A Mean-Value Performance Analysis
of a New Multiprocessor Architecture 7

Scott T. Leutenegger
Mary K. Vernon

Computer Sciences Technical Report #748

February 1988

T To appear in Proc. 1988 ACM SIGMETTRICS Conf. on Measurement and Modeling of Computer Systems
Santa Fe, New Mexico, May 24-27, 1988.

A Mean-Value Performance Analysis of a New Multiprocessor Architecturet

Scott T. Leutenegger
Mary K. Vernon

Department of Computer Science
University of Wisconsin - Madison
1210 Dayton Street
Madison, WI 53705

Abstract

This paper presents a preliminary performance analysis of a new large-scale multiprocessor: the Wisconsin
Multicube. A key characteristic of the machine is that it is based on shared buses and a snooping cache coherence
protocol. The organization of the shared buses and shared memory is unigue and non-hierarchical. The two-
dimensional version of the architecture is envisioned as scaling to 1024 processors.

We develop an approximate mean-value analysis of bus interference for the proposed cache coherence proto-
col. The model includes FCFS scheduling at the bus queues with deterministic bus access times, and asynchronous
memory write-backs and invalidation requests.

We use our model to investigate the feasibility of the multiprocessor, and to study some initial system design
issues. Our results indicate that a 1024-processor system can operate at 75 - 95% of its peak processing power, if
the mean time between cache misses is larger than 1000 bus cycles (i.e. 50 microseconds for 20 MHz buses; 25
microseconds for 40 MHz buses). This miss rate is not unreasonable for the cache sizes specified in the design,
which are comparable to main memory sizes in existing multiprocessors. We also present results which address the
issues of optimal cache block size, optimal size of the two-dimensional Multicube, the effect of broadcast invalida-
tions on system performance, and the viability of several hardware techniques for reducing the latency for remote
memory requests.

1. Introduction

Multiprocessors are emerging as an important class of computer architectures. These machines include multi-
ple CPUs, each having some amount of local memory, which are connected through a high-speed interconnect to
shared memory and I/O devices. The design of a multiprocessor is complex, and prototyping the system is expen-
sive. Thus, this class of systems represents an important opportunity for performance models to contribute to the

actual design process.

The "Wisconsin Multicube” is a new large-scale multiprocessor architecture [GoWo87]. The two-
dimensional version of this architecture is envisioned as scaling to 1024 processors. A key characteristic of the
machine is that each processor has a very large cache, comparable in size to the size of main memory on existing

machines. Another key characteristic of the machine is that it is based on shared buses and a snooping cache

+ This work was supported by the National Science Foundation under grant number DCR-8451405, and by grants from Cray Research,
INC. and the AT&T Foundation.

coherence protocol. That is, copies of shared data blocks that reside in caches local to the system processors are
kept consistent by hardware that monitors the bus traffic. This greatly simplifies the job of the programmers and/or
system compilers, since they need not be concerned with explicitly mapping data to the various local and shared

memory modules for efficient execution.

The organization of the shared buses and shared memory in the Wisconsin Multicube architecture is unique
and non-hierarchical. Issues that must be considered in the preliminary design of the system include the required
bandwidth of the system buses, the optimal blocksize for transferring data between shared memory and the caches,

and the viability of various hardware techniques for reducing remote memory access latency.

This paper presents a performance model we have used to study the feasibility and several design issues for
the Wisconsin Multicube. We develop an approximate mean-value analysis to study the effects of bus interference
for a machine with up to 1024 (i.e. 32x32) processors. The model assumes first-come first-served service on the
buses, and deterministic bus access times. Asynchronous invalidation and memory write-back requests are also
modeled. Parameters of the model include system size, mean time between bus requests, estimates of the

workload-dependent frequency and type of shared data accesses, bus speed, and block transfer size.

Initial results indicate that a 1024-processor Multicube can operate at 75 - 90% of its peak processing power if
the mean time between bus requests is larger than 1000 bus cycles (50 microseconds for 20 MHz buses). In addi-
tion, the model results indicate that, strictly from a performance perspective, cache block size should be on the order
of 16 - 32, and no larger than 64 times the width of the data bus. Furthermore, our results show that nearly linear
speedups are possible for up to 1024 processors, for miss rates below one per 2000-4000 bus cycles. Additional
results that address the effects of broadcast invalidations, and viability of hardware techniques for reducing remote

memory request latency, are also presented.

The accuracy of the model relative to the real system is unknown. However, the level of detail in the model is
compatible with the level of detail known about the real system at this time. Furthermore, the modeling approach
has been shown to be remarkably accurate for evaluating cache coherence protocols for single-bus multis
[LaVZ88]. The level of detail in the model is comparable to the level of detail in queueing network models used in
capacity planning for uniprocessor systems. We believe that this level of detail is also appropriate for initial design

and capacity planning for multiprocessor systems.

The organization of the remainder of this paper is as follows. We describe the architecture and cache coher-
ence protocol of the Wisconsin Multicube in section 2. In section 3, we develop the approximate mean-value model
and discuss the accuracy of the model. Section 4 contains some results of the mean-value analysis that are useful
for assessing the feasibility of Wisconsin Multicube and for selecting some initial design parameters. Section 5 con-

tains the conclusions of this study.

2. The Wisconsin Multicube Architecture

The Wisconsin Multicube is based on a grid of system buses, as depicted for the two-dimensional case in Fig-
ure 2.1. A processor is located at each grid point. The processor has a large DRAM cache with a snooping con-
troller connected to the row bus and column bus that define the grid point. Note that the processor has another level
of cache memory between it and the snooping cache. This level of cache is provided to support high-speed proces-
sors, and is not otherwise a focal point for the model developed in this paper. Global shared memory is distributed

across the column buses. Each memory block address has a home column, which is the column bus connected to the

Processor Processor Processor
Al Cache Cache B Cache
l ! L] -] o
Snooping |_| Snooping || Snooping }._
Cache (:afhﬁ L
]
Processor Processor Processor
Cache Cache Cache
I 1 £ 1
Snooping || Snooping .| Snooping ||
(’ai:he y
L]
o
(-]
-]
L]
-]
Processor Processor Processor
D Cache Cache ¢ Cache
| [
Snoopi.ng{ Snooping

L | [] [a]

Figure 2.1: The Wisconsin Multicube Memory and Bus Organization

global memory containing the block.

2.1. The Cache Coherence Protocol

An efficient snooping cache protocol is currently being designed for the grid of buses [GoW087]. The goal of
the protocol is to maintain copies of shared memory blocks residing in the snooping caches consistent. The protocol
is continually being revised as trade-offs between protocol complexity and system performance are evaluated.

Below we describe the protocol as defined in our model of the bus request traffic.

There are three cache block states: modified, shared, and invalid. Blocks in state modified have been written
by the processor, and have not been read or written by any other processor since the write operation occurred. If a
block is in state modified, no other cache has a copy. Each snooping cache controller maintains a tag cache that

contains the addresses of all data blocks that are in state modified in any cache on its column.

We will use the term "unmodified" to denote the global state of a cache block that does not exist in any cache
in state modified. The global state, "modified", denotes a block that exists in some cache in state modified. Global

shared memory contains the current value of all unmodified cache blocks.

We have identified four processor nodes in Figure 2.1 (i.e. processors A, B, C, and D) to aid in the following
description of the protocol. Bus requests for write misses are READ-MOD (i.e. read-with-the-intent-to-modify)

operations; bus requests for read misses are READ operations.

A processor memory request that misses in the cache is broadcast on the processor’s row bus. The bus
request is treated differently, depending on whether the block is in global state modified or not. For the first of these
two cases, assume that processor A in Figure 2.1 makes the request that misses in its cache, and processor C con-
tains the modified data block. In this case, the request on processor A’s row bus is intercepted by processor B’s
cache controller, which has the address of the block in its tag cache. Cache B signals a modified match on the row
bus, and then transmits the request on its column bus. All nodes on cache B’s column respond by removing the
address from their tag cache. Cache C also transmits the requested data block on its row bus, together with a desti-

nation address for processor A’s cache. Finally, cache D forwards the data from the row bus to its column bus.

If the bus request is a READ operation, then the state of the block changes to shared in cache C, and global
memory must be updated. In this case, the home column cache controller reads the data when it is transmitted on

the row bus, and performs the required write-back to global memory. If, on the other hand, the bus request is a

READ-MOD operation, then cache C invalidates its copy of the block, and the caches in the processor A’s column
add the address of the block to their tag caches when the data is transmitted on the column bus. Note that the row
request is not needed, and the row data transfer is not needed for a READ -MOD request, if the modified data block is
in the same column as the requesting processor (e.g., cache D contains the data requested by A). Similarly, the
column request is not needed, and the column data transfer can be replaced by a tag-cache update request, if the
modified data block resides in a cache on the same row as the requesting processor (e.g. cache B contains the data

requested by cache A). We have modeled these optimizations.

