DESIGN AND ANALYSIS OF A GRACEFULLY-DEGRADING
INTERLEAVED MEMORY SYSTEM

by

Kifung C. Cheung, Gurindar S. Sohi, Kewal K. Saluja
University of Wisconsin
Madison, Wisconsin

and

Dhiraj K. Pradhan
University of Massachusetts
Amherst, Massachusetts
Computer Sciences Technical Report #751

February 1988

DESIGN AND ANALYSIS OF A
GRACEFULLY-DEGRADING INTERLEAVED MEMORY SYSTEM

Kifung C. Cheung, Gurindar S. Sohi, Kewal K. Saluja
University of Wisconsin
Madison, Wisconsin

and
Dhiraj K. Pradhan

University of Massachusetts
Ambherst, Massachusetts

Abstract

A hardware mechanism has been proposed to reconfigure an interleaved memory system.
The reconfiguration scheme is such that, at any instant all fault-free memory banks in the
memory system can be utilized in an interleaved manner. The design of the hardware
that enables the reconfiguration is discussed. The reconfiguration scheme proposed in
this paper is analyzed for a number of distinct benchmark programs. It is shown that
memory system performance degrades gracefully as the number of faulty banks increase

if the memory system uses the proposed reconfiguration scheme.

1. INTRODUCTION

In a computer system that consists of a processing unit (CPU) connected to a
memory system, the rate at which the CPU can process information is limited by the rate
at which the information can be transmitted between the CPU and the memory. This is
the well-known von Neumann bottleneck [1]. Consequently, a decrease in the bandwidth

of a memory system will directly affect the performance of the overall computer system.

There are two main approaches to attain a memory system with a high bandwidth.
The first involves the use of a high-speed buffer or cache memory (an excellent survey
can be found in [2]) and the second involves the use of several memory banks or
modules connected in an interleaved fashion [3,4]. Though the use of cache memories
has become widespread, their utility is limited by their size. While cache memories are
very effective for instructions and scalar data items [2, 5], they have not proven to be
effective for numeric processing machines that utilize large data structures (such as
arrays). For such systems, in order to achieve a high-bandwidth memory system, one is
forced to use interleaved banks of memory. Of course, the best effect is achieved by
using a cache memory for instructions and scalar data and an interleaved memory for

non-cacheable data.

In an interleaved memory system that consists of N independent memory banks (or
modules), by associating address latches and data latches with each bank, N different
memory accesses can be overlapped. In this C-access method [3] the memory system can
accept a stream of memory requests from the processor and service each request, one at a
time, thereby increasing the available bandwidth of the memory system to N times the

bandwidth of a single bank. A processing system that utilizes a cache memory for

instructions and a C-access interleaved memory system for data is shown in Figure 1L

The bandwidth of interleaved memories has been studied extensively using analyti-
cal and simulation techniques [6-9]. Apart from the referencing behavior of programs,
the main factor that influences the bandwidth of interleaved memory banks is the manner

in which the addresses are distributed amongst the banks, i.e., the memory organization

! Throughout this paper C-access configuration of the memory banks is assumed for the interleaved memory.

CPU

Virtual to Physical
Translation
Instruction Address
Instruction Cache
Data Address
Bank Select Bank-Word Select
| addrlach| | addrlawh| | addrlaoh| | addr latch) | addr. latch |
Bank Bank Bank Bank Bank
PR— 1 - 2 _—— 3 I 4 I JU N -
Main Memory Banks

Figure 1: A Processor With an Interleaved Memory System.

[9]. Generally the number of banks, N, that are used to build an interleaved memory is a
power of 2, i.e., N =29 where ¢ is an integer. In such a system, g bits of the address
suffice to select a bank and the remaining bits are used to select a word within a bank. If
the g bits are the high-order bits of the address space the scheme is a high-order inter-
leaving scheme whereas a low-order interleaving scheme results if the low-order g bits

are used to select the bank.

We should mention that an interleaving scheme is not restricted to using only a
power of 2 number of banks. Interleaving schemes that utilize a prime number of
memory banks have been investigated [10] and implemented [11]. However, the utility
of such a scheme for high-performance machines is limited because of the complex logic

that is needed to determine the appropriate bank/word from a given address.

In a high-order interleaved memory system, consecutive memory addresses in the
linear address space lie in the same bank. Therefore, if the memory is referenced sequen-
tially, consecutive memory references access the same bank and no increase in
bandwidth is obtained. In a low-order interleaved memory system consecutive addresses
lie in different banks. Thus, if the memory is accessed sequentially, consecutive refer-
ences will access different banks thereby increasing the bandwidth of the memory. Since
the memory referencing pattern for most programs is generally sequential (because of
sequential instructions and array structures with a constant stride of unity), a low-order
interleaved memory system generally has a higher bandwidth than a high-order inter-

leaved memory system.

A low-order interleaving scheme has a major drawback - it is not modular, i.e., a
failure in a single bank affects the entire address space [12]. If no precautions are taken
to handle such a situation, the bandwidth of the memory and consequently the perfor-

mance of the processor could be degraded to an intolerable extent.

In this paper, we study the organization of interleaved memories such that faults in
the memory system degrade the performance in a graceful manner. We restrict our study
to an interleaved memory system that starts out with 29 memory banks and uses a low-
order interleaving scheme. The ideas presented in this paper can easily be extended to

other interleaved memory schemes.

Section 2 describes the motivation and design objectives of the memory system. In
section 3, a new reconfiguration scheme is presented. Section 4 presents the design of
the hardware needed to implement the reconfiguration scheme proposed in section 3.
The reconfiguration scheme is evaluated using trace-driven simulation in section 5. A

final section presents concluding remarks.

