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1. INTRODUCTION.

In recent years a popular topic in structural complexity theory has been the extent to which sets can
exhibit some measure of polynomial time behavior without actually being in the class, P, of sets decidable
in polynomial time. In this paper we consider three examples of this phenomena. One is the property of
a set A being p-close, that is, there is a polynomially decidable set whose symmetric difference with A is
a polynomially sparse set. Another is of a set being in P/poly, that is, of having polynomial size circuits
that test membership in the set. The third is of a set being pcheatable in the sense that some large number
of membership questions about the set can in polynomial time be reduced to some (much) smaller set of
membership questions about the set.

In contrast to measuring the extent to which a set may exhibit polynomial time behavior without actually
being in P, one is often interested in some description of how “badly” a set fails to exhibit polynomial time
behavior. In addition to being not p-close, one way of showing that a set does not exhibit polynomial time
behavior is to show that it is polynomially immune (or bi-immune), that is, that the set (or the set and its
complement) fails to have an infinite polynomially decidable subset.

In this paper we are interested in the interplay of these measures of polynomial time behavior. Roughly
speaking, we show that several of these ways of measuring polynomial-like behavior or the lack thereof are
to a large extent orthogonal to each other. For example, we construct various highly pcheatable sets that
are highly bi-immune and that are not p-close.

The portion of our work that deals directly with p-closeness was stimulated by [A&G-87], where a
number of conjectures were made about connections between pcheatability and p-closeness. Straightforward

extensions of our work in [GJY-87a&b] answer all of these conjectures.

Our first, and hardest, theorem is that there exist 28 — 1 for k — pcheatable sets that are bi-immune
with respect to all recursively enumerable (r.e.) sets. This result, which was announced without proof in
[GJY-87a), was greeted with some scepticism at the time of announcement. The proof, like all proofs in
this paper, is motivated by recursion theoretic ideas. In this case, as announced, our proof is modelled on
Jockush’s construction of a retraceable, semi-recursive set that is bi-immune, ([Jo-68]).

This result contrasts with the situation for 2¥ for k — pcheatable sets. Beigel et al. ([BGGO-87]) have
given a subtle argument showing that all 2* for k-cheatable sets are decidable (and hence certainly not
bi-immune). (A simpler proof of decidability, but one that works only for 2% for k — pcheatable sets, is
given in [GIY-87a].) In spite of always being decidable, even 2F for k — pcheatable sets can have arbitrar-
ily high computational complexity, ([A&G-87]). The second theorem of this paper shows that even more
highly pcheatable sets can not only be poiynomially bi-immune, but can be bi-immune with respect to any
deterministic time class, a result stronger than merely showing that such sets can have arbitrarily high com-
putational complexity. In this second theorem we prove that for any deterministic time class Dtime(T(m))

there are k for 2— pcheatable sets that are bi-immune with respect to Dtime(T(m)). (The proof of this was
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given in [GJY-87b). An independent proof by Beigel is given in [Be-87b].) Note that this result is in contrast
to the situation for 2 for 1 — pcheatable sets, which can easily be shown to never be even polynomially
bi-immune, ([Be-87b]).

In both Theorems 1 and 2, the sets we construct are in P/poly. To answer Amir and Gasarch’s
conjectures in [A&G-87], we give easy modifications of the constructions in Theorems 1 and 2 so that the
resultings sets are not p-close. An easy modification of the construction given in the second theorem also
yields a third theorem which provides a negative answer to another of these conjectures: in Theorem 3 we

prove that there are sets that are not p-close, but which are n for 1 — pcheatable. These sets are also in
P/poly.

Definition. A set A is n for k-pcheatable (n and k fixed constants) if there is a polyr;omial time oracle
machine M such that if M is given inputs < z1,...,2, > and an oracle for A, then with k or fewer queries to
the oracle M determines membership in A for each of x1, ..., 2,. If n can vary, that is, if the algorithm never
makes more than k queries no matter how many inputs it is given, then we say that A is k-pcheatable. If the
machine M is merely computable with respect to the oracle A, but does not necessarily run in polynomial
time, then the set A is said to be simply n for k-cheatable, or simply k-cheatable if n can be arbitrarily

large for a fixed k. 1

Definition. An infinite set A is bi-immune if neither A nor A has an infinite r.e. subset. Similarly, an
infinite set is polynomially bi-immune if neither the set nor its complement has an infinite polynomially

decidable subset.

