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Abstract

As processor speeds increase, on-chip caches to provide adequate memory
bandwidth are becoming increasingly important. Such caches are prone to faults both
during manufacturing and during normal processor operation because of the large density
of active components. Since the CPU’s interactions with the memory dictate the perfor-
mance of the processor, it is important to evaluate the effect of faults in the cache
memory system.

Faults in components such as registers, busses, control logic, etc., are critical faults
because the processor will cease to operate correctly unless some action is taken to
tolerate such faults. Cache memory, on the other hand, is not a critical component of the
processor - it is present mainly for performance reasons. The processor will be able to
operate in a correct but degraded fashion if parts of the cache memory are faulty and ade-
quate means are provided to recover correct data through bypassing faulty cache com-
ponents. Traditional techniques for tolerating faults in memory systems such as Single
Error Correction and Double Error Detection (SECDED) codes may not be appropriate
for a cache since they increase the latency of the cache. If the cache memory system
does not have the ability to correct errors, two questions arise: (i) how does one make
sure that correct data can be recovered at all times and (ii) how do faults in the cache
affect performance. In this paper, we discuss the performance of cache memories under
fault conditions. Through the use of simulation, we study how the performance of a
cache is degraded under fault conditions.
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1. Introduction

Advances in semiconductor technology and the ever-increasing demand for processing
power have led to the development of high-performance single chip processors. Since such pro-
cessors are generally modeled after von Neumann’s view of a computer, i.e., a CPU connected
to a memory, an increase in CPU speed must be coupled with an increase in memory bandwidth
[1]. Several techniques for improving memory bandwidth exist. By far the most popular tech-
nique for improving memory bandwidth in general purpose processors is the use of cache
memories. For a single chip processor, this translates into the use of on-chip cache memories
since off-chip transactions are comparatively slower. Indeed, many recent single-chip proces-
sors use some form of on-chip caches to provide adequate memory bandwidth for the CPU [2-7].

Unfortunately, an increase in the sophistication of single chip processors is coupled with an
increase in the probability of bad or faulty components in the processor. Bad components could
arise during manufacturing because of yield problems or could arise during normal operation
because of the large density of active components. We expect that a large fraction of chip
resources will be devoted to cache memories in the near future (note that the trend towards pro-
cessors that devote a large fraction of chip resources to on-chip memories has already
begun[2, 4, 5] ). Consequently, we expect a large fraction of faults in such chips to be present in
the cache. Therefore, analyzing and evaluating the effects of faults in the on-chip cache
becomes quite important.

Components of a processor such as registers, busses, control logic, the ALU, etc., are criti-
cal to the functioning of the processor. Faults in such components are critical faults because the
fault will lead to incorrect processor operation unless some action is taken to tolerate and/or
correct such faults. Consider, for example a fault in a register. Instructions that utilize the faulty
register have no alternate modes of operation without violating the architectural definition of the
instruction and will fail unless means are provided to tolerate the fault. Likewise, an ability to
tolerate faults in the main memory must also be provided. Cache memory, on the other hand, is
not a critical component of the processor. Cache memory is present in a processor mainly for
performance reasons. The processor will be able to operate in a correct but degraded fashion if
parts (or all) of the cache memory are unavailable and if alternate means are provided to recover
and access correct data. For example, if data cannot be accessed from a faulty cache block, it
can always be recovered from the memory without violating the architectural definition of the
instruction. We call faults in non-critical components such as the cache, ron-critical faults.
While detecting non-critical faults is very important correcting non-critical faults may not be
important if alternate means to achieve the same purpose exist.

Techniques for tolerating faults in critical components of a processing system are well-

known [8]. In a memory system!, one can tolerate faults by incorporating some error checking
and correction (ECC) capability in the memory system. A typical memory system uses a
SECDED Hamming code to correct single errors and detect double errors in a memory word.
When the memory word is read, error correction logic determines if the data is correct, corrects
the data if a single bit is in error or indicates that a double error has occurred. ECC techniques
that do not use Hamming codes also exist [9]. Such fault-tolerance techniques can easily be
applied to tolerate non-critical faults in the cache memory. However, the logic needed to

! For the remainder of this paper, the memory refers to the architecturally visible memory and the cache refers to the (generally) architec-
turally transparent cache memory.



implement such schemes increases the latency of each memory (or cache) access. Since a prime
concern of the cache is to reduce the latency of memory requests, the use of error correcting
logic in a cache is not very attractive. Indeed, the author is unaware of any processing system
that uses ECC in the cache memory.

