PARALLEL OPTIMIZATION FOR TRAFFIC ASSIGNMENT
by
R. J. Chen

and
R. R. Meyer

Computer Sciences Technical Report #732

December 1987

PARALLEL OPTIMIZATION FOR TRAFFIC ASSIGNMENT *

R.J.Chen and R.R.Meyer

Computer Sciences Department and Mathematics Research Center
The University of Wisconsin-Madison

Madison, Wisconsin 53706 USA

ABSTRACT

Most large-scale optimization problems exhibit structures that allow the possibility of attack via
algorithms that exhibit a high level of parallelism. The emphasis of this paper is the development of
parallel optimization algorithms for a class of convex, block-structured problems. Computational experi-
ence is cited for some large-scale problems arising from traffic assignment applications. The algorithms
considered here have the property that they allow such problems to be decomposed into a set of smaller
optimization problems at each major iteration. These smaller problems correspond to linear single-
commodity networks in the traffic assignment case, and they may be solved in parallel. Results are given
for the distributed solution of such problems on the CRYSTAL multicomputer.

1. INTRODUCTION

Most large-scale optimization problems arising from real-world applications can be decomposed
into quasi-independent subproblems (corresponding to time periods, geographic districts, physical or log-
ical commodities, etc.), allowing the possibility of attack via iterative algorithms that exhibit a high
degree of parallelism. Theoretical research into decomposition methods for large-scale optimization dates
back to [Dantzig and Wolfe 60], but the absence of computer hardware capable of exploiting the parallel-
ism inherent in these methods has long discouraged potential research in this area. With the advent of
multicomputers and multiprocessors, research into new decomposition methods is not merely stimulated
by the new algorithmic possibilities motivated by these distributed environments, but is made inevitable

by the goal of achieving the speedups made possible by such architectures.

* This research was supported in part by NSF grant CCR-8709952 and AFOSR grant AFOSR-86-0194.

Optimization problems related to networks lend themselves particularly well to this type of
research, not only because they are large-scale and arise in a multitude of diverse applications, but also
because they generally can be partitioned into network subproblems that may be solved by very fast tech-
niques. In this paper, we descibe the very promising results that have been obtained through the use of
the CRYSTAL multicomputer on nonlinear multicommodity problems. The methods in essence replace
the original optimization problem at each major iteration by an approximation consisting of a set of
independent subproblems that may be solved in parallel. After this parallel phase, there is a coordination
phase in which results from the subproblems are combined, and the coupling between subproblems is

taken into account.

A significant challenge is to keep the processors busy doing useful work while the coordinating
phase is in progress. The major thrusts of our research have thus been the development of procedures for
(1) splitting large-scale problems into quasi-independent subproblems and (2) performing the coordinat-

ing phase so as to achieve overall parallel efficiency.

In the following section, we describe a class of problems--traffic assignment problems. We then
discuss a sequential method in section 3 and a parallel method in section 4. Section 5 concludes this
paper with directions for further research. Although the algorithms developed are described in terms of
network applications, the theory below is equally applicable to general differentiable convex optimization

problems with block-structured constraints.

2. TRAFFIC ASSIGNMENT PROBLEMS

The problem of assignment of traffic to a transportation network arises when traffic planners wish
to estimate the flows that will result if the existing traffic network is modified. The areas linked by the
traffic system are divided into zones. The directed graph composed of links and zones forms a transpor-
tation network. To model the equilibrium flow of traffic in a transportation network is to determine the
routing of trips made between each pair of zones during a particular time of the day. The corresponding

optimization principles are due to Wardrop [Wardrop 52].

2.1. FORMULATION

Consider a transportation network consisting of m nodes and n arcs. A node represents either a
zone or an intersection of roads. Two-way traffic is represented by two directed arcs of opposite direc-
tions. For convenience, it is assumed that nodes are numbered from 1 to m and arcs from 1 to n; the first
1,2,, -+, k nodes are the origins. Let f; 20 be the total flow on arc j. Given the number of trips Oy
between origin-destination pair ¢gi and n increasing arc delay functions c;(¢;), an optimal traffic pattern

satisfying one of Wardrop’s principles is a solution to the following problem:

min}":I £ (TAP)
2

X Xy~ XXy =bg,

JEW: JeV

(i:l,... ,m, q:l, “en ,k)

k
b= X Xgjs
q=1

where x,; = flow from origin g on arc j;

W; = set of arcs originating at node i;

V; = set of arcs terminating at node i;

bgi =— 04 ifi is a destination zone
=304 ifi=¢q

=0 otherwise .

