ASYNCHRONOUS PARALLEL SUCCESSIVE
OVERRELAXATION FOR THE SYMMETRIC
LINEAR COMPLEMENTARITY PROBLEM

by
R. De Leone & O. L. Mangasarian

Computer Sciences Technical Report #755

February 1988

Asynchronous Parallel Successive
Overrelaxation for the Symmetric
Linear Complementarity Problem?

R. De Leone & O. L. Mangasarian

Computer Sciences Department
University of Wisconsin
Madison, Wisconsin 53706

Technical Report #755

February 1988

Abstract. Convergence is established for asynchronous parallel successive overrelaxation
(SOR) algorithms for the symmetric linear complementarity problem. For the case of a
strictly diagonally dominant matrix convergence is achieved for a relaxation factor interval
of (0,2] with line search, and (0,1] without line search. Computational tests on the
Sequent Symmetry S81 multiprocessor give speedup efficiency in the 43%-91% range for
the cases for which convergence is established. The tests also show superiority of the

asynchronous SOR algorithms over their synchronous counterparts.

Key Words: Linear complementarity, parallel algorithms, asynchronous algorithm, suc-

cessive overrelaxation

Abbreviated Title: Asynchronous Parallel SOR for LLCP

1) This material is based on research supported by National Science Foundation Grants
DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grant
AFOSR-86-0172.

1. Introduction

Successive overrelaxation algorithms have been proposed for solving the symmetric
linear complementarity problem and linear programming problems [5, 6, 3]. Although
successive overrelaxation is intrinsically a serial algorithm, parallel versions were pro-
posed in [7, 8, 3] for the solution of these problems. Inherent in these parallel SOR
versions, originally developed for loosely-coupled processors [4], was the synchroniza-
tion of the various parallel processors. Thus typically each processor was assigned a
fixed portion of the problem data, and once a processor completed its computation
it awaited all other processors to finish their computations as well, whereupon all re-
sults were shared among them all and the process was repeated. By contrast in the
asynchronous SOR proposed here the problem data may be assigned initially to each
processor (static asynchronous SOR) or dynamically selected by each processor (dy-
namic asynchronous SOR) and, just as importantly, the results of each processor are
broadcast instantly to all other processors as soon as they are obtained. This is easily
done with tightly coupled multiprocessors such as the Sequent Symmetry S81 machine
[10] that is employed here. Obviously this immediate sharing of newly computed re-
sults as well as the balanced allocation of data among processors (either by a dynamic
SOR or a balanced static SOR) makes much more efficient use of the parallelism of
a multiprocessor by reducing idle time of each processor and by exploiting instanta-
neously newly computed results. We describe now the essential ideas of the proposed

asynchronous SOR algorithms.

Our concern here is the n-dimensional symmetric linear complementarity problem
(2.1) which under mild practical assumptions is equivalent to the problem (2.2) of
minimizing a quadratic function on the nonnegative orthant [5]. The significance of
this problem stems in part from the fact that linear programs can be reduced to
such a problem [6]. The asynchronous SOR approach consists of letting each of the
k processors solve simultaneously a linear complementarity problem in one variable,
with each processor broadcasting its newly computed optimal variable value as soon
as it is computed and proceeding to the solution of another one-dimensional linear
complementarity problem without waiting for any of the other processors to finish but

using the latest values for all variables. This is continued until all n variables are

1

updated one or more times, at which time all processors are synchronized and the

process is repeated.

