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ABSTRACT

This thesis is principally concerned with a piecewise-linear trust region method for
solving a class of structured convex optimization problems, which includes the traffic
assignment problems. Piecewise-linear approximation of nonlinear convex objective
functions in linearly constrained optimization produces subproblems that may be solved
as linear programs. This approach to approximation may be used for nonseparable as
well as separable functions, and for the former class (the focus of this thesis), it lies
between linear and quadratic approximation with regard to its accuracy. In order to
have additional control of the accuracy of the piecewise-linear approximation, we con-
sider two devices : rectangular trust regions and dynamic scaling. The use of rectangu-
lar trust regions in conjunction with the type of piecewise-linear approximation con-

sidered here actually serves to simplify rather than complicate the approximating prob-
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lems. This is a result of the equivalence of the trust region and the use of a limited
number of segments of comparable size in the approximation. The approach to dynamic
scaling considered here may be applied to problems in which each objective function
term is a convex function of a linear function of the variables. This scaling device
allows the algorithm to adjust the approximation between an underestimating function
(corresponding to a linear approximation) and an overestimating function (the non-
separable analog of the overestimate associated with separable approximation of con-
vex functions.) The scaling factor is adjusted in accordance with the acceptance criteria

associated with the trust region method.

Another emphasis of this thesis is the development of parallel algorithms suited to
distributed computing and the comparison of the relative efficiencies of these algo-
rithms on different architectures. Computational experience is cited for some large-
scale problems arising from traffic assignment applications. The algorithms considered
here also have the property that they allow such problems to be decomposed into a set
of smaller optimization problems at each major iteration. These smaller problems
correspond to linear single-commodity networks, and may be solved in parallel. Results
are given for the distributed solution of these problems on the CRYSTAL multicom-

puter.
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CHAPTER 1

INTRODUCTION

This thesis is primarily concerned with methods of solution for a class of convex
optimization problems. In Chapter 1, we introduce a class of structured problems. A
review of previous work is presented in Chapter 2. Chapter 3 brings in the theoretical
grounds of scaled separable approximations, and Chapter 4 illustrates trust region
methods. Accordingly, Chapter 5 incorporates the previous two chapters and elaborates
on a scaled piecewise-linear trust region algorithm. We discuss sequential methods in
Chapter 6 and discuss parallel methods in Chapter 7. We conclude the thesis by direc-

tions for further research in Chapter 8.

1.1 PIECEWISE-LINEAR APPROXIMATIONS

Piecewise-linear approximation of convex nonlinear objective functions in linearly
constrained optimization has the nice property of producing subproblems that may be
solved as linear programs. This approach to approximation may be used for nonsepar-
able as well as separable functions, and this thesis deals with nonseparable convex
objectives that are sums of terms of the form f i (cj 'X), where f j is a continuously dif-
ferentiable convex function defined on R! and ¢ ;X is a linear function of the problem
variables x. Although such a problem could be transformed into a separable problem

by substitutions of the form ¢; =¢;x and the concatenation of this equation to the




constraints, this transformation can have undesirable effects. For the multicommodity
problems considered below, for example, it would introduce additional coupling
between variables and thereby destroy the block structure of the constraints, and this
new constraint would also have a different character from the other constraints, result-
ing in the destruction of the network nature of the initial constraints. Thus, we will
demonstrate how objective functions of this type may be treated directly without the

introduction of new constraints.

Piecewise-linear approximation lies between linear and quadratic approximation
with regard to its accuracy. In order to control the error in the piecewise-linear approxi-
mation , we introduce two devices : rectangular trust regions and dynamic scaling. The
use of rectangular trust regions in conjunction with this type of piecewise-linear
approximation was first described in [Meyer 85]. With this approach, trust region con-
straints serve to simplify rather than to complicate the approximating subproblem,
because the equivalence between the trust region constraints and the use of a limited
number of piecewise-linear segments in the approximation allows the former to be han-
dled implicitly. The approach to dynamic scaling considered here is a new approxima-
tion tool that takes advantage of the assumed form of the objective function terms. This
device allows the algorithm to adjust the approximation between an underestimating
function (corresponding to a linear approximation) and an overestimating function (the
nonseparable analog of the overestimating property inherent in separable approximation
of convex functions.) The scaling factor is adjusted in accordance with the acceptance

criteria associated with the trust region method.
For notational simplicity we develop the theory below in the context of objective
functions that are sums of terms of the form f f (xq o +x,cj) , i.e., each term involves

the sum of a fixed number (namely, k) of variables. The extension of these results to

the case in which the argument is a linear function of x is straightforward. We also



consider a specific block structure of the constraints in order to emphasize the decom-
position that is possible when piecewise-linear approximation is used appropriately in
that context. However, the theory as presented is also independent of the nature of the

linear constraints.

Computational experience is cited for some large-scale problems arising from
traffic assignment applications(see section 1.4). The algorithm considered in this thesis
has the property that it allows such problems to be decomposed into smaller optimiza-
tion problems at each major iteration. These smaller problems may be solved in paral-
lel, and computational results are given for the distributed solution of these problems on

the CRYSTAL multicomputer.

1.2 PARALLEL ALGORITHMS

Most large-scale optimization problems arising from real-world applications can
be decomposed into quasi-independent subproblems (corresponding to time periods,
geographic districts, physical or logical commodities, etc.), allowing the possibility of
attack via iterative algorithms that exhibit a high degree of parallelism. Theoretical
research into decomposition methods for large-scale optimization dates back to
[Dantzig and Wolfe 60], but the absence of computer hardware capable of exploiting
the parallelism inherent in these methods has long discouraged potential research in this
area. With the advent of multicomputers and multiprocessors, research into new
decomposition methods is not merely stimulated by the new algorithmic possibilities
motivated by these distributed environments, but is further dictated by the need to

achieve the speedups made possible by these architectures.

Optimization problems related to networks lend themselves particularly well to
this type of research, not only because they are large-scale and arise in a multitude of

diverse applications, but also because they generally can be partitioned into network




subproblems that may be solved by very fast techniques. In this thesis, very promising
results have been obtained through the use of CRYSTAL on nonlinear multicommodity
problems(see next section). The methods in essence replace the original optimization
problem at each major iteration by an approximation consisting of a set of linked sub-
problems that may be solved in parallel by temporarily ignoring the coupling between
subproblems (which may occur in the objective function and/or the constraints). After
this parallel phase, there is a coordination phase in which results from the subproblems
are combined, and the linkages between subproblems are taken into account(see Fig.

1.1).

Subproblems solved in parallel

Q80

Coordination phase

Figure 1.1 A Basic Parallel Algorithm



A significant challenge at this stage is to keep the processors busy doing useful
work while the coordinating phase is in progress. The major thrusts of our research
have thus been the development of procedures for (1) splitting large-scale problems into
quasi-independent subproblems and (2) performing the coordinating phase so as to

maximize overall parallel efficiency.

1.3 NONLINEAR MULTICOMMODITY PROBLEMS

In this section we will develop a model for a class of problems that may be
attacked by the algorithms to be described below. An example of this problem class is
the nonlinear multicommodity problem. Consider a directed network E of m nodes
and n arcs. Let A be the node-arc matrix of E and k¥ be the number of commodities
sharing the network. Let x,; denote the value of flow on arc j corresponding to com-
modity q. Letx, and b, denote the flow vector and supply-demand vector respectively
of commodity g. If f; (j=1....,n) is a set of continuously differentiable convex func-
tions corresponding to the n arcs of the network, the corresponding multicommodity
problem may be written as

n
min Z fj(x1j+x2j+ .. -+xk]- )
j=1

s.t Axl = bl
AX2 = b2

(MCP)

Axp = by

Xgj 20, g=1,2,....k, j=1,2,....,n

For notational convenience, we define

Xg =51, Xg2 " 2 Xgn ) e R" ( flow vector or block of variables of commodity




q);

o— k s AW
X =Xy, %35, » X ) ER® (flow vector in arc j );
X = (X,Xp, * " Xg )eR"" ( full set of flow vectors );

k
Xgj) (cost function );
=1

FO) =3 £
j=1

q
Q,={x,¢ R%} 1 Ax, =b, } (feasible flow region of commodity g );

Q:={xe¢ R’f_" I Ax, =b,, forg=12,...k } (feasible flow region ).

While nonlinear multicommodity problems furnish a good example of problems of
the class MCP, the algorithms to be derived are in fact applicable to more general prob-

lems, for example the matrices A may differ for each x; and the objective may be of the

J
form Zf] (CJ 'X).
j=1

Solution Algorithms

Network flow problems of the form (MCP) include computer network design
[Cantor and Gerla 74], [Magnanti and Wong 84], traffic assignment [Bertsekas and
Gafni 82], [Dafermos 80], [Dantzig, et al, 79], [Feijoo and Meyer 84], [LLawphongpan-
ich and Hearn 83], [Pang and Yu 84], hydroelectric power systems [Hanscom, et al,
80], and telecommunications networks [McCallum 76]. In many cases, the network and
the number of the commodities are large, so such problems can have hundreds of
thousands of variables. To solve MCP, several algorithms have been proposed. Among
the best known are (1) the Frank-Wolfe approach [LeBlanc, et al, 75]; (2) the column

generation approach [Leventhal, et al, 73]; and (3) the convex simplex approach
[Nguyen 74].

Among these algorithms, only the Frank-Wolfe method leads to the decomposition
of MCP into independent subproblems. The disadvantage of the Frank-Wolfe method is



that it converges very slowly.

To accelerate convergence and to allow for parallelism, the approach of [Feijoo
and Meyer 84] utilizes nonlinear separable approximation of the objective. Convex
separable network flow problems have been successfully solved by many programming
algorithms based on methods that iteratively generate search directions by solving
linear subproblems. Five algorithms that have been used are the Frank-Wolfe [LeBlanc,
et al, 75], [Collins, et al, 78], convex simplex [Nguyen 74], [Rosenthal 81], reduced
gradient [Murtagh and Saunders 78], [Dembo and Klincewicz 81], [Beck, at el, 83],
piecewise-linearization [Kao and Meyer 81], [Kamesam and Meyer 84], [Monma and
Segal 82], and Newton methods [Klincewicz 83]. Convex piecewise-linear networks

can be reformulated as linear networks, allowing solution by extremely fast algorithms.

The PL-approximation algorithm of [Kamesam and Meyer 84] is thus adopted in
[Feijoo and Meyer 84] as a subroutine to solve the separable subproblems. It has
worked successfully for small problems [Feijoo and Meyer 84,85], but for large-scale
problems, some drawbacks appear. The computing time per major iteration increases
rapidly after several iterations, indicating difficulty in dealing with the whole feasible
set. To remedy this, we incorporate in the algorithm both the trust region theory
developed in [Meyer 85] and a more flexible method of constructing separable approxi-

mations.

1.4 TRAFFIC ASSIGNMENT PROBLEMS

The assignment of traffic to a transportation network arises when urban traffic
planners wish to estimate the flows that will result if the existing traffic network is
modified. The areas linked by the traffic system are divided into zones. The directed
graph composed of links and zones forms a transportation network. To model the

equilibrium flow of traffic in a transportation network is to determine the number of




trips made between each pair of zones during a particular time of the day. The
corresponding optimization principles are due to Wardrop [Wardrop 52]:

Wardrop’s First Principle: The principle of equal travel times. That is, in an optimal
assignment, the travel time between two points will be the same on all routes used and
not greater than the travel time on any other path between the two nodes.

Wardrop’s Second Principle: The principle of overall minimization. This states that
the trips or movements are routed so that the sum of travel time for all the movements

is a minimum. This is equivalent to minimizing the average travel time.