The objective function corresponding to a user equilibrium solution [Wardrop 52] is

4

fj(tj)z'gcj(x) dx .

In traffic applications the functions c; are increasing and thus the convexity of f; for nonnegative
flow is easily shown. For example, the delay function ¢; used in a study of Winnipeg and Hull,

Canada, is of the form
cj(z)=a; (140, (-)P),
pj
and that used for Sioux Falls, South Dakota by the U.S. Bureau of Public Roads is of the form

¢j(z) =a,(1+0.15(;z;~)4),

where a; is the travel time on arc j at mean free speed, oy, B; are parameters, and p; is the
designed capacity of arc j. If we use a node-arc formulation for the flow conservation and consider

each origin as the source of a commodity, then the problem can be formulated as a nonlinear mul-

ticommodity problem(MCP):
. n
min Y fi(xqj+x95+ x5)

j=1

S.1. Ax, = by

AX2 = b2

(MCP)
Axk = bk

x5 20, g=12,..k, j=12,..n

From the block structure of the constraints, it is clear that the approximation of the objective func-
tion by a separable function produces an optimization problem that may be decomposed into
independent subproblems. The order in which these subproblems are considered leads to a number

of different algorithms, which we shall develop after introducing some further terminology.

2.2. NOTATION

For notational convenience, we define
X, =(X;1 %52, " »Xgn) ER™ (flow vector or block of variables of commodity g);

X:= (X Xp, * X) €R™ (full set of flow vectors);
n k
fX) =2 fi(Xxy)
j=1 g=1
Q, = {x, R} | Ax, =b, } (feasible flow region of commodity ¢);
Q:={xeR¥ | Ax, =b,, for g=1.2,..k } (feasible flow region).
For a feasible point x € Q, we define a shifted function
h(d) = f (d+x) ~ f (x).

This function corresponds to the change in the objective function resulting from a change of d in the

current flow x. Thus, for any feasible point x, MCP is equivalent to
min A(d) st. de Q,:={d | x+deQ}. (MCP)

We list the notation associated with the shifted function # in the same manner:

d, = (dg1,d;2, ** ,dy,) (flow vector for changes in commodity ¢);

d=(d;dy, --- .d;) (full set of fiow vector changes);

hi(-)=f;(- +quq,~) -—fj(quqj) (shifted function for arc j).

We define a scaled separable function hS with scale factor ¢ > 0 as
K@) = 3,5, <hy(0dy)

When the objective function of (MCP y, is replaced by hS, the resulting approximating problem may be
decomposed into k independent nonlinear single-commodity subproblems. (The properties of scaled
separable functions are discussed in [Chen and Meyer 86]. The introduction of scale factors allows the
approximation to be varied in an adaptive manner between an underestimating and over-estimating
approximation.) A final approximation step is then done by replacing the separable functions 45 by

piecewise-linear approximations 4%, and the resulting piecewise-linear subproblems are solved as linear

single-commodity network problems (for details, see [Chen and Meyer 86]). A number of different
algorithms may be developed by varying the scheduling of the solution of these subproblems. At one
extreme, the subproblems may be solved sequentially using the most recent updates for the values of the
remaining variables. This approach will be termed the block Gauss-Seidel (BGS) method. At the other
extreme, all subproblems may be solved in parallel, leading to a method that we will call the parallel
block Jacobi (PBJ) method. In between these two extremes there are a variety of hybrids, one of which,

the parallel block Gauss-Seidel (PBGS) we will consider in detail below.

3. ASEQUENTIAL METHOD

In this section, we will discuss a sequential algorithm, the block Gauss-Seidel Algorithm(BGS), in
which each block of variables is optimized using an approximation based on the most recently updated

values for the remaining blocks of variables.