2. FAULTS IN INTERLEAVED MEMORIES

Consider a memory that consists of one or more groups of interleaved memories. A
group consists of 27 banks (where r is an integer) that are fully interleaved using low-
order interleaving. Thus, the banks within a group can be selected using an r-bit bank

selection address field. Different groups can have a different number of banks in them.

For example, group G ; may consist of 4 banks while group G, may have only 1 bank. If
the total number of banks in the memory system is 2¥ where k is an integer, then there is

only one group.

A normal interleaved memory consists of a single group of 29 banks. If each bank
contains 27 words, the total addressable main memory of the system is 2" (where
n=p+q) words. Using a standard low-order interleaving scheme, g bits, ie.,
Ay1Ag_1 - Agof the n-bit address A, 1A, - - - Ao (Where A, is the most significant
bit), are used to select the bank and the remaining p bits, i.e., bits A, 14,5 - - - A, are

used to select a word within a bank.

In this paper, we are interested in investigating the situation when one or more
banks of memory fail. Therefore, the fault model that we shall use in this paper is that a
fault(s) results in the loss of a complete bank(s) of memory. We assume that a mechan-
ism that detects the presence of a faulty bank exists. Such a fault-detection scheme is not
the subject matter of this paper. Our main thrust is to evaluate the loss in performance
when a fault is reported and how might the memory system be organized so that the

resulting degradation in performance is graceful.

Consider what happens when a bank is deleted from a memory system that contains
a single group of banks. This is exactly the situation when a bank fails in a standard
interleaved memory system. The number of banks in memory is reduced to 291 and the
total addressable physical memory is reduced to (29—-1)2P words. However, since 291
is not a power of 2 the banks no longer form a single group and the system loses its capa-
city to interleave memory requests. Without interleaving, the bandwidth of the memory
system reduces to the bandwidth of a single bank. Such a loss in memory bandwidth can

be catastrophic to the performance of a high-speed CPU.

When a fault occurs, program execution must be halted and the address translation
mechanism informed about the faulty bank. Correct information would be recovered
from a backup store and program execution restarted (or restored form a later point if a
recovery scheme is used). Unfortunately, if the memory system is not able to recover a
significant portion of its fault-free performance, overall processor performance will

suffer. What could we possibly do to salvage some of this lost memory performance?

Two approaches come to mind.

2.1. Use of Redundancy

The first approach involves the use of spare memory banks. After a faulty bank is
detected, a spare bank can take its place. An organization of a memory system with one
spare bank is shown in Figure 2. For each memory bank i (0<i<N), the corresponding
bank select signal BS; passes through a switch W;. Each switch W; is controlled by a
Bank Status Indicator (BSI;) signal which corresponds to the status (normal/faulty) of the
bank i. Under normal operation of the memory system the switches connecting the bank
select signals to the memory banks are closed at all times. If a memory bank i is found
to be faulty then the spare bank, bank N in the Figure 2, is used to substitute for the faulty
bank. This can be achieved by opening the switch W; and closing the switch X; by the

BSI control signals.

For the reconfiguration of the memory banks in a system with more than one spare
banks, multiplexors can be used in place of the switches. However, as more banks

become faulty, the system will eventually run out of spare banks if the spare banks

Bank Select Signals
BS,

N-1

BS,

BSs

o

o
I - W,
. W, BSI, W, BSI, BSt,_, N-2

Switch

Bank 0 Bank 1 Bank N-1 Bank N
------------------ (Spare)

Figure 2: Organization of a Memory System with a Spare Bank.

cannot be replaced. Once all the spare banks have been exhausted, another fault-

tolerance scheme must come into play.

2.2. Reconfiguration of Non-faulty Memory Banks

An alternative approach is to reconfigure the remaining non-faulty banks in order to
salvage some of the lost performance. Such an approach could also be used if a system
has spares but runs out of them eventually. The remaining banks have to be reconfigured
so that interleaving is possible. Before proceeding further, let us see how the presence of
a faulty bank affects memory system performance. A faulty bank degrades memory per-
formance in two ways: (i) the number of fault-free banks is reduced thereby reducing the
available bandwidth and (ii) the amount of available memory is reduced thereby increas-

ing the chances of a page fault.

How might we organize the fault-free banks so that the performance is not degraded
to an intolerable extent? A simple solution that could be used to salvage some of the lost
bandwidth is to reduce the number of addressable banks to the nearest power of two, i.e.,
29-1, thereby achieving a maximum bandwidth of 29-1 words per memory cycle. While
the hardware that allows this translation and the resulting address translation and bank
selection mechanism is quite straight forward, 29-1-1 banks of fault-free physical
memory are not addressable and therefore are unutilized?. The resulting memory
configuration with 291 banks is likely to result in a higher page fault rate than a memory
system that uses X (29-1<X <2971) banks. Furthermore, a memory system with X
(29-1<X <24-1) banks could potentially result in a higher bandwidth than a memory sys-
tem with 29-1 banks (as we shall see in section 5). Therefore, we must use a
reconfiguration scheme that uses as many fault-free banks as possible to salvage the
memory bandwidth and, at the same time, minimize the degradation due to the smaller
memory size. Also, the hardware needed to implement the reconfiguration scheme
should be simple enough so that it does not degrade fault-free memory performance

significantly.

2Note that even such a scheme requires additional hardware to implement the reconfiguration.

3. THE RECONFIGURATION SCHEME

The proposed scheme reconfigures the remaining banks using a combination of
high-order interleaving and low-order interleaving. We distinguish between 3 address
spaces: (i) a virtual address space that is seen by the program, (ii) a logical address space
and (iii) a physical address space. The difference between the logical and the physical

address spaces will become clear in the following discussion.

