CONSTRUCTION AND DISPLAY
ALGORITHMS FOR THE ASP

by
Harry Plantinga

and

Charles R. Dyer

Computer Sciences Technical Report #735
December 1987

Construction and Display Algorithms for the Asp

Harry Plantinga - Charles Dyer

Department of Computer Sciences
University of Wisconsin - Madison

Abstract

The aspect representation or asp is a continuous, viewer-centered
representation for polyhedra introduced by Plantinga and Dyer
[1987b]. In this paper we present in detail algorithms for working
with the asp under orthographic projection. We derive equations for
aspect surfaces, show how to represent asps, and present a detailed
algorithm for their construction. We then show how to display an
image of the represented object from any viewpoint with hidden
surfaces removed by finding a cross-section of the asp for a given
viewpoint. We present separate algorithms for the convex and non-
convex cases.

This work was supported in part by the NSF under grant DCR-8520870.

1. Introduction

The aspect representation or asp is a continuous, viewer-centered
representation for polyhedral objects, introduced by Plantinga and Dyer [1987b]. It
is viewer-centered in the sense that it represents the appearance of an object, and it
is continuous in the sense that it represents appearance from all viewpoints, or as a
continuous function of viewpoint. The asp for a polyehedron is defined as the volume
of aspect space that the object fills, where aspect space is viewpoint space cross the
image plane. The asp has been use for various applications such as object
recognition and constructing the aspect graph [Plantinga and Dyer, 1986; 1987a;
1987¢; 1987d]. In this paper we present detailed algorithms for constructing the asp
for a polyhedron and for displaying a cross-section of the asp from a given viewpoint.
The algorithms for the convex case have been implemented, and the algorithms for
the non-convex case are in the process of being implemented.

We assume familiarity with the idea of the aspect representation and with the
terminology of the asp; for an introduction to the asp and a discussion of its
properties, see [Plantinga and Dyer, 1987b]. This paper is intended as a follow-on to
that one, not as a paper that stands on its own.

In this paper the asp is constructed under orthographic projection. The image
and the world are assumed to have a fixed coordinate system, with the object or
scene of interest centered on the origin in the world. The object or objects
represented are assumed to be in front of the viewer from all viewpoints.

We first consider the convex case. In Section 2 we examine the surfaces that
bound the asp for a convex polyhedron and show how to construct and represent the
faces of an asp. We show how to use that to construct the asp for the polyhedron. In
Section 3 we show how to find a cross-section of the asp for a particular viewpoint.
The cross-section is an image from that viewpoint with hidden lines removed, i.e. a
“line-drawing image” of the polyhedron.

We then consider the non-convex case. In Section 4 we show how to construct
the asp for a non-convex polyhedron. In Section 4.1 we derive the surfaces bounding
the visibility of a non-convex polyhedron and show how to represent the surfaces and
faces on the surfaces. In Section 4.2 we show how to find the intersection of asps, a
procedure necessary in constructing the asp for a non-convex polyhedron. In Section

4.3 we show how to use the intersection algorithm to construct the asp for a
polyhedron. In Section 5 we describe how to find the cross-section of the asp at a
fixed viewpoint for a non-convex polyhedron.

2. Constructing the Asp for a Convex Polyhedron

In this section we present an algorithm for constructing the asp for a convex
polyhedron. The algorithm is presented in a way that makes the generalization to
the non-convex case as simple as possible. Thus it may be possible to simplify parts
of the algorithm, but not in a way that generalizes to the non-convex case.

The asp for a convex polyhedron is the union of the cells of aspect space in
which each face of the polyhedron is visible. In this discussion we will call the faces
of the asp vertices, edges, ridges, facets, and cells, according to whether they are 0-,
1-, 2-, 3-, or 4-dimensional. The asp for a polygon in R3 is a 4-dimensional cell of
aspect space; the asp for an edge of the object is a facet, and the asp for a vertex of
the object is a ridge. The asp for a polyhedron is the union of the asps for its faces.

Since the polyhedron is convex, each of its faces is visible from all viewpoints in
front of the plane containing that face. These asp cells correspond 1-1 with the faces
of the polyhedron, and the asp cell for a face is just the image space extent of the face
for every viewpoint in front of the plane containing the face. An asp cell is bounded
by asp facets, one for each edge bounding the face. Since an edge is on two faces,
there are two facets in the asp for every edge of the polyhedron. The facets are 3-
faces, and they intersect in 2-faces or asp ridges. There is an asp ridge connecting
every pair of asp facets, so there is a ridge for each vertex of every face. Also, there is
a ridge for each vertex-face incidence; the total number of ridges is less than three
times the number of vertices by Euler's formula for a polyhedron.

The asp edges and vertices do not correspond to any single part of the
polyhedron; rather, they correspond to visual events bounding the visibility of the
face of the polyhedron. The visual event corresponding to a vertex of the asp is the
event of two vertices of the object appearing at the same point in the image. The asp
vertex corresponds to the viewpoint and image point at which the event occurs. The
visual event corresponding to an edge of the asp is a line or curve of viewpoints
where an edge and a vertex of the object appear to intersect in the image. An edge of
the asp is a curve of points in aspect space, corresponding to the viewpoints and
image points where the edge and the vertex appear to intersect. These visual events
bound the visibility of object edges, vertices, faces, and so on. Therefore they bound
the regions of aspect space occupied by asp facets, ridges, etc.

2.1. Finding the Faces Bounding a Cell in an Asp

The asp for a face of a convex polyhedron is a cell of aspect space. It is bounded
by facets and ridges corresponding to the edges and vertices of the face. The ridges
are bounded by the visual events bounding the visibility of the face, i.e. the asp
vertices and asp edges corresponding to vertex-vertex and vertex-edge pairs of the
face. Figure 1 depicts the visual events in the plane containing a face of a
polyhedron. The pentagon in Figure 1 should be interpreted as a face of a
polyhedron, and the visual events are in the plane containing that face.

visual events corresponding to:

asp edge —m

asp vertex \

haa
"y,
""""""
g,
ey,

Figure 1. Visual events corresponding to asp vertices and edges for the face of a
convex polyhedron. The dotted lines represent viewing directions of visual events,
and the vertices and edge on the circle represent corresponding asp faces.

Given a ridge in the asp that corresponds to a vertex of a face, the asp vertices
and edges bounding that ridge correspond to the visual events bounding the visibility
of that vertex on that face. The face disappears from view whenever the viewpoint
crosses from above the plane of the face to below the plane. Thus the asp edges and
vertices bounding the ridge are given by the visual events of the sort in Figure 1 for
every other edge and vertex of the face. The vertex is visible from other viewpoints
below the plane containing the face as well, but we are constructing the asp for a
face, and the vertex as a part of the face is only visible from viewpoints above the
plane of the face.

However, since the object is convex and the face is visible from all viewpoints
above the plane of the face (or all viewing directions pointing toward the front of the
face), the asp edges and vertices that form the boundary for a ridge will always be a
chain of edges and vertices forming a great circle in a plane parallel to the face. That
chain represents the fact that the face is visible from all viewpoints above the plane
containing it. Thus, it is simpler to set the boundary of visibility of a ridge to the

great circle directly, without computing the individual edges that comprise the great
circle. The great circle can be represented as a single asp edge without any bounding
vertices, but it reduces the number of special cases in the algorithms below to
represent the great circle as a pair of asp edges between two arbitrary points on the
circle.