We briefly summarize now the results of the paper. In Section 2 we give the con-
vergence results for the various asynchronous parallel SOR algorithms that are defined
in that section. The basic Asynchronous SOR Algorithm 2.1 contains an arbitrary per-
mutation matrix which can be adjusted to result in a synchronous algorithm, or either a
dynamic asynchronous algorithm (problem data automatically distributed among pro-
cessors according to their relative speeds and data density) or a static asynchronous
algorithm (problem data distributed a priori in any desired fashion but typically to
achieve load-balancing). Theorem 2.6 establishes convergence of the ASOR Algorithm
2.1 under a relaxation factor w interval which is an attenuated (0, 2) interval. If the
matrix M of the quadratic objective function is strictly diagonally dominant, then
the relaxation factor w is (0, 1] (Theorem 2.7). Another attenuated (0, 2) interval
for w is given in Theorem 2.8 for a modified synchronous parallel SOR algorithm. In
Algorithm 2.9, a line search is added to Algorithm 2.1 and Theorem 2.10 gives a larger
convergence interval for w than that of Theorem 2.6 for Algorithm 2.1 without linear
search. When M is strictly diagonally dominant, the convergence interval is (0, 2] for

the line-search Algorithm 2.9 as shown by Corollary 2.11.

Section 3 contains numerical test results carried on the Sequent Symmetry S81
multiprocessor [10]. These results indicate that asynchronous SOR algorithms are

superior to synchronous ones.

We briefly describe our notation now. For a vector z in the n-dimensional real
space R", z; will denote the vector with components (z.*.)z = 1max {z,-, O}, 1 =
0,1,...,n. The scalar product of two vectors z and y in R™ will be denoted by zy.
The 2-norm (zz)% of a vector z in R™, will be denoted by Hz“ RY will denote the
nonnegative orthant or the set of points in R® with nonnegative components, while
R™*" will denote the set of m x n real matrices. For A € R™*", AT will denote
the transpose, A; will denote the ith row, A;; the element in row ¢ and column j.
Throughout this work P and P! will denote a permutation matrix in R**" defined as

a permutation of the rows of identity matrix I € R"*". It follows that P~! = PT and

PT is a permutation of the columns of the identity matrix I. For M € R™*", PM

2

is a permutation of the rows of M, MPT is a permutation of the columns of M and

PMPT is the same permutation of the rows and columns of M.

2. Asynchronous Parallel Successive Overrelaxation Algorithins

Our concern here is the symmetric linear complementarity problem
(2.1) Mz+q¢>0,2>0, 2(Mz+q)=0

where M is a given real symmetric matrix in R™*™ and ¢ is a given vector in R™.

Every local and global solution of the quadratic program
(2.2) min f(z):= min ! Mz +
: r=min —zMz+ qz
z>0 z>0 2 1

satisfles (2.1), and when M is positive semidefinite every solution of (2.1) is a global
solution of (2.2).
It is easy to verify directly (or see [5]) that z is a solution of (2.1) if and only if

it satisfies
(2.3) 2= (z—wE(Mz+ q))+

for some w > 0 and some positive diagonal matrix E. This simple relationship can be
used as the basis of our asynchronous successive overrelaxation algorithm. In fact, if
equation (2.3) is interpreted component-wise, then our asynchronous SOR algorithm
can be described as each of the & processors solving simultaneously a component
of (2.3) for a new value of the z component, broadcasting the new value of the z
component when finished and moving on to the next unmodified component of z. We

state now this algorithm more precisely.

2.1 Asynchronous SOR Algorithm (ASOR) Let y° € R}. For t =0,1,2,... let
(2.4) yitl = <yi ~wE Ny + p' + Ky — yi)))_}_

where P! is an arbitrary permutation matrix in R?X",

(2.5) yt = Pz, Nt = Pi,iWPiT, p' = Pig

w > 0, {E*} is a bounded sequence of positive diagonal matrices such that E¢ > al

for some a > 0, K* is an n x n matrix defined by

4

0 if yi*+! is computed before

(2.6) K or while y:+! is computed
" a8 L= . .
N}, if yi*! is computed after

yit! is computed
r,s=1,2,...,n.