Definition. A set A isrecursively-close if there is a recursively enumerable set W; such that the symmetric
difference of A and Wy, (i.e., A~W; U W;— A) has at most some polynomial number of elements of size n for
all n, (i.e., the symmetric difference is polynomially sparse). The set A is p-close if there is a polynomially

decidable set P such that the symmetric difference of A and P is polynomially sparse.

2. CONSTRUCTIONS.

Sets that are 2 — 1 for k — pcheatable were called verbose by Amir and Gasarch in [A&G-87], and in
that paper they conjectured that such sets need not be p-close. In Theorem 1 we confirm this conjecture by
constructing a 2% — 1 for k — pcheatable set that is bi-immune and not even recursively close.

The next trivial lemma should serve as motivation for what follows:

1. In [Be-87a], in discussing 2 for k cheatable and pcheatable sets, Beigel allows the oracle to be an
arbitrary fixed set, B. In [A&G-87], in discussing 2% — 1 for k-pcheatable sets (which they call verbose sets),
Amir and Gasarch define pcheatable sets A as using A as oracle. For our purposes, either oracle convention
will work, since all of our results depend merely on the number of queries to the oracle and are independent

of the set actually used as oracle.



Lemma. Suppose <t is a linear ordering and that A C N is a set satisfying y € A and w <7 y implies that
w € A. Then given any k and given any n < 2* integers we can, given the ordering <r of the n integers,
determine membership with respect to A for these n integers by asking membership questions about A for

only k of these integers.

Proof. Just do the obvious binary search for the “break point” or “boundary” for the n integers’

membership in A. g
With this we can now prove our first result:

Theorem 1. There exists a set A that is
i) 2¥ — 1 for k — pcheatable for all k,
ii) bi-immune,
iii) not recursively close,

iv) in P/poly, (i.e., has polynomial size decision circuits).

Proof. We first construct a set that is 2¥ — 1 for k — pcheatable and bi-immune. We then give an easy
modification of the construction to keep the set from being recursively-close, and we then prove that the
resulting sets are in P/poly.

Let f be any function with domain N — {0} and range N. Assume that the graph with directed edges
given by the pairs (w, f(w)) forms a tree, T, with root 0. For later purposes we will also assume that
[0] = 0, but that for all other integers |n| is the length of n in any base other than base 1. Then T' induces
a corresponding linear ordering <7 on N by taking the natural “left-to-right” ordering of branches and
ordering integers on the same branch by their distance from the root. The ordering <7 is defined formally
as follows:

i) If w and y are on the same branch of the tree, we define w <r y iff f*(y) = w for some ¢ > 0.
ii) If w and y are not on the same branch of the tree, then fi(w) = f7 (y) for some unique minimal pair

i,j > 0. In this case define w <p y iff fi~1(w) < fI-1(y).

Our goal now will be to define a (polynomially computable) function f which induces a tree T' as above
such that, given any 2% — 1 integers i, ..., Zax_;, We can in time polynomial in |z + |z2| + ... + |22, = 1
find the tree ordering of 1, ..., £o«_; under <r. At the same time, we will use this tree ordering to define a
bi-immune set A such that for any w and y, w <r y and y € 4 implies w € A.

If we can accomplish this, the result will be proved. To determine membership for all of z, ..., Z3x1
in A, by the preceding lemma, we need only do a binary search on these elements with respect to the tree
ordering <7 to find the boundary point for membership in A within this list.

A will be defined in stages. For each n, at the beginning of Stage n we will have defined a node of the
tree, TARGET(n) such that |TARGET(n)| < n. We will keep f polynomially computable over exponential

size subtrees by making f uniformly computed for all integers of the same size and by making f strictly size
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decreasing. Specifically, we define
f(w) = TARGET(n) for all w such that |w|=n

and we define

Ay ={y|y<r TARGET(n) }, and A, ={y ||yl <n } - A,

The sets A,, will be approximations to A in the sense that we will prove
limpwo TARGET(n) = o0,

so that we can set

A = limgooAp.?

Let {W;};en be a standard enumeration of all r.e. sets. At any given stage in the construction, we will
have a finite number of r.e. sets W; such that there is some z € W; that is known to be in A, and there may
also be some z/ € W; that is known to be in 4. In the first of these cases we will say that j is protected for
Apnq1 by inclusion of z and in the second we will say that j is protected for A, by ezclusion of z'. We will
try to maintain for all such z that 2 <p TARGET(n + 1) and for all such 2’ that z’ >p TARGET(n + 1).
While we will not succeed in doing this in each case as we pass from Stage n to Stage n + 1, what we will
see is that in a suitable sense we will succeed in doing this in the limit as n goes to infinity.