2.2. Representing Asp Vertices

In this paper we use orthographic projection and take viewpoint space to be the
2-D spherical space of viewing directions as shown in Figure 2. (In Figure 2, a
rotation with positive 0 and negative ¢ is shown.) Aspect space has an image plane
for each point of viewpoint space. Note that when ¢ = £90° the orientation of the
image plane is ambiguous—(0,4) = (0°,90°) and (8,¢) = (30°,90°) represent the same
viewpoint, but the implied orientation of the image plane is different. We define the
orientation of the image plane when ¢ = £90° to be the orientation that would be
reached as ¢ approaches 90° and 6 = 0°.

y

Figure 2. Viewpoint space.

We first show how to find the vertex of aspect space corresponding to the visual
event in which two vertices of the object appear at the same point in an image. For a
point (x0,y0,20) of object space, the corresponding 2-surface of aspect space is given
by

cos® 0 sin® 1 0 0 Project

. onto
[x0,50,20] o 1 0 0 cos¢ —sin ¢ 7=0 -
—-sin® 0 cos O 0 sind cosd plane

[xq cos 8 — zg sin 0, x(sin 0 sin ¢ + y(cos ¢ + zg cos 0 sin ¢, 0]
Therefore the equations of the asp for a point are

u=x(gcos0-—zpsin 0 (D
v = x(sin 0 sin ¢ + yg cos ¢ + zg cos 0 sin ¢ 2)

Two vertices of a polyhedron can appear at the same point in an image from two
viewing directions that are antipodal or opposite. Only one of those points can be
visible from a particular viewing direction since it is “in front of” the other point. We
can calculate the viewing direction (and, using Eqgs. (1) and (2) above, the point of
aspect space) from which this happens in the following way:

Take two copies of Eqs. (1) and (2), one pair each for the points (x1,y1,z1) and
(x92,y2,22). Since the edges appear to intersect, they appear at a single point in the
image, (u,v). Thus we can set the equations equal. The results are

X1 €08 0 —2z1 sin 6 =%x9 cos 6 —z9 sin O 3)

X1 sin 0 sin ¢ + y1 cos ¢ + z1 cos 0 sin ¢ (4)
=xXg2 8in 0 sin ¢ + y2 cos ¢ + zg cos O sin ¢

Solving (3) for 6 we get
tan @ = 2% (5)
72 —71
or equivalently
. X2—X1
sin @ = (6)
V(xg—x1)2 + (29—21)2
Z9~7Z]
cos 0 = (7N
V(xo-x1)2 + (z9-21)2
Solving Eq. (4) for ¢ and substituting in (6) and (7) yields
~(yo— 0
tan ¢ = (y2—y1) cos ®)

22-71

Therefore Egs. (5) and (8) give one of the viewing directions in which the object
points appear at the same image point, and the other is the antipodal or
diametrically opposite point. For two points P and Pg on a polyhedron, the viewing
direction where P2 appears to be in front of Py is the one such that the dot product of
a unit vector in the direction (8,¢) and the vector from P9 to P; is greater than zero.
From the other viewing direction, P appears to be in front of Po.

The point of the image plane where this occurs is found by solving Eqgs. (5) and
(8) for (0,0) and plugging that into Eqgs. (1) and (2). For a convex polyhedron, vertices
can thus be represented by their four coordinates in aspect space.

2.3. Representing Asp Edges

We next consider the asp edge corresponding to the visual event generated by a
vertex (x9,y2,z2) and an object edge between vertices (x1,y1,z1) and
(x1+a1,y1+b1,z1+c1). We can construct the asp edge for a vertex-edge visual event in
a similar manner to that for an asp vertex. Instead of two copies of Egs. (1) and (2),
however, we have Eqgs. (1) and (2) for the vertex and Eqgs. (9) and (10) (below) for the
edge :

u=(x1+saj)cos0—(z1 +scy)sin O 9

v=(x1 +saj)sinOsin ¢ + 10)
(y1 +sby)cos ¢ +(z1 +scy)cos 0sin ¢

where 0 <s<1. Setting (1) = (9) gives

X208 0—2z28in 0 =(x1 +sa1)cos0—(z1+sc1)sin O an
Solving this for 0 yields
_Xg—X]—sayl
tan 0 =997 5oL (12)
Similarly, we get the following equation for ¢:
—(y2-y1-sb 0
tan 0 = (y2 —y1 —sbi)cos (13)

zZ9 — 2] —S C1

Comparing Eqgs. (12) and (13) with (5) and (8) make it is apparent that the equations
for an asp edge can be obtained by substituting

(x9 — x1 — 8 a1) for x1,
(y2 —y1—sby)foryy, and
(zg —2z1 —s cy) for z1

in the equations for an asp vertex.

Eqgs. (12) and (13) define the viewpoints associated with the asp edge as a
function of the parameter s, for 0<s<1. The corresponding points of the image plane
are given by Eqgs. (9) and (10). Notice that the constants used in the four equations
are the coordinates of the three object vertices that are involved in the visual event—
the vertex and the two endpoints of the object edge. Therefore the asp edge is
represented by the equation of the curve that it lies on (the coordinates of the three
points that generated the visual event, or pointers to the object vertex and edge) and
pointers to the asp vertices bounding the edge. Note that the bounding asp vertices
are also given implicitly by Egs. (9), (10), (12), and (13) above when s=0 and s=1.

3. Constructing an Image from the Asp

Given a viewpoint (8,¢), the (8,0)—cross-section of the asp is the view of the
polyhedron from that viewpoint. Thus drawing the (8,0)—cross-section of the asp is
equivalent to constructing an image of the polyhedron from that viewpoint with
hidden lines removed. In this section we will show how to find that cross-section of
the asp.

Each cell of the asp corresponds to a face of the polyhedron, and the appearance
of the face of the polyhedron from a viewpoint (0,6) is the cross-section of the cell
from (0,0). The cross-section of the cell for a fixed viewpoint is a polygon since faces
of polyhedra always appear as polygons in an image. We find this polygon by finding
its edges, which are represented as facets of the asp.

The facets of the asp are 3-faces, and they are bounded by 2-faces (ridges) that
correspond to the endpoints of the edges generating the facets. If the edge is visible
it has two endpoints, so exactly two of the ridges bounding the facet will be visible
and will project to the endpoints of the edge. Thus we can tell whether the facet is
visible by determining whether it has two visible ridges. Ifit does, then the
intersection points of those ridges and the (0,4) plane are the endpoints of the visible
line segment.

A ridge of the asp lies on a 2-surface of aspect space. If the point of that surface
at the viewpoint (0,) is in the ridge (i.e. in the region of the surface bounded by the
edges that bound the ridge), then the corresponding vertex of the polyhedron is

visible; otherwise it is not visible. Thus we can determine whether the point should
be displayed by determining whether the point of the surface at that viewpoint is in
the ridge on that surface. Equivalently, we can project the bounding edges and
ridges down to viewpoint space and determine whether the viewpoint is in the
spherical polygonal region that they bound. We present in detail below the
algorithm for determining whether the point is in the spherical polygon (and
therefore whether the object vertex is visible).