The focus of this paper is to evaluate the effects of faults in the cache memory system and
thus answer the following questions: (i) are ECC techniques necessary for a cache memory, (ii)
might simple parity schemes be adequate and (iii) do chips need to be discarded if the manufac-
turing process results in some faults in the on-chip cache. We start off with the assumption that
ECC logic for the on-chip cache is too expensive to implement both in terms of chip resources
and cache access time. Adequate means must, therefore, be provided to recover correct informa-
tion at all times. Then we evaluate the degradation in the performance of the cache due to faults
using simulation techniques. The results of our evaluation show that, in most cases, ECC in the
on-chip cache is quite useless though, in some situations, a limited use of ECC might be
appropriate. Finally, we apply the results of the simulations and discuss the effects of faults in
the on-chip caches of some real-life processors.

2. Faults in Cache Memories

In its most general form, a cache memory consists of several address blocks or address

lines of data?. Each cache address block is occupied by elements from an address block of the
memory. An address block consists of several contiguous bytes of memory. Data from an
address block is present in the data array of the cache. Each address block has an associated tag
which is kept in the tag array. The tag is used to distinguish between one of several address
blocks that are present in the cache. Large address blocks require less number of bits in the tag
array but generate more memory traffic [10]. In order to reduce the overhead for transferring
data blocks to and from the cache, each address block can be broken into several transfer blocks.
A transfer block is the amount of data transferred from the memory into the cache on a read
miss. Caches which have the same size address and transfer blocks (by far the majority of
caches) are a special case.

A cache with transfer blocks smaller than address blocks operates as follows. The tag gen-
erated from the address is compared with the the tag of the block(s) stored in the appropriate
positions of the tag array. If no match results, the reference is a miss. If a match results, the
cache looks in the data array for the transfer block. A present/not present bit indicates if the
transfer block is present in the cache. If the block is present, a hit results and the data is refer-
enced from the cache, else a miss results and the block is brought in from the memory.

By having large address blocks and small transfer blocks, the cache can have the best of
both worlds, i.e., fewer bits in the tag array and a smaller amount of cache-memory traffic.
Apart from reducing the amount of traffic generated, smaller address blocks have other advan-
tages specially for single-chip processors. A discussion of these advantages is beyond the scope
of this paper. Suffice it to say that several processors use caches with large address blocks and
smaller transfer blocks [3, 5, 11, 12].

2In this paper, we shall use the term blocks instead of lines.



2.1. Types of Cache Faults

Faults in the cache memory can be broken down into two classes depending upon where
they occur: (i) faults in the data array or cache data faults and (ii) faults in the tag array or cache
tag faults. A cache tag fault does not pollute the data stored in the cache, i.e., does not pollute
the contents of the data array, but it affects the hir operation. If the stored tag is incorrect, the
cache has no way of knowing the correct tag of the address block present in the cache. An
access operation in the presence of a cache tag fault may, therefore, result in the access of possi-
bly valid data from an incorrect address block. A cache data fault does indeed pollute the data in
the cache data array. Bad data in the cache could result in incorrect computations and pollute
the data in the memory if no steps are taken to rectify the problem.

Cache tag and cache data faults can either be manufacturing faults or operational faults.
Manufacturing faults arise due to defects in manufacturing, i.e., problems with the yield. Opera-
tional faults arise during normal operation and can either be permanent or transient. Permanent
faults arise due to hard errors during normal operation. If a manufacturing fault exists in a
block, the block cannot be used to cache valid data (for the remainder of this paper, a faulty
block shall refer to an address block if the fault is in the tag array and to a transfer block if the
fault is in the data array). Data that would normally be obtained from the faulty cache block
would have to be obtained from elsewhere. For a direct-mapped cache, data that maps onto the
faulty cache block would have to be obtained directly from the memory, for a set-associative
cache, the data may be present in another cache block. Therefore, if the processor is to be used
in the presence of faulty cache blocks, means must be provided to bypass the cache selectively
and access the data directly from the memory if need be.