Next consider the case where the request that misses in the cache is for an unmodified data block. Assume
that processor A makes the memory request, and processor B is attached to the home column for the data block.
The cache for processor A broadcasts the memory request on its row. When no cache on the row signals a modified
maich, (i.e. no column contains the data block in state modified), processor B’s cache forwards the request to the
memory on its column bus. The shared memory module on the column responds by placing the requested data
block on the column bus. Cache B then forwards the data along its row back to processor A. Note that a request for
an unmodified block with a home column the same as the column of the requesting processor requires the initial row

bus request (to determine that the block is unmodified), but does not require the final row bus data transfer.

The difference between data fetches for modified and unmodified blocks lies in whether the data returns along

the same path that the request travels, or whether the return path uses a distinct row and column bus.

In addition to the above bus traffic, some memory requests require the propagation of invalidation signals on
the row buses. Specifically, a write request for an unmodified block requires the propagation of an invalidation sig-
nal on each row bus. For write requests that miss in the cache, the invalidation signal on the cache’s own row bus is
implicit in the READ~-MOD request that is broadcast on the row. Invalidation operations on the other row buses are
triggered by the READ -MOD request that is broadcast on the home column bus for the data block. Each cache on a

column, upon seeing a READ-MOD request to the main memory, forwards an invalidation signal on its row bus.

A processor write to a data block that is in state shared in its cache generates an explicit invalidation request
on the processor’s row bus. The invalidation row request is intercepted by the controller on the home column for
the data block, and forwarded on the home column bus. Each cache on the home column then forwards the invali-
dation request on its row bus. For the purposes of simplifying the model in this paper, we assume that invalidations

are only generated by write requests that miss in the cache. Invalidations generated by write requests that hit in the

cache can be approximately represented in our model by increasing the probability of READ-MOD requests to

include READ requests for blocks that will be written before they are purged from the cache.

2.2. Protocol Assumptions

Several details and minor trade-offs in the cache protocol are not considered in the model we develop in Sec-
tion 3. First, if two requests for the same data block are issued on the buses within a very short period of time, and
one of the requests is a READ-MOD , one of them may be delayed while the other one is satisfied. We have not con-

sidered this delay, which we expect to happen very rarely in the operation of the system.

Second, the protocol described above contains several optimizations that increase the protocol complexity.
Those optimizations that don’t yield significant performance benefit, (and thus have negligible impact on the results

of our model), will not be included in the final protocol design.

Third, interference in the cache and global memories is not accounted for in the model. Experience with
single-bus multiprocessor models indicates that the interference in the cache is a secondary effect when compared

with bus contention.

Finally, a change in the protocol since the model was developed has resulted in routing responses for READ
requests for modified data blocks back along the column and row which the requests travel, rather than in the rec-
tangular path described above. We have determined that this change has a negligible effect on the results presented

in Section 4.

2.3. System Assumptions

The current design of the Wisconsin Multicube specifies a cache size of 16-64 Megabytes. Thus, we assume
that most cache misses are for shared data, or for I/O, which can be treated as a special case of shared data. In other
words, a bus request is typically the first request a processor makes to a cache block, or a request for a cache block
that has recently been modified by another processor. Thus, we will assume very low miss rates are possible for

many application workloads.

Cache miss rates, the fraction of misses that are writes, and the fraction of misses that exist in state modified in

another cache, are workload-dependent values that are specified as parameters in our model.

We assume an NxN system with uniform memory access probabilities for both modified and unmodified
blocks. Thus, a request for a modified block is equally likely to be satisfied by any of the other N*-1 caches, and a

requested unmodified data block is equally likely to be have any column bus as its home column.

We further assume that bus speeds may be different for the row and the column buses. This is primarily due
to the physical construction of the machine. Our model will allow for different access times on the row and column

buses, respectively. However, the results presented in Section 4 assume that both buses have the same speed.

Finally, we assume that bus access times are deterministic and depend on whether the access is a request (i.e.
an address) or a cache block transfer. The bus access time for cache block transfers further depends on the size of
the block, the width of the bus, and the bus speed. These three parameters are reduced to a single parameter, the

cache block transfer time, in the model.

3. The Mean-Value Model

In this section we present an approximate mean value model for estimating the processing power of the
Wisconsin Multicube system as a function of various design and workload parameters. The model contains three
approximations relative to the exact mean value analysis equations for a product-form queueing network (PFQN)
model of the system. The first approximation removes the recursion in the waiting time equations, allowing us to
solve the equations for large systems [Schw79]. The other two approximations are extensions to the equations for
non-product form features. We use the extensions for the FCFS queueing discipline and deterministic service times
developed by Reiser [Reis79], and the extension for the spawning of asynchronous tasks proposed by Heidelberger

and Trivedi [HeTr82].

The model is based on computing the mean response time for a processor "cycle", which includes some time
productively executing in its local cache, and the mean response time for retrieving the remote data block. The
response time for the remote memory request includes mean bus queueing delays, bus access times and the remote
memory latency. Note that interference in the cache and global memories is not accounted for in the model, as dis-

cussed in Section 2.
Bus queueing delays are based on approximate estimates of the mean queue lengths, by bus request type, seen

by an arriving request. These queue length estimates are cyclically dependent on the mean cycle response time.

The set of equations are solved iteratively until each of the waiting time estimates agrees with the estimate of the

previous iteration, to within some small value, €.

In Sections 3.1 through 3.4 we develop the approximate mean value model. In Section 3.5 we comment on

the accuracy of the model, and on the effects of the three model features that violate product form assumptions.

The following notation is used in the remainder of this section:

e resource type is denoted by subscript i, which can take on any value in the set {r,c }, representing row
and column buses, respectively.

° customer class is denoted by subscript j, and can take on any value in the set {0.f], representing cus-
tomers that are using their "own" bus or a "foreign" bus, respectively.

e bus request type is denoted by subscript &, and can take on any value in the set {AD ,AD ,[,W);? }
representing "address", cache block transfer, a combined address and cache block transfer, invalidation,
and memory write-back, respectively.

° R denotes the mean response time for one processor "cycle”, in which a processor executes locally for
some amount of time until a cache miss occurs, and then the processor waits for the requested cache
block to be retrieved from a remote cache or global memory.

° R; ; x is the expected value of the time during each cycle that a processor is queued for a type i busasa
class j customer requiring a type £ access, including the service time.

° D; ; is the expected value of the time during each cycle that a processor uses a type i bus as aclass j
customer for a type k access.
° U, j x denotes the utilization of a type i bus by requests of class j and type k.

® Qi »1; denotes the mean number of type k requests in the queue for a type i bus when a class j request
arrives.

® Bi ki denotes the probability that a type i bus is busy serving a type k access when a class j request
arrives.

® W; ; is the mean waiting time at resource i for a customer of class j, excluding time in service.

In addition, we use the following symbols to denote input parameters for the mean-value model:

° t, is the mean processing time between cache misses.

° ps and p, are the probabilities that a cache miss is for an unmodified or modified block, respectively.
(Note that p;=1-p,).

® Dread-moa 18 the probability that the cache miss is a write request.

° t,,; is the bus access time for requests of type k on a bus of type i. For example, 4 . denotes the time to
transmit an address on a column bus. Note thatfyp ; =t4; +1p;.

® dmem 18 the global memory latency.
® d,ache is the cache memory latency.

Note that the model allows for # ,# .. This allows for different bus speeds and/or bus widths for the row and

column buses.

3.1. Response Time Equations

Using the above notation, the basic equation for response time is as follows:
R =1, + R, +R,,

where R, (R,) denotes the mean response time for remote request for a modified (unmodified) data block, weighted
by the probability that the cache miss requests a modified (unmodified) block. The calculation of R, and R, is dis-

cussed next.