3.1. Determining Whether an Asp Ridge is Visible

In this section we show in detail how to determine whether an asp ridge is
visible. A ridge is bounded by a cycle of asp edges and vertices; the edges are given
by Egs. (9), (10), (12), and (13) above. Notice that Eqs. (12) and (13) do not refer to
the image plane. Thus we can ignore Egs. (9) and (10) for the edges and consider
Eqgs. (12) and (13) by themselves as the projections of the edges on viewpoint space.
Determining whether a ridge is visible then amounts to determining whether a point
is in a region bounded by edges of the form given by Egs. (12) and (13). Since the
curves bounding the region are arcs of great circles, the region is a spherical polygon.

The standard algorithm for determining whether a point is in a polygon is to
draw a ray from the point infinitely far in some direction and count the number of
times it intersects the boundary of the polygon. Ifit intersects an odd number of
times, the point is in the polygon. This algorithm must be modified for the case of a
spherical polygon because a ray on a sphere does not go infinitely far in some
direction: it goes around the sphere and back to the point. However, we do know
that if a ridge is visible from some viewpoint, then a great circle from that viewpoint
around viewpoint space and back to the same viewpoint will first cross the boundary
going out of the spherical polygon if it crosses the boundary at all. Conversely, if the
viewpoint is not in the spherical polygon, then the great circle will first intersect the
boundary going in to the spherical polygon if it crosses the boundary at all.

This suggests an algorithm for determining whether a point is in a spherical
polygon: pick a great circle containing the viewpoint that intersects the boundary of
the spherical polygon, find the intersection with the boundary that is closest to the
viewpoint, and determine whether that intersection goes into or out of the polygon.

A great circle is the intersection of a sphere with a plane through the center of
the sphere, so we can find a great circle that intersects the boundary by taking the
intersection of the sphere with the plane defined by the center of the sphere and two
other points: the viewpoint in question and a point on one of the edges of the

spherical polygon. This plane intersects viewpoint space in the required great circle.
Representing viewpoint space as a unit sphere centered on the origin, the points
defining the plane are then (0,0,0), (81,01) (the test viewpoint), and (62,42) given by
Eqgs. (12) and (13) for one of the edges of the polygon, with some s chosen so that

0 < s <1. We can use a spherical-to-Cartesian coordinate transformation to get the
Cartesian coordinates for the points; the Cartesian coordinates for the viewpoint (6,¢)
on the unit sphere is (sin 0 cos ¢, —sin ¢, cos 6 cos ¢). A unit normal to the plane is
then given by the cross product of vectors to the two points on the sphere, i.e.

nj = (sin 61 cos ¢1, —sin ¢1, cos 81 cos $1) (14)
X (sin 02 cos ¢2, —sin ¢, cos 82 cos ¢7)

We want to find any intersections of this great circle with each asp edge. The
asp edges are generated by an edge and vertex of the polyhedron; let the endpoints of
the edge and the vertex be (x1, y1, 21), (X2, ¥2, z2), and (x3, y3, z3), respectively.
Those three points determine another plane, and a normal to the plane is given by

ng = (x1—Xx3, y1-Y3, 21-23) X (x2-x3, y2-¥3, 22-23) 15)

The planes defined by Egs. (14) and (15) intersect in a line, and the line
intersects the sphere of viewpoints in two points. These two points are the two
possible intersection points of the asp edge and the great circle. The directions of the
points are given by

nj X ng 16)
and

ng x nj am)

We can convert these vectors in Cartesian coordinates to viewpoints in the form (0,0)
by a polar-to-spherical transformation where the radius r =1. For a vector v, the
transformation is:

0 = tan1 (vx/ vy) (18)
¢ = sin’l (- vy) 19)

Thus we can calculate the two possible intersection points of an edge with the
great circle. In order to determine whether the edge does intersect the great circle, it
remains to solve (12) and (13) for s given the values for 6 and ¢ calculated from Eqs.
(18) and (19). It is sufficient to use the value of 0 from (18) and solve (12) for s,
yielding

s {72z vk —(x2 - x1) Vg

Cl vx—ajl vz (20)

If 0 <s<1, then the edge and the great circle intersect.

As we find all of the intersection points of edges with the great circle, we can
calculate their distances from the test viewpoint and keep track of the closest
intersection point. We can use the Cartesian distance or the angle between the two
points on the unit sphere.

Once we have found the closest intersection point, we can determine whether
the viewpoint is in the spherical polygon by computing the sense of the intersection.
That is, we compute whether the great circle is going out of the polygon or in to the
polygon. To do so, we assume that the edges of the spherical polygon are listed in a
particular order, say clockwise (looking from the center of the sphere). Then the
triple cross product of the vectors from the test viewpoint to the intersection point,
from the intersection point clockwise along the boundary of the spherical polygon,
and from the center of the sphere to the intersection point, determines whether the
point is inside the spherical polygon: if the triple cross product is negative then the
great circle is going out of the polygon so the test viewpoint must have been inside
the polygon. If the triple cross product is positive then the viewpoint must have been
outside the polygon. If the test viewpoint is v = (v, vy, vz), the intersection point is
i = (ix, iy, iz), and the edge of the spherical polygon that the intersection point is on
has direction d = (dx, dy, dz), then the triple cross product is given by

iX""VX iy—"Vy iz—VZ
G-v)xdei= dx dy dz (21)
i iy i

At this point we have determined whether the test viewpoint is inside the
spherical polygon. For each ridge of the asp, we make that test. Then, for each facet,
if both of its bounding ridges are visible the whole facet is visible, so we display the
corresponding edge. The result of this process is the display of the complete set of
visible edges of the polyhedron.

4. Constructing the Asp for Non-convex Polyhedra

The asp for a non-convex polyhedron is the union of the cells of aspect space in
which each face of the polyhedron is visible. However, because faces can be partially
occluded by other faces, constructing the asp for a non-convex polyhedron is more
complicated than for a convex polyhedron. The asp for a face f of a polyhedron as

10

obstructed by the other faces is the asp for f minus (in the sense of set subtraction)
the asps for the faces or parts of faces in front of f [Plantinga and Dyer, 1987].

The subtraction of one asp from another is equivalent to the intersection of the
asp with the complement of the other, i.e. A — B = A n—B. Taking the intersection of
two asps will introduce new kinds of faces to the asp. For example, in the convex
case a ridge of the asp corresponds to a vertex of a face the polyhedron. Another kind
of ridge that occurs in the non-convex case corresponds to the apparent intersection
of two edges of the polyhedron. That is, two edges that in fact do not intersect, may
appear to intersect from some viewpoints if one is in front of the other (i.e., a “T-
junction”). This visual event is visible from a 2-D range of viewpoints and has 0-D
extent in image space, so it is a ridge of the asp. It arises from taking the
intersection of two asp facets.