The idea behind BGS is that in each minor iteration we use the most recent values for the other
k-1 commodities. The philosophy of BGS is thus analogous to that of the Gauss-Seidel algorithm for
linear systems. In this context, however, we are dealing with a nonlinear optimization problem, and the
algorithm employs a complex approximation process based on the use of trust regions and piecewise
linear approximations. The details of these approximation techniques are described fully in [Chen and
Meyer 86] and will not be presented here. To help describe the algorithm further, we introduce the fol-

lowing notation:

Notation
qt=q+1 ifq #k, q*:=1 if g =k (next commodity index);
J={0,k,2k, --- }

o : parameter determining size of trust region;
1 . .
0<po< i : threshold for improvement ratio;

LP(a, x) : linearized problem on trust region;
h* : objective function of linearized problem;
¢ : optimal solution of linearized problem;
PL, (o, X): piecewise-linear problem for commodity q on trust region;
d, : optimal solution of piecewise-linear problem;
Replacement process with index ¢ :
if d, satisfies ratio check (discussed below)
X, & Xg + dq;
else
reduce size of trust region

endif

The block Gauss-Seidel algorithm may now be presented.

BGS Algorithm

step 1: (find a feasible solution)
Find a feasible solution x%
initialize indices: j = 0 (minor iteration index), ¢ =0;

initialize trust region

step 2: (solve linearized problem periodically)
if jeJ
solve LP(a,, x/) (linearized problem);
0 := hL (d“) (optimal value of linearized problem);
endif
increment indices: ¢ < gq*, j « j+1;
step 3: (solve subproblems and do ratio check)
Solve PL, (0, x/™);

h,(d
determine if ratio check for commodity ¢ satisfied (_q%_ql >po);

do replacement process for index q;
x/ < result of replacement process;

goto step2

The convergence of BGS is established in [Chen 87].

4. PARALLEL METHODS

In this section, we will discuss parallel algorithms for (MCP), and present numerical results on the

Crystal multicomputer. The architecture of the Crystal multicomputer is described in [Feijoo 85].

4.1. A PARALLEL BLOCK JACOBI ALGORITHM

If step 3 of the BGS algorithm is replaced by a step in which all £ subproblems are solved in paral-
lel, and the ratio check is done for the sum of the solutions of the piecewise-linear problems, with the
updating performed simultaneously for all commodities, then the resulting algorithm is roughly analo-
gous to a block Jacobi algorithm. This procedure and its convergence are discussed in [Chen and Meyer

86]. While this approach is highly parallel, it has the disadvantage that it cannot make use of commodity

update information in the manner of the BGS algorithm, and therefore displays a slower rate of conver-
gence than BGS. In order to achieve parallelism with a better rate of convergence, we therefore develop

below an algorithm that may be considered to be a hybrid of BGS and a parallel block Jacobi algorithm.

4.2. A PARALLEL BLOCK GAUSS-SEIDEL ALGORITHM

To increase the efficiency of this decomposition approach, we will develop a parallel processor
utilization technique that combines concepts related to block Gauss-Seidel and block Jacobi procedures.
In this approach, each commodity flow vector corresponds to a block of variables, and a group of blocks
(equal in number to the processors) is updated in parallel (via an optimization procedure applied to each
block independently) at each minor iteration. The acceptability of the updated values for such a group of
blocks (in terms of the required amount of improvement of the original objective function) is then
checked by a coordination processor (referred to as ‘‘master”” processor below) while the remaining pro-
cessors work on the next group of blocks, which assume the un-updated values for the previous group.
However, by the time this next group has been optimized, the coordination (ratio) check for the previous
group has been accomplished, and the updated information (if it has met the acceptability criteria) may
then be utilized in setting up the initial conditions for the following group. This procedure, which uses
efficiently the multiprocessor environment, may be demonstrated to be convergent to the optimal solution
of the original problem (see proof below). As expected, it also displays a better convergence rate than

the analog of the block Jacobi method previously used. Details of this technique will be described below.

If there are M available slave nodes on the Crystal multicomputer, and k is the number of commo-
dities, we assume k = Ms for simplicity. We distribute the s subproblems 1+(p—1)s,2+(p—1)s, -+ - , ps
to slave node p, forp =1, - - , M (see Figure 4.1). An example of an execution sequence for PBGS is

given in Figure 4.2 below.