R; is equal to the probability the block is unmodified (p,) times the mean time to retrieve the block from glo-
bal memory. The time to retrieve the block depends on whether or not the block is in the memory module on the
column where the request originates. In either case the address is first placed on the processor’s row bus to make

sure that the data block is not modified on another column. The time for this operation is W, , + ¢4 .. The probabil-
ity that the data block is in the memory on the same column is Xl/— With this probability, the mean time for the

remainder of the remote request is (W, , + tap ; + dmem). The terms in this expression are the mean wait for the

column bus, the access time for an address and data transfer on the column bus, and the memory latency. Similarly,

w-1)

with probability , the time for the remainder of the remote request is the delay for retrieving the block from

another column, or (W s +tap o +dpem + W, , +tp). In both cases, the column bus accesses involve two
transfers, one for the address and one for the data. However these two transfers are treated as one operation, since

only one bus waiting time is required. The equation for R is thus as follows:

1 N-1
Rs = Ps Wr,o + tA.r + (F’)(Wc,a + tAD.c + dmem)'*~ (T)(Wcj + tAD,c + dmem + Wr,o + [D,r) .

The response time for R, is derived similarly. The expression is (probability data block is modified) x { (pro-
bability data on same column) X (mean time to get data from processor on column) + (probability data not on
column) x [(mean time for row request) + (probability on same row) X (mean time to return data from row) + (pro-

bability not on same row) X (mean time to finish the column request, shared memory access, and column and row

data transfers)] }. The equation for R, is thus ! :

N-1 N2-N 1
Rx = Px (m)(Wc,o tlye t dcache + Wc,a + VV{),::)+ ('M) Wr,a +la, t+ ("ﬁ)(dcache + Wr,o + tD,r)

N-1
+ (T)(Wcj il e +dcache +er +ipr +Wc,a +tD.o)

3.2. Bus Waiting Times

Given the response time equations in the previous section, only the expected values of the row and column
bus waiting times remain to be computed. Below we derive mean bus waiting times, ignoring bus invalidation and
memory write-back requests, assuming a FCFS queueing discipline and deterministic bus access times. Extensions
to include the asynchronously spawned invalidation requests are discussed in section 3.3. Derivation of the waiting

time equations for the PS discipline follows a similar approach, yielding the equations summarized in Appendix B.

For the FCFS queueing discipline, the mean bus waiting time is a function of the mean number of requests,
per request type, found in the bus queue when a request arrives, and the mean time to service each request type.
Note that mean queue lengths seen by class - and class f arrivals at a type i bus will differ, since there are fewer
class ¢ processors generating requests for the bus, and since class o processors may generate different types of
requests for the type i bus than class f processors. On the other hand, mean queue lengths seen by arrivals will be
the same for all requests within either of these classes, since we are assuming uniform memory access probabilities.
Thus, for the FCFS scheduling discipline, we need to compute the mean arrival queue length, per request type, con-

ditioned only on the class of the arriving request.

We begin by re-writing the equations for R, and R, such that the terms for the mean time each request type

spends in each of the bus queues are more readily identified. To this end, we use the following notation:

° DPr.ijis is the probability that the processor requires a type £ access on a bus of type i as a customer of
class j, given that the cache miss is for an unmodified block. k €{ A,AD.D },i€{r.c },j€{of }

° Dk jix is the probability that the processor requires a type k access on a bus of type i as a customer of
class j, given that the cache miss is for a modified block.

These conditional bus transaction probabilities are readily computed by examining the equations for R, and R,

above. For example, pap ¢ 015 = 7\17 and pap ¢ sis = Q’-j\—}-l—)— Computing the conditional bus transaction probabili-

! Note that the model is missing a term for transmitting the data on the processor’s row when a READ request is supplied by a cache in the
processor’s column, and a term for transmitting the tag-cache update request on the processor’s column when a READ-MOD request is satisfied
by a cache in the processor’s row. At this point in time, it is not specified whether these bus operations are performed before supplying the data to
the processor. Since they occur relatively infrequently, and since the tag-cache update request is just one bus cycle, omitting this traffic from the
model should have a negligible effect.

10

ties for requests to modified blocks is equally straightforward, but somewhat more complicated, since it is some-
times necessary to sum the probabilities for more than one term in equation for R,. The bus transaction probabili-

ties are summarized in Appendix A. Note that 14 of the 24 probabilities evaluate to 0.

Using the conditional bus transaction probabilities, the equation for R; can be rewritten as follows:

Rs =Ds {pA,r,ols(Wr,o + tA,r) +pAD,c,ols(Wc,o + [AD © + dmeln) + pAD‘c,fls(Wc‘f + tAD,c + dmem) +pD rols (Wr,o + [D,r)}1

and the equation for R, can be rewritten as:
R, =Dz {pA.c.olX (Wc.a + tA,c) +DPpcolX (Wc,a + [D,c) +PArolX (Wr.a + tA,r) +pD.r,oIX(Wr,a +Ip ,r)
+PacsixWes +iac) +pprpix(Weyp +ipyg)+ dcache}-

From these equations, we can rewrite the overall response time equation as follows:

R =1, + D5 dmem +Px deache + 3, Rijs

iefre) (l)
jefof}
ke{AD,AD}
where:
Ri ik = Ox Drijix +Ps Peijis) Wiy + tei)- @)

Equation (2) can be interpreted as follows. The mean time per cycle that a processor is queued as a class j
request at a type ¢ bus for a type k£ access, is the probability that a request of this class and type is generated by the

cache miss request, times the sum of the mean waiting time and the access time for the request.

The steady state fraction of time a processor is queued for a type i bus as a request of class j requiring a type

Rijx

k access, is given by: . The additional information needed to compute mean bus waiting times is the fraction

of time a processor of class j uses a bus of type i for an access of type k. This is readily computed by considering

the mean time per cycle that the type class j processor uses the bus of type i for an access of type &:
D; jx = Px Pri jix +Ps Prijis) tei- 3

Equation (3) is analogous to equation (2). It is the product of the probability that a class j cache miss generates a

request of type k for a type i bus, and the access time for the type k request on the type i bus.

11

From the D; ; x’s, we can compute mean bus utilizations by request class and type, as follows:

D;;
Ui,j,k =NX"—R!]"£‘. (4)

To see this, first consider the values U, , . Note that N processors may generate class o requests for a particular
type i resource. Thus, the total utilization by class o requests is N' times the fraction of time each processor uses its
own type i bus for type k requests. For requests of class f, there are N (N—1) processors that may generate

requests of type k for a type i bus. However the probability that a processor selects a particular foreign bus of type

Iis Thus, the total utilization of a particular type i bus by class f requests is also N times the fraction of

WN-1)°

time each processor uses a type i foreign bus.

We also need the utilizations defined in the following equations:

Uij=Uija+Ujp + U, (4a)
U”i,k =U; ok +Uif ks (4b)
Ui=U'i, +U'iy. (4c)

We now have all of the values needed to compute mean bus waiting times. We first consider class o requests.
The mean number of type & requests at a type i bus, as seen by an arriving request of class o, is the mean number
generated by all class o processors excepting the processor that generated the arrival, plus the mean number gen-

erated by all foreign processors:

iok o Rise (5a)

— R
Qixio =N-1) R R

Note again that the number of foreign processors generating requests for a type i bus is N (N-1), and each sends a

fraction of Nl—] of its type k foreign requests to a particular bus of type i.
The probability that the bus of type i is busy serving a type k request when a class o request arrives is
approximated by the following equation, which is the ratio of the steady state fraction of time the bus is in use by

type k requests not generated by the processor that generated the arriving request, to the fraction of time available

for serving requests not generated by the arriving request’s processor:

12

Bikio = 1 . (5b)
1- N Ui,

Similar reasoning leads to the following equations for the class f requests:

Gipy =N Dok [N w-1) - 1] _L | B (62)
dad R N-1| R
and
U~ 1 U,
kT Ty Vigk
N (N-1
Biris = 1() : (6b)
1 - e %}
N@u-1)
From these values, the mean waiting time for a class j request at a resource of type i is finally computed as follows
[Reis797:
—— tk"
Wii= X {(Qi,klj = Bieij) e+ Binj "?T"} M
keA,D AD

3.3. Extensions to the Waiting Time Equations for Asynchronous Invalidations and Write-Backs

Simple extensions to the mean value model are required for including the asynchronous invalidation traffic
generated by READ-MOD requests for shared blocks, and the asynchronous memory write-backs generated by READ
requests for modified blocks. The extension for invalidations (write-backs) is an additional term for k =1 (k = WB)
in the sum for W, ; (W, ;). The additional terms represent the waiting time for invalidation traffic on the row bus,
and the waiting time for write-back traffic on the column bus. Applying similar reasoning as in the derivation of

equations (5a) and (5b), or (6a) and (6b), gives the following equations for the k=/ term in W, ,:

read-mod X str + i,
Pread-mod PR (J I,)), (82)

Qo =N (N=1)(

and

Br,”o = Url> (8b)

where:

Pread—~mod X ps X tl,r
R .

Analogous terms can be derived for k=/ in W, ; and for k=WB in W, , and W, ;. Note also that equations (4) and

U,; =N @N-1) x

(4a) need to be appropriately modified.