Thus constructing the asp in the non-convex case will require calculating and
representing other kinds of asp ridges, edges, and vertices. These new faces arise
when finding the intersection of asp surfaces. Facets lie on 3-surfaces, ridges on 2-
surfaces, and edges on 1-surfaces. In the next section we derive standard forms for
these surfaces and show how to find the intersection of pairs of asp surfaces. In
Section 4.2 we show how to find intersections of asps. In Section 4.3 we describe in
more detail how to construct the asp in the non-convex case.

4.1. Aspect Surfaces

The aspect representation for a face of a convex polyhedron is a cell of aspect
space—a 4-dimensional volume bounded by 3-surfaces. The points of aspect space
correspond to points of the image plane occupied by the polygon when viewed from
the given viewpoint. The cell is bounded by 3-surfaces, which correspond to the
edges bounding the polygon. The 3-surfaces are bounded by 2-surfaces,
corresponding to the vertices bounding the polygon. The 2-surfaces are the
intersection of two of the three-surfaces. The asp edges and vertices correspond to
visual events bounding the visibility of the polygon.

The aspect representation for a polygon that is a face of a non-convex
polyhedron is also a cell of aspect space, bounded by 3-surfaces or facets. The facets
again correspond to the edges bounding the polygon. Ridges bound the visibility of
facets, and in the non-convex case there are ridges corresponding to the vertices
bounding the edges of the polygon. However, there is another kind of ridge,
corresponding to the case where the visibility of a polygon edge is bounded by
another, occluding edge. In that case there is a ridge corresponding the apparent

11

intersection of the two edges. This ridge results from the subtraction of the asp for
the occluding polygon from the asp for the given polygon. The surface on which the
ridge lies results from the intersection of the surfaces on which the two facets lie. It
is the general sort of 2-surface. We derive equations for the general 2-surface in
Section 4.1.2.

The visual events that occur in the convex case (the horizon effect) also bound
the visibility of a ridge in the non-convex case. However, another kind of visual
event that bounds the visibility of a ridge in the non-convex case is the apparent
intersection of three unconnected object edges in a single image point. We derive the
general equations for such a boundary in Section 4.1.3.

Asp vertices correspond to visual events that are visible from a single viewpoint
and that occupy a single point in the image plane. In the convex case, the only sort of
such an event is the apparent intersection of two vertices from the same face of a
polyhedron. In the non-convex case, the most general visual event is the apparent
intersection of four object edges in a single point from some viewpoint. We derive the
equations for such a point in Section 4.1.4.

In order to find the intersection of cells of aspect space, we must be able to find
the intersection of pairs of asp surfaces of various kinds. Note that all of the asp
surfaces—3-surfaces, 2-surfaces, 1-surfaces, and vertices—result from the
intersection of a set of asp 3-surfaces—one, two, three, and four, respectively. Thus,
finding the intersection of an asp 3-surface and an asp 2-surface is equivalent to
finding the intersection of the three “parent” asp 3-surfaces involved. Also, since two
asp 1-surfaces that lie on the same 2-surface have two common 3-surface “parents,”
finding the intersection of two 1-surfaces is equivalent to finding the intersection of
the four unique 3-surfaces involved in the problem. Thus finding the intersection of
two asp surfaces is equivalent to finding the intersection of the unique “parents” of
those surfaces.

In order to determine whether one asp edge is going “into” or “out of” another
asp edge (assuming directed edges), we will want to be able to compute a tangent to
an asp edge at a point and a normal to that tangent. We show how to do this in
Section 4.1.5.

12

4.1.1. 3-Surfaces of Aspect Space

A 3-surface of aspect space corresponds to the visibility of a line in object space.
The equations for such a surface for a line passing through the points p1 = (x1,y1,21)
and p1 + a3 = (x1+a1,y1+b1,z1+c1) were derived earlier as:

u=(x1 +say)cos0—(z1 +scy)sin 0 (22)

v=(x] +sa1)sin0sin ¢ + (23)
(y1 +sb1)cos ¢+ (z1 +sc1)cos0sin

In addition, we need another 3-surface, represented with different constants
and a different parameter, so that we may take the intersections of these surfaces to
derive the 2-surface equations. This 3-surface represents the visibility of a line
through the points pg = (x9,y9,2z2) and pg + ag = (x9+ag,y2+bg,z9+c9):

u=(x2+s2ag)cos 0—(z9 +s92c2)sin 6 (24)

v =(x2 +s2a2)sin 0 sin ¢ + (25)
(y2 + s2 bg) cos ¢ + (z2 + s2 ¢2) cos 0 sin ¢

4.1.2. 2-Surfaces of Aspect Space

2-surfaces of aspect space arise in the general case as the intersection of two 3-
surfaces. This may occur in two ways. As in the convex case, a 2-surface may
correspond to a vertex of the object. In that case the 2-surface on which it lies is the
intersection of the 3-surfaces corresponding to the object edges that meet at that
vertex. The other way that an asp 2-surface can arise is as the intersection of two
general 3-surfaces. In that case the resulting 2-surface corresponds to the visual
event of the apparent intersection of two object edges, i.e. the intersection of two
edges in an image, although the edges do not intersect in space. We derive the
equations for the latter, more general kind of 2-surface. If the two object edges
intersect in a point, the equations derived will simplify to the equations for the
simpler case.

Suppose we have two 3-surfaces given by Egs. (22)-(23) and (24)-(25) above.
The intersection of the two 3-surfaces is a 2-surface, which can be found by setting
Egs. (22)=(24) and (23)=(25). Solving Egs. (22)-(25) for 0 and ¢ yields

_(xa+spag)—(x1 +sa1)
" (z2+s2c¢2)—(z1 +sc1)

tan 0 (26)

13

t _—I(y2+s2 b2)—(y1+sb1)lcos 0
m o= (zg + 52 c2) —(z1 +sc1)

(27)

Since this is a 2-surface it depends only on two parameters. In Egs. (26) and
(27) (together with Eqgs. (22)-(25)) the surface is given as a function of s and s2. More
often, however, we will want u and v as a function of 8 and ¢. Thus, we will solve
(26) and (27) for 6 and ¢.

We can simplify the equations by eliminating sinusoidal functions through a
change of variables. Instead of 6 and ¢, we can express the equations in terms of a
viewpoint v = (vg,Vy,Vz) = (sin 0 cos ¢, —sin ¢, cos 6 cos ¢), so that the vector from v to
the origin is the viewing direction (6,). In other words, w2 substitute for (8,p) the
unit vector v in the direction (0,). Note that Ivl=1. For Eq. (26) we get

vx (x2+sgag)—(x1+say)
vy (z2+s2c2)—(z1 +sc1)

(28)

and for (27) we get

vy (y2+s2 b2)—(y1 +sb1)
vz (z2+s2c2)—(z1 +sc1)

(29)

Note that we could have arrived at these equations immediately by noting that the
viewing direction v must be parallel to a vector from one of the lines to the other at
the points where they appear to intersect, i.e. a vector from p; + s aj to p2 + s2 ag
(see Figure 3).