10

SLAVES

1 s+1 (M-1)s+1

2 s+2 (M-1)s+2

3 s+3 (M-1)s+3

4 s+4 M-1)s+4
° s 2s Ms

k subproblems (k=M s)

Figure 4.1 Distribution of Subproblems on Slave Nodes

MASTER

g
'
+
]
i

¥
+
'

,I checking ratio

I checking ratio

I checking ratio

:l: checking ratio

I checking ratio

1 checking ratio

1
A

Figure 4.2 An example of an execution sequence for PBGS

SLAVE 1

(comm 1)

(comm 2)

(comm 3)

+ waiting for slave 2
+ waiting for master

(comm 4)

(comm 5)

__waiting for slave 2
-~ waiting for master

(comm 6)

—f

_i waiting for slave 2

-+ waiting for master

(comm 1)

_i waiting for slave 2
i waiting for master

(comm 2)

v

(M=2,k=12)

11

SLAVE 2

(comm 7)

(comm 8)

(comm 9)

(comm 10)

(comm 11)

(comm 12)

(comm 7)

12

To help discuss the algorithm further, we define notation as follows.

Notation :
M = # slave machines (each machine solves s=~1-{f[— subproblems) ;

Ye = (X, Xpuss oo s Xeaur—1ys) (¢ is group of blocks with group index ¢);
tT=t-1ift 21, tTi=5 ift =1 (previous group index);

t*i=1t+1 ift #s, t7:=1 if t = 5 (next group index);

PL,(o,y) := piecewise-linear problems on trust region for group ¢ ;

J : minor iteration index;

y/ @ jth iterate;

J={0,8+1,25+1, -+ };

0 <y < 1: reduction factor for trust region;

p : improvement ratio
M, 1 . .
0<py< 7(= -;-) : threshold for improvement ratio;

Replacement process withindex ¢ :
if d, satisfies ratio check
¥ ¢~ ¥, + d;; (other groups unchanged)
o, < max{o, 0% }; (enforces minimum size of initial trust region)
else
Ol €= 70

endif

The ratio check cited above means the computation of the ratio of the improvement in the original objec-
tive function over the improvement in the linearized objective function and the check that this ratio (to be
termed the improvement ratio) is above a fixed threshhold. The ratio check insures that a sufficient
decrease in the original objective function is achieved. The parallel block Gauss-Seidel piecewise-linear

trust region algorithm may now be presented.

13

PBGS Algorithm
step 1: (find a feasible solution)
find a feasible solution y°
J = 0 (minor iteration index), ¢ =0;

o« o2

step 2: (solve linearized problem periodically)
if jeJ
solve LP(c, yj)X
0 := hl(d");
endif
te 1t j e j+1;
step 3: (in parallel solve group ¢ subproblems and do ratio check)

solve (on slaves) PL, (o, , y/~1);

hi-(dr)
0

perform (on master) ratio check for ¢~ (>po s

do replacement process for index ™,
y/ « result of replacement process;

goto step2

Remarks

PBGS thus differs from BGS in two important respects: (1) a group of blocks corresponding to M
commodities is optimized in parallel at each minor iteration; (2) the replacement process at the current

minor iteration is to update the group of blocks for the previous iteration.

14

4.3. Convergence of PBGS

At each iteration (minor iteration), we check the ratio of the improvement in the original function
over the improvement in the linear approximation . The continuity properties of this ratio follow from

the assumptions that f is continuously differentiable and convex, and these properties ensure conver-

gence. In the following lemma, pg € (O,%).

Lemmad4.l If y' — ¥, where ¥ is not a solution of MCP, then there exists a r* and an o > 0 such that

e (dpn (1))

WEE@) > po for all o e (0,01), and all y* sufficiently close to ¥.

Proof: The proof is based on the continuity of the optimal value functions. See [Chen 87] for details. (1

Now we will prove the convergence theorem for PBGS.

Theorem 4.2 Any accumulation point generated by PBGS is an optimal solution of MCP.

Proof:
Let {y'} be the sequence generated by PBGS, ¥ be an accumulation point of Y :=
{y° y**, y®*, - -+). Let {y") be a subsequence of Y such that y* — . Assume ¥ is not a solu-
tion. Two cases will be discussed as follows.