13

3.4. Calculation of System Efficiency and Processing Power

Various system performance measures can be computed from the mean value equations. The measures we
are most interested in are the equivalent measures of system efficiency and system processing power. We define
efficiency to be the fraction of time that each processor is productively executing, including the time for data
accesses in its caches. This estimate is computed by dividing the mean time between cache misses by the mean

3

t
cycle response time. Thus, efficiency = -ﬁ-. Processing power is N2x R

3.5. Accuracy of the Mean Value Model

The purpose of the mean-value model derived in sections 3.2-3.3 is to aid in the design of a system prototype.
Thus, we do not have a system that can be measured to validate the accuracy of the equations. However, the gen-
eral approach has been shown to be as accurate as more detailed models for evaluating the performance of cache
coherence protocols for single-bus systems [LaVZ88]. Furthermore, we have compared the results of the approxi-
mate mean value model modified to assume PS queueing for the system buses and excluding asynchronous traffic,
with the exact solution of an equivalent Product Form queueing network (PFQN). This gives an indication of the
error in the approximate model due to the removal of the recursion in the exact equations. Note that the complexity
of the PFQN increases considerably as we increase the size of the system, so the two approaches can only be com-

pared for small values of N' (say N <5).

The approximate and exact solutions were compared for a range of input parameters. Appendix C shows the
PFQN model for N=3, discusses the parameter values, and gives the computed minimum, maximum, and mean rela-
tive errors in processing power computed in the experiment. For all workloads investigated, the ratio of percent
error to bus utilization was constant. The maximum relative error observed in the experiment was 5%, which
occurred for bus utilizations of 65%. We find in Section 4 that reasonable processing power is attained in the

Wisconsin Multicube only when the bus utilizations are below 65%.

We also examined the effects of each of the three non-product form features in the estimates of the approxi-
mate mean-value model. Our results are similar to the results for a similar model of single-bus snooping cache pro-
tocols reported in [LaVZ88]. For a 32x32 system, results indicate that the assumptions of deterministic bus access
times and FCFS scheduling yield system efficiency estimates that are as much as 5% higher than the estimates for

the PS discipline. The effect of asynchronous bus invalidations is even more substantial. As the mean time between

14

bus requests decreases, system efficiency degrades by as much as 25% relative to the PS model without invalida-
tions. Note, however, that at system efficiencies above 0.9, the degradation due to invalidations is less than 5%.

The effect of invalidation traffic is explored further in section 4.

4. Model Results

In this section we consider the feasibility and the design of the proposed architecture. We perform several
parametric studies to evaluate the effects of system size, cache miss rate, cache block size, and workload sharing

parameters on system performance.

Cache miss rate and cache block size are two key parameters that affect system performance. These two
parameters are related, but their precise relationship is unknown for the system we are investigating. Thus, in these
initial experiments we choose to vary the miss rate and cache block size independently, and then discuss the impli-
cations of the results in light of known bounds on the relationship between the two quantities. Section 4.2 presents
upper bounds on system processing power for a 32x32 Multicube, as a function of cache miss rate and cache block
size. Section 4.3 then presents estimates of system processing power derived from the mean value model, for
32x32, 20x20, and 10x10 systems, also as a function of cache miss rate and cache block size. In section 4.4, we

plot processing power as a function of system size for several miss rates and two possible cache block sizes.

The experiments in sections 4.2-4.4 hold p, =0.2, and p,.ug-moq =0.2 constant. The effect of varying
Pread-mod» Which varies the amount of write-back and broadcast invalidation traffic in the system, is explored in sec-
tion 4.5. We look at the relative utilizations of the row and column buses in section 4.6, and study the viability of

various hardware techniques for reducing the latency in remote memory requests in section 4.7.

4.1. Parameter Values Used in the Experiments

In all of the experiments reported in this section, we assume equal row bus speeds and column bus speeds.
Furthermore, we let the bus cycle time define the unit of time in the model. Thus, the unit of time is 50 nanoseconds
for 20 MHz buses, and 25 nanoseconds for 40 MHz buses. Bus access times, the mean time between bus requests,
and the memory latency parameters are all specified in units of bus cycles. This allows us to present the results for a
wide range of bus technologies concisely. Note that the cache block sizes quoted in our experimental results are
measured in number of bus cycles. The actual size of the cache block is the quoted size times the width of the data

bus. We assume #, , =4, = 2 cycles, and #;, =1, = 1 cycle. Thus, the bus access times for data transfers, tp ,

15

and tp ., are the quoted cache block size plus 2 cycles.

For simplicity, we set the memory latency parameters, dggehe and dpmem, €qual to 15 bus cycles in all experi-
ments. For a 20 MHz bus, this specifies cache and main memory latencies of 750 nanoseconds. This number isa
reasonably conservative, but possibly realistic value. Choosing this value allows us to consider bus speeds ranging

from 20 MHz to 40 MHz without introducing much error due to memory latency assumptions.

The effect of cache miss rate is reflected in the parameter for mean time between bus requests, £, . In order to
compute #, from miss rate, we need an estimate of the rate at which the class of memory references over which the
miss rate is defined are generated by the processors. We denote the rate at which such references are generated per
microsecond, by the MMRPS (millions of memory references per second) rating of the processors. Note that the
references counted in the rating may include instructions and data, or only data, or to some other subset of the refer-
ences generated by the processors. The important point is that there be some way of estimating (or guesstimating)
the fraction of such references that miss in the 16 - 64 megabyte snooping cache, which we believe is roughly pro-

portional to the fraction of the memory references that are to shared data.

Realistic values of the MMRPS and cache miss rate parameters in the proposed system are unknown. How-
ever, it may be useful to consider the values of these two higher level parameters that are implied by various values
of t,. Table 4.1 presents the miss rates corresponding to the values of ¢, used in our experiments, for 20 and 40

MHz bus speeds, assuming MMRPS equal to 10. Miss rates for multiplying the bus speed by k, or the MMRPS

value by % are k times the values given.

Table 4.1: Miss Rate Conversions for ¢,

(MMRPS = 10)
t, (bus cycles) 100 200 400 1000 2000 4000
Miss Rate (20 MHz.) 2.0% 1.0% 0.5% 0.2% 0.1% 0.05%
Miss Rate (40 MHz.) 4.0% 2.0% 1.0% 04% 0.2% 0.1%

4.2. Upper Bounds on System Processing Power

We can derive an upper bound on system performance by solving equations (1) and (2) with all values of W; ;

set to zero. This represents processing power that is limited only by the latency to retrieve remote data blocks.

16

Figure 4.1 shows this upper bound on system efficiency for a 32x32 system with block sizes ranging from 4 to
64 words (i.e. 4 to 64 bus cycles). The upper bound for a block size of 64 shows that even without contention for
the buses, miss rates below one per 300 - 400 bus cycles (15 - 20 microseconds for 20 MHz buses) are required sys-
tem efficiencies above 70%. The next section shows the effect of block size considering contention. In section 4.7

we will consider techniques that can be used to reduce the remote memory access latency.

1100 y -=--=--

-
e |
'
t
i
i
i
'
3

USRI QI —

g

RPN, V¥ S W . VO

§§
4
1
+H
i
v
¢
D
]
'
'
]
i
!
]
]
i
i

-
1000 4 ------- f— ------

:
o o]

6004 - m ool

e e e s Tk

o rna@ 0 0mT
—
[o,}

500422 oo

VAU U S SN

ﬂﬁggﬁc
3
4
|
R’

300 4 - m e e :

2004 -------

64 128 256 512 1024 2048 4096

Figure 4.1: Upper Bounds on Processing Power

4.3, Effect of Block Size Choice

Figure 4.2(a) shows processing power estimates derived from our mean value performance model, versus
miss rate (t,), for a 32x32 system with block sizes of 4 through 64. Figures 4.2(b) and (c) show the results for sys-
tem sizes of 20x20 and 10x10, respectively. In each figure, the five solid curves show the processing power esti-
mates for different block sizes. The dashed and dotted curves represent bounds on the relationship between cache

miss rate and cache block size which are discussed below.