Wardrop’s first principle has been shown to be the most relevant for urban traffic
studies, whereas the second principle is applicable in a centrally controlled traffic sys-

tem such as a railway. We give the mathematical formulation as follows.

Formulation

Consider a transportation network consisting of m nodes and n arcs. A node
represents either a zone or an intersection of roads. A two-way traffic road arc is
represented by two directed arcs of opposite directions. For convenience, it is assumed
that nodes are numbered from 1 to m and arcs from 1 to n; the first 1,2,, --- , %k
nodes are the origins. Let #; 20 be the total flow on arc j. Given the number of trips
O, between origin-destination pair ¢i and n increasing arc delay functions c;j(t), a
traffic pattern satisfying one of Wardrop’s principles is the optimal solution to the fol-

lowing problem:



rmni fi@)
j=1

J eWi

(l=1, cee,m, q:l, ’k)

xqj 2 0,
k
tj = XX
q=1
where
xg; = flow from origin ¢ on arc Js

W; = set of arcs originating at node i;

V; = set of arcs terminating at node i;

bgi =— Oy ifi is a destination zone

=210ql if i =q
=0 otherwise .

The corresponding objective functions are

4

J
fi@)= _f cj(x)dx (Wardrop’s first principle)
0

=t; ¢; () . (Wardrop'’s second principle)

2 Xgj— X Xgj=bgi s
JsVi

(TAP)

In traffic applications the functions c; are convex and thus the convexity of f; for non-

J

negative flow is easily shown. For example, the delay function c¢; used in a study of

Winnipeg and Hull, Canada, is

c,-(z)=a,-<1+oc,-<§—_—)ﬁf>,

J
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and that used in Sioux Falls, South Dakota by the U.S. Bureau of Public Roads is

¢;(z) = a;(1+0.15(-=)"),
pj

where a; is the travel time on arc j at mean free speed, o;, B; are parameters, and p ; 18
the designed capacity of arc j. If we use a node-arc formulation for the flow conserva-
tion and consider each origin as the source of a commodity, then the problem above is
exactly an MCP discussed earlier in Chapter 2. If the objective function is linear, then
TAP is equivalent to k one-source-to-all-node shortest problems. Thus, if we use linear
approximation approach (e.g. the Frank-Wolfe algorithm), the linear cost ¢; in each arc
is nonnegative. By the nonnegativity, an efficient Dijkstra’s algorithm[Dijkstra 59]
takes O (m 2) steps for a one-source-to-all-node shortest problem. Furthermore, if the

network is sparse (n <<m2), Johnson-Dijkstra’s algorithm[Johnson 73] takes only

O (nlogm).



11

CHAPTER 2

REVIEW OF PREVIOUS WORK

In this chapter we will review three well-known feasible direction algorithms that
may be used in solving MCP. Let D denote diag(A, A, ..., A). A feasible direction
algorithm has the general format:

Step 0: Obtain a feasible starting point x

Step 1: Compute a search direction p such that Dp =0 and Vf -p < 0.

Step 2: Determine a step length a* to be the (approximate) solution to

min f (X + op)
o>0

Step 3: Set
X X+o¥p

Step 4: If x satisfies some convergence criterion, stop. Otherwise, goto Step 1.

The primary difference among feasible direction algorithms lies in the manner in
which the search direction p is calculated. In sections 2.1, 2.2, 2.3, we will discuss the
following methods separately:

(1) the Frank-Wolfe method,
(2) the reduced gradient method, and
(3) the piecewise-linear method.
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2.1 THE FRANK-WOLFE METHOD

The Frank-Wolfe method is the most straightforward approach for solving MCP.
Given a feasible point at iteration i, say x', we find another feasible point, say y', by
solving the linear program

min Vf (x')y

Dy=b

y=0
where Vf (x°) is the gradient of f evaluated at x'. LP can be easily decomposed into k
small subproblems and can be solved in parallel. We then search the line segment
between x* and y* for an improved solution x**!, (i.e. p=y' — X’ in Step 3) and the pro-
cedure is repeated. At each iteration, a lower bound on the optimal objective function
value is calculated; termination occurs when difference between f (x*) and this lower
bound is smaller then a preassigned tolerance. The most appealing characteristic of the
Frank-Wolfe method is that it can exploit parallelism to solve MCP, which has special

constraint structure. Nonetheless, the main drawback is that it may experience slow

convergence.

2.2 THE REDUCED GRADIENT METHOD

The reduced gradient method was first proposed by Wolfe[Wolfe 67], and was
then elegantly coded as MINOS by Murtagh and Saunders[Murtagh and Saunders 78].
The decision variables are partitioned into three sets

X = (X, Xg, XN);
where xp are the basics, Xg are the superbasics, and xy are fixed nonbasics. Each com-
ponent of xyyis 0. The columns of D are similarly partitioned;
D =[B, S, N]

where B is square and nonsingular. Hence the basic variables may be expressed as a
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function of the superbasic and fixed nonbasic variables,
xg = B71b — B1Sxg — B"INxy = y(Xg, Xy) -
Then the objective function may be written as:
F(xg,xy)=f ((Xg, Xy ), X5, Xy) -
Temporarily ignoring the bounds on xg and fixing xy, MCP may be replaced by the fol-
lowing reduced problem:
min F (Xg, Xy)
st.xg20.

The gradient of F with respect to xg
oF _of of B-ls

Oxg OJxg Oxp

is referred to as the reduced gradient. It is computed as follows:

(1) compute the dual variables & by solving

-9
B = aXB ’
oF
) eva11‘1ate oxg
oF _ of .
aXS aXS

Algorithm

Let X = (X, Xg, Xy) denote the current values of x.

1. Evaluate —E-)E- at X.
aXs

2. If certain optimality tests on the reduced problem, using the current set of toler-

ances, are met, continue. Otherwise, goto step 7.

3. Compute 9F using a formula analogous to —Qf—
oxN Oxg
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4. 1f .é@f__ 2 0, continue. Otherwise, goto step 6.

XN

5. If the optimality tolerances on the reduced problem are "tight", stop. Otherwise,
replace the current loose tolerances by the tight ones and goto step 7.

6. Add one or more nonbasic variables to the superbasic set.

7. Calculate the search direction vector dg and maximum stepsize oig for the super-
basic variables. The scalar og is the largest value of o such that Xg+ adg
satisfies the bounds on xg.

8. Calculate dp, a search direction vector, and maximum stepsize o for the basic
variables. The vector dg is computed by solving:

Bdg = -Sds.
9. (Line Search). Let o, = min {003} and d = (dg, dg, 0). Find an approximate
solution, o* , to the one dimensional optimization problem:
min f (X + od)
st. 0<a<o
10. Replace x by X + ad. If o* < o goto step 1.
11. If a basic variable becomes 0, make it nonbasic and replace it with a superbasic.

Goto step 1.

The search direction dg in step 7 can be obtained either by the quasi-Newton algo-
rithm or by the conjugate gradient (CG) algorithm. Both methods require only first par-
tial derivatives of the objective and achieve rapid convergence. However, the quasi-
Newton algorithm demands too much storage, which is a great drawback especially in

cases of large-scale problems.
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2.3 THE PIECEWISE-LINEAR METHOD

The piecewise-linear method for MCP was proposed in [Feijoo and Meyer 84].

Basically, our method in this thesis is an extension of this method.
Algorithm

1. Find a separable approximation f S (x) at current feasible solution X.
A separable function f § (x), which replicates f (x) if only a single element of x
is changed, is used to approximate f (x). That is
FfE=f®+ f:l[f( o Eia Fi1 Xy Fjags Fjas - )~ f @]
j=
where X = (X1, X2, ..., Xp )
(In solving MCP, the resulting separable programming problem can be decom-
posed into k& small subproblems and can be solved in parallel.)
2. Generate a separable piecewise-linear approximation f PL (x)(see Fig. 2.1).
3. Solve the implicit linear program to get a new solution point y.
The approximating piecewise-linear program can be reformulated as a linear
program by replacing each arc by as many arcs as the number of the piecewise
segments(see Fig. 2.1). By the method proposed by [Kamesam and Meyer 84],
it can be solved implicitly by a 2n-dimension linear program.
4. Do line-search for A >0 on X + A-(y—X).
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f(x)

pi(x)

cl<c2<c3

v
»

pl(x)

A4

( plecewise-linear )

cl

c2

c3

( linear, bounded flows )

Figure 2.1 Piecewise Linear Approximation Method
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CHAPTER 3

SCALED SEPARABLE APPROXIMATIONS

3.1 INTRODUCTION

To obtain a good objective function approximation, we consider a class of scaled
separable approximations in this chapter. This scaling has the property that the true
objective function is bounded below and above by separable functions corresponding to
appropriate choices of the scaling parameters. Letting f be convex and differentiable,
for a feasible point x € Q, we define a shifted function on R ke

h(d) := f (d4x) — f (%).
This function corresponds to the change in the objective function resulting from a

change of d in the current flow x. Thus, MCP is equivalent to
min h(d) st. deQ,:={d | x+deQ}. MCPy)

For consistency , we list the notation associated with 2 in the same manner as

before:

Notation
d, = ( dq 1s dqz, cer dq,, ) (flow vector for changes in commodity g );
d; = ( dlj, d2j, s, dkj ) (flow vector of changes in arc j );
d=(d;,dy, -+ ,d;) (full set of flow vector changes );

hi () =F;( +2,x45) — (X %4;) (shifted cost function for arc j ).
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Definition

For a 0 > 0, a scaled separable function of h with scale factor ¢ is defined by
1
rS(d,0) =3, ¥, < hi(0d;)).

Some simple examples of scaled separable approximations are given below. The

upper and lower bounds for ~ are from corollary 3.4 in section 3.3.

3.2 EXAMPLES OF SCALED SEPARABLE APPROXIMATIONS

Examplel f(x)=x% (k=1,n=1)
[1] X =0: (x denotes current point )

h(d)=h,d)=d?
1S (d,0) = -(]-;-(Gd)2= od?

(1) o =1 (upper bound )
hS(d,1)=d*=h(d)
(2) 6=0(h5(d,0):=h’0)d ) (lower bound)
h5(d,0)=0
2] x=1:
h(d)=hy(d)=(+d)*~1 = 2d+d?
1S (d,0) = -'(1;(2(Gd Y+(od ) = 2d +od>

(1) o=1 (upper bound)
hS(d,1)=2d+d*=h(d)
(2) o=0 (lower bound)
hS(d0)=2d (=f'(1)d )
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Example2 f(x,y)= (x+y)2 (k=2,n=1)
[1] x.y) =(0,0): ((x,y) denotes current point )
h(d) = h1(dqy+d o) = (d11+d4)* (see Fig. 3.1)

Figure 3.1 h(x,y) = (x+y)?

1 1
hs(d,0) = —(;_-(cdu)2+~6—(cd21)2 =o(d}+d%)

(1) o=2 (upper bound ) (see Fig. 3.2)
hS(d,2)=2(d}+d%)

(2) =0 (lower bound)
h*(d,0)=0(=Vf(0)yd)

3 o=1

RS@d ) =d3+d3
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Figure 3.2 h(x,y) =2x2+2y?