2.2 Remark The arbitrary permutation matrix P? in the ASOR Algorithm 2.1 may
arise as follows during a typical asynchronous run on a machine with & parallel proces-
sors. During iteration ¢ 4+ 1 the computation of the first £ components zi"'l, e ,z};,+1
of z**t! is initially assigned to each of the k processors. From then on whenever a
processor finishes computing zjf*'l, it proceeds to compute the component z:t! with
lowest subscript r which has not been computed yet during the current iteration 7+ 1.

The permutation P? is determined by ordering the components of z**! computed by

processor 1 in ascending component order, followed by each of the processors 2 through

k.

2.3 Remark We note here that the asynchronous SOR iteration (2.4) subsumes a
number of serial and synchronous parallel SOR algorithms by setting P! = I and

setting K* as follows:

(a) When K*® = L, the strictly lower triangular part of M (Figure 1a), we obtain the
serial SOR algorithm of [5].

(b) When we set K equal to the k diagonal blocks of the strictly lower triangular
parts of the k& block diagonals of M (Figure lb) we obtain the synchronous parallel
SOR of [7]. Convergence of this algorithm without line search was given in [7, Eqn
(15)] for w € (0, @), where @ € (1, 2) for a strictly diagonally dominant matrix
M. With line search convergence of the synchronous parallel SOR was given in
[8] for w € (0, 2).

(c) When K is made up of k? strictly lower triangular checkerboard blocks (Figure
lc) we have a modified synchronous parallel SOR algorithm where the newly com-
puted values of each of the £ components of the vector z are broadcast to all &

processors before each processor updates the next component.

1Y

(1a) Serial SOR [5]

NN
NN
N INNHEN

(1b) Synchronous Parallel SOR [7]

(1c) Modified Synchronous
Parallel SOR (2.4)

o

(1d) Static & Dynamic
Asynchronous Parallel SOR:
SASOR & DASOR (2.4)

Figure 1: The substitution operator K* of the SOR Algorithm 2.1 with 3 processors. Shaded
areas represent nonzero elements of the matrix K*.

2.4 Remark When Algorithm 2.1 operates in an asynchronous fashion with k parallel
processors, the permutation P* may be either fixed or varied resulting in two classes

of asynchronous algorithms as follows:

(a) Static Asynchronous SOR (SASOR): The permutation matrix P? is fixed
in a predetermined fashion in order to balance the computing load among the

parallel processors.

(b) Dynamic Asynchronous SOR (DASOR): The permutation matrix P? is
determined adaptively as described in Remark 2.2 above. In either case, the
substitution matrix K? is made up of k2 blocks with only the k diagonal blocks
being strictly lower triangular, and the remaining blocks reflecting the propagation

of the new computed values among the processors (Figure 1d).

2.5 Remark Since the matrix K! can be considered as a substitution operator in
(2.4), substituting components of yt! for corresponding components of y* in the
term Ny’ in (2.4), consequently the “closer” is K* to Nt — (wEi)-l, the better is
the iteration (2.4). For instance if Kt = N*— (wEi)—l, then indeed it follows (Lemma
2.1 [5]) that y**! solves the complementarity problem (2.1). Hence it seems reasonable
to expect better results from the K* of Figures 1c and 1d than that of Figure 1b.

In order to establish convergence of the ASOR Algorithm 2.1 we shall invoke
Theorem 2.1 of [5]. The only requirement of this theorem is that for some v > 0 the

following condition be satisfied
(2.7) y((wEi)“1 + Kt~ :7-\27-)3, > 1|ly||* Vi, ¥y € R”

We will now impose conditions on w that will ensure the satisfaction of (2.7) and

consequently convergence of the ASOR Algorithm.

2.6 ASOR Convergence Theorem Let M havea positive diagonal D, let (Ei)“1 =
Dt where D' is the diagonal of N, let K be as defined in (2.6) and let

2
(2.8 0 <w< min
) 1Srsn 143 " |Mys| /Do
s#r

Then each accumulation point of the sequence {PiT yi} solves the linear complemen-
tarity problem (2.1) where { yi} is the sequence generated by the ASOR Algorithm
2.1.