Addresses in the logical and physical spaces are specified as a bank number and an
address within the bank. In the absence of faults, there is a single group of banks and the
logical and physical address spaces are the same. When a fault occurs, the state of the
physical memory is incorrect. The faulty bank is switched out and the memory
reconfigured. We assume that program execution can be restarted (or restored if a
recovery scheme is used) from the backup memory. Addresses generated by the user
program are still complete virtual addresses; the program does not know about the loss of
a memory bank. The logical address space is reduced in a systematic manner. The vir-
tual memory management process is informed about the loss of banks and the new logi-
cal configuration of the memory; it views the loss of a memory bank as the loss of a few
page frames (equal to one bank) of memory. The virtual to logical translation process
makes sure that no information is placed in the unavailable logical space and, for inter-
leaved access to the elements of a page, it places a page entirely within the banks of a
single group. As the program executes, pages are brought in from the backup store into
the remapped main memory. The logical addresses are translated into physical addresses
by the reconfiguration hardware (described in section 4) depending upon the actual banks

that have failed.

A logical address specifies a logical bank number and a word within the logical
bank. For a single faulty bank, there are 27 -1 non-faulty logical banks and 1 faulty logi-
cal bank. The number of faulty logical banks is the same as the number of faulty physi-
cal banks. The faulty logical bank is numbered 27—1 and the non-faulty logical banks
are numbered from O through 27-2. Non-faulty logical banks are partitioned into sets.
Thus, if 29—1 logical banks were available, they would be partitioned into g sets. These

g sets form 2 subsets; subset S(291) consisting of a single group of 29 -1 Jogical banks

and subset S;(29-1--1) defined recursively as consisting of two subsets So(292) and
S1(29-2—1). Therefore, S¢(24-1) has one group G¢(29-1) that has 291 logical banks and
S1(29-1-1) is made up of group G 19(29-2) which has 29-2 logical banks and the subset
S1(292—1) which has 29-2—1 banks. This recursive partition stops when S has only one
logical bank. Another way of looking at this partioning of logical banks into groups is as
follows. Write down the number of non-faulty logical banks as a binary number
by—1bn—o - - b; -+ bgo. There is a group with 2¢ banks if bit i of the binary number is 1.
As we shall see in the following paragraph, the concept of sets is useful in understanding
the logical address decoding process. An example of the partitioning of 7 logical

memory banks into groups is given in Figure 3.

The 2% banks within a group G;(2¥) are organized for low-order interleaving; high-
order address bits are used to determine the group. If there is only one group, e.g., in the
fault-free case, no group selection needs to be done. The low-order g bits of the address
select the logical bank and the high-order p bits of the address select the word within the

logical bank. With one fault, the number of groups becomes g with the number of

Go
| J_“““”“"j
: |
|0 1 2 3]
| |
- |
G1o G
F“"i—“‘mﬁ“Jlﬂi
| | |
o4 511 6|1
i o |
e

Figure 3: Partitioning Logical Banks into Groups.

logical banks 29—-1 and ¢ bits suffice to uniquely identify 29—1 non-faulty logical banks
and one faulty logical bank. An address is decoded as follows: the most significant bit of
the address, A,-1, is used to select either subset So(2971), i.e., group Go(291) or subset
§1(2971-1). If group Go(2971) is selected, then bits A, ... A are used to select one of
29-1 logical banks within the group and bits A,_5 ... A;_; are used to address the word
within the logical bank. If S;(29-1-1) is selected, then bit A, _» of the address is used to
select either G 10(2972) (with bits Ag_3 ... Ag used to select a logical bank within this
group) or S1(29-?-1) and so on. Note that this group identification scheme resembles the
decoding scheme used to decode Huffman-encoded information. Once the group number
has been determined from the address, the appropriate p bits are used to select the word

within the logical bank.

The logical banks must now be mapped onto the physical banks of the memory sys-
tem. For example, in a system with 8 banks if physical bank 3 is faulty, logical bank 7
(the unavailable logical bank) must be mapped onto physical bank 3 and logical banks O
through 6 must be mapped onto the remaining physical banks. The logic that decodes the
address and generates the appropriate bank select and word select signals is now more
complex than a simple decoder. We call this logic the Address Transliterator (AT).
Each memory address now passes through the AT before it is forwarded to the memory
system (Figure 4). The design of the AT is discussed in detail in the next section. The
inputs to the AT are #-bit logical memory address and a 29 -bit vector, the Bank Status
Indicator (BSI), that indicates the status of each bank. The BSI vector consists of a sin-
gle bit flag for each bank. The flag is set to 0 if the bank is fault-free (available) and 1 if
the bank is faulty (unavailable). The BSI vector is updated as faults occur and are
detected. The output from the AT is the appropriate physical bank address and the

address of the word within the selected bank.

On the occurrence of another fault, the program is stopped and the memory is
remapped again. Thus, in the presence of a second fault the smallest logical group that
contains only one bank is eliminated. The AT hardware is informed (through the BSI
vector) and it responds by modifying its group numbering accordingly. The program is

then restarted and continues to execute, albeit with degraded memory performance.

CPU

Virtual to Logical

Translation
Instruction Address J.
Address
Instruction Cache Transliterator
Data Address
Bank Select Bank-Word Select
| addrlach| | addrlawh| | addrlmch| | addr latch) | adds. latch |
Bank Bank Bank Bank Bank
] 1] 2 — 3 _—— 4 L. * N L
Main Memory Banks

Figure 4: Interleaved Memory System with an Address Transliterator.