P1+a; patag

P1 P2

Figure 3. The viewing direction along which two lines appear to intersect

Solving (28) and (29) for s9 yields

vy (21 —29+8c1)—vy (X1 —x2+5a3)

Vx C2 — Vg a2 (30)

§2

14

_vy(z1—z2+sc)—-vz(y1—y2+sbhy)

52 Vy €2 —Vz b2 (31)
Setting (30) and (31) equal and solving for s yields
vx (y21 €2 — 721 b2) + vy (221 a2 — x91 c2) + vz (x21 ba —y21 a92)
~ vx(bica—bze1)+vy(e1 ag—cgay) + vz (a1 bg —agb1)
where xjj = xj — xj, or
A [(p2 — p1) X agl (32)

v (a1 x ag)
Eq. (32) can be substituted into Eq. (22)-(23) to find u and v.

The surface can be represented by twelve constants: aj, ag, b1, bo, ¢1, ¢9, x1, X2,
v1, Y2, 21, z2. These are related to the coordinates of the four endpoints of the two
lines involved in the visual event. Note that the surface can also be represented by a
different set of twelve constants: the six coefficients of the vy, Vy, and vz terms in the
numerator and denominator together with the other six constants of Egs. (22)-(23).

Egs. (22), (23), and (32) represent a 2-surface in aspect space that results from
the intersection of two 3-surfaces corresponding to asp facets. This kind of surface
did not arise in the convex case. Finally, notice that when the four endpoints of the
line segments all lie in the same plane, Eq. (32) simplifies so that the surface is of the
kind given by Eqgs. (12) and (13).

4.1.3. 1-Surfaces of Aspect Space

The intersection of three 3-surfaces of aspect space is a 1-surface or curve. It
corresponds to the visual event of the apparent intersection of three object edges in
an image. Three object edges can appear to intersect from a 1-dimensional curve of
viewpoints, and their apparent intersection is a single point, so the aspect
representation for this visual event is a 1-surface or curve in aspect space.

The intersection of a 3-surface and a 2-surface is also a 1-surface, but this case
is equivalent to the former case since the 2-surface is the intersection of two 3-
surfaces. Another equivalent intersection problem is the intersection of two 2-
surfaces, both of which lie on the same 3-surface, since in that case both 2-surfaces
have a 3-surface “parent” in common.

15

We could find the 1-surface by finding the intersection of three pairs of
equations of the form of Egs. (22)-(23) for three 3-surfaces. However, there is a
simpler method. Consider three edges in space, p1 to p1+ aj, p2 to p2 + ag, and p3 to
P3 + a3. Pick a point p1 + s aj on one line (see Figure 4) and find a line through that
point that intersects both of the other lines.

pi1+a; Pota
' p3+a3

-
-
-
-
-

P1 P2

Figure 4. A viewing direction along which three object edges appear to intersect in
a single point in an image

Consider the planes defined by the point p; + s aj each of the other two edges. The
viewing direction is parallel to the intersection of these two planes. A normal to the
plane defined by the points p1 + s a1, p2, and p2 + agis given by

(p1 +sa; —p2)Xag
and a normal to the plane defined by the points p1 + s a1, p3, and p3+ ag is given by
(p1 +s a1 —p3)x a3

Therefore a vector parallel to the viewing direction in question (though not a
unit vector) is given by

v =((p1 +s a1 —p2)xag)x((p1 +s a1 —p3)xag) (33)
Thus

v’ =<s bcig + bz19, s cai2 + ¢x12, s abig + ay12> X
<s beyg + bz13, s caig + ¢x13, s ab13 + ay13>

where beyg = by ¢ —ba ¢1, bz1g = bg 212 — ¢2 y19, and so on. Therefore, if v/ =
<vx’,vy’,vz"> then we have

16

vy’ = s2 (cay2 ab13 — aby 2 ca; 3)
+ s (caj2 ay13—aby2 cx13 + cx12 ab13 — ay12 ca13)
+ (cx12 ay13 — ay12 cx13)

vy’ = s2 (aby2 bey3 —bey 2 aby 3)
+ s (ab12 bz13 —be12 ay13 + ay12 bz13 — bz12 ay13)
+ (ay12 bz13 —bz12 ay13)

vz =52 (beyg cayg —car2 beyz)
+ s (bc1g cx13 — caj2 bz13 + bz19 ca1g — cx12 bz13)
+ (bz12 cx13 — cx12 bz13)

Since tan 6 = vy/v, = vy'/v;’, we can substitute

e1 =caj2 abig —abig caig
ez = caj2 ay13—aby2 cx13 + cx12 ab13 — ay12 ca13
€3 = Cx12 ay13 — ay12 CX13
e4 = bcyg ca12 —caj2 beyg
e5 = bcyo cx13 —caia bzig + bz1o cayg —cx12 bzig
eg = bz12 cx13 —cx12 bz13

into Eqgs. (34) and (36), yielding

e1 s2 +egs +e3

tan 0 =
e4 s2+e5s+eg

We can solve (37) for s in terms of 9, yielding
s2(egtan 0 —eq)+s(eztan B —eg) +egtan O —eg =0

or

_ (e5 tan 0-e2) + V/(e5 tan 6—e2)2 — 4(eq tan 6-e1 Xeg tan 6-e3)
’ 2(eqtan 0 —e1)

Then, ¢ in terms of 6 and s is

—Vy 6
tan ¢ - V}V: CiOS
X

(34)

(35)

(36)

(87)

(38)

(39)

(40)

Thus, given some 8 we get s from Eq. (39), vx" and vy’ from Egs. (34) and (35),
and ¢ from Eq. (40). We can then get u and v from Eqs. (22) and (23). Therefore,

17

Eqgs. (22), (23), (34), (35), (39), and (40) represent an aspect 1-surface by giving u, v,
and ¢ in terms of a quadratic function of 0.

4.1.4. Vertex of Aspect Space

A vertex of aspect space results from the intersection of four asp 3-surfaces, two
general 2-surfaces, two 1-surfaces on a 2-surface, or any other combination of
surfaces with four unique 3-surface “parents.” The visual event that gives rise to an
asp vertex is the apparent intersection of four object edges in a single point. This
occurs from only one viewpoint, so the corresponding asp surface is a vertex.

We could find the vertex of aspect space corresponding to the apparent
intersection of four object edges by finding the intersection of four pairs of equations
of the form of Egs. (22)-(23) for four 3-surfaces. However, there is a simpler method.
Consider four lines in space, through p1 & p1+ a1, p2 & p2 + ag, p3 & p3 + a3, and
P4 & p4 + a4. Pick a point p1 + s a3 on one line (see Figure 5).

pr+a,; Potan pitay
P3+ag

P3 P4
P1 P2

Figure 5. A viewing direction along which four object edges appear to intersect in
a single point in an image

A viewing direction through the point p3 + s a3 from which the four edges
appear to intersect in a point must be parallel to the three planes defined by p1 + s
aj and each of the other lines. Therefore if there is such a line of sight passing
through p1 + s a1, the triple cross product of the normals to the three planes must be
zero. The normals to the planes are given by the cross product of two vectors in each
plane:

(p1 + s p1 —Pp2) x a2
(p1 +s p1—p3)xas
(pL+sp1—-pa)Xay

18

If the three planes intersect in a single line, then the normals have a triple cross
product of zero, which in determinant notation is

s becjo+bzio s cajg+exig s abjg+ayie
s becyg+bz13 scajs+exig s abjgt+ayisg
s bey4+bz14 s cajgtexiq s abjgtayig

=0 (41)

In order to find the point of aspect space we must write out (41) in terms of the
powers of s. We can then solve for s using the cubic equation.