21 &.y)=(1.1):
h(d) = hj(d11+day) = (14d 1p+14d 51 P =(1+1)% = (d1+d 51 ) +4(d 1 1+d 51)
hS (d,0) = —é——((odu)z-i—zl(cd11))+—é—((0d21)2+4(6d21)) =o(d} +d 3 WA(d+ds)
(1) =2 (upper bound )
1S (@ ,2)=2(d{ +d3) }HA(d y+dy)
(2) o=0 (lower bound)
1% (d,0) = 4(dyy+dy) (= VF (1,1)d)

Precision

The error function in example 2 is o(d # +d % )—(d ;+d4;)*( independent of the
base point ). The contours of error functions for 6 =0, 6= 1, and ¢ =2 are shown in

Figure 3.3, 3.4, and 3.5.



-1.0 0.5 0.0 0.5 10
Figure 3.3 Error Contours for 6 =0
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-1.0 0.5 0.0 0.5 1.0
Figure 3.4 Error Contours for c=1
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d1
-1.0 05 0.0 05 1.0

Figure 3.5 Error Contours for 6 =2

3.3 PROPERTIES OF SCALED SEPARABLE FUNCTIONS
Observe that hj and h(d)= Zj hj (Zq dqj) are convex, and hj 0)=0 for

j=1,2, .-+, n. By these properties, we have the following lemﬁna.

Lemma 3.1 2 (d) < 45 (d,k).
k
Proof: By the convexity of h;, Z —Ilc— =1, we have

1 k1
hj(quj)'—'hj(Z?' 276“
q:l q::] =
n
The lemma follows by applying 3 on both sides. [J

j=1

We now show the monotonicity of 45 (d,").
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Lemma 3.2 For 0 < 6, < 6,, h%(d,0y) < h5(d,0,).

Proof: By the convexity of 4;, and k;(0) = 0, we have

0'2—0'
The lemma follows by applying Z 2 o1 ! on both sides. [
j=lg=1
The following lemma shows that the limit as 6—0 of the separable functions

13 (d,0) is the linearization approximation at 0.

Lemma 3.3 For fixed d, 5 (d,0) » VA(0)d = Vf (x)d, as 0 — O*.
Proof: By L’Hospital’s Rule, we have

hJ (quj ) —_ 1 ’ ’
o0t -0
and by the definition of k;,
oh or(0)

/e
9d,; ~H O =1 R = o, .

Accordingly, if we define kS (d,0) :=Vh (0)d, then h® (d,") is an increasing con-
tinuous function on [0,e), and the next corollary notes that the choices =0, o=k

yield lower and upper bounds respectively on the objective function.

Corollary 3.4 /5 (d,0) < h(d) < 15 (d.k).

Thus, 45 (d,k) serves as an upper bound of h(d), while hS (d,0) serves as a lower
bound of A4 (d). To construct a good separable approximation of the objective is a key
factor in the efficiency of the trust region method. The continuity and monotonicity of
hS (d,’) indicate that with a proper G, hS (d,0) is a suitable approximation. We allow
the scalar ¢ to be adjusted at every iteration of our algorithm. The amount of increase
or decrease of ¢ is determined by the ratio of the true and approximate objective func-

tion improvements in the preceding iteration.
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The next lemma is used to show that the direction obtained from the separable

program (in which the scaled separable approximate function replaces the objective) is

a descent direction.

Lemma 3.5 For ¢ =0, VA5 (0,0) = VA (0).

Proof: For ¢ =0, the result is trivial.

Foro >0,
ohSdo) 9 1 L
adq] = aqu ( p hJ(qu])) = h] (quj )
The lemma then follows from
oh* (0,0) oh(0)
T2 0= ——%. O
adqi ! adqj

Assuming a ¢ has been selected, we consider an approximating separable program

min 45 (d,0) s.r. de Q, (SP)

n k

If we define h(d,.0) = 3, hy;(d,;,0), then the objective h5 (d,0) = ¥ h3(d,,0). The
Jj=1 g=1

separable program then can be decomposed into £ subprograms of the form:

min h3(d,,0) st. d, ey ={d; Ix,+d; eQ, ) (SP,)

The next lemma establishes the descent relation between f and its separable

approximations.

Lemma 3.6 For 6 20, if hS (d,0) <0, then d is a descent direction of f at x.
Proof: For ¢ =0, the result is trivial.
For 6 > 0, by the convexity of A% (-,6) and % (0,0) =0, we have
0> k5 (d,0) 2 k% (0,0) + VA5 (0,6)-d = VA (0)-d = VF (x)-d
So d is a descent direction of f atx. O
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The final step in the approximation process is to replace hS by a piecewise-linear

h PL

approximation RPL. Specifically, let be the piecewise-linear approximation of hS

with fixed mesh-size 8 > 0. That is,

PL — 1,pm
R (d,0) =33, O‘hj (ody;) ,
where the functions h}) L(O'dqj) are piecewise-linear functions that agree with hj (quj)
at a set of mesh points to be described below. We define PLP and PLP, analogous to
SP and SP,:

min AFL (d,0) st deQ, (PLP)

. 1 PL
min k,~(d,,0) s.r. d, SQXq. (PLP,)

Moreover, these subproblems can be solved in parallel [Feijoo and Meyer 85]. If the
trust region contains the original feasible set, then the method of Feijoo and Meyer
corresponds to ¢ =1, while the Frank-Wolfe method [LeBlanc, et al., 75] corresponds

to 0=0.

Since AL > 1S, the preceding lemma can be used to show that a descent direction

is obtained if the optimal value of PLP is less than zero.

Lemma 3.7 For 6 2 0, if kL (d,0) <0, then d is a descent direction of f at x.

In the algorithms below, we use nPL

as the approximating function. This approxi-
mation has the advantage that the resulting subproblems may be solved as linear pro-

grams.
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3.4 EXTENSION TO GENERAL LINEAR CASE

In this section we will extend the scaled separable approximations to a more gen-

eral class of nonseparable functions. Let
K
g(d) =g (cd)=g1(X c dy),
q=1
where d, csRK,gl :R— R is convex with g,(0)=0,and g :RX 5 R.

Definition

For a 6 > 0, a scaled separable function of g with scale factor ¢ is defined by
s K1
g (d,0) = Y, —g;(cc,d,).
g=1C

Similar to the foregoing section, we have following lemmas.

Lemma 3.8 g(d) < g% (K 1)> where K ; is the number of non-zeros in c.
K

1
By the convexity of g4, and ), L. 1, we have
q:]_ Kl

Proof:

S 1
gl(chdq)=gl( p quq)=g1( > ‘E"chqdq)
1 c #0 c #0™1
<Z—1—' <ch>-§—l—- Kqc,d,). O
< K181 16444 lKlgl 1Cq Gq )-

Lemma 3.9 For 0 <6, <0,, g5(d,07) <g5(d,0)).
Proof: By the convexity of g, and g 1(0) =0, we have

0 G0y
81(01¢4d5) = 81( —6'2"0'2% dg+

O,
'62'0 ) < 'G—Zg 1(0'ch dq)

K
1
The lemma follows by applying Y, 67 ! on both sides. O
q=1



Lemma 3.10 For fixed d, g° (d,6) — Vg (0)d as ¢ — 0*.
Proof: By L’Hospital’s Rule, we have
lim g l(o.cq dq )

= lim g,'(0c,d,)c,d, =g81'(0)cydy;
0'-—-)0+ o G-—>0+ 7

and the lemma follows by the definition of Vg

O __ .
adq =£1(0)c,. O

We now define g5 (d,0) := Vg (0)d.

Corollary 3.11 gS (d0)<gd)<g’W@K V-

Lemma 3.12 For 6 20, Vg° (0,0) = Vg (0).

Proof: For ¢ =0, the result is trivial.

Foroc >0,
9g5do) 9 1 ,
adq - adq (_(;g l(ocq dq )) =81 (ch dq)'cq .
The lemma then follows from
92500 _ o _ 920
3, = °! Orcq = ad, -

Lemma 3.13 For 6 2 0, if gS (d,0) <0, then d is a descent direction of g at 0.
Proof: For ¢ =0, the result is trivial.
For 6 > 0, by the convexity of g5 (-,6) and g5 (0,6) =0, we have
0>g5(d,0)2g5(0,0)+ Vg5 (0,0)-d=Vg(0)d

So d is a descent direction of g at 0. O
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The results in this section can be extended to the nonseparable functions of the

form

J
g(d) = 3 g;(c;d),
j=1

where
d,cjeRKforj=1,--,J,
gj :R—R isconvexwithgj(0)=()forj=1, .-+ ,J,and
g :RE SR,

The function class in the previous section is a special case when K =k,J =n and
c=(10,.,0,1,0,.,0,1,0,..,0)
c,=(0,1,.,0,0,1,..,0,0,1,..,0)

c;=(0,0,..,10,0,..,1,0,0,..,1).
Results analogous to lemmas 3.8-3.12 are then easily established for g(d). For each
term g; the value of ¢ needed to guarantee an upper bound is the number of non-zeros

IIle.
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CHAPTER 4

TRUST REGION METHODS

4.1 INTRODUCTION

The trust region technique for unconstrained nonlinear programs was first
described in [Moré and Sorensen 79], [Fletcher 81], [Sorensen 82] and was further
developed by a few other authors to solve constrained problems: [Zhang, et al, 84],
[Vardi 85], [Meyer 85]. In this chapter we will discuss two types of trust region

methods for a general nonlinear program with linear constraints as follows:

min f (X) (NLP)

5.t Ax<Db,
where we assume that f is a continuously differentiable convex function on the feasible

set X :={x | Ax<b} cR" and A is an mXn matrix.

A trust region means a proper neighborhood in which an approximating objective
function is defined so that the original objective function is not too far from the approx-
imating one. Discussed in the following two sections are a linear trust region algo-
rithm, presented in [Zhang 84], and a piecewise-linear trust region algorithm, proposed
in [Meyer 85]. The approximating function in section 4.2 is linear, while in section 4.3
it is piecewise-linear. Because both methods are of iterated linear program type, they
are suitable to tackle very large-scale problems. From the theory discussed in section

4.3, we develop in the next chapter an algorithm to solve MCP, a special case of NLP.
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4.2 A LINEAR TRUST REGION ALGORITHM

The linear trust region algorithm(I.TR) has a prototype just as the Frank-Wolfe
algorithm does in Chapter 2. That is, at each iteration we solve a linear program with
linear approximation objective function. Moreover, in LTR a cubic constraint is
imposed on the original constraints to form a trust region at each iteration. Unlike
Frank-Wolfe algorithm, LTR does not do a line-search but just decides whether to
accept the solution point or to reject it. The choice of neighborhood and the acceptance
or rejection of a trial point are determined by the ratio of the improvement in the origi-

nal objective function over the improvement in the linear approximation function.

Given a feasible point x in NL.P, we define a "shifted" function A (d), where d
denotes the difference between x and its potential successor and 4 is the difference in
their function values:

h(d) :=f (d+x) - f (x).
Note that d =0 thus corresponds to x, with #(0) =0, and h(d) <0 if d + x has a lower

objective function value than f .

At each iteration of the algorithm to be defined below, we solve a linear approxi-
mating problem LP(a,x):
min hL (d) := VA (0)-d
st. Ad<b, lldll<a,
where o is the trust region parameter ,b :=b — Ax, and | |d| | represents the /., norm.

Observe that Ad <b is equivalent to A(x +d) <b. a- (0,x) will denote any solution of

LP(o,x). We will omit argument x if not ambiguous.