17

L

e e e e e e e e e e e i et oy e o e — ey ————— (o)
T R R A 3
H <
\
H 00
R (R NGRS A R S Sl S SO S | g
H [\
1
H <
! N
L UV At S « G e i it S St el o
s —
i
1
1
PSR T VI M o WS SO . S NN S B ad
1
1 m
]
]
3
1]
s 0
e - - W)
i)) 1] i 2
1 El 1 3
i) i]
¥) 1] i
¥ ¥ 3 ¥ 8
e et R S RREET EEEPE i b T e e T N
[i i] 1 1 1] k] ¥ i
1 i) ¥ 3 i t ¢]
t ¥ T Al] 1 1] i /0_2
N e < 0 BRF
H : H H N H H : H : ; M
o O O O o 9 9O O 9 9 o ©
i (o)) o0 o~ wn <t o o™ —
- - OOV VW ~ILD AOBON

Figure 4.2(a): Effects of Cache Block Size for the 32 by 32 Multicube

M o e

256

T

128

Figure 4.2(b): Effects of Cache Block Size for the 20 by 20 Multicube

18

(]
3.
i
i
b
'
1
i
h
i
1
1
1
t
1
1
1
1
i
i
¢
¥
'
'
]
]
]
¢
]
'
]
]
]
s
1

oA 8-l f i

QB0 O-tTd

LTk DTy SR,

~ OO
[F%]
=]
4
1
t
1
'
1
1
1
t
i
1
1
.
H
i
i
1
1
1
i
1
1
1]

i
]
i

B B it e

[¢ SRS R SR

64 128 256 5t12 1024 2048 4096

P

Figure 4.2(c): Effects of Cache Block Size for the 10 by 10 Multicube

First we note that for each cache block size in the 32x32 system, the performance drops dramatically for miss
rates above some "critical" value. For block size of 4, this critical miss rate is approximately one miss per 200-300
bus cycles (i.e. per 10-15 microseconds in the case of 20 MHz buses). For block size of 64 bus widths, the critical
miss rate region is on the order of one in every 1000-2000 bus cycles (i.e. 0.1% - 0.2% for 10 MMRPS and 20 MHz
buses). If hit rates can be maintained above the critical value for the given block size over most of the operation of

the system, then system performance can be expected to be quite reasonable (i.e. above 70% efficiency).

Very low average miss rates may be possible, given the large size of the snooping cache (16-64 megabytes).
However, the steepness of the curves in the critical regions indicates possible stability problems if the miss rate is
expected to vary much. Processing power curves for the 20x20 and 10x10 two-dimensional Multicube in figures
4.2(b) and (c) show that processing power degrades more gracefully as a function of miss rate for all block sizes as
we move to smaller systems, and that higher miss rates can be tolerated for a given level of system efficiency. A
design trade-off to be considered, although it involves other perhaps costly trade-offs, is to bound the size of the two

dimensional system at some value lower than 32x32, and using the three-dimensional Multicube architecture for

larger systems.? On the other hand, the processing power curve for blocksize of 64 still degrades rapidly for miss

19

rates above one per 1000 bus cycles, even in the smaller two-dimensional system. Experimental evaluation of the
memory reference characteristics of large-scale parallel programs is needed to determine the likelihood of the stabil-

ity problem.

To determine the optimal block size for the system, it is important to consider the relationship between block
size and cache miss rate. It is well known that decreasing the block size by a factor of k cannot decrease the miss
rate, and cannot increase the miss rate by more than a factor of £. The dotted and dashed curves in figures 4.2(a)-(c)
each start from different points on the processing power curve for a blocksize of 64 words, and indicate the worst
case of doubling the miss rate, and perhaps a more "typical” case of multiplying the miss rate by 1.5, as the block-
size is cut in half. For example, in figure 4.2(a), starting at the processing power for #, = 2000 on the curve for
block size 64, the lower dashed curve shows the worst case, in which miss rate doubles as the block size is halved.
In the best case, the miss rate remains unchanged as block size decreases. In perhaps a typical case, shown by the
upper dashed curve, the miss rate increases by a factor of 1.5. The dotted curves show the same effects starting

from the 95% efficiency range of the 64 block size curve.

Looking at the bounds and the “typical” relationship between cache block size and cache miss rate on the
speedup curves, it appears almost certain that halving the block size from 64 to 32, and possible that halving the
block size from 32 to 16, increases system performance. Below a blocksize of 16, it appears that performance
decreases, or at best increases only very modestly. Thus, strictly from a performance standpoint, a cache block size
of 16-32 words appears optimal. This blocksize translates to 128 - 256 bytes if the width of the data bus is 64 lines.
Other costs for these "small"” cache block sizes, such as the size of the large tag caches, must be weighed against the
performance gains. However, the performance curves indicate that block sizes larger than 64 words (512 bytes) are

not viable.

In section 4.7 we find that hardware latency reduction techniques do not alter the conclusions of this section.

4.4. Processing Power as a Function of System Size

Figures 4.3(a) and 4.3(b) show processing power of the two-dimensional Multicube as a function of system

size, for one of the "optimal" block sizes, 16, and the limiting block size, 64, respectively. In each figure processing

2 Note that for a given system size, the bus bandwidth per processor per hop in its path to remote memory increases as the number of di-
mensions in the Multicube increases.

20

21

-
y—{
I
%
™~
Ll
7
j =4 ..wm 1=
e e e e o m o e S =) o mm g g O <
i 1) P v ' 1 V ' t -t _—) ' ' ' V 3 i) ' i —
t 1 1 ¢ ' s ' V ' | — o] H H y V ' s H 1 i ' —
..... PSR HPRORORS JEU. VSN SOUUR S S SR AN @ ; ; . : : : > '
: ; i TR N . = atyay . R v 1 R
1 L3 1 1 ¥ i i c .0 1 ¥ 1 1
NS T . NS 8 S SO = % LS oo . 8
IIIII R T L L pSUpEy ISV B GRS JE R X 4 b
_ " e B R & o I T " =3
¥] o~
||||| dmnnl U R 1..::;1..:.m|| clwssnul__lvus... m Y AU S D U T N L H (%]
u " ' " " o -m “ ‘ “ m —nlv.
1 1 ¢ o w2) h 1 ' oW
R R SEEEE SN ALETET EER SR e Sg ek REEEE BESERR N AN R B Gaeats ¢ S2
Lo o\ =3 g : NN " 4]
S S U T \ A ! " " <] 2 : “ : : _ <
i i T [R VR e s U ety s B A * 2 EE Bttty Sulalaietel hadateduieateiuiainds b Nuiubd CALEELEELEE CEEEEY it bbbt
S ! ! m 5 & A NN 3
£ (T] i E i d
N S S N N W LR W -} 8% @ RN SRS SN R SN N N SN W SO 1 S 8T
! ! ! : : ! ' ! U bt =] ' 1 1 ' ' U e
SR SO S SN SN S WSO W - 2 & ISR SO B . £
e llllllllllllll (afsiafiaiani Rahaihihad Sheliniiafiaiint tn G huln Sadinten dha Shullaatudin sihalebatly of
oo TN " g S e " g
AU SO SN S S S S : | S5 = O S VA S SO SN I\, WS W S8z
b @ B oo . A
" : | ; ; i 3 : : : ; i ;
.................... B] SRR USSR RN SRt SIS SRR SO SR 5
e & N A R B 1
v . [I o O S S S [V)] i 1 1 1 1 : o
H) : ;) ; : ST < g ST Pl ;T riai e pommnTee sy =
) 1 3 i k) i ¥ 1 1 w i ¥ b b ¥] T t ki
: 1 ¢ 1 H t i i > 17,1 T] 1 1 i 1 B i
i t + i t } : o o + + + + 4 t + } + o
M M W % W N e e o o Q e e el e e e e e g
S o S o o S
S © O © © & & & &5 & = g8 8 8 8 8 8 8 8 8 8 <
S S B eBeally Ta R, S & &, & B <] =
— A O OO AW~ AOZ UM 2 — AL OO0 Rw~Ehy Poamer
I
]
~
-3
Fou
=]
ep
L]
=

Figure 4.3(b): Processing Power versus System Size, Cache Block Size = 64

power curves are drawn for several cache miss rates, assuming 10 MMRPS. Figure 4.3(a) shows that for miss rates
of 0.1 - 0.2 percent, nearly linear speedups are achieved for up to 1024 processors. The figure also indicates that for
a miss rate of 1 percent, large increases in system size yield relatively modest increases in total processing power.

Similar conclusions can be drawn for lower miss rate values from the curves for cache block size of 64 in figure

4.3(b).

4.5. The Effect of Broadcast Invalidations

This section investigates the effects of invalidation traffic on the system performance. The number of invali-
dations depends on the fraction of write requests to unmodified blocks. The relevant parameters in our model are
Dread-mod 20d p. In the above experiments, these parameters were held constant at 0.2 and 0.8, respectively. Real-
istic values of these parameters are highly workload-dependent, and unknown at this time. In this section we inves-
tigate the general effect of broadcast invalidations, by varying presd-m.a While holding p; =0.8 constant. Results for

varying p, while holding p,,qq4.-mos constant lead to similar conclusions.

