(V,E), a path from vertex a to vertex b is a sequence of vertices,
[V1,¥2, ., Vi), such that: a =vy, b =v, and { (v, viuD li=1,..,k~1} CE.

° Given a directed graph G =(V,E) and a set of vertices V'V, the projection of G onto V' is
defined as:

GIV'=({V"'E"

where E’ = {(v,w) | v,weV’ and there exists a path [v=vq,v,,...,vi =w] such that
Vayews Vg € V7. (That is, G/V’ has an edge from v € V’ to w & V* when there exists a path from v
tow in G that does not pass through any other elements of V”.)

The subordinate and superior characteristic graphs of a node r, denoted r.C and rC, respectively, are
defined formally as follows: Let r be a node in tree T, let the subtree rooted at r be denoted T, and let the
attribute instances at » be denoted A(r), then the subordinate and superior characteristic graphs at r
satisfy:

r.C=D(T)A(r)

r.C =(D(T)-D(T,))A(r) ST

e -

A characteristic graph represents the projection of attribute dependencies onto the attributes of a single
tree node; consequently, for a given grammar, each graph is bounded in size by some constant.
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