Case 1: (t* = 1 satisfies Lemma 4.1.)
We consider those sufficiently large j; such that p(dj' yH = poforalloe (0,0)). Moreover, since the
initial value of o for each distinct y” is at least 0., it is the case that for arbitrarily large j; that
of > ok = min{y&,_o_c} (since the trust region vector is not reduced below this quantity to achieve the
required improvement ratio) and p” > po. Letting 8, := AL (d% ,o*)¥), the optimal value of the linear-

ized problem at y, we then have
hi(d") < po®” (step 3 of PBGS)

0
< po-agv , (Lemma 4.4 of [Chen87])

Case 2: (

15

However, for yj‘ sufficiently close to ¥, the relations

FO"f ") < F D 7
< hi (@)

< Po"(?‘g

2
contradict f (y*) — f@. SoYyisa solution. Also {f (y/)} is a decreasing sequence bounded from
below. This implies that any accumulation point of y/ has objective value f (¥) and thus is a solu-
tion of MCP.

hy(@fd ; . -
— 1 <Po forall y &Y sufficiently close to y.)
h=(d~)
We consider those sufficiently large j; such that y"‘+1 = yj‘. By Lemma 4.1 there exists some group
index r* for which the improvement ratio is aitained. We can choose a subseqence { y* }
corresponding to the least such #* such that

yj. = yj,+1 . y].l'iyjl"*l-
Note that y* —» ¥ but the improvement ratio at y*’ is greater than pg. The rest of the proof is similar

tothatincase 1. [

16

4.4. PERFORMANCE FOR PBGS

Test Problems

Five test problems for PBGS are described in the following table.

Name Comms Cnstrs Vars Obj Fen
Sioux Falls 24 576 1,824 3 ajtP+b;t;
Hull 16 6.768 12,768 3 10, (T (L Py
’ ’ I ﬂj‘\‘-l b!
Gen 24 4,608 12,864 3 St
o; t;
Mini-Winnipeg 24 28,960 68,064 Y tja; (= (=)P
ﬁj’i’l bj
- o 4w
Winnipeg 135 140,400 382,860 Y ta; (14— (1))
Bj+1"b;

The Gen problem is a randomly generated problem with a rectangular grid topology . It is typical
of the problems produced by the test problem generator described in [Chen 87]. The Sioux Falls, Hull,
and Winnipeg problems model the traffic in the respective cities. The Mini-Winnipeg problem is a

smaller version that contains only the first 24 commodities of the Winnipeg model.

Convergence rates for PBGS

Intuitively, if we use fewer processors for PBGS we expect to achieve more rapid convergence
because the approximating function uses more recent information at each iteration. The following four

figures show the rate of convergence using different numbers of processors.

6 .

5]
4 4
L
O 3
G
o]
L
i
R
R ATT G 4
o ! SIOUX FALLS S
R 7
3
0 LB =721391.91
-1
42 T T T k] T L) ¥ T L] L] T T T L] ¥ L]

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
NUMBER OF ITERATIONS

Figure 4.3 Convergence of PBGS (Sioux Falls)

3.

24 HULL PROBLEM

LB =31164.583

L
0
G 1
o)
]?
g " \,
R ~N

0 4 X,
R
o AN
R X,

‘\\\
y N
, N "
\\\ \
1 node \' ~—~
-2 T Y 4 T T T Y T Y 1

0 5 10 15 200 25 30 35 40 45 50
NUMBER OF ITERATIONS

Figure 4.4 Convergence of PBGS (Hull)

17

TCRXTE

=0 Qo™

o

xx

6 4

GEN PROBLEM

LB = 63234308

T ¥ ¥ ¥ T T L ¥ T ¥ ¥ L} L] L] L 1
0 5 10 15 20 25 30 35 40 45 S0 S5 60 65 70 75 80
NUMBER OF ITERATIONS

Figure 4.5 Convergence of PBGS (Gen)

4.
3
24
13 nodes
14
----------- 9
-7
MINI-WINNIPEG
0 INNIPEG — 1345
LB = 11948401
T T L) T T T T T L}

0 5 10 15 20 25 30 35 40 45 50
NUMBER OF ITERATIONS

Figure 4.6 Convergence of PBGS (Mini-Winnipeg)

18

TCTUmmo®n

TCUmmTY

19

Speedup for PBGS

Setting aside the issue of stopping criteria , we fix the number of iterations and define the speedup

of M +1 nodes as — 2% time for 1 node The speedups for the first four test problems are as follows.