Proof By Theorem 2.1 of [5] all we need to show is that (2.7) holds. Let L%, U,
Dt (L,U, D) be the strictly lower triangular, upper triangular and diagonal parts of
N (M) respectively. There exist I/ ¢ Lf, Ui ¢ U, I} ¢ L and U! C U such that
for any y in R"

y((wEir1 + K- ﬁ)y =

5 y(ot —)D KT+ KT - (L4 U)y

N DN

y((20™ =)D — (L 4+ T%))y
(Since Ki, K! =0 by (2.6) and
Ki = N, when K #0)

T

= %z((Qw"l -1)D - (f/’ + ﬁ’))z, z=P"y
> fy”sz for some v >0 (By (2.8))
=yl W

If M is (strictly) diagonally dominant, that is Dy (>) > Z IMif|’ for ¢ =
JFL
1,...,n, then the inequality (0 < w < 1) 0 < w < 1 implies (2.8) and hence we have

the following corollary.

2.7 ASOR Convergence Theorem for (Strictly) Diagonally Dominant M
Theorem 2.6 holds with (0 < w £ 1) 0 < w < 1 for the case when M is (strictly)
diagonally dominant.

We note that for the case of the Modified Synchronous Parallel SOR, where K

is constant and is given by Figure 1c and P! = I, the term

%y<(2w“1 ~)D K KT~ (DU)y

in the proof of Theorem 2.6 is equal to

n k-1

1 -

‘-2— Z Zj ((2(,:,) 1_ 1)D”ZJ - Z Mj(]u,r%)*zr)
]=1 =1

where (m), defines m mod n, and for simplicity we have assumed that n = £k for
some integer £. Hence in this case, the condition (2.7) is satisfied if we require the

strict diagonal dominance condition

k-1
(2w™ = 1)Dj; > > [Mjgiera).

re=1

j=1,...,n

or equivalently

2

(2.9) O<w< Tin =

1+ |Mjijqra).

r=1

/Di
We thus have the following convergence theorem.

2.8 Convergence Theorem for the Modified Synchronous Parallel SOR. Let
M have a positive diagonal D, let E* = D1, let K* be defined by

M,, for elements of K* in the strictly
lower triangular parts of the k2,

(2.10) Krgi= square sub-blocks of K* (Figure 1c),

0 otherwise,

let k> 2and let w satisfy (2.9). Then each accumulation point of the sequence {y*}
of (2.4) solves the linear complementarity problem (2.1). If M is (strictly) diagonally
dominant then (2.9) can be replaced by (0 < w <1)0 < w < 1.

By adding a line search to the ASOR Algorithm we can improve on the choice of
the relaxation factor w by making its interval (0, 2] instead of (0, 1] as in Theorem

2.7 for strictly diagonally dominant M. We first state the algorithm.
2.9 Line-Search Asynchronous SOR Algorithm Same as the ASOR Algorithm
2.1 except that (2.4) is replaced by
(2.4) £ = (y" —wE (N + p* + K*(t — yi)))+
and y*t! is defined by
yi+1 — yi + /\i(tz‘ . yz’>
(2.11) i yiggio_ i . i i _ iV |, i
Fy' + X =) = min {f(y" +AE —y"))|y + M — ") 2 0}

We establish now convergence of this algorithm.

2.10 Convergence Theorem Algorithm 2.9 Let M have a positive diagonal D,
let (Ei)_l = D' where D' is the diagonal of N*, let K* be as defined in (2.6) and
let

: D,
gF#T

Then each accumulation point of the sequence {PiTyi} solves the linear complemen-

tarity problem (2.1) where {y'} is the sequence generated by Algorithm 2.9.