4. THE ADDRESS TRANSLITERATOR

The AT hardware consists of three parts as shown in Figure 5: i) a Bank Fault Tally
(BFT), ii) a Bank Select Unit (BSU) and iii) a Word Select Unit (WSU). The inputs to the
AT consist of the n-bit logical address and the BSI vector. The BFT determines the
number of faulty banks using the BSI vector. The BSU is responsible for generating the
physical bank select signals for a given logical address and the WSU is responsible for
supplying the address within the selected bank. Before proceeding with the details of the
AT, we would like to mention that the partitioning of the AT into distinct components is
done solely to facilitate the understanding of its operation. For implementations of the
AT, the above demarcation is not necessary. However, the overall operation of the logic
will remain unchanged. Depending upon the technology used to realize the AT, such a

demarcation may or may not offer optimum performance. In fact, it may be possible to

10

implement portions of the AT within the address decoders of the memory banks.

4.1. The Bank Fault Tally

The Bank Fault Tally (BFT) determines the number of faulty banks in the memory
system from the information given in the 29 bit BSI vector. The BFT provides a 29+1 bit
output in the form of decoded fault count indicators F =F 4,,....,F g, where F; = 1 if and
only if there are exactly i faulty banks in the memory system. Thus, for a fault-free
memory system, F ¢ is 1 and all the remaining fault count indicators are 0. Note that the
number of faulty banks in the memory system is given by the number of 1’s in the BSI

vector. Also note that the BFT is a combinational circuit.

It is possible to have the outputs of the BFT in an encoded form. This will reduce
the number of interconnecting lines between BFT and other subunits of the AT, but then
the coded information may need to be decoded by other subunits. If, on the other hand,
the outputs are produced in decoded form, as described above, then the BFT can be real-
ized as a tally circuit [13]. Throughout this paper, we use the decoded form of the out-

puts for ease of understanding.

Bank Fault Tally BSI
F
Logical Address
ARUl ARCL LBF 4 SLU
Word Select Unit Bank Select Unit
Word Address Bank Select

Figure 5: The Address Transliterator.

11

4.2. Bank Select Unit

The bank select unit consists of two subunits, the Logical Bank Finder (LBF) and
the Switching Logic Unit (SLU).

4.2.1. Logical Bank Finder (LBF)

The LBF determines the logical bank number of the bank being accessed for a given
logical address. Recall that in the presence of a single faulty bank, the faulty bank is
represented by a string of 1°s in the high-order g bits of the logical address. This result
can be generalized for multiple faults. Table 1 shbws the largest valid logical address
assuming that the memory system consists of 8 banks and there are exactly k, 0 <k <8,

faulty banks.

Table 1: Largest Valid Logical Address with k Faulty Banks

k | Apsr App Ap3z Ayy Ag
7 0 0 0] 1
6 0 0 1 1 1
5 0 1 0 1 1
4 0 1 1 1 1
3 1 0 0 1 1
2 1 0 1 1 1
1 1 1 0 1 1
0 1 1 1 1 1

In the general case, given a logical address, the LBF determines the logical bank number

of the bank being addressed based on the following inputs:
i) 2g bits (i.e., high-order ¢ bits and low-order ¢ bits) of the address and
ii) 29 +1 bits from the BFT indicating the fault count.

The ¢ bits of the logical address used to select the logical bank depend upon the number
of faults. The LLBF has 27 outputs, denoted as Bos_1, . . . ,Bp, that represent the decoded

form of the logical bank numbers.

The operation of the LBF is best illustrated with an example. Table 2 gives the 3-
bit logical bank number L,L1Lo of the addressed bank as a function of 6 bits,

12

A, A, A, AA A, and the number of faults, &, for the case of 8 (¢=3) banks. In
the fault-free case, the low-order bits A,A 14 o are used to select the logical bank. In the
presence of a single fault, the 7 fault-free logical banks are divided into three groups of 4,
2 and 1 banks respectively. If bit A, _; is 0, the group of 4 logical banks is selected and
bits A 1A o are use to select the logical bank within the group (see bold row in Table 2). If
bit A,,_1 is 1, then the set of 3 logical banks is selected and bit A,_5 is used to distinguish
between the 2 groups of banks within the set. Other entries in the table can be interpreted

in a similar fashion.

The LBF is a combinational circuit that implements a set of independent Boolean
equations of the inputs A; and F;. For reasons of brevity, we do not present the exact

Boolean equations for the LBF in this paper. The interested reader is referred to [14].

4.2.2. Switching Logic Unit (SLU)

The SLU maps a logical bank number obtained from the LBF onto a physical bank
number, i.e., it provides the select signals for the physical memory banks. A faulty bank

is never selected. If there are no faulty banks in the memory system, the physical bank

Table 2: Logical Bank Number Selection in Case of £ Faulty Banks.

k An-] An—Z An~3 LZ L] LO
7 X X X 0 0 0
6 0 0 X 0 0 Ay
51 0 0 X | 0 0 A
0 1 0 0 1 0
41 0 X X | 0 A, A
31 0 X X | 0 A, A,
1 0 0 1 0 0
2 0 X X 0 A1 Ay
1 X X 1 0 A
1] 0 X X | 0 A, A4,
1 0 X |1 0 A
1 1 0 1 1 0
0 X X X Ay A1 Ap

13

number of every bank is same as the logical bank number as shown in Figure 6a. How-
ever, in the presence of faulty banks in the memory system, the logical bank numbers are
remapped by the SLU onto physical bank numbers as follows. If there is one faulty bank
in the memory system, say physical bank number m, then a logical bank number m+i,
i 20, is remapped to the physical bank number m+i+1. Thus, if the faulty bank is bank
number 1, physical bank number 2 will be selected for logical bank number 1 as shown
in Figure 6b. For multiple faults, the remapping mechanism is extended in a natural
manner and always selects the next available fault-free physical bank. The inputs to the
SLU consist of 29-bit BSI vector, containing the location of faulty banks in the memory
system, and the 29 outputs of the LBF. The outputs of the SLU are 29 physical bank
select signals, (BSy, ... ,BS24-1), where BS; is used to select the physical bank number i.