;From the preceding discussion, it is clear that if TARGET(n) is defined in a way that is polynomially
computable in n (not in |n| ), then f(w) will be polynomially computable in |w|, because, since it is length
decreasing, its computation can if necessary be driven all the way back to 0 in at most |w| iterations.
Furthermore, it follows that for any 2¥ — 1 elements zj,...,Zox_1, the tree ordering <7 of zi,...,Zox_1
can be found in time that is polynomial in the sum of the lengths of zi,...,23x_;. Thus, since the set
A (=dey limp—oo Ap) is completely determined by our definition of the function TARGET, we need merely
define TARGET(n) so that it is polynomially computable in n and so that the resulting set A is bi-immune.

2. Another way to view this is that, if we let
IB7 = {y | 3 infinitely many w € Range(TARGET) such that f(w) = y for some i},

then IBr will be the unique infinite branch that extends through the tree T and IBr will be retraced by
f. Furthermore, A will be the set of all points that either lie on IBr or lie on a branch to the “left” of this
infinite branch. That is, A = {y | y < z for some z € IBr} = {y |y < z for some z € IB;}. Although
we will not explicitly use the fact, for understanding how our proof works, the reader may find it useful to
keep in mind that <7 will impose on N (= the set of all natural numbers) the order type of all negative and
positive rationals of the form -};, n a negative or positive integer, and A will then correspond to the negative

rationals in this ordering.



We will employ a simple priority argument to guarantee that for each j, if the j*# r.e. set, Wj, is infinite,

then W; contributes to, and therefore intersects, both A and A
To this end recall that |0] = 0, and proceed in Stages to construct TARGET(n) as follows:
Stage 0: Define TARGET(1) = 0.

Stage n, (n > 1):
Step A. For each j < log(n) such that W; is not yet known to be protected for both A, and for A,
spend just a few more steps enumerating W;.
Step B. For the smallest such j (if any) such that
i) there now exists z with |z] < n and z € W; and j is not protected for A, by prior inclusion of some
2! 27 2, and
i) no j' < j is currently protected for A, by some 2’ with 2’ >7 z, and
iii) no j* < j is currently protected for A, by exclusion of some z’ with 2’ <7 z,
choose the largest such z and:
Subcase B.1. j is not yet known to be protected for A,:
in this subcase define

TARGET(n + 1) = maz<.{2, TARGET(n)}

and say that j is protected for A,41 by inclusion of z. (Note that by our description of our choice of

z and by an inductive proof on TARGET(n) this does not change any protections for any j’ < j.)
Subcase B.2. j is known to be protected for A, by prior inclusion of some 2z’

in this subcase, by our choice of z, we know, among other things, that z’ <7 z.

To keep 2 excluded from A we want to keep TARGET(n) <r 2;

so in this subcase we define
Zmaz = maz< {2’ | 2’ protects some j' < j for An},

and we then define

TARGET(n + 1) = maz<{2maz, TARGET(n)}

and we say that j is protected for A,;; by ezclusion of z. (Note that j is still protected for A,
by inclusion of the smaller 2/, and that z and, by induction on n, TARGET(n) are so chosen that
this changés no protection for any j/ < j.)

Step C. If Step B is nonvacuous, then before the start of Stage n-+1

terminate the protection of all j* > j by erasing all protection memories for all 3/ > j.

Go on to Stage n+1.




This completes our description of how to compute the functions TARGET(n) and f(w), and also our
descriptions of the sets A,. It is easily seen from our description that TARGET(n) is computable in time

polynomial in n, and so all that remains to complete the proof is to show both that
limp .o TARGET(n) = 00

so that it makes sense to define the set A as A = limy,..00 An, and to show also that the resulting set A is
bi-immune. Not surprisingly, these two facts are closely interrelated.
We first observe that for any r.e. set Wj, if at some Stage n, j is protected for A, by inclusion of z and

Jj is protected for 4, by exclusion of z’, and, if for all Stages n’ with n’ > n we have
z <7 TARGET(n') <r 2,

then we are guaranteed that for all Stages n’ with n’ > n we will have that j is protected for A,/ by inclusion
of z and that j is protected for A,, by exclusion of 2. Assuming that lim, ..o TARGET(n) = oo, so that
A is well defined, this would imply that W; intersects both A and 4.