Figure 4.4 shows the effect of varying p,,qq-mea for cache block sizes of 4 (solid curves), 16 (dashed curves),
and 64 (dotted curves) in the 32x32 Multicube. The five curves for block size of 4, are for five values of Preadmod
0.1, 0.2, 0.3, 0.4 and 0.5. The two dashed curves for block size 16 are fOr Preas—moa values of 0.1 and 0.5. The
curve for block size of 64 represents all values of p,qy_moq between 0.1 and 0.5. We see that the primary effect of
increasing invalidation traffic is to move the critical miss rate region to the right (smaller miss rates), and that this
effect decreases as block size increases. At the optimal block sizes of 16 - 32 words, the effect is fairly small, and at
block size of 64 the effect is negligible, over the range of invalidations of 8 - 40% of the cache misses. This is rea-
sonable, since each invalidation request requires only one bus cycle, whereas the data transfer requires 18 - 34

cycles.

The experiments reported in this section are very approximate, Since proag-moa and p; are not independent,
(i.e. a larger value of p,,a4_moq should imply a smaller value of p,), and since increasing pread-mod decreases the fre-
quency of write-back operations. This second issue could be addressed by introducing conditional read-mod proba-
bilities for modified and unmodified blocks. Since values for these parameters are unknown at this time, we chose

the more approximate experiment.

22

SR S Y N,

S .

lav]
S
j=]
[)
;
1
3
D N . S P

64 128 256 512 1024 2048 4096

Figure 4.4: Effects of p,,.4.m.q for Cache Block Size of 4, 16, and 64

4.6. Row and Column Bus Utilizations

An important property of the Multicube system is the relative utilizations of the row and column buses. In
particular, system performance is optimized when the row and column buses are nearly equally utilized (including
consideration of the relative bus speeds). The cache coherence protocol distributes the demand for bus bandwidth
nearly equally between the row an column buses, with the exception of invalidate and write-back traffic. The
amount of invalidate traffic on the row buses versus write-back traffic on the column buses determines which bus is
more heavily utilized. Again, these parameters are highly workload-dependent. In this section we report the rela-
tive utilizations of the buses for the p,,,4-mo¢ = 0.2 and p, = 0.8. Note that it is straightforward to obtain these utili-

zations from our model.

For a 32x32 system, a READ-MOD request for an unmodified block causes an invalidation request of duration
one cycle on each of 31 row buses. A READ request for a modified block causes a write-back to memory of duration

(block size + 1) bus cycles on one column bus. FOr preaq-meq = 0.2 and p, = 0.8, these events occur equally often.

23

That is, each occurs in 16% of the cache misses. Thus we expect roughly equal column and row bus utilizations for
cache block size of 32, higher utilization of the row buses for smaller block sizes, and higher utilization of the

column buses for larger block sizes.

Figures 4.5(a) and (b) show the row and column bus utilization for a 32x32 system with block sizes of 4 and
64, respectively. Figure 4.5(a) shows that for a block size of 4, the row bus is much more utilized than the column,
but both bus utilizations decline dramatically for cache miss rates below one per 400 cycles. The results for block
size of 8 and 16 (not shown) are similar, but show increasingly more equal row and column utilizations. At block
size 32 (also not shown), the buses are equally utilized. Figure 4.5(b) shows that for block size of 64 the column is
now more heavily utilized than the row, due to the write-back traffic. We note that the row buses are still 90% util-
ized for miss rates higher than one per 1000 bus cycles. Thus, the inequality in bus utilizations is not responsible for

the generally low performance of this block size.

4.7. Latency Reduction Techniques

Three techniques to reduce the delay for data transfers from remote memory (i.e. the data transfer latency) are
considered in this section. Each technique has some cost in terms of the complexity of the system hardware. The
first technique, which is also the least expensive to implement, is to supply the requested word of data to the proces-
sor as soon as it is received on the bus, rather than to wait until the whole block has been received. On the average,
the processor only waits for one half of the last data transfer, which reduces the data transfer latency by about 25%.
In the degenerate cases where the requested data is supplied by a processor on the same row or column, this tech-

nique would reduce the transfer latency by 50%. We call the technique the "supply immediately" technique.

The second technique is to identify the requested word in the READ or READ-MOD operation, and to transmit
this word first in the data transfer operation. The cache could then supply the word as soon as the first word of the
block is received, eliminating the latency of the last data transfer. This reduces the total data transfer latency by

about 50% in most cases. We call the technique the "requested word first" technique.

The third technique, which we call the "pipeline" technique, is the most sophisticated technique and the most
costly to implement. In the simpler schemes, a cache controller that forwards data from a column bus to a row bus,
or vice versa, buffers a block it receives on one bus and then sends the data on the other bus. In the pipeline tech-

nique, the forwarding controller is able to pipeline the transmission on the outgoing bus with the reception of data

24

4094

mmmm g R R s etaetil ST
) X t 1
1 3] 1]
¥ 1 1 t
13 1 1 i
: H ' i)
.......... R St M e B Y (It b2
')
] + ¥ " ¥ 2
b 1 1 1 '
3 ¢ 1 i]
“, - " 3
lllllllll -II T 3 —l.ll.\. |l—ll.l I"yl.v.vll T O
i] 1 1 ——
t ¥ 1 '
¥ ¥] 1]
¥] 1 b
L3 1 '] t 2
E 1]] 1
||||||||||||||||||||||||| Rt T R e
d t “] M ” wy
1 1 +] i 1]
1 1 1] i ¥
1, i ¥) i 1]
' i i) i ; O
»»»»»»»»»»»»»»»»» B e Sl O T upuu [2%
1 L
i ; i J i ; N
1 L] 1 1 ¥ L3
m 1] 1 i ¥ £
g ; : ; ; ! o0
............ | [U AU SO S U -1
b 1 1] —_—t T 1 i 1 t ot
1 1 1 Q 1 3 1 ¢)
' i 1 (&) 1 § 1 3 '
1 1 1 1 ' 1 13 1]]
+ 1 1 1 3 1 b 1 ¥ 1
i t i i]]] i 1 1
I i T t + t t t + NS
(= o (=] O =] fang) [anl < (=]]
<o ()Y o0 o~ O s <t o o —
— OO) Qe) et ot N (b ot O

=4

Figure 4.5(a): Bus Utilizations for Cache Block Size

M g o — e e e g e e o

L S Ay i UV P S5 U SO SIS

W e ot e o e e s o o o S i o
1
1
1
1
1
)
1
1
1
1
B e Lk LT CT R RN R R Y ———

M e g e e v e = e i

i Ittt Sl

|||||||||||||||||

t 60

10 4------

=64

Figure 4.5(b): Bus Utilizations for Cache Block Size

25

on the incoming bus. The pipeline technique also includes the requested-word-first technique, and eliminates all but

two cycles of latency on each bus, regardless of block size.

It is important to note is that although these techniques reduce latency, they do not decrease the demand for
the buses. The buses are still in use for the entire block transfer, and supplying the processor earlier will result in
receiving the processor’s next request sooner. As a result the amount of time spent waiting for a bus may increase,
reducing the advantages of the reduction in latency. The mean value model is useful for estimating the actual per-

formance gains with queueing times included, which is the subject of this section.

Figure 4.6(a) shows the processing power estimates for the original system and the three latency reduction
techniques for a 32x32 system with cache block size of 64. Figure 4.6(b) shows the same curves for a 10x10 Multi-
cube. Note the different range of values for ¢, in each graph. Estimated relative performance gains for the latency
reduction techniques were smaller for cache block sizes less than 64, and for the values of ¢, not shown in the

graphs.

Figure 4.7 shows the maximum relative increase in processing power for the pipeline technique as compared
with the original system for size 10x10, 20x20 and 39%32. The maximum estimated increase in processing power
for a 10x10 system is 8.5%, which occurs at a miss rate of one per 1000 cycles. For the 20x20 and 32%32 systems,
maximum increases in processing power are only 5% and 3%. Furthermore, the maximum performance gains in
each case occur at miss rates where performance is already acceptable. We find that the latency reduction tech-
niques only improve performance at operating points where the buses are not heavily utilized. At miss rates where
the buses are heavily utilized the waiting times outweigh any benefits obtained from the latency reduction. We thus

conclude that the latency reduction techniques are not worth any substantial implementation COSst.