To know when to stop the algorithm, we need to develop optimality conditions.
The following lemma states first-order optimality conditions, involving trust region, for

NLP.
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Lemma 4.1 x is an optimal solution of NLP if and only if d” =0 solves LP(c.x) for
o >0.
Proof: Suppose LP(c,x) solved by d =0
=> KKT for LP(¢.,x) satisfied at d =0
=> KKT for NLP(x) satisfied atd =0

=>d = 0 is optimal for NLP because of convexity of h(d).
Analogous argument holds in other direction. [

We now state the algorithm:
LTR Algorithm

step 0:

Select positive o, and 0, scalars 0 < py< p; <py<land B> 1.
Seti =0. |

step 1:

Find x° satisfying Ax <b.

step 2:

Solve LP(oci x), obtaining an optimal solution dl.

step 3:

Compute the actual change k% = h(dL) and predicted change hiL = pL(dL).
If Kl =0, stop.

Otherwise compute the ratio of actual to predicted change

. ., hi
p' = p(oc‘ X)) = -;l_zL_
step 4: (see Fig. 4.1)
i

If p’ < pg, then o _(_x_, goto step 2; (case 4)

B
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otherwise take x**! « x‘ and update o’*! by
max{ -%i—,_q} if p* <py; (case3)
ol =4 max{ Bo ,QL_} if p' = py; (casel)

max{ of ,_q_} otherwise. (case2)

\.

i « i+1 and goto step 2.

In the algorithm, the trust region is defined by the constraint | Id| | <, and the
ratio p is used to judge if o is of proper size. A good test is to check if the predicted
and actual changes at optimal solution of LP are close. If p is above the upper limit p,,
size of trust region o is multiplied by B; and if p is below the lower limit p;, o is
divided by B. We can choose p, =0.9 to 0.95 because p is no more than one by the
convexity of f. A key point to guarantee the convergence in the trust region methods is

that the initial value of the trust region size for each distinct x* is at least o,
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case 1
Y I
I y |
I
: X /’i next point = y
I !
L ——— 1
case 2
Y I
|
: X /,E next point = y
| |
L _J
case 3
r _____ -1
y !
| !
' — 11 next point = y
o
L _l
case 4
r—--- l
| Yy
I . I next point = X
| X |
| I
L _J
x current point trust region
for next iter

Tuti i - .
¥ solution point = trust region
L _ | for current iter

Figure 4.1 The Linear Trust Region Scheme




34

Before we prove the convergence theorem, we need some lemmas.

Lemma 4.2 For A € [0,11, k% (d" (Aw)) < T (Md” (o)) = AL (dF ().

Proof: The left inequality for h* follows from the feasibility of Ad” (o) for the trust
region corresponding to Ac.. The right equality follows from d~(0) = 0 and the
linearity of kL. O

Lemma 4.3 If for some a, hF(d‘(a)<0, then for any py<1, the inequality
p(\a) = py holds for all sufficiently small A > 0.
Proof:
- h(dk )
AQL) = e
P rL (& ()
_ i@ Qa) +o0a)

Kt (@ (o)

o (\0)
ht (@ (Aar))

o (\Q)
ALl ) |
The result follows by noting that the last ratio tendstoQas A — 0. [

In order to guarantee that the improvement ratio behaves properly in the neighbor-

hood of x, we now prove that KL (dk (0,x),x) is continuous.

Lemma 4.4 hL (dL (o,x),x) is a continuous function of x and o for x ¢ X and o > 0.

Proof: Suppose (yi o) = (x,00) where yi €X and o 20, and let h,-*L denote the
optimal value of the problem corresponding to o). By considering an
appropriate convergent subsequence of optimal solutions it follows that

lim inf A > KL (d (0u,%) %)
To establish the other required inequality,
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lim sup h,-*L < hE (dh (0.x%),%),
we construct a sequence of feasible solutions for the sequence of problems

LP(yi ,o0) as follows: let z ;== x + al (0., x), where d- (o,x) is any optimal solution
of LP(x,0), (we assume at (o,x) #0, since the result is trivial if
hE (@& (0,x),x) = 0) and define A; and d’ such that y* + d’ =z and such that A; is
the largest scalar in [0,1] such that |12; d 11 <of. Since d° — dl(a,x) and
of — o, it follows that A; — 1. Since z € X, the convexity of the feasible sets of
the problems LP(y* ,o}) implies that the A, d’ form a sequence of feasible solu-
tions for those problems. Therefore,

lim sup AL <lim AL (\;d' ') = kL (@ (ax),x). O
i

The key factor in the validity proof of the algorithm is the guarantee of a minimum
improvement ratio in a neighborhood of non-optimal points. In the following, py is a
parameter in (0,1), x £ X, and pi (o) denotes the improvement ratio corresponding to X’

with trust region parameter oL.

Lemma 4.5 If X — X, where X is not a solution of NLP, then there exists an 0.> 0
such that p’ (o) = pg for all o & (0,0r) and all X' sufficiently close to X.
Proof: By using the uniformity of the approximation error and the continuity of
rE (dL (0,x),x), the proof used for Lemma 4.3 may be extended as needed for
this result. 0O

Theorem 4.6 If X is an accumulation point of a sequence generated by Algorithm
LTR, then X is an optimal solution of NLP.
Proof:
Assume the result is false, and let { xi} be a subsequence such that X 5% Using

the preceding lemma, we consider those sufficiently large i such that p (o) = py for
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allae (O,&). Moreover, since the initial value of o for each distinct x* is at least o,

@
B

region parameter is not reduced below this quantity to achieve the required

it is the case that for arbitrarily large i that of 20" = min{ —,a} (since the trust

improvement ratio) and pi 2 pg. Letting 0 := rL (L (0" )X), we then have
hi(d%) < peh™ @*)
<py6o/2
However, for x! sufficiently close to X, the relations
F&-f &) <k’ (@)

< po'eo 2
contradict f (x*) » f(X). O

4.3 A PIECEWISE-LINEAR TRUST REGION ALGORITHM

Another type of trust region method for NLP and will be discussed in this section
is a piecewise-linear approach, which is developed by Meyer[Meyer 85]. The
piecewise-linear trust region algorithm (PLTR) utilizes a separable convex, piecewise-
linear approximation to f (note that f itself is not assumed to be separable). The prin-
cipal advantage is that it is generally more accurate (particularly on the translated axes,
where it even enjoys an accuracy advantage over quadratic approximations) than linear
approximation, and yet still yields subproblems that may be solved by linear program-
ming.

We now define a separable approximation of h by first considering the single-
variable functions obtained by fixing (at 0) all variables but one (in this definition, ¢ is
the 7 unit vector):

sj(d;)=h(d;el) (j=1,..n).
Not that s; thus corresponds to the restriction of 4 to the d;-axis, and the convexity of
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f implies the convexity of s;. A separable approximation of h is then given by sum-

ming these single-variable functions:

s(d) := ;_‘,sj(dj).
Jj=1

For computational purposes, we carry out one final approximation step by first
defining §;(d;) j =1, -+ ,n) to be the convex piecewise-linear function obtained by
linearly interpolating between the values of s; at a set of points (to be defined below) on

the dj—axis, and then letting
. n
h(d) = ¥ 5;(d;) .
j=1
Note that % is a separable, convex, piecewise-linear function with k(0) =0, and
that # may be thought of as an approximation of the separable function s. Also, we

restrict the grid points, on which the piecewise-linear function §; is defined, to include

the point 0 as well as additional grid points spaces not more than o apart.
At each iteration of the algorithm to be defined below, we solve a piecewise-linear
approximating problem PL(0.,x):
min £ (d)
d
st. Ad<b, IldlI<a,

We now state the piecewise-linear trust region algorithm:
PLTR Algorithm

step 0:

Select positive af, and o, scalars 0 <pg<p; <pp<land B> 1.
Seti =0.

step 1:
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Find x° satisfying Ax <b.
step 2:
| Solve PL(oci X ), obtaining an optimal solution aL
step 3:
Compute the actual change k' = h(d*L) and predicted change /' P= R (d'Ph)y.
If h'L =0, stop.
Otherwise compute the ratio of actual to predicted change

. A
p' = p((l‘ X)) = ?
step 4:
i i

If p’ <pg or —h}}l—L— <pp then o « 2, goto step 2;

otherwise take x**! «— x’ and update oi*! by

~

i ,
max{ —%—,g} if p* <pys
oftl =4 max{ Bod ,_(_x_} if p' 2 po;

max{ o ,a} otherwise.

.

i « i+1 and goto step 2.

To prove the convergence theorem for PLTR, we need to have more discussion

than that in the preceding section.

Lemma 4.7 Let the grid size for /(d) be no greater than o and let | Id!| <. Then
the following error bounds hold.

(@) h(d)-hE@=0(l1dl 1) =0(x)
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(b) s (d) — A (@) =0 ()

(©) s(d) - F(d) =0 (a?)

@ A* @) - h(d) =0 ()

) h(d)—h(d)=0(0)

(®) hE (d (o)) - A (@ (@) = 0 ()

Proof: (a) Follows from differentiability of f .
(b) Follows from Vs (0) = V& (0) = VAL (0).
(c) This is a property of piecewise-linear approximations of separable functions;
see [Feijoo 85].
(d) Follows from (b) and (c).
(e) Follows from (a) and (d).
() By part (d) and the definitions of the terms,
¢ EICHEAC ACHETIC JCHERT(H

However, since AL (d) </ (d), it follows that AL (dX (o)) < hPL (dPF (), and the
combined inequalities A% (dF (o)) < hPE (d7F (o)) < KT (A (@) + 0 (0t) yield (D).
O

The following lemma establishes some useful convexity properties of the optimal

value functions.

Lemma 4.8 For A € [0,1], £ (d™ (o) < h (AdPE (o) < MR (@PF ().
Proof: The left inequality for 4 follows from the feasibility of AdPL (o) for the trust
region corresponding to Ac.. The right inequality follows from dPL (0) =0 and
the convexity of . O
We now show that an improved value for the approximation F may be obtained by

solving PL(X,0).
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Lemma 4.9 If x is not an optimal solution of (NLP), then for all o sufficiently small,
k(@7 (),%) < O.

Proof: Suppose there exists a positive sequence o; — 0 such that F (afL (0;)) =0 for all

i. Since # (dPL (o)) = hE (aF (o)) + 0 (00) by Lemma 4.7(f), setting o = o; , divid-

hE (" (o))

ing through by «;, and taking limits, yields — 0. However, since

1

X is non-optimal, for any fixed o =max; o;; we have by Lemma 4.1

hL (&~ (o)) <0 and, by Lemma 4.8, L (d* (%‘l--a)) < %'—hL (d* (o). Dividing

this inequality by o; yields

hE@E () pL
( < h (d: (@) , contradicting the con-

i

vergence of the left-hand-side terms to 0. [

By using convexity properties and error bounds, improvement in the approximat-

ing function 4 may be related to improvement in the objective .

Lemma 4.10 If for some &, h(d’2(®)) <0, then for any py <1, the inequality
p(AQ) = py holds for all sufficiently small A > 0.

Proof:
o)< 0D
h(d™" (Ao))
_ h@E ) + o (M)
T @ w)
o (o)
k@™* ()
o (A@)
M (@™ (@)
The result follows by noting that the last ratiotends to Oas A — 0. O
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Analogous to Lemma 4.4, we now prove that k (dP L (o,x),X) is continuous.