Proof By Theorem 3.2 of [8] all we need to show is that
(2.13) y((wEi)_1 + Ki)y > fyHyH2 Vi, Vy € R™

Let N* = L'+ D4 U* where L? is strictly lower triangular and U? strictly upper

triangular. Then for any y in R™

Ki+4 K&
2)y

= y(w”lDi + -;-(I}' + ﬁi))y (By (2.6) for some L' C Lf, U’ c U?)

y((wE")'~1 + Ky = y(w—lDi +

= z(w—l.Di + ’:12'(2'/1. + 01))‘?:7 (Z == PiTy) for some zz C L7 [’)’2 - U)
> »y”z”z for some v > 0 (By (2.12))

=ly[".

2.11 Convergence Corollary for Algorithm 2.9 If M is (strictly) diagonally
dominant, then Theorem 2.10 holds for (0 < w £2) 0 < w < 2.

10

3. Computational Results

Computational testing was carried out on the Sequent Symmetry S81 multipro-
cessor [10] with 14 tightly coupled 32-bit 80386 Intel microprocessors that share a
40-Megabyte physical memory (256-Megabyte virtual) and a single copy of DYNIX,
an enhanced version of the UNIX operating system. Each 80386 processor is accompa-
nied by an 80387 floating point unit, a 64-Kilobyte cache memory and a Weitek 1167
floating point accelerator chip.

All test problems were randomly generated with strictly diagonally dominant
matrices with a prescribed density d of nonzero elements. To produce a matrix with
unevenly dense rows, each row with index 24(: —1)+1,¢=1,2,... was a fully dense
row while the other rows had a prescribed density. The solution z was chosen such
that 50% of the components were zero and the other 50% uniformly distributed in the
interval [0, 1]. The vector ¢ was then chosen such that the linear complementarity
conditions (2.1) were satisfied.

Tables 1, 2 and 3, and Figures 2, 3 and 4 show results for each of four algorithms
with and without line search for values of w of 0.5, 0.9 and 1.8. All computations
were carried out until the linear complementarity conditions (2.1) were satisfied to a
tolerance of 108, The four parallel algorithms tested were the following special cases

of Algorithm 2.1:
(a) Synchronous SOR (SSOR): P? = I, K as shown in Figure 1b [3].

(b) Static Asynchronous SOR (SASOR): P! = I, K* as shown in Figure 1d with %
horizontal blocks of equal height.

(c) Dynamic Asynchronous SOR (DASOR): P? as described in Remark 2.2, K¢ as
shown in Figure 1d with k horizontal blocks of unequal height, the heights being

determined adaptively by the relative processing speeds of the parallel processors.

(d) Dynamic Asynchronous SOR10 (DASOR10): Same as (c) above except that 10
sweeps through the components z3,..., 2z, are carried out by the k parallel pro-

cessors before they are synchronized.

It is interesting to note that no two runs of DASOR or DASORI10 were identical

because of the dynamic way that variables are allocated to processors.

11

Each of the above four algorithms was run with and without a line search step.
Tables 1, 2 and 3 give for each algorithm the number of iterations, the machine time

in seconds and the speedup efficiency of the parallel algorithm measured by

Solution time using 1 processor

3.1 Efficiency = ion ti i
(3.1) Gaeney = 1 (Solution time using k processors)

3.1 Remark We make the following observations regarding the numerical results given

in Tables 1, 2 and 3:

(1) For the cases for which convergence has been established (columns denoted by C)
efficiency is in the 43%-91% range, and for SASOR and DASOR in this category

it is over 60%.

(ii) The fastest solution time of 3.2 seconds was obtained with SASOR without line
search with 13 processors and w = 0.9 with a speedup of 8.6 and speedup efficiency

of 66% over the corresponding serial SOR.

(iii) For the cases without line search, speedup efficiency improves in going from
SSOR to SASOR to DASOR and to DASOR10 (with the minor deviation of the
case of w = 0.9 for DASOR and DASORI10 with 13 processors). For the cases
with line search a similar trend prevails with the exception of DASOR10 with
w = 1.8.