Operational cache tag faults will corrupt information in the tag array. The cache must,
therefore, be able to detect the fact that the tag information is indeed corrupted. This can easily
be done if a parity bit is provided with each tag. In case of a permanent cache tag fault, the
block can no longer be used to hold a valid tag, i.e., the effective size of the cache is reduced by
1 address block. In case of a transient cache tag fault, normal operation of the cache will
automatically cleanse out the fault, i.e, the replacement algorithm will replace the faulty tag with
the tag of another block, automatically correcting the error. No other corrective action needs to
be taken if the cache management hardware translates a fault indication into a cache miss.

Operational cache data faults are slightly more cumbersome. First, such faults must be
detected. This is easily accomplished by using a parity scheme. Next, since such faults will cor-
rupt the data in the cache and eventually in the memory, means must be provided to recover the
correct copy of data in the cache at all times. If ECC is provided in the cache, the data can be
corrected automatically. If ECC is not provided, then correct data must be recovered from else-
where. An alternate copy of the data can exist in the main memory or another cache in the pro-
cessing system. Since a fault can occur at any time, an alternate copy must be made with each
cache update and, therefore, the on-chip cache must be a write through cache[13] (unless a roll-
back scheme is invoked and the program restarted from the rollback point). Note that a read
only cache (for example an instruction cache) is a special case since no writes are allowed into
the cache anyway and a correct copy always exists elsewhere. A permanent cache data fault
will reduce the effective size of the cache by one transfer block. Note that the entire address
block containing a faulty transfer block need not be declared faulty since valid data can still be
accessed from the other transfer blocks of the address block. If a correct copy of the data can be
obtained from elsewhere, a transient cache data fault will automatically be cleansed out by nor-
mal cache operation.



2.2. Write Through or Write Back?

A write through cache, can become a bottleneck in a computing system since it generally
requires more memory bandwidth than a write back or copy back cache. Unfortunately, a write
back cache cannot guarantee that the latest and correct copy of data can be recovered from else-
where in the presence of faults in the cache and, therefore, cannot be used in the absence of ECC
in the cache data array. Fortunately, a write through caching policy for the on-chip cache is not
inconsistent with a high-performance single-chip processors’ view of its memory system. Such
processors need 2 levels of cache in the memory hierarchy: (i) a small on-chip or level 1 cache
and (ii) a larger off-chip or level 2 cache. The main purpose of the level 1 cache is to reduce the
latency for the memory requests generated by the processor; the purpose of the level 2 cache is
both to reduce the latency for off-chip memory requests and to reduce the traffic generated
between the level 2 cache and the main memory [3, 5, 14]. This is specially important if the pro-
cessor is to be used in a multi system in which several processors are connected together through
a common bus as shown in Figure 1 [15]. If the bandwidth of the level 2 cache-memory inter-
connection is important, the level 2 cache must be a write back cache. Therefore, in order to
guarantee the integrity of data in the level 2 cache, some form of ECC must be provided in the
level 2 cache. The level 1 cache must be a write through cache if it does not have ECC. Making
the level 1 cache a write through cache to ensure fault-tolerance is not an overhead; indeed in the
absence of adequate data-coherence algorithms, the level 1 cache is generally a write through (or
a read only) cache.

For such a memory system, the overall access time of the memory as seen by the CPU is:
T =hiT1+ (Q=h)hoT o+ (1=h)(1-hy)T,,
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Figure 1: A Multiprocessor System with High-Performance Single-Chip Processors



where /4, is the hit ratio and T is the access time of the level 1 cache, %, is the hit ratio and T
is the access time of the level 2 cache and T,, is the access time of the memory (this includes the
bus waiting time if any). An increase of 875 in the access time of the level 2 cache will increase
the overall memory access time as seen by the processor by 8T = (1~h1)h 8T while an increase
8T, in the access time of the level 1 cache will increase the overall memory access time by
OT = h8T;. Since h; would generally be greater than 0.5, the degradation in the average
memory access time due to a degradation in the access time of the level 2 cache (due to ECC) is
not very significant. Also, the degradation in the access time T due to a degradation in T will
be less significant than an equivalent degradation in T';.