This logic can, therefore, be realized using switches or multiplexors [14].

4.3, Word Select Unit

In a fault-free memory system, the high order p bits of the address determine the
address of the word within a bank. However, if faulty banks exist in the memory system,
the address of the word within a bank depends on the number of faulty banks in the sys-
tem as well as the logical bank number of the selected bank. For example, for memory
system with 8 banks (¢ = 3) and with one faulty bank, if a memory reference selects logi-
cal bank 5 then the word address within logical bank 5 is given by bits 4,3, A,,-4, - . -
A 4. In general, if for a given address some high order j bits are used to determine the
logical bank number then the word address within the bank is given by (4,,_;, ... ,A4_j+1).
The function of the WSU, therefore, is to extract the appropriate p bits that represent the
address of the word within the selected bank from the » -bit logical address. The WSU
accomplishes this by using 2 subunits, the Address Reformulation Control Logic (ARCL)
and the Address Reformulation Unit (ARU).

4.3.1. The Address Reformulation Control Logic (ARCL)

This subunit determines the p bits that represent the word address. The p bits are
then extracted in the ARU by using shift-left by i bit or SL; operations on the input

address and retaining the high-order p bits. The ARCL determines the value of i, i.e.,

14

B; TI BS;

0 0
Logical ! ! Physical
ogic sica
a%k 2 2 B_a¥1k Select
Number 3 3 Signals

N-2 N-2

N-1 N-1

(a): Logical to Physical Bank Mapping with no faults.

B TI BS;
0 0
Logical 5 | [) Physical
ogic sica
Ba%k 2 \\ 2 B,a%k Select
Number 3 —] —— 3 Signals
No——_ N2
N-1—— = N-1

(b): Logical to Physical Bank Mapping with Physical Bank 1 faulty.

B;

BSI

0

Logical —
Bank 2
Number 3 —

N-3—
N-2——

N-1—

BS;

|
—
\

0

Physical
2 Ba}r;leelecL
3 Signals

N-2
N-1

(c): Logical to Physical Bank Mapping with Physical Banks 1 and 2 faulty.

Figure 6: Operation of the Switching Logic Unit.

15

the SL; signals from the information provided in the high-order ¢ bits of the logical
address and the number of faults obtained from the BFT. The SL; signals are then pro-
vided to the ARU.

Rather than present the detailed Boolean equations, we again illustrate the operation
of the ARCL with the help of an example. Table 3 presents the SL; signals for g=3 and
k faults. In the fault-free case, the high-order p bits themselves represent the word
address, i.e., SLo=1. In the case of 2 faulty banks, we have two groups of 4 and 2 banks
respectively. If the group of 4 banks is addressed, i.e., A,.-;=0 (see the bold row in
Table 3), the logical address needs to be shifted left by 1 (SL;=1) and the high-order p
bits retained for the word address. If the group of 2 banks is selected (A,-; = 1), then the
logical address needs to be shifted left by 2 (SL,=1) and the high-order p bits extracted.

Table 3: Control Signals of the ARCL in Case of k£ Faulty Banks.

kA, A, A, |SL, SL, SL, SL,
7 X X X 1 0 0 0
6 0 0 X 0 1 0 0
5 0 0 X 0 1 0 0
0 1 0 1 0 0 0
4 0 X X 0 0 1 0
3 0 X X 0 0 1 0
1 0 0 1 0 0 0
2 0 X X 0 0 1 0
1 X X 0 1 0 0
1 0 X X 0 0 1 0
1 0 X 0 1 0 0
1 1 0 1 0 0 0
0 X X X 0 0 0 1

4.3.2. The Address Reformulation Unit (ARU)

The ARU accepts the n-bit address and the shift control signals SL; as inputs and
provides p -bit word address. The ARU is, therefore, a simple shifter and can be realized

using multiplexors.

16

4.4. An Example

Through the following example we illustrate the operation of the complete AT. Let
us consider a memory system consisting of 8§ memory banks (g=3) with a 16 bit address
(n=16). If physical banks 1 and 2 are faulty, the BSI vector will be 00000110, where the
most significant bit of the BSI vector indicates the status of the physical bank 7. If the
input address is 1001111111111100, from Table 2 we see that logical bank 4 of group
G is selected. Therefore, 3 bits of the address (A, -14, 24) are used to identify the
logical bank and the remaining bits of the address, (A, -34,-4...A24 1), are used as the
word address within the bank. The remapping of the logical bank numbers, i.e., outputs
of the LLBF, to the physical bank select signals by the SLU is shown in Figure 6¢c. As the
address given above generates the bank address for the logical bank 4, the physical bank

6 is selected. The outputs of the subunits of the AT are summarized below in Table 4.

Table 4: Outputs of the Subunits of the AT;
Input Address = 1001111111111100 and £ = 2.