(iv) Some speedup efficiencies, DASOR10 with line search and w = 0.9, exceeded
100%. The base case for computing these efficiences consisted of a serial SOR
which contained a line search after each step. When the line search in this base
case was made only at each tenth step to bring it in conformity with DASORI10,
where a line search is made only after ten sweeps, the efficiencies were reduced to

below 100%.

Figure 2, 3 and 4 give the computing times with w = 0.9 for the four parallel
algorithms: SSOR, SASOR, DASOR and DASOR10, with and without line search, as
well as the “linear speedup” time of T'(1)/k where T'(1) is the solution time with one
processor and k is the number of processors. Figure 2 depicts the results for the four
SOR algorithms without line search and indicates the following descending computing

times the four algorithms:

(3.2) SSOR > SASOR > DASOR > DASORI10

12

Figure 3 depicts the results with w = 0.9 for SSOR, SASOR and DASOR with line
search as well as the linear speedup time T'(1)/k. A similar trend to (3.2) is depicted.
Figure 4 depicts the results with w = 0.9 for DASOR10 as well as T'(1)*/k where the
single processor time T'(1)* is obtained with a line search after each tenth step only
in order to conform to the DASORI10 line search procedure which occurs after ten
sweeps. The figure shows that DASORI10 attains 2/3 or more of the linear speedup
time.

We mention in closing that in other experiments in which the rows of the matrix
M contained a greater number of fully dense rows, there was a more pronounced
improvement in going from SASOR from DASOR than that shown in Tables 1, 2 and
3 and Figures 2, 3 and 4.

We conclude by pointing out two interesting future tasks. One is the extension of
the asynchronous algorithms presented here to the nonsymmetric linear complemen-
tarity problem in the spirit of the serial iterative algorithms of [1, 9]. The other is
establishing convergence proof of the multisweep DASOR10 algorithm by using ideas

of finite asynchronization delay [2].

13

References

1.

10.

B. H. Ahn: “Solution of nonsymmetric linear complementarity problems by it-
erative methods”, Journal of Optimization Theory and Applications 33, 1981,
175-185.

G. M. Baudet: “Asynchronous iterative methods for multiprocessors”, Journal of
the Association for Computing Machinery 25, 1978, 226-244.

R. De Leone & O. L. Mangasarian: “Serial and parallel solution of large scale
linear programs by augmented Lagrangian successive overrelaxation”, UW Com-
puter Sciences Technical Report #701, July 1987, to appear in Proceedings of
Workshop of Advanced Computation Techniques, Parallel Processing and Opti-
mization, Karlsruhe, February 23-24, 1987, Springer-Verlag 1988.

D. DeWitt, R. Finkel & M. Solomon: “The CRYSTAL multicomputer: Design and
implementation experience”, IEEE Transactions on Software Engineering SE-13,
1987, 953-966.

O. L. Mangasarian: “Solution of symmetric linear complementarity problem by
iterative methods”, Journal of Optimization Theory and Applications 22, 1977,
465-485.

O. L. Mangasarian: “Sparsity-preserving SOR algorithms for separable quadratic
and linear programming”, Computer and Operations Research 11, 1984, 105-112.

O. L. Mangasarian & R. De Leone: “Parallel successive overrelaxation methods
for symmetric linear complementarity problems and linear programs”, Journal of
Optimization Theory and Applications 54, 1987, 437-446.

O. L. Mangasarian & R. De Leone: “Parallel gradient projection successive over-
relaxation for symmetric linear complementarity problems and linear programs”,
UW Computer Sciences Technical Report #659, August 1986, to appear in Annals
of Operations Research 1988.

. J.-S5. Pang: “On the convergence of a basic iterative method for the implicit

complementarity problem”, Journal of Optimization Theory and Applications 37,
1982, 149-162.