Proceeding inductively, assume now that for some fixed j we have reached a Stage n of the construction
such that for all 5/ < j no protection of j' will ever be initiated or terminated after Stage n. Then any
protection of j that is in place at Stage n or initiated after Stage n cannot be terminated, because the
construction requires that to terminate a protection of j requires the initiation of some protection for some
j' < j. From this the following is clear:

1) Any protection of j that is initiated after Stage n cannot be terminated since this would require an
initiation of a protection of some j' < j. Thus there is some stage after which no protection of j is ever
initiated or terminated.

This completes the inductive proof that protections must stabilize, but we also see:

i) For any Wj, once all protections for all j' < j have stabilized, if we set
Zmaz =def MaT<,{w | w protects some j' < j by inclusion of w}, and
Zmin =dey Ming,{w | w protects some j' < j by exclusion of w},
then from that point on for all sufficiently large n’
Zmaz <7 TARGET(n') <7 Zmin,
which guarantees that all sufficiently large integers z must satisfy
Zmaz <T 2 <T Zmin.

But this means that if Wj is infinite, then, after a sufficiently large stage, we must find some z € W;
that satisfies

Zmazr <T %2 <T Zmin,
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and this enables us to protect j for A, by inclusion of z. A similar analysis shows that once we have
protected j for A, by inclusion of some z, then if W; is infinite we must eventually be able to find
some z’ that enables us to protect j for A, by exclusion of 2/, without changing any protections of any
J' < j or of the existing protection of j for A,. This guarantees that the set 4 =g § limpoo Ap, if
well-defined, is bi-immune to all r.e. sets.

iii) Since there is no upper bound on the smallest members of infinite r.e. sets, limsup,—..o TARGET(n)
must be infinite, for otherwise it is easily seen that A,, would be finite, and therefore could not spoil
all infinite r.e. sets. But once z is protecting j we cannot set TARGET(n+ 1) < z without forcing j’s
protection by z to be terminated, so it follows that liminf,_..cTARGET(n) must also be infinite.

This completes the construction of a (recursively) bi-immune set which is 2 — 1 for k — pcheatable for
all k.

We now explain how to modify the construction to keep the set, A, from being recursively close. For
each j, the preceding construction had two goals: to manipulate the definition of TARGET(n) so that if
W; is infinite, then in the limit W; always intersects A,, and hence intersects A, and also to manipulate
the definition of TARGET(n) so that if Wj is infinite, then in the limit W; always intersects A,., and hence
intersects A. -

We now add one more goal for each j: We want to find at least one length, m, such that if at least half
of the strings of length m are in W; then all but one of the strings of length m are in 4, but if over half
of the strings of length m are in W; then all strings of length m are in A. If we can accomplish this, then,
bearing in mind that every r.e. set W; really has infinitely many indices, A cannot be recursively close
since infinitely often at least half of the strings of any given length are in the symmetric difference of W;
and A. But if we could choose the length m for which we want this to happen, we could then easily succeed
by initially setting TARGET(n) to be the largest number of length m, and then, as n increases and more
members of W; are discovered as we enumerate Wj, if we discover that more than half the numbers of size
m are in W; we then switch TARGET(n) to the smallest number of length m.

Now in the construction of the pcheatable bi-immune set which we have just given, in order to make
the set bi-immune, strings of every length must be available to diagonalize against the possibility that, if
infinite, W; is a subset of A or of A. These two requirements were realized by our attempts to protect j for
A and to protect j for A. We now add a third requirement for j, namely that for some m, if at least half of
the strings of length m are in W; then all but the smallest string of length m is in A, while if over half of
the strings of length m are in W; then all strings of length m are in A. This third requirement for each j is
blended with the other requirements,“ and it achieves highest priority at any stage when all requirements for
all smaller j/ or for the two other requirements for j itself have already been met or cannot be met at that
level.

It is clear that we can blend this additional diagonalization on all sets W; into the preceding priority
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argument to keep the resulting set A from being recursively close: For each j, the desired length m for this
diagonalization varies, becoming associated in the priority argument with this third requirement for Wj.
The same induction as above then shows that the priorities eventually stabilize, so that eventually the target
length m for meeting this third requirement for W; becomes fixed, and the requirement is then met as W;
is enumerated.