For the s3 term only the beij, cajj, and abjj terms of (41) are involved, so letting
@ be the coefficient of the $3 term we get

beig cajg abig
bec1g caig abig
bci4 cai4 abig

a = (42)

For the s2 term we must have one row of terms not involving s in each coefficient
matrix, so we get

be1o caje abio
bc1g cajg abys
bz14 cx14 ay14

beio cajg abio

bz13 cx13 ayi3
be14 caj4 abyg

bz12 cx12 ayi2
bci1g caig abig
bci4 cajq abyg

b= + +

(43)

For the s term we have two rows of terms not involving s and one row involving s in
each coefficient matrix:

bz12 cx12 ayig
bz13 cx13 ayig
bci4 caiq abig

bz12 cx12 ayig
bc1g cajg abjs

bz14 cx14 ayi4

beio cayo abig
bz13 cx13 ay13
bz14 cx14 ayi4

c= + + (44)

Finally, the term that is constant in s involves only the bz, cxjj, and ayjj constants:

bzi2 cx12 ayi2
d = |bz13 cx13 ay13 (45)
bz14 cx14 ayi14
Then we can solve the cubic equation
as3+bs2+cs+d=0 (46)

for s. Once we have found s, we can find vy, vy/, and v’ using Eqgs. (34)-(36), and we
can calculate 6 and ¢ from them. We can then find u and v using Eqgs. (22) and (23).

19

4.1.5. Finding a Tangent to an Asp Edge

Given an asp edge in the form of Egs. (22), (23), (39), and (40), we can find the
slope at some point (0,0) on the edge by finding d¢/d0. First we must find ds/d@ from
Eq.(39). Ifweleta=eq4tan0-e1,b=e5tan 0 - e2, and ¢ = eg tan 0 - eg, this yields

ds (e4b-e5a) Vb24acta(esb-2ega-2eqc)t(-e4)b2-4ac)
do 4a2\b2-4accos20

(47)

Then we can find d¢/d6 by taking the derivative of the right-hand side of Eq. (40),
yielding

[vy (2 e1 s +e2)—vx (2eqs+e5)lcos § %+ vy vy sin ©

m =—:= (48)
de vx'2 +vy2 cos? 6

Given some point (6,4) on a curve, we can plug (08,¢) into Egs. (47) and (48) to get the
slope of the curve. A tangent vector is then <1,m>.

An alternative, approximate method of finding a tangent to a curve at a point is
computationally more efficient. If the point in question is at the value sg of the
parameter s along the curve, the method is to find the point on the curve at the value
so + &, where € is small. Then the difference between the points is a vector in the
direction of the tangent.

4.2. Finding the Intersection of Asps

In order to construct the asp for a face as occluded by other faces in front of it,
we must subtract the asp for the other faces from the asp for the given face. This
subtraction can be accomplished as a complement and an intersection operation on
the asp cells. We will show how to find the intersection of cells of aspect space, i.e.
asps for polygons. The asp for a polyhedron is the union of the asps for its faces.

4.2.1. Finding the Intersection of Two Asp Cells

We use a brute-force algorithm to find the intersection of two asp cells. We find
the intersection of every pair of facets of the asps, and each time we find an
intersection, we “glue together” the two asp facets at the intersection ridges. We
then “cut away” the outer faces incident upon the ridges at which more than two
facets meet. This process is illustrated for polygons in R? in Figures 6-8. In Figure 6

20

we show overlapping polygons. The intersection points have been added in Figure 7,
and the outer faces “cut away” in Figure 8.

Figure 6. Overlapping polygons

Fig. 7. Intexrsection points added to overlapping polygons.

Fig. 8. The intersection results when the outer faces are cut away.

In the case of polygons in the plane, finding the intersection point of a pair of
edges involves finding the intersection point of the lines containing the edges and
determining whether that point lies in both segments. If so, we then split the

21

segments at the point and “cut away” the new half-segments that are in one of the
polygons but not the other.

We illustrate the process for higher dimension by presenting a naive algorithm

for the intersection of two k-polytopes in RK. We state the algorithm recursively with
four procedures:

22

d-polytope intersection in R®:

Find the intersection of all pairs of facets using the d-1-polytope in R4
procedure below.

Cut away outer facets at ridges with four incident facets rather than the
normal two.

d-1-polytope intersection in RS:
Find the intersection of the hyperplanes (i.e. d-1 spaces) containing the
polytopes.
If the hyperplanes are the same then solve the intersection problem in the
hyperplane using the d-polytope in R4 procedure above recursively.

If the intersection is empty, return the empty set.

If the intersection is a d—2-plane, find the intersection of the d—1-polytopes
with the d—2-plane (using the d-polytope d-1-plane intersection
procedure below) and solve the d—2-polytope in R4-2 intersection
problem using the d-polytope in R4 procedure above.

Split the two d-1-polytopes and insert the intersections into the d—2-
polytopes that resulted from the intersection into the data structures
for the d—1-polytopes.

d-polytope, hyperplane intersection in RO:

Find the intersection of each facet with the hyperplane using the d-1-
polytope, hyperplane intersection in R4 procedure.

The intersection will consist of d-2-polytopes in the hyperplane. Join
them at common boundaries to form d-1-polytopes in the
hyperplane.

Return the list of d-1-polytopes.

d-1-polytope, hyperplane intersection in R9:

Find the intersection of the hyperplane h containing the d—1-polytope p
and the given hyperplane.

If the hyperplanes are the same, return the d—1-polytope.
If the intersection is empty, return the empty set.

If the intersection is a d—2-plane, return the intersection of p with the d—
2-plane in h using the d-polytope, hyperplane in Rd procedure.

4.2.2. The Algorithm

For finding the intersection of two asp cells, we will unroll the recursion and
give procedures for the problems of each dimension, starting with the conceptually
easier lower-dimensional problems.

Intersection of an edge and a curve on a 2-surface

Suppose we have an edge and a 1-surface or curve of the form of Egs. (37)-(40)
on a 2-surface of the form of Egs. (22), (23), and (32). In order to find the points of
intersection, we first find the intersection of the given curve and the curve on which
the edge lies. The points of intersection are given by Eqgs. (22), (23), and (46). There
will be up to three intersection points of the two curves; it remains to determine
whether the intersection points lie on the edge. We determine this by plugging the 0
coordinate of the points into Eq. (39) yielding s, and determining whether 0<s<1. If
so, the point is on the edge. The procedure returns a list of zero or more points of
intersection.

Intersection of two edges on a 2-surface

In order to find the intersection of two edges on a 2-surface, we find the
intersection of one of the edges and the curve containing the other edge using the
procedure given above. We test any returned intersection points to see if they are on
the other edge. We determine this by plugging the 6 coordinate of the points into Eq.
(39) yielding s, and determining whether 0<s<1. If so, the point is on the edge.