To summarize the above discussion, we made the following observations: (i) the on-chip
cache must be a write through (or read only) cache; the off-chip cache can be write back and can
use ECC logic without degrading the overall memory access time significantly, (ii) an ability to
detect errors in the on-chip cache must be provided, (iii) an ability to bypass faulty blocks in the
on-chip cache must be provided, (iv) transient faults in the on-chip cache are automatically
corrected by normal caching operation and (v) permanent and manufacturing faults reduce the
effective size of the on-chip cache. Now let us see how the cache is able to identify faults.

2.3. Identifying Faults

Each cache block (both the address block in the tag array and the transfer block in the data
array) is appended with an extra bit called the faulty bit. This is similar to the fault tolerance bit
used in the RISC-1 instruction cache [16]. If this bit is set, the block is permanently faulty and
cannot be used to cache valid information. This is in addition to any other bits that might be
provided for such blocks. For example, the address block may have a valid/invalid bit and the
transfer block may have a present/not present bit. Each block also has a set of parity bits that are
used to detect errors. For the tag array, a single parity bit is sufficient since the entire tag is used
when determining if a reference is a hit or a miss. For the data array, more than one parity bit
may be necessary. This is because parity must be computed when each datum is referenced by
the processor. Since the size of a datum reference is not guaranteed to be the same as the size of
the transfer block (for example, the processor may reference a byte and the transfer block may
consist of 4 bytes), a single parity bit for the entire transfer block may be inefficient. A simple
solution is to keep a parity bit for each of the smallest addressable data units in a transfer block.
For example, we could keep a parity bit for each byte in a transfer block.

Initially, the faulty bit of each block that does not have a manufacturing fault is set to zero.
The faulty bit of a block with a manufacturing fault (a fact that can be established by a testing
procedure) is set to 1 to indicate that such a block cannot be used to cache information. During
normal processor operation, when a data reference is made, the parity is computed (this may
require the computation of several parity bits depending upon the size of the referenced data). If
the parity bits indicate no error, the cache supplies the data normally. If the parity bits indicate
an error, the cache considers the reference a miss and reads the data from the memory into the
same cache block. The parity is computed again. If the recomputed parity indicates no error,
the fault was a transient fault which was automatically corrected by the read operation. If the
recomputed parity still indicates an error, we can assume that a permanent fault exists in the
cache block. If a permanent faults exists, the faulty bit of the block is set to 1. A faulty block is
now excluded from the cache management algorithms, i.e., any reference to a faulty block is a
miss and the faulty block is never chosen by the cache replacement algorithms.



3. Behavior of Caches under Fault Conditions

In this section, we study the behavior and evaluate the degradation in performance of a
cache memory under fault conditions. As is obvious from the previous discussion, a transient
cache data fault causes exactly one extra miss for each fault (the transfer block has to be fetched
from memory). A transient cache tag fault will cause at most P extra misses for each fault,
where P is the number of transfer blocks in each address block. This is because all the transfer
blocks of the address block will be present in the cache after P misses. Since these numbers are
relatively insignificant compared to the total number of misses experienced by the cache, we
shall exclude them from further consideration. Permanent and manufacturing faults which result
in the loss of entire blocks in the cache result in misses to memory blocks that might have occu-
pied the non-faulty cache blocks. Indeed, any long-term degradation in the cache hit ratio will
arise because of permanent and manufacturing faults.

3.1. The Sensitivity of a Cache Organization to Faults

In a direct mapped cache, a memory block can be present in only one cache block. If the
memory size is K times the cache size, K memory blocks map onto each cache block. If a cache
block is faulty, K memory blocks that map onto the faulty cache block cannot be present in the
cache. For example, consider the cache-memory system of Figure 2. The cache has 4 blocks
and the memory has 16 blocks. If the cache were direct mapped, under normal operation
memory blocks {Mq, M 4, Mg, M 15} map onto cache block C. A fault in the tag of cache block
C o will, therefore, exclude memory block {M g, M4, Mg, M 12} from the cache. A set associative
cache is less restrictive. A single fault does not automatically exclude any memory block from
being present in the cache. If all the blocks from a set are faulty, then some memory blocks can-
not be present in the cache. Suppose that the cache of Figure 2 were 2-way set associative and
cache blocks {Cy, C;} comprised set O of the cache. Under normal operation, memory blocks
(Mg, My, My, Mg, Mg, Mg, M1, M4} could be present in either cache blocks Cg or C';.
Though a fault in cache block Cq will not exclude any memory block from the cache com-
pletely, the probability of interference amongst the memory blocks that map onto set O of the
cache will increase whereas the probability of interference for the other sets will remain
unchanged. A fully associative cache always allows every memory block to be cached (unless
the entire cache is full of faulty blocks). Furthermore, all memory blocks are treated equally; no
set of memory blocks experiences a greater interference that another set.