Unit Inputs Outputs
Bank Fault BSI=00000110 Fo=1,
Tally (BFT) F; =0for0<i <7andi #2.
Logical F; ’sand Bs=1,
Bank A, 1A, 0A, _3=100 B; =0for0<i <7 andi #4.
Finder (LBF) ArA 1A =100
Switching Logic B;s and BSI vector BS¢=1,
Unit (SLU) BS; =0for0<i <7 andi #6.
Address Reformulation F; ’sand SLy,=1,
Control Logic (ARCL) | A, 1A, 24, 3=100 | SL ’s=0for0<i <3 andi #2
Address Reformulation 16 bit address and 0111111111110
Unit (ARU) SL;’s

4.5. Logic Delays in the AT

For a conventional low-order interleaved memory system, shown in Figure 1, the
address bits are transferred on two paths between the processor and the memory. The
two paths are the bank select path and the word select path. The logic present in either

path is a simple decoder. By using an AT, additional logic is inserted in both these paths.

17

Since the delays introduced by the extra logic will be of a different nature for different
technologies and different implementations of the AT, we shall not attempt to quantify
the delays in general. Rather, we give the reader a feel for the additional delays intro-

duced by the AT and present the results for a conservative CMOS design.

The BFT does not contribute to the delay through the AT since its output does not
change between faults. The longest path within the BSU is from the address inputs to the
outputs of the LBF plus the delay through the SLU. The complexity of the LBF is such
that it can be realized by a two level logic circuit (gates or a PLA); the SLU can be real-
ized as a simple switch (or multiplexor). Each of these units will, therefore, contribute a
small, fixed delay. Similarly, in the WSU, the critical path is from the address inputs to
the outputs of the ARCL plus the delay through the ARU. The ARCL logic is simple
enough that it can be realized as a two level logic circuit and, as commented in section
4.3.2, the ARU can be realized using multiplexors. The operations of the BSU and the
WSU are carried out in parallel and, therefore, the critical path for the AT is the longer of
the critical paths of the two units. Thus the delay through the AT is equivalent to the

delay through a few levels of logic.

In order to get a better feel of the delays in the AT, we implemented the AT logic in
CMOS VLSI using Magic [15]. The design was very conservative. Each unit of the AT
was designed separately as described in this paper. The AT was designed for a memory
system consisting of 16 memory banks and a 32-bit logical address. The details of com-
plete design can be found in [14]. A timing simulation using the Crystal simulator[16]
indicated a delay of 44ns through the AT. We believe that the delay can be reduced with
more sophisticated design; relative delays within the WSU and BSU and the methods to
reduce these delays are also discussed in [14]. Even for our conservative design of the
AT, for a given processor and memory technology, the delay through the AT can be kept
within a single CPU clock cycle [14]. Therefore, we believe that the AT logic will not

degrade fault-free memory latency to a significant extent.

18

5. PERFORMANCE EVALUATION

We evaluated the performance of the proposed memory reconfiguration scheme
using a frace-driven simulation analysis. A trace of instruction and data references was
obtained for several benchmark programs. Data from the trace files was then fed into a
program that simulated the memory system. Since the simulator is driven by actual
memory reference traces which have no timing information and the simulator assumes

that consecutive memory references in the trace file occur in consecutive CPU cycles.

The simulator written by us takes into account the memory structure and the virtual
memory management process. The operational structure of the simulator is shown in Fig-
ure 7. The simulation model consists of a pipelined processor capable of issuing a
memory request at each CPU cycle. The memory references are divided into instruction
references and data references. For each memory reference a word is transferred between
the memory system and the processor. We assume an instruction cache with a cycle time
identical to the CPU cycle time to service instruction references. Thus, only data refer-

ences go to the interleaved memory. The use of the bus alternates between the instruction

Instruction Address Instruction
Cache
Data Bus
Bank O
- CPU
Bank 1
Data Address

L» Data Queue
| Scanner

Bank N-1

Figure 7: Structure of the Simulation Model.

19

cycles and the data cycles. During an instruction cycle, instructions are fetched from the
cache and the data requests are buffered in a queue. We assume that all instruction
requests are satisfied by the instruction cache [2,5]. During a data cycle, data requests in
the data queue are allowed to access memory if no bank conflict occurs. If an access to a
busy bank is detected, subsequent requests are suspended till the next available memory

cycle.

A program is allocated a fixed number of data pages (maximum of 32) for its use.
A least recently used (LRU) replacement policy is employed to replace a page when a
page fault occurs and no free page frame is available. The pages are loaded into memory
on demand. The page size is 2K bytes. Initially, we assume that only one data page is
present in memory. In case of bank failures, fewer data pages are allocated to the pro-
gram. The reduction in the number of pages is proportional to the number of faulty
banks. The pages are distributed amongst the groups of the reconfigured memory in pro-
portion to the number of banks in the group. A page lies completely within a group of
banks. Pages are first loaded into the group with the largest number of banks and are
then loaded into the groups with fewer banks. For example, if there are 2 groups consist-
ing of 8 and 4 banks respectively, a process will place 67% of its data pages in the group
of 8 banks first and the remaining pages in the group of 4 banks next. The time to pro-

cess a page fault is 2000 memory cycles [17].

Recall that faults degrade memory system performance in two ways: (i) the avail-
able memory bandwidth is reduced and (ii) a reduction in the available physical memory
increases the probability of a page fault. We believe that a performance metric must take
into account both factors of memory performance. Therefore, we combine the effects of
reduced bandwidth and increase in page faults into a single metric, T, similar to the

metric used by Smith [18]. The performance metric T is defined as:
T = total data trace length + time to process a page fault X number of data page faults

where the data trace length is the number of data references divided by the data
bandwidth. T is an indicator of the memory access time for the trace when both

bandwidth and page faults are taken into account.