Lemma 4.11 4 (dP L (0,X),X) is a continuous function of x and o for x € X and o > 0.
Proof: Suppose (yi o) = (x,00) where yi g X and o 20, and let h",* denote the optimal
value of the problem corresponding to & o). By considering an appropriate
convergent subsequence of optimal solutions it follows that
lim inf h~,* > K (dPE (ox%),x).
To establish the other required inequality,
lim sup A; < (@7 (o,%),%),

we construct a sequence of feasible solutions for the sequence of problems

PL(y',0f) as follows: let z := x + d7L (0,x), where d™”

(o.,x) is any optimal solu-
tion of PL(x,0r), (we assume d’L (a.x) 20, since the result is trivial if
1 (dPL (0.,%),x) = 0) and define A; and d’ such that y* + d’ = z and such that A; is
the largest scalar in [0,1] such that |I1A;d’ |1 <of. Since d — d™(a,x) and
of — a, it follows that A; — 1. Since z € X, the convexity of the feasible sets of
the problems PL(y* ,o') implies that the A, & form a sequence of feasible solu-

tions for those problems. Therefore,

lim sup h~,-* <lim Eyd y) =h@*(ox)x). O
i

Let p‘(ct) denote the improvement ratio corresponding to x' with trust region

parameter o and p € (0,1). Analogous to Lemma 4.5, we have the following lemma.

Lemma 4.12 If X' — X, where X is not a solution of NLP, then there exists an >0
such that p’ (o) = p,, for all o € (0,00) and all x* sufficiently close to X.

Proof: By using the uniformity of the approximation error and the continuity of

k (dP L (0, x),X), the proof used for Lemma 4.10 may be extended as needed for

thisresult. O
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The main convergence theorem of the algorithm now follows in a straightforward

manner.

Theorem 4.13 If X is an accumulation point of a sequence generated by Algorithm

PLTR, then X is an optimal solution of NLP.

Proof:

the i

Assume the result is false, and let {x‘} be a subsequence such that X 5% Using
the preceding lemma, we consider those sufficiently large i such that
p(diP L (oc),xi )=pgforall e (0,&). Moreover, since the initial value of o for each

distinct x is at least o, it is the case that for arbitrarily large i that

; .o . . . .
of > o :==min{ —,a} (since the trust region parameter is not reduced below this

B

quantity to achieve the required improvement ratio) and p’ 2 pp. Letting
0y := 20 (oc* ),X), we then have
hi (diPL) < po_’{i (diPL)
< poporh (@h)
However, for x* sufficiently close to X, the relations
f (xi+1)_f (Xi) < hi (diPL)

contradict f (x*) » f®). O

For computational efficiency, the algorithm PLTR may be modified by bypassing

nitial ratio condition in step 2 whenever Kt (diP L ) < —1, where 7 is a positive toler-

ance.
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CHAPTER 5

A SCALED PIECEWISE-LINEAR

TRUST REGION ALGORITHM

We have discussed two types of trust region methods for general nonlinear pro-
gram with linear constraints in the preceding chapter. In this chapter we will specify a
piecewise-linear trust region method, called SPLT, for nonlinear multicommodity prob-
lem (MCP). SPLT differs from PLTR in the two aspects:

(1) The piecewise-linear functions used in SPLT algorithm are based on the scaled
separable approximations for the objective function discussed in Chapter 3.
(2) A simple inexact line-search is used at each iteration in SPLT if the improve-

ment ratio check is not satisfied.

Before coming to the algorithm itself, we will give an example in the first section.

5.1 A SKETCH OF THE SPLT ALGORITHM

The example shown below, with three commodities, three nodes, and six arcs, will

demonstrate the characteristics of SPLT.
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(1) Original Problem :

Consider an MCP as follows:

min f (X q3+95+x3; )+ f o( X 1oHx 90X, )
+ f3( X3+ 93+x33 ) + [ 4(X14+X04+X34)

+fs(xy5tx95tx35) +f 6(X16HX26+X 36 )

AX1 = bl
AX2 = b2
AX3 = b3

X1, X9, X3 20.

(2) Separable Approximation :

For simplicity, assume 0 is a feasible solution (otherwise shifted functions are
used). We can then approximate the objective function to get a separable

program:(Scaled separable approximation f"J are used in this step.)

min f 1G4 104 1063) + f 200 1)+ 20 +F 2(x3)

+ 3013, 3 o)+ 3(x33) + f 4@ 1)+ 4o+ 4(x34)

+ f s(eysrHf s(xas)yHf s(xss) + f 6Gc16)+f 6(X26)+f 6(X36)
Axl = bl

AX2 = b2
AX3 - b3

X, X0, X320,
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(3) Decomposition :

By rearranging the separable terms in commodity order, the problem can thus be
decomposed into three subproblems. At this step, the problem can be in turn solved in

parallel.

min f ey )+ 912 30 13f 4G+ 5G5S 6(x16)
AXI = bl s Xp >0

min f1(xg)+f 29+ 38 22)+f 4(aa)+f s asHS 6(xa6)
AXZ = b2 s Xo 20

min f;(ca)H 20caHf 33 4+ s(xa3s)HHf 6(x36)
AX3 = b3 s X3 20.

(4) Trust Region :

Impose a trust region with trust region size o, for each commodity ¢ on the above

problem.(X denotes the current solution and | |.11 denotes the infinity norm.)

min f0c; )+ 90 12 300130+ 40190+ 500150+ 6(X 16)

AX]_:bl, XIZO, llxl—i—ll | SOLI

min £+ 200 3003l f 4o+ sGasHS 6(Xa6)

Ax,=b,y, X520, 11xX1 1 <0y

min 03 9Geaf 33 f 4@+ 5@ 31 6 36)

AX3=b3, X320, HX3"'-)E3||SCX3.
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(5) Piecewise-Linear Approximation :

For each single variable x,;, the corresponding separable function fj will be

approximated by a piecewise-linear function f ¢ (see Fig. 5.1).

min f1;0010 4+ 1200104 1300 1)+ 14010+ 150G 15+ 160 16)

AX1=b1, XIZO, llxl‘ill I SOLI

min 001 4f 220020 +f 2300 030+ 240024+ 250X 25)+f 26(X 26)

AX2=b2, X220, ||X2—i2l | S(Xz

min f3; 00314 32003+ 330c32)+f 34(e 34 350ca5)+H 3606 6)

AX3=b3, X3_>.0, llx3-—§3llS0c3.

‘
’

separable function

piecewise-linear
approximation

:

trust region

Figure 5.1 The Piecewise-Linear Approximation with 4 Segments

for a Separable Function in the Trust Region
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(6) Ratio Check :

Let x be the current point and y be the solution in (5). Denote
FPE®) =3 i 4 (%gp)-

f&-f .
L@ - (y)

Calculate the improvement ratio p :=

(1) p=0.3: accept y,

(2) p <0.3 : get z by doing line-search, such as the golden-search or the bisection
f(x)—f(2)
-1

the ratio cannot exceed 0.3 for three evaluations in the line-search.

search, until a good ratio is obtained(that is = 0.3); or choose x if

The choice of the trust region for the next iteration is decided as follows(see Fig. 5.2).
(case 1) p 2 0.6 : keep the size of trust region unchanged,
(case 2) 0.3 < p <0.6 : reduce the size of the trust region,
(case 3) p <0.3 and cannot get a good ratio in line-search : reduce the size of the
trust region,
(case 4) p<0.3 and get a good ratio in line-search : reduce the size of the trust

region.

In next two sections, we will discuss the SPLT algorithm in more detail.




case 1

case 2

case 3

case 4

x current point

R
I I
|

| /y :
l |

X

| !
L _
- ]
| |
|

| /”":
| Yy,
| X |
| I _
I —— -
[
I //z:
|

1 X |
Lo _
= ]
[ |
| _y1
| . !
| < | %1
[ |
Lo e e |

y point before line-search

z point from line-search

r—
l

I
J
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next point = y

next point = y

next point = z

next point = x

trust region
for next iter

trust region
for current iter

Figure 5.2 The Trust Region Scheme in SPLT
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5.2 NOTIONS AND NOTATIONS

For the development of our algorithm, if x is a feasible solution of MCP, we define
notation as follows:
(1) the trust region :

Ay ={d, eR" | —0, <d ; <a j=1,..n }: trust region for commodity ¢
q

Ay = { deR™ | —0t, quj < 0, qg=1,...k, j=1,..,n } : trust region
o= (0o, -0 ) : trust region vector
o : threshold for o.
Y1> Y : reduction factors
(2) linear approximation :

d,f‘(ocq) :a solution of LP4(0;) ( min th (O)dq st dg € qu nAaq )

hL(d) := VA (0)d = Vf (x)d

d (0) : a solution of LP(0) (min AL (d) s.2. de Q NAy)
(3) separable approximation :

o : scale factor

o : upper bound of scale factor

d;(,,,0) : a solution of SP,(0;,0) (min (d,,0) s.t. dy €Qy NA, )

d’ (0,0) : a solution of SP(a,6) (min 25 (d,0) s.t. de Q; NAy)
(4) piecewise-linear approximation :

5q : mesh-size used in PL, ( Sq =0l /2} for some integer i )

O : mesh-size vector used in PL

PL . ;
d, “(a,,0,8,) : a solution of PL, (ct, .0.,8,)
(min 2}(d,,0,8,) s.1. d; €Qy NA, )
) q q
d?L (,6,3) : a solution of PL(c.,0,0)

(min AP (d,6,8) s.t. de Q,NA,)
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(5) improvement ratios :

hPE (L (0,0,9),0)
1S (8 (0,0),0)

n,0,0) = : ratio of piecewise-linear and separable

optima

Mo : threshold of n-ratio (0 <ng <1)

p(d,0) = —hP—}IlJ((—il’g)- : ratio of 4 and AfT atd

Po» P1> P2, P3 : thresholds of p-ratio (O <py<p; <1 <py<p3)
(6) the line-search :

L : maximum number of function evaluations per line-search

@5 (1) : Ith point in line-search

Where not ambiguous, some arguments of L, S, PL, dé‘, d,f, d:L, dL, ds , da’ L,
h, kY RS, hPE, m, p are omitted; and the current point on which these are based will
be added as needed. For simplicity, we add a superscript i on each item of notation to

express the association with the i th current solution x’.

The m-ratio check in (5) is used only for theoretical purposes. In implementation,
we can take the threshold 1 as a very small positive value so that we don’t need to cal-
culate the denominator of M if the numerator is greater than a tolerance. Alternatively,
the algorithm SPLT may be modified by bypassing the m-ratio check in step 2 when-
ever h(d™l) <-1, where T is a positive tolerance. The proof of the convergence

theorem is easily changed to take into account this modification.

The algorithm to be described below determines for each distinct x' a trust region
vector that provides at least a value Mg for the n-ratio and a value pg for the p-ratio.
This is accomplished in two steps: (1) the bound for the M-ratio is attained by refining
the mesh-size as needed in the piecewise-linear subprograms, and (2) the bound for the

p-ratio is attained either by decreasing the trust region vector o as needed, or by doing a
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line-search. In addition, we also use a suitable scale factor to adjust the objective
approximation in order to achieve pg-ratio quickly. The use of the line-search in our
algorithm (when the p-ratio bound is not initially satisfied) is not shared by the tradi-

tional trust region methods.