Thus, we expect that a direct mapped cache will be quite sensitive to faults, a set associa-
tive organization less sensitive and a fully associative organization quite insensitive to faults.
Since we could not develop any analytical models to predict the performance of different cache
organizations under fault conditions, we decided to carry out extensive trace driven simulations.

3.2. Simulation Methodology

We simulated three different cache sizes: (i) a 256 byte cache, (ii) a 1K byte cache and (iii)
an 8K byte cache. These cache sizes were considered to be typical cache sizes for on-chip
caches of high-performance processors of the near future. A direct mapped, a two way set asso-
ciative and a fully associative organization was simulated for each cache size. An LRU replace-
ment strategy was used for the set and fully associative organizations. The block size was also
varied for each cache. Faults were injected at random. A fault has the effect of preventing any
data from being cached in the faulty block. Since the various blocks of the cache are not
accessed precisely in the same fashion, two different caches with the same number of faulty
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blocks (but different faulty blocks) may differ in performance. In order to overcome this prob-
lem, we simulated each cache organization several times for the same number of faulty blocks
but with a different set of faulty blocks for each run. The set of faulty blocks was chosen at ran-
dom. The miss ratios for each run were then averaged out. Care was taken to perform a
sufficient number of runs so that the variance in the miss ratio for a particular number of faulty
blocks was not too high.

In our simulations, we assumed that the address block size is the same as the transfer block
size and, therefore, a faulty transfer block causes the same degradation in performance as a
faulty address block. If the transfer block size is smaller than the address block then, on the
average, the performance degradation due to a faulty transfer block is bounded from above by
the performance degradation due to a faulty address block.

The benchmark programs used to simulate the caches were taken from trace tapes provided
to us by DEC. The traces were generated for a VAX-11/780 using the ATUM trace technique
[17]. The specific traces chosen were: (i) fora.000, (ii) forf.000, (iii) ivex.000, (iv) lis2.000, (v)
lisp.000, and (vi) mul8.000. Each trace was run up to a maximum of 300,000 memory refer-
ences. Each cache organization was simulated with these traces running back to back, i.e., each
cache organization was simulated for approximately 1 million references. The caches were
unified instruction and data caches. For the cache sizes simulated, we do not expect the results
for split instruction and data caches to be significantly different. The simulation results are
presented in Figures 3-5. The figures plot the average cache miss ratio versus the percentage of



blocks that are faulty for direct mapped (DM), 2-way set associative (TW) and fully associative
(FA) caches with various block sizes (BS in bytes). For the 256 byte and 1K byte caches, we
have plotted the complete range of faulty blocks. For the 8K byte cache, we have truncated the
curves at 50% faulty blocks to allow for a better look at the miss ratio degradation, specially for
a fully associative cache. We plot the miss ratio as opposed to the absolute degradation in pro-
cessor performance since we did not want to make any assumptions about the cost of cache
misses, i.e., the number of cycles that it takes to service a cache miss. Before the results can be
applied to a particular system, the degradation in cache performance would actually have to be
converted to a degradation in processor performance. Also note that the results have been
presented for VAX traces. We expect results for other traces to follow the same general pattern.

3.3. Discussion of the Simulation Results

The results of the simulations are quite interesting. Consider a 256 byte cache of Figure 3.
If the cache were organized as a direct mapped cache, the miss ratio would degrade almost
linearly with the number of faulty blocks. Thus, if the block size was 16 bytes, four faulty
blocks would degrade the miss ratio from about 0.325 to about 0.493. If, however, the cache
were organized as a fully associative cache, the miss ratio would degrade only from about 0.259
to about 0.304. The degradation in miss ratio for a two-way set associative cache would be in
between the two limits. The results for 1K and 8K bytes caches are also quite similar. As
expected, associative caches can tolerate the loss of cache blocks better than direct mapped
caches.