20

We realize, however, that in some situations the bandwidth may be the more impor-
tant metric and the number of page faults may be of secondary importance. In other
cases, the page faults may be of major concern. Therefore, along with the metric T, we
also present the bandwidth and the number of page faults for each one of our experi-

ments.

5.1. Experiments and Results

To evaluate the performance of the reconfigurable memory system, we used the fol-
lowing benchmark programs: (i) nroff, a text formatting program, (ii) compact, a pro-
gram for file compaction using adaptive Huffman encoding, (iii) boyer, a theorem prov-
ing program [19], (iv) tak, an execution of the Takeuchi function [19], (v) spice, a circuit
simulation program, (vi) mpla, a PLA generation program for the Magic layout editor
[15], (vii) cripta, an encryption program written in Lisp, and (viii) csk, a command inter-

preter for the UNIX operating system.

The number of instruction and data references traced for the above programs are

given in Table 5. Total number of data pages in each trace are also given in this table.

Table S: Statistics for the Benchmark Programs

Trace Records

Trace Data Pages

Instruction Data Touched
nroff 284966 175488 52
compact 234110 205468 22
boyer 217147 229871 216
tak 236628 250384 151
spice 258563 250996 55
mpla 255708 173266 94
cripta 147663 150386 221
csh 220367 211592 72

The traces for each of these programs were fed to the trace driven simulator and the
bandwidth, the page faults and the value of the performance metric computed. To
account for the presence of faulty banks, each trace is simulated for reduced number of

addressable banks and the number of pages allocated to each program reduced in

21

proportion to the amount of memory lost. The T metric is normalized with respect to the
fault-free case. The results of our experiments are presented in Tables 6-13. The

bandwidth in these tables is defined as the number of busy banks per memory cycle.

Table 6: Result for nroff

Data
N | Bandwidth | Page | Page Fault | Pages T
Faults | Rate (%)
16 3.417 53 0.030 32 1.00
15 3.078 53 0.030 30 1.04
14 3.079 53 0.030 28 1.04
13 3.083 63 0.036 26 1.16
12 3.098 122 0.070 24 191
11 3.021 131 0.075 22 2.03
10 3.009 165 0.094 20 247
9 3.025 204 0.116 18 2.96
8 3.011 246 0.140 16 3.50

Table 7: Result for compact

Daia
N | Bandwidth | Page | PageFault | Pages T
Faults | Rate (%)
16 2.895 22 0.011 16 1.00
15 2.450 23 0.011 15 1.13
14 2.345 23 0.011 14 1.16
13 2421 44 0.021 13 1.50
12 2.396 112 0.055 12 2.69
11 2.583 326 0.157 11 6.36
10 2.627 827 0.402 10 15.07
9 2.568 1908 0.929 9 33.88
8 2.544 3760 1.830 8 66.10

Table 8: Result for boyer

Data
N | Bandwidth | Page | PageFault | Pages T
Faults Rate (%)
16 3.283 1465 0.637 32 1.00
15 2.809 1696 0.738 30 1.16
14 3.110 1962 0.854 28 1.33
13 3.043 2328 1.013 26 1.58
12 3.143 2754 1.198 24 1.86
11 2.957 3209 1.396 22 2.17
10 2.998 4454 1.938 20 2.99
9 2.223 6696 2913 18 4.50
8 2.998 8895 3.870 16 5.96

22

Table 9: Result for tak

Data
N | Bandwidth Page Page Fault | Pages T
Faults Rate (%)
16 4,920 319 0.127 32 1.00
15 4.600 335 0.134 30 1.05
14 2.900 365 0.146 28 1.18
13 3.322 393 0.157 26 1.25
12 4,343 449 0.179 24 1.39
11 2.114 513 0.205 22 1.66
10 4,083 585 0.233 20 1.79
9 4,193 678 0.271 18 2.06
8 3.986 1286 0.514 16 3.82
Table 10: Result for spice
Data
N | Bandwidth Page Page Fault | Pages T
Faults Rate (%)
16 3.577 80 0.032 32 1.00
15 3.017 116 0.046 30 1.37
14 3.045 160 0.064 28 1.75
13 2.981 189 0.075 26 2.01
12 3.109 231 0.092 24 2.36
11 2.813 247 0.098 22 2.53
10 2.948 274 0.109 20 2.75
9 2.894 351 0.140 18 342
8 2.894 407 0.162 16 391
Table 11: Result for mpla
Data
N | Bandwidth | Page | Page Fault | Pages T
Faults | Rate (%)
16 2.119 129 0.074 16 1.00
15 2.094 132 0.076 15 1.02
14 2.095 136 0.078 14 1.04
13 2.090 374 0.216 13 245
12 2.072 2200 1.270 12 13.20
11 2.029 2543 1.468 11 15.22
10 2.027 2670 1.541 10 15.97
9 2.059 2712 1.565 9 16.21
8 2.046 2738 1.580 8 16.35

23

Table 12:

Result for cripta

Data
N | Bandwidth Page Page Fault | Pages T
Faults Rate (%)
16 2.569 564 0.375 32 1.00
15 2.466 629 0.418 30 1.11
14 2477 808 0.537 28 141
13 2.399 1044 0.694 26 1.81
12 2.417 1139 0.757 24 1.97
11. 2.190 1261 0.839 22 2.18
10 2.366 1490 0.991 20 2.57
9 2.201 1684 1,120 18 2.90
8 2.321 1869 1.243 16 3.20
Table 13: Result for csh
Data
N | Bandwidth Page Page Fault | Pages T
Faults Rate (%)
16 3.097 443 0.209 16 1.00
15 2.483 507 0.240 15 1.15
14 2.645 562 0.266 14 1.26
13 2.426 627 0.296 13 1.41
12 2.759 740 0.350 12 1.63
11 2.071 909 0.430 11 2.01
10 2.505 1143 0.540 10 2.48
9 2434 1528 0.722 9 3.29
8 2.697 5029 2.377 8 10.62