5.3 THE SPLT ALGORITHM

step 0: initialization:
Select real numbers ¥;, Y, O, Pg P15 P2> P3: Mos o, and integer L;
Select initial values o and 0'0;
(with restrictions O0<7y, <y <1, O<a<a’, 0<py<p;<l<p,<p;
0<my<1,0<0’<0,0<L)
Seti =0;
step 1: find a feasible solution:
Findx"e O;
while tolerance of solution not satisfied do
step 2: solve piecewise-linear programs:
i« i+l;
( refine mesh until N-ratio satisfactory )
for g =1,k
8; - 2&5;
( reduce mesh size by factor of 1/2)
do 8; - 6(;' /2;
solve PL, (oc‘; ,8;' X
until BFHAPH82)) < nghy(dY)

endfor;




step 3: do p-ratio check:
p' < p@™)
if p’ 2 p, then
step 4: no line-search needed:
x «x' +df;
case (update trust region size and scaling factor )
pP<p;: o « max{y,0of,a}, o' « min{26’,0};
pr<p <py: of & max{ya’,a), o' « of;
Pa<pi<ps: o o, «0.750;
pi>py: o «of, 0 «0.50';
endcase;
else
step 5: line-search:
( attempt to satisfy p-ratio check by line-search )
forl=1,L

h@d= @) .
hPL (dPL) ’
if p’ 2py then

pt

x —x +dS (), o « max{y,o 0}, 0 « min{26*,0}
goto step 2;
endif
endfor;
( p-ratio unattained; contract trust region )
o «10f; 6¢ « min(2¢,0);
endif;

endwhile

52
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Remarks:

1) In step 1, the feasible solution can be found by solving a linear network pro-
gram. The linear objective function in each commodity can be estimated by
f7(0) for each arc.

2) In the m-ratio check of step 2, S (dS (o)) can be replaced by a lower bound,
obtained by the primal method or dual method in [Kamesam and Meyer 84],
[Kao and Meyer 81] or by AL (d” ().

3) If needed, the line-search is used in step 5. We use golden-section search until
the check is satisfied or until a preset number of evaluations is exhausted,
whichever comes first.

4) The initial value of the trust region vector for each distinct x' is at least ., since
the value of x* changes only in step 4 or in step 5, where the new value of « is

set to at least o.

5.4 A CONVERGENCE THEOREM FOR SPLT

" Before proving the main convergence theorem, we consider two types of optimal-

ity conditions for MCP.

Lemma 5.1 x is an optimal solution of MCP if and only if d’ =0 solves LP(c,x) for
o>0.

Proof: It is same as Lemma 4.1.

Lemma 5.2 For 620, x is an optimal solution of MCP if and only if d® =0 solves
SP(c,0,x) for a > 0.
Proof: The result follows from the above lemma because kS and and k& have the same

gradient. [
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This lemma implies that if x is not a solution of MCP, then for any o >0 and
620, 45 (d*(@,0),0) < 0.

By arguments analogous to those used in Lemma 4.7, it may be shown that for any
0 e[0,6], h5(,0) =hPL(,0) + 0 (@) = h() + 0 (ci). By using the first of these proper-
ties, we establish the finiteness of the iteration in step 2 of algorithm SPLT.

Lemma 5.3 For 0<ny<1, a>0, aﬁd 0 <o, if x is not an optimal solution of MCP,
then N(0.,0,8) = 1, with & obtained from step 2.
Proof: Suppressing arguments to simplify notation, we have
K8 (@) < nS (@) <L @) < k(@) = h5 (@) + 0 (B).
Thus, APE (@) =hS(@%) + 0 (8), and since A5 (d%)#0, the n-ratio bound is
obtainedas 8 —» 0. O

The following three lemmas may be proved in a manner analogous to the proofs of

Lemma 4.10, 4.11, 4.12.

Lemma 5.4 For 0 <pp<1 and 620, if X is not an optimal solution of MCP, then for

o small enough, p(dP L ,0) 2 Po.

In order to guarantee that the improvement ratio behaves properly in the neighbor-
hood of any accumulation point X of a sequence x', we now observe that

hs (dS (0,,0,x),0,x) is continuous for a fixed scale factor ©.

Lemma 5.5 For 620, 45 (dS (0,,0,%),0,X) is a continuous function of x and o for x € Q

and o = 0.

The key factor in the validity proof of the algorithm is the guarantee of a minimum
improvement ratio in a neighborhood of non-optimal points. In the following, p, is a

parameter in (0,1), yi € Q, and p(d,c,yi ) is as defined before.
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Lemma 5.6 If y' — ¥, where ¥ is not a solution of MCP, then there exists an o>0
such that p(d™r,0,y)2p, for all ae(0,0), 62020, and all y
sufficiently close to y.

The main convergence theorem of the algorithm now follows in a straightforward

manner.

Theorem 5.7 If X is an accumulation poiﬁt of a sequence generated by Algorithm
SPLT, then X is an optimal solution of MCP.

Proof:
Assume the result is false, and let {x°} be a subsequence such that x > X Using
the preceding lemma, we consider those sufficiently large i such that
p(diP L (a),o,xi )2 pgforal ae (0,&), o 2 0. Moreover, since the initial value of o
for each distinct x° is at least 0, it is the case that for arbitrarily large i that
of 2o :=min{ yla,p_c} (since the trust region vector is not reduced below this
quantity to achieve the required improvement ratio) and p! = py Letting

0 := k5 (d% (¢"),0,X), we then have for the iterations without line-search,
Kt (@PF) < porh P (dFE (of ,6),06°) (step4)
< poMohS (A (@ ,6°),6') (step2)
< poMoh™ (@5 (0f,0),6) (Lemma 3.2)

<poMo /2 (Lemma 5.5)

while for the iterations with line-search, the first inequality above holds for ds

from step 5. However, for x' sufficiently close to X, the relations
f &—f x) <hF () or h* (dPL) (step4orstep 5)

. < PoNoGo /2
contradict f (x*) =» f X). O
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CHAPTER 6

SEQUENTIAL METHODS

The SPLT algorithm proposed in Chapter 5 is to be called the parallel block Jacobi
Algorithm(PBJ) hereafter in order to allow us to contrast this algorithm with a block
Gauss-Seidel approach. The term "block” comes from the fact that subproblems are
solved which involve blocks of variables related to various commodities. In this
chapter, we will introduce another sequential algorithm, called the block Gauss-Seidel
Algorithm(BGS), in which we solve for each block by using the most recently updated
values of the variables. The performance of BGS is compared with those of another two
sequential methods: the Frank-Wolfe trust region method and the reduced gradient
method.

6.1 A BLOCK GAUSS-SEIDEL ALGORITHM

The idea behind BGS is that in each minor iteration (corresponding to a single-
commodity subproblem in PBJ algorithm), we use the most recently updated informa-
tion from the other £—1 commodities rather than updating all blocks in parallel as in the
PBJ algorithm. The philosophy of BGS is like that of the Gauss-Seidel algorithm for
linear systems. To help discuss the algorithm further, we introduce the following nota-

tion:
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Notation
qt=q+1 ifq 2k, q* :=1 if ¢ = k(next commodity index);
J={0,k,2k, --- };
a, : size of trust region for index q;
8, =0, size of segment in PL approximation for index ¢ (two segment approxi-
mation);
af = ( oy, ** - , 0y ) initial size vector of trust region;

0 <Y< 1: reduction factor for trust region;

0<pp< % : threshold for improvement ratio;

Replacement process withindex q :
if d; L satisfies ratio check
X

PL,
qe&+%,

Oy

« max{o,,a, };
else
Oy Y0}

endif

The block Gauss-Seidel algorithm may now be presented.




BGS Algorithm

step 1: (find a feasible solution )
Find a feasible solution xo;
J =0 (minor iteration index), g =0;

o« o

step 2: ( solve linearized problem periodically )
if jeJ
solve LP(a., x/ );
6 :=ht(dh);
endif
q —q*Jj < j+l
step 3: ( solve subproblems and do ratio check )
Solve PL, (ct,, Sq ,x7hy;

o . h, (@l
check if ratio check for g satisfied ( r—

do replacement process for index q;
¥/ « result of replacement process;

goto step2

>pPo);

58
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6.2 A CONVERGENCE THEOREM FOR BGS

The convergence of BGS is guaranteed by the following theorem. At each itera-
tion (minor iteration), the ratio used in the acceptance criteria is the improvement of the
original function over to the improvement of the linear approximation function, which

is calculated at the beginning of the major iteration. We need the following lemma in

the proof of convergence. Note py € (O,—]lc—), where k is the number of the commodities.

Lemma 6.1 If ¥ — X, where X is not a solution of MCP, then there exists a g* and an
hgs (dEF(0))

hL (dE (o) > p, for all o€ (0,00, and all x' sufficiently

o > 0 such that

close to X.

Proof: Otherwise, for every g and for arbitrarily small o, we have

h, (df%(or)) .
W@

which implies

k
> by (dfh(@))
g=1
Kt (@ (o))
This contradicts Lemma 4.5. O

<kp0.

Now we will prove the convergence theorem for BGS.
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Theorem 6.2 Any accumulation point generated by BGS is an optimal solution of
MCP.
Proof:

Let {x/} be the sequence generated by BGS, X be an accumulation point of X :=

J: J; _ -
{x0x*, x*_ ... }. Let {x*} be a subsequence of X such that x* — X. Assume X

is not a solution. Two cases will be discussed as follows.

Case 1: (g* =1 satisfies Lemma 6.1. )
i.PL j. -
We consider those sufficiently large j; such that p(dJ‘ ,le) = po for all o (0,00).

Moreover, since the initial value of o for each distinct x * is at least q, it is the case
o , Ji T . .

that for arbitrarily large j; that o* 2 o* := min{ y-oz,g} (since the trust region vector

is not reduced below this quantity to achieve the required improvement ratio) and

pjli > po. Letting 8, == hl (dF ,0* %), we then have
j. Jj.PL .
Rid" ) <py®t (step3)
By
< po-—-i— , (Lemma 4.4)
However, for x]i sufficiently close to X, the relations
j: j: j.+1 j.
FEHD-FEHSfFED f D)

j. j.PL
<hi@di )

i)
SPo-

contradict f (xji )= f(X). So X is a solution. Also {f (x)} is a decreasing
sequence bounded from below. This implies that any accumulation point of x/ has

objective value f (X) and thus is a solution of MCP.
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Case 2: ( M-)- < p, forall X' £ X sufficiently close to X. )
. hL (dL ) 0 .

i+l
We consider those sufficiently large j; such that x! =x!. By Lemma 6.1 there

exists some commodity index g* for which improvement ratio is attained. We can

s’

].
choose x ! such that

’ j-’
#X ' +1.

= . . i .
— X but the improvement ratio at x* is greater than p,y. The rest of

J; J;
x!=x'+l= -+ =x'’

’

j:
Note that x *

the proof is similar to thatin case 1. [




62

6.3 A COMPARISON OF SEQUENTIAL ALGORITHMS

In this section, we will compare the block Gauss-Seidel algorithm with the Frank-
Wolfe trust region algorithm [Zhang, et al. 84] and the reduced gradient algorithm (as
implemented in MINOS, see [Murtagh and Saunders 78]).

Test Problems

The test data contains five standard traffic assignment problems ( see Figure 6.1
for four smaller networks ). The sources of these problems are: [Nguyen and Dupuis
84] (Problem A), [Steenbrink 74] (Problem B), [Bertsekas and Gafni 82] (Problem C),
[LeBlanc, et al, 75] (Sioux Falls Problem), and [Nguyen and Dupuis 84] (Hull Prob-
lem). The Sioux Falls problem and the Hull problem are real traffic assignment prob-
lems that model Sioux Falls, South Dakota and Hull, Canada. The dimensions and the

objective functions for these five test problems are shown as follows:

Name Comms Cnstrs Vars Obj Fen

Problem A 4 52 76 > ajt+b;t;

Problem B 12 108 432 Y a;tP+b;t;

Problem C 5 125 200 > a;tbtc;t;

Sioux Falls 24 576 1824 Y ajtP+b;t;

Hull 16 6,768 12768 ¥ 40;(bmd—(2i) )
Bj+1 " b;




(1) Problem A

(4) Sioux Falls Problem

Figure 6.1 Four test problems
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Numerical Results

The following table shows the comparison of three sequential algorithms executed
on a Microvax II. All the computer codes are written in standard FORTRAN 77 using
double precision throughout. The compiler used is Berkeley 4.3 FORTRAN 77 with
the optimization compiler option (—O flag) set. The timings reported are exclusive of

input and output.