Sequent Computer Systems, Inc.: “Symmetry Technical Summary”, Beaverton,
Oregon 97006, 1987.

14

Relaxation Factor w = 0.5; No. of variables n = 1000; density d = 25%
Without Line Search
No. SSOR (C) SASOR (C) DASOR (C) DASOR10 (NC)
of Time Time Time Time
Proc. || Iter. | Sec. | Eff. || Iter. | Sec. | Eff. || Tter. | Sec. | Eff. || Iter. | Sec. EAf.
1 42 75.1 — 42 75.1 — 42 75.1 — 42 75.1 —
5 43 27.9 | 54% 42 21.7 | 69% 42 21.4 | 70% 42 19.1 79%
10 43 14.7 | 51% 42 12.4 | 61% 42 11.1 | 68% 44 9.7 7%
13 43 12.0 | 48% 42 8.9 65% 42 8.8 66% 44 7.8 74%
With Line Search
No. SSOR (C) SASOR (C) DASOR (C) DASOR10 (NC)
of Time Time Time Time
Proc. || Iter. | Sec. | Eff. || Iter. | Sec. | Eff. || Iter. | Sec. | Eff. || Iter. | Sec. EAfL.
1 17 100.8 | — 17 1100.8 | — 17 |100.8 | — 17 100.8 —
(32 | 74.6)
5 19 | 284 [71% || 17 | 23.2 [87% || 17 | 24.0 [84% || 38 | 20.5 98%
(73%)*
10 18 15.0 | 67% 18 14.1 | 2% 17 12.1 | 83% 37 10.7 94%
(70%)*
13 18 11.2 | 69% 17 9.6 81% 17 9.4 | 83% 38 8.5 91%
(68%)*

*Line search performed every tenth set

C: Convergence established

+ Efficiency based on ()*
NC: No convergence established

Table 1: Number of iterations, times in seconds and efficiency versus number of processors
for four algorithms: the Synchronous SOR (SSOR), the Static Asynchronous SOR
(SASOR), the single sweep Dynamic Asynchronous SOR (DASOR) and the 10
sweep Dynamic Asynchronous SOR (DASOR10).

15

Relaxation Factor w = 0.9; No. of variables n = 1000; density d = 25%
Without Line Search
No. SSOR (C) SASOR (C) DASOR (C) DASOR10 (NC)
of Time Time Time Time
Proc. | Iter. | Sec. | Eff. || Iter. | Sec. | Eff. |j Iter. | Sec. | Eff. || Iter. | Sec. Ef.
1 15 27.5 — 15 27.5 — 15 27.5 — 15 27.5 —
5 17 11.4 | 48% 15 7.9 70% 15 7.9 70% 15 7.0 79%
10 17 5.9 47% 15 4.5 61% 15 4.3 64% 15 4.0 69%
13 17 4.9 43% 15 3.2 66% 15 3.4 | 62% 18 3.3 64%
With Line Search
No. SSOR (C) SASOR (C) DASOR (C) DASOR10 (NC)
of Time Time Time Time
Proc. || Iter. | Sec. | Eff. || Iter. | Sec. | Eff. || Iter. | Sec. | Eff. || Iter. | Sec. EAT.
1 12 75.5 — 12 75.5 e 12 75.5 — 12 75.5 —
(14 | 34.9)
5 12 18.3 | 83% 12 16.8 | 90% 12 16.6 | 91% 15 9.6 157%
(73%) T
10 13 11.0 | 69% 12 9.5 79% 12 8.6 88% 15 5.2 145%
(67%)*
13 13 8.3 70% 12 6.8 85% 12 6.7 87% 16 4.1 142%
(65%)*

*Line search performed every tenth set

C: Convergence established

+ Efficiency based on ()*
NC: No convergence established

Table 2: Number of iterations, times in seconds and efficiency versus number of processors
for four algorithms: the Synchronous SOR (SSOR), the Static Asynchronous SOR
(SASOR), the single sweep Dynamic Asynchronous SOR (DASOR) and the 10
sweep Dynamic Asynchronous SOR (DASOR10).