From the tables, one observation is quite obvious - a decrease in the available physical
memory increases the number of page faults. We also observe that, in most cases, the
bandwidth when o banks (15<0<9) are used is better than the bandwidth that could be
achieved with 8 banks. If bandwidth alone is the major performance-determining factor,
then the reconfiguration scheme could be used to reconfigure part or all of the remaining
fault-free banks (for example, we could choose to reconfigure only 12 banks in the case
of 1, 2, 3 or 4 faults). If the memory capacity is a limiting factor, then page faults play an
important role in the overall memory access time. Our reconfiguration scheme allows the
use of all the fault-free memory thereby minimizing the number of page faults. The

resulting degradation in memory system performance (as measured by T) is quite grace-

ful.

24

Based on the experimental results we can conclude that the proposed
reconfiguration scheme allows for the graceful degradation of interleaved memory sys-
tems. In situations where the memory capacity is unimportant, the reconfiguration
scheme is able to reconfigure the fault-free banks so that the resulting memory
configuration has a better bandwidth than a memory configuration with the next lower
power-of-2 number of banks. In situations where the memory system capacity is a limit-
ing factor, the reconfiguration scheme is able to reconfigure the memory to minimize the

number of page faults and, at the same time, recover part of the lost memory bandwidth.

6. CONCLUSIONS

In this paper, we have presented the design of an interleaved memory system whose
performance degrades gracefully in the presence of faulty banks. We discussed the
details of such a design and evaluated its performance using a trace-driven simulation.
Our simulation results show that the performance of an interleaved memory system that
employs the design proposed in this paper does indeed degrade gracefully in the presence
of faults. Furthermore, the address translation mechanism needed for graceful degrada-

tion does not increase the memory latency significantly.

7. ACKNOWLEDGMENTS

The authors are thankful to Professor C. R. Kime his helpful comments and sugges-
tions. This work was supported in part by National Science Foundation Grants DCR-
8509194, CCR-8706722 and Air Force Grant AFOSR 84-0052.

25

(1]

[2]
[3]
[4]
(5]

[6]
[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]
[19]

References

J. Backus, ‘‘Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs,”” Communications of the ACM,
vol. 21, pp. 613-641, August 1978.

A.J. Smith, ““Cache Memories,”” ACM Computing Surveys, vol. 14, pp. 473-530,
Sept. 1982.

K. Hwang and F. A. Bri%gs, Computer Architecture and Parallel Processing.
New York: McGraw-Hill, 1984.

%i 111\/[.1 9I§cigge, The Architecture of Pipelined Computers. New York: McGraw-

J. E. Smith and J. R. Goodman, ‘‘A Study of Instruction Cache Organizations and
Replacement Policies,”” Proc. 10th Annual Symposium on Computer Architec-
ture, pp. 117-123, June 1983.

G. Burnett and E. G. Coffman, ‘A Stu?y of Interleaved Memory Sgstems,”
Proc. AFIPS 1970 Spring Joint Computer Conference, pp. 467-474, 1970.

F. W. Terman, ‘‘A Study of Interleaved Memory Systems by Trace Driven Simu-
lation,”” Proc. Symposium on the Simulation of Computer Systems, pp. 3-9, 1976.

D. P. Bhandarkar, ‘‘Analysis of Memory Interference in Multiprocessors,”” IEEE
Trans. on Computers, vol. C-24, pp. 897-908, September 1975.

B. R. Rau, ‘‘Program Behavior and the Performance of Interleaved Memories,”’
IEEE Trans. on Computers, vol. C-28, pp. 191-199, March 1979.

D. H. Lawrie and C. R. Vora, ‘“The Prime Memory System for Array Access,”’
IEEE Trans. on Computers, vol. C-31, pp. 435-442, May 1982.

D. J. Kuck and R. A. Stokes, ‘“The Burrou§hs Scientific Processor (BSP),”” IEEE
Trans. on Computers, vol. C-31, pp. 363-376, May 1982.

D. K. Pradhan, Fault Tolerant Computing: Theory and Techniques. Englewood
Cliffs, New Jersey: Prentice Hall, 1986.

C. Mead and L. Conway, Introduction to VLSI Systems. Reading, MA: Addison-
Wesley, 1980.

K. C. Cheung, “‘Organization and Analysis of Interleaved Memory Sgst;ems,” M.
S. Thesis, Dept. of Electrical Electrical and Computer Engineering, University of
Wisconsin-Madison, Madison, WI, 1987.

J. K. Qusterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor,
“Th(i,gl%/[?gic VLSI Layout System,”” IEEE Design & Test of Computers, Febru-
ary, 1985.

J. K. Qusterhout, “‘Crystal: A Timing Analyzer for nMOS VLSI Circuits,”’ in
Third Caltech Conference on Very Large Scale Integration. Computer Science
Press, pp. pp. 57-70, 1983.

M. Malkawi and J. H. Patel, ‘‘Performance Measurement of Paging Behavior in
Multiprogrammed Systems,’’ Proc. 13th Annual Symposium on Computer Archi-
tecture, pp. 111-118, June 1986.

A.J. Smith, ‘A Modified Working Set Pag'ng7Algorithm,” IEEE Trans. on Com-
puters, vol. C-25, pp. 907-914, September 1976

R. P. Gabriel, Performance and Evaluation of Lisp Systems. Cambridge, MA:
The MIT Press, 1985.

26