Name Algorithm Iter Objective CPU
Problem A BGS 14 85028.071 2.9s
RG 21 85028.071 6.3s

FWTR 24 85028.071 4s

Problem B BGS 23 16957.674 18.8s
RG 106 16957.674 32.9s

FWTR 57 16957.685 33.1s

Problem C BGS 23 5924.3427 14.9s
RG 54 5924.3427 17.5s

FWTR 35 5934.7617 17.6s

Sioux Falls BGS 75 721391.91 6m 23s
RG 733 721391.91 12m 14s

FWTR 100 730121.42 12m 17s

Hull BGS 23 31194.605 23m
RG 3348 31194.645 7h 37m

FWTR 100 31205.213 1h21m

It is clear that BGS outperforms both the Frank-Wolfe TR method and the reduced
gradient method. The reduced gradient software that we used cannot solve a large-scale
problem, like the Hull problem, in a reasonable amount of cpu time, and the Frank-

Wolfe method displays slow convergence.
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CHAPTER 7

PARALLEL METHODS

In this chapter, we will first introduce the Crystal multicomputer at UW-Madison
and then discuss two kinds of SPLT parallel algorithms. The numerical results of the

parallel algorithms on Crystal are to be studied as well.

7.1 THE CRYSTAL MULTICOMPUTER

CRYSTAL is a set of 20 VAX-11/750 computers with two megabytes of memory
each, connected by a 80 megabit/sec Proteon ProNet token ring(see Fig. 7.1). It can be
used simultaneously by multiple research projects by partitioning the available proces-
sors according to the requirements of each project. This partitioning is done via the
software developed by the Operating System Group at UW-Madison. Once a user has
acquired a partition (a subset of processors), he then has exclusive access to the node
machines of that partiion. CRYSTAL software is written in a local extension to
Modula. Researchers can employ the CRYSTAL multicomputer in a number of ways.
Projects that need direct control of processor resources can be implemented using a reli-
able communication service [Cook, et al, 83] that resides on each node processor. Pro-
jects that prefer a higher-level interface can be implemented using the Charlotte distri-
buted operating system. The Charlotte kernel provides multiprocessing, inter-process

communication, and mechanisms for scheduling, store allocation, and migration. There
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is also a package called the simple-application package(SAP), which is a set of routines
allowing application programmers to use the nugget for communication at a high level.
Versions of this package are available for projects using Fortran, Modula, Pascal and C.
All the programs discussed below were run on CRYSTAL via SAP and were written in

Fortran. The details of the implementation of SAP can be found in [Feijoo 85].

80 Mbit Token Ring

Figure 7.1 CRYSTAL Configuration
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7.2 A PARALLEL BLOCK JACOBI ALGORITHM

The block Jacobi algorithm developed in Chapter 6 can be implemented in paral-
lel. Suppose we have gotten a partition with M+1 nodes on Crystal, we will assign one
node as the master node and the other M nodes as slave nodes. The master node coor-

dinates the parallel solution of the subproblems, and produces new subproblems if the

stopping conditions are not satisfied(see Fig. 7.2). Each slave node is assigned s = %

subproblems(see Fig. 7.3), and thus all the subproblems are solved in parallel.(If k is
not divisible by M, some processors are underloaded by one subproblem.) This scheme

is called the parallel block Jacobi Algorithm.

H
il H Host
M M Master
¥ S Slaves
S @ s = #comm/#slave
M | (2 .
(1) find a feasible solution
* (2) check ratio
S 3)
(3) solve subproblems
(s subproblems for each slave)
@ (4) test stop criterion
H

Figure 7.2 A Parallel Block Jacobi Scheme




1 s+1 (M-1)s+1

2 §+2 (M-1)s+2
3 s+3 (M-1)s+3
4 s+4 M-Ds+d
s 2s Ms

k subproblems (k=M s)

Figure 7.3 Distribution of Subproblems on Slave Nodes
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The following remarks explain certain details in the implementation of PBJ.

(1) initialization:
Choose 1; = 0.5, 7, =0.75, pg =03, p; =0.8,p,=1.3,p3=2,L =3,and 6= 1.

(2) feasible solution:
The initial i‘terate x? is taken to be the element of Q corresponding to the solu-
tion of the linear network problem with costs given by f;"(0).

(3) network subroutine:
A modified version of RNET [Grigoriadis and Hsu 79] is used to solve
piecewise-linear subproblems.

(4) line-search:
Usually the optimal solution from the trust region is satisfactory, and a line-
search is unnecessary. When a line-search is called for, the golden section
search is used because of its simplicity. Typically, only one function evaluation
is needed in this case to achieve the required p-ratio.

(5) stopping criterion:
We calculate a lower bound for MCP every few iterations. Given a current
feasible solution x, a lower bound is obtained by computing the optimal objec-
tive value of the linearized problem :

min f (x') + Vf (X )(x-x') 5. xe£Q

(This problem may be decomposed and solved in parallel.) If the gap between
the current objective value and the best lower bound is below the preset toler-
ance, then stop. The test results indicate that the lower bounds obtained from
the linearized linear programs are not very tight relative to the upper bounds
from the feasible solutions. We also stop the algorithm if the improvements of
the objective functions are sufficiently small in three consecutive iterations. The

eight-figure agreement in the objective values produced by PBJ and MINOS for
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most of the test problems suggests that the results are correct to more significant
figures than the lower bound would indicate.

Speedup for PBJ

We will use the same test problems as in the preceding chapter. The speedup of

M+1 nodes is defined as —2= for 1 node . Table 7.1 and Fig. 7.4 show the cpu
cpu for M +1 nodes

time and the speedup for PBJ for five test problems.

Analysis of the Speedup

The cause$ of the gap between the actual speedup and the ideal speedup are com-
munication time and waiting time. Experience shows that the communication time is
too small and can be neglected. As for waiting time, there are three types:

(1) when the master node waits for slave nodes,

(2) when faster slave nodes wait for slower slave nodes, and

(3) when slave nodes wait for the master node.

Figure 7.5 demonstrates these three types of waiting time by dotted lines and

demonstrates working time by solid lines.
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Problem A PBJ (21 Iters)
Machines 1 3 5
CPU 246s | 153s | 11.0s
Speedup 1 1.6 2.3
Efficiency 1 0.54 045
Problem B PBJ (37 Iters)
Machines 1 3 4 5 7 13
CPU 2m13s | Im14s | 52.7s | 42.8s | 33.7s | 24.3s
Speedup 1 1.8 2.5 3.1 4,0 5.5
Efficiency 1 0.60 0.63 0.62 0.57 0.42
Problem C PBJ (35 Iters)
Machines 1 6
CPU 1Im24.7s | 24.8s
Speedup 1 34
Efficiency 1 0.57
Sioux Falls Problem PBJ (100 Iters )
Machines 1 3 4 5 7 9 13
CPU 27m53s | 14m45s | 10m17s | 8mls | Sm47s | 4m30s | 3m 25s
Speedup 1 1.9 2.7 3.5 4.8 6.2 8.2
Efficiency 1 0.63 0.68 0.70 0.69 0.69 0.63
Hull Problem PBJ (44 Iters)
Machines 1 3 5 9 17
CPU 1h59m | 1h2m | 32m33s | 18m 39s | 9m 21s
Speedup 1 1.9 3.7 6.4 12.7
Efficiency 1 0.64 0.73 0.71 0.74

Table 7.1 Performance for PBJ
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Figure 7.5 Waiting Time for PBJ

Load Balancing

Efficiency may be improved by employing a variety of load balancing tools,
including

(1) Reallocate the subproblems to idle processors.

(2) Set a maximal cpu time for each subproblem.

(3) Let the fastest slave node send "stop" message to the other slave nodes.

(4) Let the master and slaves work in parallel.

In the next section, we discuss a strategy that uses the last of these devices.
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7.3 APARALLEL BLOCK G-S ALGORITHM

To increase the efficiency of this decomposition approach, we develop in this sec-
tion a parallel processor utilization technique that combines concepts related to block
Gauss-Seidel and block Jacobi procedures. In this approach, each commodity flow vec-
tor corresponds to a block of variables, and a number of blocks equal to the number of
processors are updated in parallel (via an optimization procedure applied to each block
independently) at each major iteration. The acceptability of the updated values for such
a group of blocks (in terms of the required amount of improvement of the original
objective function) is then checked by a coordination processor while the remaining
processors work on the next group of blocks, which assume the un-updated values for
the previous group. However, by the time this next group has been optimized, the coor-
dination check for the previous group has been accomplished, and the updated informa-
tion (if it has met the acceptability criteria) may then be utilized in setting up the initial
conditions for the following group. This procedure, which uses efficiently the multipro-
cessor environment, may be demonstrated to be convergent to the optimal solution of
the original problem(see proof below). As expected, it also displays a better conver-
gence rate than the analog of the block Jacobi method previously used. Details of this

technique will be described below.

If there are M available slave nodes on the Crystal multicomputer, and k is the
number of commodities, we assume k = Ms for simplicity. We can distribute subprob-

lems 1+(p-1)s, 2+(p—-1)s, - -+ ,ps toslavenode p,forp =1, --- , M (see Fig. 7.2).

To help discuss the algorithm further, we define additional notation as follows.
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Notation :

M =# slave machines;

( each machine solves s=—Akz subproblems. )

( r th machine solves (r —1)s+1, (r—1)s+2, .. , rs th subproblems. )

Ye ¢ (Xps Xpigo oo Xep-1)s )5

(y, is group of blocks corresponding to group index t.)

tTi=t-11ift 1, t7:=5 ift = 1(previous group index);

tti=t+1 ift #5, t7:=1 ift = s (next group index);
={0,5+1,2s+1, --- };

J : minor iteration index;

y/ : jth iterate;

o, : size vector of trust region for index ¢; approximation;

O, :=a, size vector of segment in PL approximation for index (two-segment

approximations);

al:( oy, - , 0 ) initial size vector of trust region;

0 <1y < 1: reduction factor for trust region;

0 <0 <M : scalar for PL approximation;
O0<pp< —AI—;I—(= -i—) : threshold for improvement ratio;

Replacement process with index ¢ :
if dPL satisfies ratio check
Yy + d,P L. (other groups unchanged)
o ¢ max{o,,a; };
else
at « 'Y(x't;

endif
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The parallel block Gauss-Seidel piecewise-linear trust region algorithm may now be

presented.

PBGS Algorithm
step 1: ( find a feasible solution )
Find a feasible solution y°;
J =0 (minor iteration index), ¢t =0;

o« o

step 2: ( solve linearized problem periodically )
if jeJ
solve LP(a, yj );
6 := L ),
endif
t—1t7,j « j+l1;
step 3: ( solve subproblems and do ratio check )
Solve PL, (0, §,, o, y/71);
send to Master - ratio check for ¢;

PL
o - h-(d;-")
check if ratio check for ¢t~ satisfied ( B >Po )

(ratio check unavailable for j=1)

do replacement process for index t;
¥/ « result of replacement process;
(¥ =y")

goto step2
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Remarks

PBGS is analogous to BGS but different from it in two points:

(1) a group of blocks corresponding to M commodities are solved at each minor
iteration, and

(2) the replacement process at the current minor iteration is to update the group of

blocks for the previous iteration.

Convergence

The convergence proof of PBGS is analogous to the convergence proof of BGS in
section 6.2. At each iteration (minor iteration), the ratio used is the improvement of the
original function relative to the improvement of the linear approximation function,

which is calculated after first group subproblems are solved. In the following lemma,

M
Po € (O,?)