cpu time for M +1 nodes

13,
IDEAL,
9 DEM
12
’/' 8 4 P
1 - P
. ,
10 4 : 3 P ‘
SIOUX FALLS . 74 HULL PROBLEM .
94 (24 COMMS) (16 COMMS) J
A 6 4
8 4 J
s
74 P 5]
't
6 rli
U 4
54 P
4] 3
3.4
24
2 4
14 14
0 1 2 3 4 5 6 7 K 9 1011 12 13
NUMBER OF PROCESSORS o 1 2 3 4 5 6 7T 8 9
NUMBER OF PROCESSORS
13, .
DA,
/m 13, IDEA.
12 s .
K 12 i
114 K
- 11 4 L
10 GEN PROBLEM . 10 e
. : MINI-WINNIPEG f
9 1 (24 COMMS a 2
) L 9 (24 COMMS) o
8 4 ,
” 8 4
¢ S
7 J - , ACDIA P
B 77
i
6 D 64
S u
i 3
Pos)
4 4
44
314
34
2
24
14
14
0 e e,
L e e o S L |
0 1 2 3 4 5 6 T % 9 10 11 12 13 i
NUMBIR OF PROCESSORS o1 23 04 5 6 7 & 9 1011 1213

NUMBER OF PROCESSORS

Figure 4.7 Speedup for PBGS

20

The Winnipeg problem is the biggest test problem, with nearly four hundred thousand variables.

The following table shows the solution values obtained by BGS and PBGS after twenty iterations on one

node, ten nodes, and sixteen nodes and Fig. 4.8 shows the speedups. A rough lower bound of 622643.35

is calculated by linearizing the original function at the solution point obtained from BGS.

15 J
14 J
13 4
12]
11

10 J

woUOmmw e
on

Mach Iter Obj CPU
1 20 623103.62 30h
10 20 623278.96 3h 50m
16 20 623371.54 2h 28m
16 .
IDEAL ‘

LA SN Sn S S S R e S s s 2 cnau mune s
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMBER OF PROCESSORS

Figure 4.8 Speedup for PBGS (Winnipeg Problem)

21

5. DIRECTIONS FOR FURTHER RESEARCH

We discuss directions for further research both in the theoretical and computational areas. The first
section will deal with the communication routing problem, which contains extra coupling constraints in
addition to the same block structure as the multicommodity problem. A shared-memory multiprocessor-
-the Sequent Balance is introduced in the second section, and the implications of this alternative architec-

ture for the parallel implementation of the algorithm are considered.

5.1. COMMUNICATION ROUTING PROBLEMS

An extension of the wraffic assignment problem is optimal routing in packet-switched computer
communication networks[Cantor and Gerla 74]. In a packet-switched computer communication network,
messages are segmented into packets. The packets are stored in queues at intermediate nodes until com-
munication channels become free. The ARPANET is a packet-switched communication network con-
necting many computer facilities in the United States. A mathematical model for this type of routing
problem is a TAP with objective function:

T N
TR Ry By
where

T = total average delay per packet [seconds/packet];

r,, = average packet rate from source u to destination v [packet/second];

m m
Y=Y, ¥ 1., total packet arrival rate from external sources [packet/second];
u=lv=1

t; = total bit rate on channel j [bits/second];

p; = capacity of channel j [bits/second].
The communication routing problem contains coupling constraints for all arcs due to the capacity restric-
tions on the arcs. These constraints complicate the process of decomposing the original problem into

subproblems. It would be of interest to extend the results of this paper to allow both implicit(via the

22

objective function) and explicit(via nested decomposition) treatment of additional coupling constraints.

5.2. PARALLEL ALGORITHMS FOR MULTIPROCESSORS

The Sequent Balance is a multiprocessor, a computer that incorporates multiple identical proces-
sors (CPUs) and a single common memory. The CPUs are general purpose, 32-bit microprocessors. The
systems are available in two models, the Sequent Balance 8000 and the Sequent Balance 21000. The
Sequent Balance 8000 can include from 2 to 12 processors, while the Sequent Balance 21000 can include
from 4 10 30 processors. Both models can be configured with 4 to 28 Mbytes of memory and both pro-
vide up to 16 Mbytes of virtual address space per process. In addition, each CPU has 8 Kbytes of local
RAM and 8 Kbytes of cache RAM, both of which greatly reduce the number of times the processor must

access system memory.

The Sequent Balance supports the two basic kinds of parallel programming: multiprogramming and
multitasking. Multiprogramming is an operating system feature that allows a computer to execute multi-
ple unrelated programs concurrently. Multitasking is a programming technique that allows a single appli-
cation to consist of multiple processes executing concurrently. The following characteristics distinguish
the Sequent Balance architecture from the Crystal architecture:

1. shared memory- An application can consist of multiple instruction streams, all accessing shared
data structures in memory.