26

|||

L s d
'

16384 32768

g ————ym

Aot
]
b -
'
e T
]
t
i

immed.

ine
-imm
c

ly
ASJ)

F

& first-225 7

ic
b

7

pipeline
; or
y_
bas

o mn = g o o e o

word first ~+ —

8192
pipe

S

q
supp.

e

ke
supp.

|||

4096

B s e

llllllllllllllllllllllllllllllll

'
=

2=

L e T T R

2048

256 512 1024 2048 4096 8192 16384

1024

800 1-------
7751
750

45

1025 ----=-=-r-----e-epessss--sposssosssgeseo--os

32768

27

b
Figure 4.6(a): Latency Reducing Techniques for the 32x32 Multicube

Figure 4.6(b): Latency Reducing Techniques for the 10x10 Multicube

L e A
L S S S N
AN R
8O- /TNy roTT
i (s e
! Joo : L
A G s S
t N ':]
PO A A Pty P
n L 20%20 A
€4.01---t-4- T A St A
e Lo ! oo
T S B PP evhls W R R
e P A
207 i A s U
Y SO =l N4 B S > -
0.0 : ; . t . ' |
256 512 1024 2048 4096 8192 16384 32768
tP

Figure 4.7: Percent Increase in Processing Power for Latency Reduction

5, Conclusions and Future Work

We have developed an approximate, customized, mean-value analysis of bus interference in the Wisconsin
Multicube. The model includes FCES scheduling at the bus queues with deterministic bus access times, asynchro-
nous broadcast invalidations, and asynchronous memory write-back operations. The level of detail in the model is
compatible with the level of detail known about the real system at this time. Furthermore, we believe the level of
detail in the model is the appropriate level of detail for studying initial design trade-offs and for initial system capa-

city planning.

We have used our model to investigate several system feasibility and design questions. In particular, our
results indicated that a 1024-processor Multicube can operate at 70 - 90% of its peak processing power, if cache
miss rates are no larger than one per 1000 bus cycles (i.e. 50 microseconds for 20 MHz buses, or 25 microseconds
for 40 MHz buses). In addition, the model estimates indicated that, strictly from a performance perspective, the

cache block size should be on the order of 16 - 32, and no larger than 64, times the width of the data bus.

28

Our results for the effect of system size on processing power showed that nearly linear speedups are possible
for up to 1024 processors, for cache miss rates no larger than one per 1000 (16-word cache blocks) or 4000 (64-
word cache blocks) bus cycles. We also presented results that show the primary effect of invalidation traffic in the
system is to increase the rate at which processing power declines for cache miss rates above some "critical value".
Finally, we presented results that indicate various hardware techniques for reducing remote memory access latency

are not worth any significant implementation cost.

For the 32x32 Multicube, our results show that for each cache block size, performance drops dramatically for
miss rates above a "critical value". Thus, system stability may be an issue. Processing power curves for the 20x20
and 10x10 Multicube, show that processing power degrades more gracefully as a function of miss rate. Experimen-
tal evaluation of the memory reference characteristics of large-scale parallel programs is needed to determine the
significance of the stability problem. A design choice to be considered, although it involves costly implementation
trade-offs, is to bound the size of the two-dimentsional system at some value lower than 32x32, and to use the

three-dimensional Multicube architecture for larger systems.

Our plans for the future include improvements and extensions to the model, and study of additional system
design issues. In particular, the model developed in this paper ignores cache and main memory interference, and
assumes uniform cache miss rates across all processors, and uniform memory access probabilities for all requests
that miss in the cache. Cache interference may be more significant in the Multicube than in single-bus multiproces-
sors, since requests from more than one bus can interfere with each other and with the processor requests. Non-

uniform miss rates and memory access probabilities would also be interesting features to investigate.

Additional system design issues that might be studied with extensions to the model in this paper include the
performance advantages of various optimizations in the cache coherence protocol, the effects of T/O traffic on sys-
tem performance, a more detailed analysis of the effects of the workload sharing parameters, and the performance
of the three-dimensional Multicube. Other issues to be studied that will require more detailed analysis and/or simu-
lations include the correctness of the cache protocol, and the transient behavior of the system at program start-up
time. In all of these studies, data on the memory reference characteristics of real, large-scale, parallel programs are

crucial.

29

Acknowledgments

We would like to thank Jim Goodman and Phil Woest for many fruitful discussions in the development of the

model presented in this paper, and Mark Hill and Tom Reps for very helpful comments on the analysis.

References

[GoW87] Goodman, J. R., and P. J. Woest, "The Wisconsin Multicube: A New Large-Scale Cache-Coherent
Multiprocessor”, submitted for publication.

(HeTr82] Heidelberger, P., and K.S. Trivedi, "Queueing Network Models for Parallel Processing with Asynchro-
nous Tasks," IEEE Trans. on Computers, Volumer C-32, No. 11, November 1982, p. 1099.

[LaVZ88] E.D. Lazowska, M. K. Vernon, and J. Zahorjan, "An Accurate and Efficient Analysis Technique for
Multiprocessor Snooping Cache-Consistency Protocols”, Computer Science Dept. Technical Report
#746, Univ. of Wisconsin - Madison, January 1988.

[LZGS84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik, Quantitative System
Performance, Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[Reis79] M. Reiser, "A Queucing Network Analysis of Computer Communication Networks with Window Flow
Control,"IEEE Trans. Comm., Volume COM-27, 1979, pp. 1199-1209.

[Schw79] P. Schweitzer, "Approximate Analysis of Multiclass Closed Networks of Queues", JACM, Volume 29,
No. 2, April 1981, pp. 358-371L.

30

Appendix A

The conditional probabilities that a requested data block is on the same row, same column, or neither, as

the requesting processor, given that the data block is unmodified or modified, are as follows:

Peots = probability own column given that it is unmodified = —j%f
- N-1
Pris = probability foreign column geven that it is unmodified = N
- . . N-1
Dotz = probability own column given it is modified = N1

Proix = probability own row given it is modified

<N(N ”)() = Nll

Prix = probability not same row or column given it is modified

V-1

N(N 1)
) (
N2-1

=(=1 -

The above probabilities are used in the following tables for p; ; x1s and p; j xix:

Pk jix j=o [=f
i=r i=c¢ i=r | i=c
k=A | 1=Ppoix | Peoix 0 | prix
k=D Proix 1'-prolX Prix 0
k =AD 0 0 0 0
Pk.ij1S j=0 J =f
il=r 1= L=r 1=c
k=A 1 0 0 0
k=D Pris 0 0 0
k=AD 0 Peols 0 | pris

31

Appendix B

In this appendix we present the modifications to the mean value equations for the processor sharing schedul-
ing discipline on the buses. Calculation of response time is the same as in equation (1) of section 3.2. Calculation
of R; ; x in equation (2) requires changing W; ; to W; j - Thisis because an arriving request must share the bus with
all the other requests present for as long as it requires service. W; j x is calculated as the product of the arriving
request’s service time and the mean queue length found by the arrival. All the needed equations for the processor

sharing scheduling discipline are presented below:

R :tp + Ps dmem + Dx Qeache + Z Ri’j»k’
ig{r.c}
jefo.f}
ke{AD.AD}

R; jx = Dz Piijix + Ps PrijisWijg + iy,

ok o Rirk
R R

_ R
Qi ko =WN-1)

= Riok 1 | Rigx
Qi.kif =N R -+ [N (N—l)"" 1] ['I—V,“:T} R s

Wiix= i) 2 @uu)
KeA,D AD
The row and bus utilizations are not needed to calculate the response times as they were in the FCFS case, but if the

utilizations are desired to be known, they are calculated the same way as before:

D; jx = (Px Prjjix +Ps Prjis) ti-

Di
Ui,j,k =NX“T.

Uij=Uija+Uijp +Uijap,
Ulie =Uiok +Uifs ks

U"=U’;'a +U,iJ'

32

Appendix C

In this appendix we compare the approximate mean value equations with equivalent exact PFQN equations.
The models evaluated in this section are of an earlier design of the system and are somewhat simpler. In particular,
the models do not consider the degenerate cases where the desired data is held on the same row or column. As a

result, every cache miss requires four bus accesses, two for the address and two for the data.

In Figure C.1 we show the queueing network equivalent to the earlier mean value model of bus traffic in the
Wisconsin Multicube. The network is drawn for a 3x3 system, and contains the routing for one closed chain of cus-
tomers. This chain, called R1, models the requests that originate at processors on row 1. The delay servers P1-P3
represent the local processing time of the processors on rows 1-3, the queues R1-R3 represent the three row buses
and the queues C1-C3 represent the three column buses. The delay servers CD1-CD3 represent the latency of the
caches on column 1-3, respectively. M1-M3 represent the memory latency for global memory modules on columns
1-3. Queues R1-R3 and C1-C3 have three incoming classes: the left incoming class is type A accesses, the middle
incoming class is type AD accesses and the right incoming class is type D accesses. There are three line types in
the figure. The solid line represents class A, the dotted line class AD and the dashed line class D . In the figure a
chain that enters a queue as a certain class also exits the queue as that class. Class changes are shown by the line
type changes at the inputs to the queues. For example a type A customer enters queue R1 and the exits as a solid

line and goes to any of the three queues C1-C3 as either a type A access or type AD access.