To finally complete the proof, we must still show that the set A4 is in P/poly. But this is known to be
equivalent to being polynomial time Turing reducible to a polynomially sparse set. Intuitively, it seems clear
that the set A should be reducible to a suitable encoding of the single infinite branch I By through the tree
T, since tree elements on the branch or to the left of the branch are in A while elements to the right of the
branch are in A. This intuition suggests the following: for each length m, either there are no elements of
length m in A, or there is an element & = by by...by; of length m that lies on I By, or all elements of length m
are in A. (Here byby...b,, is the binary representation of z. We will use 2™ as the standard notation when
by is 1 with trailing bits all zero.) For each m, define the set A/, by

Al = {< 2™,0 >} if A contains no elements of length m,
Al ={< 2™, m+ 1>} if A contains all elements of length m, and
Al ={<2™,i> | b; = 1} otherwise.

Now define A’ = Uy Al,. Clearly A’ is polynomially sparse. Furthermore A is Turing reducible to A’ in
polynomial time: given an element = of length m, two quick checks to A’ tell whether all or no elements of
length m are in A. If these two checks don’t immediately tell that z is or is not in A, then m direct questions
to A’ determine the binary representation of the <t “break point” for membership in A for elements of

length m. In this case, ¢ is in A if and only if z is <7 this break point. g

One might still ask whether the [A&G-87] conjecture that 2 — 1 for k — pcheatable sets can be not
p-close might become false if the sets A were required to be r.e., but even here the conjecture can be shown to
be true: the preceding construction can be modified to make the set A r.e. and the set A recursively immune,
while still keeping the set A polynomially immune. Obviously, with our definitions, we cannot keep A from
being recursively-close, but we can use the same construction to keep A from being polynomially-close. In
fact, given any deterministic time class Dtime(T(m)) we can construct A so that it is not “close” to any
set in Dtime(T(m)). Giving up the full immunity of 4 will similarly allow us to make A decidable in time

roughly exponential in time T(m), while keeping it 2¥ — 1 for k — pcheatable and not T(m)-close.

Our next theorem gives very strong examples of highly cheatable sets that are bi-immune and are not

p-close:

Theorem 2. Let Dtime(T(m)) be any deterministic time class. There is a 2-pcheatable set A that is
bi-immune with respect to Dtime(T(m)). That is, neither A nor A has an infinite Dtime(T(m)) decidable
subset.3 Furtl-lermore, the set A can be taken so that it is not p-close. In fact, A can be kept from being

close to any set in Dtime(T(m)). Finally, A € P/poly.
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Proof. We first show how to construct a 2-pcheatable set that is bi-immune with respect to Dtime(T(m)).
We then explain how to modify the construction to keep the set A from being close to any member of
Dtime(T(m)).

Let {M;}ien be a canonical enumeration of total programs that contains all programs that run in
Dtime(T(m)) and let L(M;) = {z : Mi(z) = 1}. In addition, let f(n) be a monotonically increasing
function such that

i) f(n) is polynomially honest, that is, for all n the complexity of computing f(n) is polynomially related

to the length of f(n),

ii) f(n) bounds the surnmation of the runtimes of all programs M;, i < n, on all inputs of lengths less than

or equal to f(n — 1), plus a little additional time to cover the overhead of the simulation.

We will divide the strings in {0, 1}* into intervals I, = (1/(*=1),1/(")] using the lexicographic ordering
of the strings. At stage n in the construction all strings in I, will be placed into either A or A. The stages
of the construction will perform a diagonalization to insure that if L(M;) is infinite, then it is not a subset

of A or of 4.
Stage 0: Assume that Iy = {0,1}, let Iy C A and place My on the active lists for A and for A.

Stage n:

1) Place M, onto the active lists for A and for A.

2) Run all programs on the active lists on all inputs in the interval I,. Let ng be the smallest index of
an active program such that M, (z) = 1 for some z € I, if such a program exits. If M,, is on the
active list for A, then place I, into A, ensuring that L(M,,) € A, and remove M,, from A’s active
list. Otherwise, place I, into A, ensuring that L(My,,) € A, and remove M, from A’s active list. If no

program M,, exists, place I, into A.

Bi-immunity: By induction, if L(My,) is infinite, then there is a pair of stages (n1,n2) such that L(My)
contains elements in the intervals I,;, and I,,, and at these stages it is the smallest active program to contain
elements in the intervals. During the first of these stages we will have ensured that L(My) is not a subset of
A by placing I,, into A4 and during the second we will have similarly insured that L(M,) is not a subset of

A by placing I,, into A.

P-cheatability: We must give a polynomial time oracle algorithm that, when given inputs (21, ..., z), k
a variable, decides membership in A for each of the inputs and makes at most 2 queries to A.