Lemma 7.1 If y¥ — ¥, where ¥ is not a solution of MCP, then there exists a r* and an
hes (dE5())

nL (L (a)) > p, for all oue (0,0), and all ¥ sufficiently

o > 0 such that

closetoy.

Proof: Otherwise, for every ¢ and for arbitrarily small o, we have

hy (dFF () .
K@) 1

which implies

3 by (dPE(0))

t=1
hE (@ (@)
This contradicts Lemma 4.5. [

< S5Po.
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Now we will prove the convergence theorem for PBGS.

Theorem 7.2 Any accumulation point generated by PBGS is an optimal solution of
MCP.
Proof:

Let {y’} be the sequence generated by PBGS, ¥ be an accumulation point of Y :=

J; b _
{y®y**1, y**1, --- ). Let {y')} be a subsequence of Y such that y * — y. Assume
y is not a solution. Two cases will be discussed as follows.

Case 1: (#* =1 satisfies Lemma 7.1.)
j.PL j. -
We consider those sufficiently large j; such that p(d* ,y*) 2 py for all a € (0,00).
j:
Moreover, since the initial value of o for each distinct y ¢ is at least q, it is the case

J: -
that for arbitrarily large j; that o L2 o= min{y-a,a} (since the trust region vector
is not reduced below this quantity to achieve the required improvement ratio) and
in 2 po. Letting 6 := hL (L 0% ¥), we then have
j: j.PL J:
h ’(d]‘ )<pe6*® (step3)
0y
< p0-~§— , (Lemma 4.4)
J; -
However, for y ! sufficiently close to ¥, the relations
Js J; J.+1 J;
FOHD-FEHSFET -FOH
. j.PL
<ni@’")
0y
S  co—
P05

J; - .
contradict f(y’) = f(¥). So ¥ is a solution. Also {f (y/)} is a decreasing

sequence bounded from below. This implies that any accumulation point of y/ has
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objective value f (¥) and thus is a solution of MCP.
hy(df)
Case 2: ( ——m < po forall y' €Y sufficiently close to . )

Jj.+l ,
We consider those sufficiently large j; such that y LA y ’. By Lemma 7.1 there

exists some group index #* for which improvement ratio is attained. We can

Js
choose y ! such that

yj'—yj'+1- —-y ¢y +1

I l

Note that y — ¥ but the improvement ratio at y is greater than py. The rest of

the proof is similar to thatincase 1. O

7.4 PERFORMANCE FOR PBGS

Test Problems

We used five test problems for PBGS. The Sioux Falls problem and the Hull
problem have been described in Chapter 6. The following shows the other three.

Name Comms Cnstrs Vars Obj Fen

Gen o 4608 12864 Xt

Mini-Winnipeg 24 28,960 68,064 3 ta; (1— 5t % (- i )BJ)

Winnipeg 135 140,400 382,860 ] i)ﬁf)
Bj+1 " b;
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Gen problem is a generated problem as shown in Fig. 7.6. The nodes on the left-
hand-side of the graph are origins and those on the right-hand-side are destinations. We

can generate a class of large-scale problems by the integer pairs p and g.

5
(O

.
2
e

Figure 7.6 A Generated Network

The Winnipeg problem models the traffic in Winnipeg, Canada. The Mini-

Winnipeg problem is a smaller version using the first 24 commodities.

Precision for PBGS

Intuitively, if we use fewer nodes for PBGS we may get more rapid convergence
because the approximating separable function uses more recent information at each

iteration. Figures 7.7-7.10 show the rate of convergence using different numbers of
nodes.
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Speedup for PBGS

Regardless of the precision of the solution, we fix the number of iterations and
define the speedup as before. The speedups for the first four test problems are shown in
Fig. 7.11.

S

SIOUX FALLS

pZcow ®wWOoRA®AmM MO QOor

04 LB =721391.91

-2 T T T T T T T T T T | B—

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
NUMBER OF ITERATIONS

Figure 7.7 Precision for PBGS ( SIOUX FALLS )
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Figure 7.11 Speedup for PBGS
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The Winnipeg problem is the biggest test problem, with nearly four hundred
thousand variables. The following table shows the solution values obtained by BGS
and PBGS after twenty iterations on one node, ten nodes, and sixteen nodes and Fig.
7.12 shows the speedups. A rough lower bound is calculated by linearizing the original

function at the solution point obtained from BGS.

# Mach Iter Obj CPU
1 20 623103.62 30h
10 20 623278.96 3h 50m
16 20 623371.54 2h 28m

Best Lower Bound = 622643.35

16 °
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Figure 7.12 Speedup for PBGS (Winnipeg Problem)
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Analysis of Speedup

We will count solving a group of subproblems as a minor iteration. The slave
nodes need to send a group of blocks of solutions to the master node and the master
node needs to send the "acceptance" or "rejection” message back to the slave nodes in

each minor iteration. Ignoring communication time, let /; be the smallest integer I

I I-1
such that Zcpu,,l(i )< ZcpunM (i), where cpu,, (i) denotes the cpu time for ith minor
i=1 i =1 .l

iteration on node nj, where n; denotes the jth fastest slave node.(For simplicity we
assume that n; and ny; remain the same for all iterations.) The first waiting time for the
slaves occurs after n, finishes the I th minor iteration. Figure 7.13 shows the working
time and waiting time for a simple example with one master node and two slave nodes,
where where n, =1 and n, =2. The dotted lines denote the waiting time and the solid
lines denote the working time. After the slowest slave node sends solutions to the mas-
ter node, some of the slower nodes have data available to solve the next subproblems,
while some of the faster nodes have to wait for the previous subproblem data. At this
point, we can define a delay function d for each node as:

d, . = (the starting time for I ;+1¢h minor iteration on node z; )
J

— ( the starting time for / +1th minor iteration on node n ).

Note that the delay function of the fastest node is zero (i.e. d,, =0). LetI, be the smal-

I I-1
lest integer I such that Y, cpu, (i)<d, + Y, cpu, (i), The second waiting
i=11+1 i=l+1

time occurs after n; finishes /,th minor iteration. This property may be generalized in
the obvious manner. After the first wait occurs for ny, later waits for ny, will occur
more often due to the delay for ny, in starting the minor iterations. This is the main fac-

tor of the difference between the actual speedup and ideal speedup in Fig. 7.11-12.
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CHAPTER 8

DIRECTIONS FOR FURTHER RESEARCH

In this chapter we discuss directions for further research both in the theoretical and
computational areas. Section 8.1 will deal with the communication routing problem,
which contains extra coupling constraints in addition to the same block structure as the
multicommodity problem. A share-memory multiprocessor--the Sequent Balance is
introduced in section 8.2, and the implications of this alternative architecture for the

parallel implementation of the algorithm are considered.

8.1 COMMUNICATION ROUTING PROBLEMS

An extension of the traffic assignment problem is optimal routing in packet-
switched computer communication networks[Cantor and Gerla 74]. In a packet-
switched computer communication network, messages are segmented into packets. The
packets are stored in queues at intermediate nodes until communication channels
become free. The ARPA Computer Network(see Fig. 8.1) is a packet-switched com-
munication network connecting several computer facilities in the United States. The

mathematical model for this type of routing problem is a TAP with objective function:

i

T=3f)=3~
j=1

=Y Pj7i
where
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T = total average delay per packet [seconds/packet];

r,, = average packet rate from source u to destination v [packet/second];

m m
v:= Y, 3 r,, total packet arrival rate from external sources [packet/second];
u=lv=1

t; = total bit rate on channel j [bits/second];

p; = capacity of channel j [bits/second].
The communication routing problem contains coupling constraints for all arcs due to
the capacity restrictions on the arcs. These constraints complicate the process of
decomposing the original problem into subproblems. It would be of interest to extend
the results of this thesis to allow both implicit(via the objective function) and
explicit(via nested decomposition) treatment of additional coupling constraints. Future

research may have to find ways to overcome this difficulty.

1 1 ™1 1
L L L L

L.

1 1 ] 1
LJ L L L

Figure 8.1 A 21-Node ARPA Topology
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8.2 PARALLEL ALGORITHMS FOR MULTIPROCESSORS

The Sequent Balance is a multiprocessor, a computer that incorporates multiple
identical processors (CPUs) and a single common memory. The CPUs are general pur-
pose, 32-bit microprocessors. The systems are available in two models, the Sequent
Balance 8000 and the Sequent Balance 21000. The Sequent Balance 8000 can include
from 2 to 12 processors, while the Sequent Balance 21000 can include from 4 to 30 pro-
cessors. Both models can be configured with 4 to 28 Mbytes of memory and both pro-
vide up to 16 Mbytes of virtual address space per process. In addition, each CPU has 8
Kbytes of local RAM and 8 Kbytes of cache RAM, both of which greatly reduce the

number of times the processor must access system memory.

The Sequent Balance supports the two basic kinds of parallel programming: mul-
tiprogramming and multitasking. Multiprogramming is an operating system feature that
allows a computer to execute multiple unrelated programs concurrently. Multitasking
is a programming technique that allows a single application to consist of multiple
processes executing concurrently. The following characteristics distinguish the Sequent
Balance architecture from the Crystal architecture:

1. shared memory- An application can consist of multiple instruction streams, all

accessing shared data structures in memory.

2. common bus- All processors, memory modules, and I/O controllers plug into a
single high-speed bus.

3. transparency- Programs written for a single-processor system can run on a
Sequent Balance system without modifications for multiprocessing support. Pro-
cessors can be added or removed without modjfying the operating system or user
applications.

4. dynamic load balancing- Processors automatically schedule themselves to

ensure that all processors are kept busy as long as there are executable processes
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available. When a processor stops executing, it begins executing the next available
process in the system-wide run queue.

5. hardware support for mutual exclusion- To support exclusive access to shared
data structures, the system includes one or more sets of 16K user-accessible

hardware locks.

Both the Parallel Block Jacobi algorithm and the Parallel Block Gauss-Seidel
algorithm of Chapter 7 can be implemented as a multitasking program on the Sequent
Balance. Furthermore, by the characteristics of the architecture, the Sequent Balance
provides the capability of implementing a variety of good parallel algorithms. Future

research may generate nice algorithms under this class of multiprocessors.

A parallel scheme using M processors, which does not involve much waiting time,

is as follows:
We allocate M commodities to M processors and put the remaining £ —M commodi-
ties on the run queue. Each processor does the folowing jobs in parallel:(see Fig. 8.2,
where an arrow from a processor represents completion of processing of a commodity
and an arrow to a processor represents acquisition of another commodity)

(1) solve the subproblem of the allocated commodity,

(2) check ratio,

(3) move the current commodity to the tail of the run queue,

(4) acquire the first commodity on the run queue.

Idle time is only spent waiting until common memory can be accessed.
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PROCESSOR 1, 2, 3,4 (M=4) RUN QUEUE
(stage 1)
/’ commodity 3 moves to tail of queue
(2] ][] bsdiedind--ixal e {x]
commodity S allocated to proc 3‘—-/
(stage 2)
/ commodity 1 moves to tail of queue
L] 2] [s] [ EEREAREA RN TR IREY

commodity 6 allocated to proc 1/

(stage 3) . .
/——' commodity 4 moves to tail of queue
A A R
6 2 5 4 1708019 kv 301
L [ S IO B Fp ] buvawal Luwww ] Luwanl

Figure 8.2 A Parallel Scheme on the Multiprocessor

A similar asynchronous method may be implemented on Crystal with the master

doing all of the ratio checks.
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