We now trace the routing in the queueing network model for a request for an unmodified block and a request
for a modified block. In either case, the request leaves P1 and enters R1 as a class A access, representing the row
bus request for the block. The request then follows the the routing for requests to unmodified blocks with probabil-

ity p,, and follows the routing for requests to modified blocks with probability p,.

(1) Request for an unmodified data block: The request next goes to either C1, C2 or C3 and enters as an AD
access. Assuming it went to Ci, it then goes to Mi to acquire the desired data block. It then goes to R1 enter-
ing as a D transfer Finally the data returns to P1.

(2) Request for a modified data block: The request next goes to C1, C2 or C3 as an A access. Assuming C2 is
chosen, it then goes to CD2 for the cache to supply the data block. Next it enters R2 or R3 as a D access to
transfer the data block on the row bus of the supplying cache. If it chooses R2(R3) this implies that the cache
supplying the data block was on R2(R3). From R2 or R3 it next enters C1 as a D access from where it returns
to P1.

33

Each of the three closed chains in the QN model has a population of three customers. We compute the pro-

cessing power estimate from the PFQN results by multiplying the mean queue length at P1 by 3.

Figure C.1: PFQN Model of a 3 x 3 Wisconsin Multicube System

We compared the PFQN model with the equivalent approximate mean value equations over a range of inter-
request times under fixed assumptions of cache and memory latency of 50 bus cycles, p, = 0.2 and pr = 0.2. The
range of inter-request times, 1 - 4000 bus cycles corresponds to hit rates of 0 - 99.85% for 10 MIPS processors and
10 MHz. buses, caused the bus utilization to vary from 0 - 65%. The error for the two methods increased as the util-

ization of the buses increased regardless of the block size chosen. With only a nine processor system a bus utiliza-

34

0.01
5.00
1.62

16
0.00
3.13
0.69

0.00
1.99
0.44

4
0.00
1.24
0.22

Block Size:
Min. Error:
Max. Error:
Avg. Error:

P et pom g B P e ey
1 1 i 1 i i 1]
1 k) ¥ i] ?
o — X Dby SN SNSRI RS, [R § R, Ny dem | AP — . IR,
¥) 1) ' 1
¥ 1 13]] ' 1
» 1 1 P 1 il 1
EEEE i e S P s mm - Amm=-- o Lafulabaiels o
i] 1 ¥ 1 1 1]
i] 1 i l 1 1
[P PR j I S [R o U U - [ISR j R S I
[) t 1] » 1 1
L 1 ¥ ’ t I3 ¥
1 ¥ 1] 1 1] 3]
g m——— e ——— - o - ™ m_gm———— re——— . ———
] 1 i 1 i 13 i ¥
1 k] i 1 i 1)
lllll JF DRSNS NP WGy PR RS I SR S SR
1 t 1 ¥ ¥ 1] 1
] i 1 i i t i i
¥ L 1 1] L3 '] 1
b Slatdnd | St e - o (el e et e -
1]) 1] ¥ ¥ i i i
]) ¥ t b] ¥ ¥
PV [| T JE QR Lo od LS PF [, A NI SRR
] 1]] ' 1 i 1]
1 1 i ¥ ¥ i ¥ 1]
1 1 L v t 8 1 '
Am————— | ittt g b Seinindeid re===-= g Lt Gutainbels o
] 1 ¥ » ' 1 i £
" 1 ¥]] 1 i ¥
UGN D | IO - P QU J S - | DR P f AR | S, VI
1} 1 13 L} ¥]] 1]
1] 1 ¥ t 1]] 13 1]
) 1 ¥ T I J i]
e Rt | ettt il as===== r====- i afiatadbaiiaii Sethaliadading Y { e iy ol
] 1 ¥] 3 1 1 3
¥ 1 i)]]] i i
[[P | IOV DI P | R —— 3 SR [R f I | R
E] & » 1 b 1] 3 1]
) t 1 1 i] b l 1 3
L3] i) il 1 ¥ ¥ H 1 3
| et It L St T e | i e bt R TTTTET e
13 i ¥ F H ¥ i P il]
¥ E) 1}] »] 1 l] 1
I + ¥ T + 1 + T ¥ +
vy <+ ~t o o (o] o™ - — (] (]
AOROOES [0k

35

5 10 15 20 25 30 35 40 45 50 55 60 65
Percent Utilization

0

tion of 65% was the highest that could be attained. The fact that the percent error increases with the bus utilization

is not a problem since the Wisconsin Multicube is only feasible for utilizations less than 65% and maximum error at

utilizations of 65% was 5%. Table C.1 shows the percent error versus the bus utilization for this experiment. Fig-

ure C.2 also shows the percent error versus the bus utilization. As noted before, the maximum observed error was

5.0%.

Table C.1: Percent Error in the Approximate Mean Value Model

Figure C.2: Percent Error in the Approximate Mean Value Model

Appendix D

In this appendix we show the effects of the non-product-form assumptions in the mean-value model of Multi-
cube. These assumptions are: FCFS service at the bus queues for more than one class of customers, deterministic
bus access times, and asynchronous invalidate requests. Figures D.1 and D.2 shows the results of mean value
models which contain only a subset of these assumptions, for a 32 x 32 system. In both figures, p, = 0.2, Pread-mod
= (.2, and memory write-backs are ignored. Figure D.1 assumes a cache block size of 4, and Figure D.2 assumes a
block size of 64 bus widths. The top curve is for FCFS scheduling with deterministic access times. The second
curve from the top is for the product-form model (i.e. PS scheduling, no invalidates). The third curve is for FCFS
scheduling with exponential bus access times. The bottom curve is for FCFS scheduling, deterministic bus access

times, and invalidate traffic.

Comparing the FCFS exponential results to the product-form model results we see that the FCFS policy
results in at most 1.3% (4.6%) lower processing power, for a block size of 4 (64). For processing power above 900

the difference in the two models is less than 0.5% for block size of 4 and 1.4% for a blocksize of 64.

The deterministic access times yield higher processing power, although once again the difference is not major.
When compared with the product-form model, the FCFS model with deterministic access times differs by at most

5.3% (2.7%) for block size equal to 4 (64).

The model which includes invalidate traffic shows the lowest performance. As the overall cache miss rate
increases, system performance degrades by as much as 40.3% for a block size of 4, relative to the FCFS scheduling
with deterministic access times and no invalidations. For a block size of 64 the maximum observed decrease was
5.7%. Note, however, that at processing powers above 900, the degradation due to invalidations is less than 2.5%

for block size of 4, and only 0.1% for a block size of 64.

36

|||||||||||||||||||||||||

1 i
ey b

-

1
2 Y T T R

||||||||||||||||||

||||||||||||||||||||||||||||||

1é8 256 512 1024 2048 4094

1100 7----
10001 ----

P800 -~

1
PP
1
1
1
1
)
s
[S
i]
1})
H] 1
] 1
L ¥
~ O
=OLOLYnY

1001-

64

32

=4

Figure D.1: Processing Power for Non-Product Form Extensions, BS

||

i
i)
+
1 ¥
£ i i)
¥ i)
t i 3 i
R s I e e T Py EOIER R by S0 SEPEpRpNY N 1 S
] i] t
* ¥ t ¥ i
+ ¥ ¥ ¥]
I i ' 1 '
] i ¢ 1 '
- Lei el b E B R LR Tt e Dttt o R ke L R
t ' I] 1]
+ 3 + [1 i]
1] i]) 1]
1 ' 1] i b3]
1 3 1 1 g 1
T [S i R I D [t et Bt i N Safaliai
i) i 1 i i 1 I] i
¥ i i t ¥) Ll ¥ t 1
3 1 ¥ ¥ 1 $] ¥ E ¥]
§ 1 1 + i ¥] 1]] 1] 1
b + + + + + + + + + +
=] Qe o o o 9 o
=1 o O 9 <© o O o S
- S & ¥ K v ¥ A Q=
- - OOV U~EE) ALOR Q.

32768

8192

512

128

=64

Figure D.2: Processing Power for Non-Product Form Extensions, BS

37