23

We then insert the intersection points into the data structures for the two
edges, splitting each edge. We “cut away” the outer edges, so that only the two inner
edges remain connected to each intersection point. Of the four edges potentially
incident at each intersection point, we pick one of the lower ones, i.e. the predecessor
of the other one on the same curve along the boundary of a face in the clockwise
ordering. We delete it if it is to the left (or outside) of the other curve and retain it if
it is to the right, in which case we delete the other edge along the same curve. We
repeat the process for the other two edges.

We can determine whether an edge is to the right of a curve at a vertex in the
following way: we compute the slope mj of the edge at the vertex. Then <-mj,1>is
an outward normal to the edge at the intersection point in the (8,p)-plane. We also
compute mg, a tangent to the curve at the intersection point, in clockwise direction.
If <-m1,1> - <1,m9> > 0, i.e. mg > mj then the edge is to the right of (i.e. inside) the
curve. The procedure inserts the intersection points into the data structure, cuts
away the outer edges, and returns a list of intersection points.

Intersection of a ridge and a curve on a 2-surface

Suppose we have a curve ¢ and a ridge on the same 2-surface. In order to find
the intersection of ¢ and the ridge, we find the intersection of each edge bounding the
ridge with ¢ using the curve-edge procedure above. For each intersection point we
calculate the value of the parameter s of the point on ¢. The result is a sequence of
points on ¢. We sort the points according to their position along the curve, and
return a list of edges on ¢ bounded by the intersection points. The first and second
points are the boundaries of the first edge, the third and fourth points the boundaries
of the next edge, and so on. We keep pointers to the edges that generated the
vertices.

Intersection of two ridges on a 2-surface

Given two ridges r1 and r2 on a 2-surface, we find their intersection by first
finding the intersection of every pair of edges, one from each ridge, using the
procedure above. Since that procedure cuts away outer edges, the result is the
intersection. However, the data structure will have many unconnected edges, etc. in
it, so it must be “cleaned” by copying the surviving parts to a new data structure.
The result is a list of ridges of intersection of the two ridges.

24

Intersection of a ridge and a 2-surface on a 3-surface

In order to find the intersection of a ridge and a 2-surface on a 3-surface, we
first find the intersection of the 2-surface containing the ridge and the given 2-
surface. If the 2-surfaces are the same, the problem is an intersection problem of two
ridges on a 2-surface. We solve it using the procedure given above. If the 2-surfaces
intersect in a 1-surface or curve, we find the intersection of the ridge and the curve
on the 2-surface using the prodecure given above. This procedure returns a list of
edges of intersection of the ridge and 2-surface.

Intersection of two ridges on a 3-surface

Given two ridges r1 and ro on a 3-surface, we first find the intersection of the 2-
surfaces containing the ridges. If they are the same, the problem is one of finding
the intersection of ridges on a 2-surface, which is done using the procedure above. If
they are different, their intersection is a curve, and we find the intersection of each
ridge with the curve on a 2-surface. Then find the intersection of the lists of edges by
finding the intersection of each edge of one list with all the edges of the other list,
and concatenating the results. Next, insert the endpoints of the edges into the ridges
that generated them, splitting those ridges as necessary.

The next step is to cut away the outer ridges at each edge of intersection. That
can be done by finding the endpoints of the edge and each ridge that intersected the
edge at that point. In each ridge, cut away the two outer edges incident at that
vertex. As a result, the outer edges at that ridge will have been cut away.

Intersection of a facet and a 2-surface on a 3-surface

This problem is analogous to the problem of finding the intersection of a
polyhedron and a plane in 3-space. The result is a list of ridges (polygons) on the 2-
surface. First find the intersection of each ridge bounding the facet with the given 2-
surface using the procedure above. The result of each intersection is a list of edges.
Since the procedure must return a list of ridges on the 2-surface, it remains to
connect the edges into ridges.

Note that the edges have the same connectivity as a subset of the ridge-edge
structure of the original facet. That is, two edges of intersection are connected at a

25

vertex if the two ridges that they came from are connected at an edge. Thus, for
every endpoint of an edge of the intersection, we can determine the other endpoint
that it should be joined with by using the fact that they resulted from the
intersection with the same edge of the facet. For every new vertex resulting from the
intersection of the plane with an edge of the facet, we keep a pointer to the edge
giving rise to it. Joining vertices is then a matter of checking each vertex, and if it
has not already been joined with another one, tracing the link to the edge that gave
rise to it and tracing the link from there to the other vertex generated by that edge.

Intersection of two facets on a 3-surface

In order to find the intersection of two facets on a 3-surface, first find the
intersection of every pair of ridges of the facets using the procedure above. The
procedure for finding the intersection of the ridges inserts the intersection edges into
the two facet data structures and deletes the outer edges at vertices with four
incident edges on a 2-surface. The procedure then “cleans” the data structure by
copying the surviving parts. The result is a list of facets.

Intersection of two facets in aspect space

In order to find the intersection of two facets in aspect space, first find the
intersection of the two 3-surfaces containing the facets. If the 3-surfaces are the
same, then solve the problem with the facets-on-a-3-surface procedure, above. If the
3-surfaces are different, then their intersection is a 2-surface. The procedure above
can be used to find the intersection of each facet with the 2-surface on the 3-surface.
Two lists of ridges on the 2-surface result. Find the intersection of these lists by
finding the intersection of each ridge of one list with every ridge of the other list,
using the procedure above. The result is a list of ridges of intersection of the two
facets.

The next step is to insert the ridges into the two data structures and cut away
the outer facets at the ridges of intersection. The ridges are inserted by following the
pointers to the facets that generated the ridges and inserting the ridges into those
facets. The outer facets at each ridge of intersection are then cut away by finding the
edges bounding the ridge. The outer ridges are cut away at those edges in the same
manner as in the procedure for finding the intersection of two ridges on a 3-surface.
The result of cutting away those ridges is that the outer facets at the ridges of
intersection will be disconnected.

26

Intersection of two cells in aspect space

In order to find the intersection of two cells of aspect space, we first find the
intersection of every pair of facets of the cells using the procedure above. The
procedure for finding the intersection of the facets inserts the intersection ridges into
the two facet data structures and deletes the outer structure. Then the data
structure must be “cleaned” by copying the surviving parts. The result is a list of
cells of aspect space, the intersection of the two cells.

4.3. Constructing the Asp

Constructing the asp for a polyhedron involves constructing the asp for each
face as occluded by the asps for the faces in front of it and taking the union. The asp
for a face f as occluded by the faces in front of it is the asp for f minus the asps for the
faces in front of it. Thus, to find the asp for f as a part of the polyhedron, first find
the asp for f by itself. This is the same as in the convex case, i.e. it has a cell for the
whole face, facets for the edges of the face, and ridges for the vertices of the face. The
visibility of every vertex (as a part of f) is bounded by a great circle of viewpoints
corresponding to the horizon for f.