2. common bus- All processors, memory modules, and 1/O controllers plug into a single high-speed
bus.

3. dynamic load balancing- Processors automatically schedule themselves to ensure that all proces-
sors are kept busy as long as there are executable processes available. When a processor stops exe-
cuting, it begins executing the next available process in the system-wide run queue.

4. hardware support for mutual exclusion- To support exclusive access to shared data structures,

the system includes one or more sets of 16K user-accessible hardware locks.

23

Both the Parallel Block Jacobi algorithm and the Parallel Block Gauss-Seidel algorithm can be
implemented as a multitasking program on the Sequent Balance. A parallel scheme using M processors
and a global run queue is as follows:

We allocate M commodities to M processors and put the remaining k — M commodities on the run
queue. Each processor does the following jobs in parallel (see Fig. 5.1, where an arrow from a processor
represents completion of the processing of a commodity and an arrow to a processor represents acquisi-
tion of another commodity):

(1) solve the subproblem of the allocated commodity,

(2) check ratio,

(3) move the current commodity to the tail of the run queue,

(4) acquire the first commodity on the run queue,
Periodically, the processors do the task of solving a linearized problem to obtain an update of the data

used in the ratio check.

We are currently investigating this approach on the Sequent as well as algorithms for this problem class

that employ multidimensional optimization in the coordination step.

PROCESSOR 1, 2, 3,4 (M=4) RUN QUEUE

(stage 1)
/ commodity 3 moves to tall of queue
R T T L
1 2 3 4 I L S A 'S TS B
commodity 5 allocated to proc 3 ‘~—/
(stage 2)
/ commodity 1 moves to tail of queue
HE T R
1 2 s 4 HEE TN ST I R R 0 B A
e g ek R | e e ol LA § -
commodity 6 allocated to proc 1 ‘/
(stage 3)
> commodity 4 moves to tail of queue
TV rTTTY T R
6 2 s 4 :7_::3_3:9_5---:!:4:;‘3‘3
commodity 7 allocated to proc 4 ‘\/

Figure 5.1 A parallel scheme using a global run queue

25

REFERENCES

Bertsekas, D. P. and Gafni, E. M. [1982]: "Projection methods for variational inequalities with applica-
tion to the traffic assignment problem", Mathematical Programming Study 17, 139-159.

Cantor, D. G. and Gerla, M. [1974]: "Optimal routing in packet switched computer networks", JEEE
Transactions on Computing C-23, 1062-1068.

Chen, R.J. : "Parallel algorithms for a class of convex optimization problems", Ph.D. Thesis, Computer
Sciences Department, University of Wisconsin-Madison, 1987.

Chen, R. J. and Meyer, R. R. [1986]: "A scaled trust region method for a class of convex optimization
problems"”, University of Wisconsin-Madison Computer Sciences Department Tech, Rpt. #675.

Dantzig, G. B. and Wolfe, P. [1960]: "Decomposition principle for linear programs”, Operations Res. 8,
101-111.

Feijoo, B. [1985]: "Piecewise-linear approximation methods and parallel algorithms in optimization”,
University of Wisconsin-Madison Computer Sciences Department Tech. Rpt. #598.

LeBlanc, L. J., Morlok, E. K., and Pierskalla, W. P. [1975]: "An efficient approach to solving the road
network equilibrium traffic assignment problem", Transportation Res. 9, 309-318.

Murtagh, B. A. and Saunders, M. A. [1978]: "Large-scale linearly constrained optimization", Mathemati-
cal Programming, 14, 41-72.

Nguyen, S. and Dupuis, C. {1984]: "An efficient method for computing traffic equilibria in networks with
asymmetric transportation”, Transportation Science 18, 185-202.

Steenbrink, P. A. [1974]: Optimization of Transport Network, Wiley, London,

Wardrop, J. G. [1952]: "Some Theoretical Aspects of Road Traffic Research”" Proc. Inst. Civil Engr.,
Part1l, 1,325-378.

Zhang, J., Kim, N. H., and Lasdon, L. [1984]: "An improved successive linear programming algorithm",
University of Texas Graduate School of Business Working paper 84/85-3-2, Austin.