Assume that the inputs are sorted lexicographically and that zz € I,. Consider the positions of the
inputs in the intervals used to construct A. Since f is polynomially honest, in polynomial time we can

determine the interval in which each 2; is contained.

3. As mentioned above, this result was proved in [GJY-87b] and independently in [Be-87b].
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Notice that 2 is large enough that our entire diagonalization construction up through interval I,_, can
be recomputed in time polynomial in |z¢|. (This is because |zx| > f(n—1) and f(n—1) was explicitly defined
so that all membership questions about all elements less than f(n — 2) for all members of Dtime(T(m))
could be decided in time f(n — 1).) Since the intervals are each entirely contained within A or 4, to
decide membership for all the 2;’s in the intervals Iy, ..., I,.2 we simply repeat the construction. To decide
membership in the intervals I,_; and I, requires only that we query A4 on the two elements 1/ (") and the
next smaller element, 1/(")=10. This shows k for 2 pcheatability for all k.

P/poly: Since the set A is reducible to the sparse set A [ Ua{1/(®), 1/(")=10} A is in P/poly.

Non-p-closeness: The proof that A can be kept from being close to any set in Dtime(T(m)) proceeds
much as the corresponding part of the proof of Theorem 1. We assume that each machine M,, occurs with
infinitely many indices in our list of machines for Dtime(T'(m)), and we require not only that, if infinite, the
language accepted by M, should intersect each of A and 4, but also that, for at least one interval I, if over
half the elements of I, are accepted by M, then I, C 4, while if at least half the elements of I, are not in
the language accepted by My, then I, C A.

Just as in the proof of Theorem 1, for each M,, this new requirement can clearly be blended with the
requirements for bi-immunity given above. It’s also clear that satisfying these requirements will not affect

the proof that the resulting set, A, is in P/poly. §

In contrast to what is shown for 2¥ — 1 for k and for k for 2 — pcheatability in Theorems 1 and 2,
in [A&G-87] it is conjectured that if a set is k for 1 — pcheatable, then it must be p-close. The proof of

Theorem 2 is easily modified to show that this conjecture is false:

Theorem 3. Let Dtime(T(m)) be any deterministic time class. There is a 1 — pcheatable set A that is not

close to any set in Dtime(T(m)). Furthermore, A € P/poly.

Proof. The machines M; and the languages L(M;) are defined exactly as in the proof of Theorem 2,
and the intervals I, are also constructed exactly as in that proof. For each n, the interval I, is placed into
A. For each n, the interval Is,4; is placed into 4 if at least half the elements of Ip,41 are in L(M,), while
I3p41 is placed into A if less than half the elements of Ipn4q are in L(My,). This construction clearly keeps
the set A from being close to any set in Dtime(T(m)).

Just as in the proof of Theorem 2, if z;,3,...,z are any k elements sorted in increasing order and
¢y, € I,, then membership in Iy, I1, ..., In—2 can be tested in time polynomial in |zx| simply by running the
entire construction over these intervals. Because all even indexed intervals are known to be in A, a single
query to either 1/(®) or to 1/("=1) depending on whether n is even or odd will determine membership for
both intervals I,,—; and I,. This shows, first, that A is k for 1 — pcheatable for all k and, second, that A is
in P/poly since this reduction reduces A to the sparse set A (] Un {1/(M}. g

Since, as remarked earlier, 1 — pcheatable sets can easily be shown to never be polynomially bi-immune,
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([Be-87b]), Theorem 3 seems to be a very strong result for witnessing nonpolynomial time behavior in

1 — pcheatable sets.

Finally, for completeness, we remark that the remaining conjecture in [A&G-87], namely that any
2% for k — pcheatable set that is not in P is not close to a polynomially decidable set, is easily shown to be
false by techniques related to, but simpler than, those employed in this paper: the techniques used in the
proofs of Theorems 2 and 3 can also be used to construct very sparse sets (ones that contain only isolated
elements spread very far apart) that are k for 1 — pcheatable. But, since one can keep a set from being
in P by diagonalizing directly on a very sparse set of elements that are determined a priori, it is easy to
construct a very sparse set that is not in P. By definition, all polynomially sparse sets are p-close, so the
most obvious diagonalizations which construct very sparse sets not in P always construct p-close sets that

are not in P but that are k for 1 — pcheatable.

The fact that all pcheatable sets constructed in this paper fall naturally into P/poly suggests that there
may be an interesting relationship between pcheatability and membership in P/poly. We intend to continue

work in this direction.
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