16

Relaxation Factor w = 1.8; No. of variables n = 1000; density d = 25%
Without Line Search
No. SSOR (NC) SASOR (NC) DASOR (NC) DASOR10 (NC)
of Time Time Time Time
Proc. || Iter. | Sec. | Eff. || Iter. | Sec. | Eff. || Iter. | Sec. | Eff. || Iter. Sec. EAT.
1 192 13373 | — 192 |1 3373 | — 192 13373 | — 192 337.3 —
5 763 | 491.2 | 14% || 193 | 96.6 | 70% || 193 | 96.6 | 70% || 194 82.4 82%
10 Did not converge || 192 | 56.0 | 60% || 193 | 49.9 | 68% || 194 42.7 79%
13 Did not converge 194 | 40.1 | 65% || 196 | 40.2 | 65% 196 34.6 75%
With Line Search
No. SSOR (C) SASOR (C) DASOR (C) DASOR10 (NC)
of Time Time Time Time
Proc. || Iter. | Sec. | Eff. || Tter. | Sec. | Eff. || Iter. | Sec. | Eff. || Iter. Sec. EAL.
1 16 95.3 — 16 95.3 — 16 95.3 — 16 95.3 —
(62 | 140.3)*
5 15 22.8 | 84% 16 | 22.1 | 86% 16 21.9 | 87% 189 97.4 20%
(29%)*
10 15 12.5 | 76% 17 14.0 | 68% 16 11.4 | 84% 191 50.1 19%
(28%)*
13 18 11.2 | 65% 16 9.1 81% 16 9.0 {81% || 192 39.7 18%
(28%)*

*Line search performed every tenth set

C: Convergence established

* Efficiency based on ()*
NC: No convergence established

Table 3: Number of iterations, times in seconds and efficiency versus number of processors
for four algorithms: the Synchronous SOR (SSOR), the Static Asynchronous SOR
(SASOR), the single sweep Dynamic Asynchronous SOR (DASOR) and the 10
sweep Dynamic Asynchronous SOR (DASOR10).

17

30 -

T Synchronous SOR (SSOR)
—-— Static Asynchronous SOR (SASOR)
— — - Dynamic Asynchronous SOR (DASOR)
T \ —— Dynamic Asynch. SOR 10 Sweeps (DASORI10)
1 —- Linear Speedup
20
M
E
I
N
S
E
C
0]
N 10
D
S
0 I i I I I I 1 1 i I ¥ i i

0O 1 2 3 4 5 6 7 8 9 10 11 12 13
NUMBER OF PROCESSORS

Pigure 2: Sequent Symmetry S81 times for four parallel SOR algorithms without line search,
n = 1000, d = 25%, w = 0.9.

18

80 -

70 4

60 -
L Synchronous SOR (SSOR)
M —-— Static Asynchronous SOR (SASOR)
E 504 — — - Dynamic Asynchronous SOR (DASOR)
I ‘ —— Linear Speedup
N

40
S
E
C
O 304
N
D
S

20

10 4

O i i 1 i i i] i] i 1 i i

o 1 2 3 4 5 6 7 8 9 10 11 12 13
NUMBER OF PROCESSORS

Figure 3: Sequent Symmetry S81 times for three parallel SOR algorithms with line search,
n = 1000, d = 25%, w = 0.9.

19

w2 -

OZOoNmwn Z e~

w2

Figure 4: Sequent Symmetry S81 times for DASOR10 algorithm with line search, n = 1000,

40 -

304 X Dynamic Asynch. SOR 10 Sweeps (DASORI10)
—— Linear Speedup
20
10
O I T T T T T T I T T !

o 1 2 3 4 5 6 7 8 9 10 11
NUMBER OF PROCESSORS

d=25%, w=0.9.

20