The faces in front of f are found by computing the intersection of the plane
containing f with the planes containing the other faces. The (directed) line of
intersection of two planes is parallel to the cross product of outward normals to the
planes. Then if every vertex is above the line in the plane (i.e. to the left in the
direction of the intersection line), the face is in front of f. If every vertex is below the
line in the plane, the face is behind f. If some vertices are above the line and some
below, find the intersection points of edges with the line and cut the polygon at the
intersection points. One or several polygons above f may result.

Once we have found the faces above f, we find the asps for those faces and
complement them. Then we take the intersection of f with each of those faces.
(Complementing the faces may just involve setting a flag, so that in the “cutting
away the outer faces” step of the intersection algorithm we cut away the proper
faces.)

27

5. Constructing an Image from the Asp for a Non-convex Polyhedron

Given a viewpoint (8,0), the (6,0)—cross-section of the asp is the view of the
polyhedron from that viewpoint. Thus drawing the (8,0)—cross-section of the asp is
equivalent to constructing an image of the polyhedron from that viewpoint with
hidden lines removed. In this section we show how to find that cross-section of the
asp for a non-convex polyhedron.

In the non-convex case, each cell of the asp corresponds to a region of the image,
which may be a face or part of a face of a polyhedron The appearance of the part of
the face of the polyhedron from a viewpoint (8,¢) is the cross-section of the cell from
(6,9). The cross-section of the cell for a fixed viewpoint is a polygon since regions in
an image corresponding to parts of faces of a polyhedron are always polygons. Each
facet bounding the cell corresponds to an edge of the image polygon from some
viewpoint, but not all of the facets correspond to visible edges of the polygon from
(0,9). Thus, for the viewpoint (0,9), we must find the facets that are visible, find the
edges in the image that they correspond to, and draw the edges.

A facet is bounded by a number of ridges, corresponding to vertices in the
image. Since the cross-section of a facet at a particular viewpoint is an edge in the
image and all edges in the image have two visible endpoints, if the facet is visible
then two of the ridges are defined at the viewpoint (that is, the projection of the
viewpoint onto the surface containing the ridge is in the ridge). If the facet is not
visible, none of the ridges will be visible. Thus, to determine whether a facet is
visible from (6,9), it is sufficient to check all of the bounding ridges. If two of them
are visible, then the points of intersection of those ridges with the (0,4)-plane are the
endpoints in the image of an edge bounding a polygon.

It remains to determine whether a ridge is visible at a given viewpoint.
Equivalently, we can project the bounding asp edges and vertices into viewpoint
space and determine whether the viewpoint is in the region of viewpoint space that
they bound. We present in detail below the algorithm for determining whether the
point is in the region and therefore whether the object vertex is visible.

5.1. Determining Whether an Asp Ridge is Visible

An asp ridge is bounded by a cycle of asp edges and vertices; the edges are of
the form of Egs. (22), (23), and (40) above. Notice that Eq. (40) does not have any
terms involving image plane coordinates. Thus we can ignore Eqgs. (22) and (23) for
the edges and consider Eq. (40) by itself as the projection of an edge onto viewpoint
space. Determining whether a ridge is visible then amounts to determining whether

28

a point is in a region bounded by edges of the form given by Eq. (40). The boundaries
of the region are not arcs of great circles, so the region is not spherical polygonal as
in the convex case. However, we can determine whether a point is in the region
using the same algorithm, since that algorithm did not make use of the spherical-
polygonal nature of the region.

The algorithm we used in the convex case for determining whether a point is in
a polygon was to pick a great circle in viewpoint space containing the viewpoint and
intersecting the boundary of the projection of the ridge. We then found the closest
intersection point of this great circle with the boundary of the ridge and determined
whether that intersection went into or out of the polygon. The only difference in the
non-convex case is that the projection of asp edges into viewpoint space are no longer
linear but quadratic.

We find a great circle intersecting the test viewpoint and an edge of the region
in viewpoint space in the same manner as in the convex case. In this case, the
viewpoint on an edge of the region is on an edge of the form given by Eqs. (26), (27),
(30), and (32), with some s chosen so that 0 <s <1. Asin the convex case, a normal
to the great circle given by Eq. (14) above. We would like to find an equation for the
great circle of viewpoints for 6 in terms of ¢. To do this we note that the dot product
of the normal n = (ng,ny,n;) and a viewpoint (6,0) on the great circle is zero. This
yields

tan ¢ = ny sin 0 + ny cos 6 (49)
Dy

In order to find the viewpoint of intersection of this great circle with an asp edge, we
solve (49) and (40) for 6. This yields

’ ’
Vy ny + Vx Ny

tan 0 = — (50)

Vx’ Ny

We must then determine whether the points of intersection (0,¢) thus calculated
actually lie on the edge of the asp. We do this by calculating s from Eq. (39) and
determining whether 0 <s <1. If so, (8,0) is an intersection point of the great circle
and the edge.

As we find all of the intersection points of edges with the great circle, we can
calculate their distance from the test viewpoint and keep track of the closest
intersection point. We can use the Cartesian distance or the angle between the two
points on the unit sphere.

29

Once we find the closest intersection point, in order to determine whether the
viewpoint is in the spherical polygon it remains to determine the sense of the
intersection. That is, we must determine whether the great circle is going in to or
out of the projection of the ridge in viewpoint space. In order to determine that, we
take the dot product of a tangent to the curve in the clockwise direction and the
normal to the plane of the great circle. If the dot product is greater than zero, the
great circle is going in to the region of viewpoint space, so the point is not in the
region. If the dot product is less than zero, the great circle is going out of the region,
and the ridge is visible from that viewpoint.

To this point we have determined whether the test viewpoint is inside the
region of viewpoint space. For each ridge of the asp, we make that test. Then for
each facet, if it has two visible bounding ridges, we draw an edge in the image
between the image points corresponding to those two ridges at the given viewpoint.
The result of this process is the display of all of the visible edges of the polyhedron.

6. Conclusion

In this paper we have presented in detail algorithms for constructing the asp
and for displaying a cross-section of the asp from a given viewpoint. Separate
algorithms are presented for the convex and the general cases. The algorithms for
the convex case have been implemented, and the algorithms for the non-convex case
are in the process of being implemented.

30

REFERENCES

[1986] Plantinga, W. Harry and Charles R. Dyer, “An Algorithm for Constructing
the Aspect Graph,” Proc. 27th Annual Symp. on Foundations of Comput. Sci.,
1986, pp. 123-131.

[1987a] Plantinga, W. Harry and Charles R. Dyer, “The asp: a continuous viewer-
centered representation for 3D object recognition,” TR 682, Department of
Computer Sciences, University of Wisconsin, Madison WI 1987.

[1987b] Plantinga, W. Harry and Charles R. Dyer, “The Aspect Representation,” TR
683, Department of Computer Sciences, University of Wisconsin, Madison WI,
1987.

[1987c] Plantinga, W. Harry and Charles R. Dyer, “The asp: a continuous viewer-
centered represntation for 3D object recognition,” Proc. IEEE First Int. Conf. on
Computer Vision, 1987, pp. 626-630.

[1987d] Plantinga, W. Harry and Charles R. Dyer, “Visibility, occlusion, and the

aspect graph,” TR 736, Department of Computer Sciences, University of
Wisconsin, Madison W1, 1987.

31