A reader interested mainly in cache performance might also find the results of Figure 5
interesting. For a fully associative 8K byte cache, a loss of 50% of its blocks would only
degrade the miss ratio from 0.054 to 0.064 if the block size is 8 bytes. This result is not unex-
pected since a fully associative 8K byte cache with 50% of its blocks faulty is essentially the
same as a fault-free, fully associative 4K byte cache.

From the figures we also see that, for an arbitrary cache organization, the loss of a cache
block is more disastrous if the block size is larger. Consider, for example, a 256 byte direct
mapped cache. If the block size were 4 bytes, 4 faulty blocks would translate into a loss of
6.25% of the total blocks in the cache, i.e., a degradation in the miss ratio from about 0.420 to
about 0.456. If, however, the block size was 16 bytes, a loss of 4 blocks would translate to a loss
of 25% of the cache blocks, i.e., a degradation in the miss ratio from about 0.325 to about 0.493.
This means that if the transfer blocks are sufficiently small, faults in the data array will not
degrade the performance of the cache significantly (though they would increase the fault-free
miss ratio). The use of ECC logic to correct faults in the data array will, therefore, be unneces-
sary in a cache design that has small transfer blocks. Of course, the cache must be designed so
that it can bypass a faulty block and provide data to the CPU directly from the memory. If the
address block is large, as it indeed should to save on the number of tags, faults in the tag array
can degrade the performance of the cache. This degradation will be quite insignificant if the
cache has a high degree of set-associativity. If the cache is direct mapped, one might choose to
provide some ECC in the tag array to tolerate some of the faults. We expect that the degradation
in the cycle time of the cache access operation will not be as significant if ECC is provided in the
tag array of a direct mapped cache since the tag matching process may not be in the critical path.
However, this would have to be verified for the individual cache design.

To summarize the above, caches that have a high degree of set-associativity and/or caches
that have smaller block sizes are more tolerant to faults, i.e., faults do not affect the performance
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of such cache organizations significantly. Faults in the data array can, therefore, be tolerated by
having smaller transfer blocks. To tolerate faults in the tag array, one might choose to have
smaller address blocks and/or increase the set-associativity. If neither solution is acceptable, one
could provide a limited amount of ECC in the tag array.

4. An Application of the Simulation Results

In this section, we apply the results of our study to the on-chip caches of two commercial
single-chip processors: (i) the Motorola 68020[6] and (ii) the Zilog Z80,000 [11]. We are
mainly interested in the cache organizations; other aspects of the cache are of secondary impor-
tance. Assume that the caches allow selective disabling of cache blocks (this is not true for
either cache) and, therefore, each cache can function even in the presence of faulty blocks.

The MC68020 on-chip cache is an instruction-only cache. It is a direct mapped cache with
64 address blocks of 4 bytes each for a total of 256 bytes of on-chip cache. Each transfer block
is also 4 bytes, i.e., the address and transfer blocks are of the same size. A single fault in either
the tag or the data array, therefore, has the same effect on cache performance. The fault-free
on-chip cache has an average hit ratio of 0.64 [18]. We expect that for each fault the hit ratio
will decrease by 0.01. Clearly, a chip with a single fault in the cache need not be discarded if
this decrease in hit ratio does not translate into a significant decrease in processor performance.

The Z80,000 cache is a fully associative cache [11]. It has 16 address blocks of 16 bytes
each, again for a total of 256 bytes. The size of the transfer block is 4 bytes, i.e., there are 4
transfer blocks in each address block. The cache can be used to hold instructions only, data only
or both instructions and data. It uses a write through policy to ensure the coherence of data. In
spite of the large address block size, the cache is quite tolerant to cache tag faults because of its
associativity. A single fault in the tag array would degrade the hit ratio from about 0.741 to
about 0.729 (assuming that the Z80,000 traces display the same behavior as the VAX traces).
Since each data block has 4 transfer blocks, we expect the degradation due to a fault in the data
array to be even less severe than a fault in the tag array. The use of ECC in either the tag or the
data array may, therefore, be quite unnecessary. If, however, the cache were direct mapped, a
single fault in the tag array would have degraded the hit ratio from 0.675 to 0.631. In such a
case, if the use of associativity was not a viable option, one might have considered the use of
ECC in the tag array.

5. Conclusions

In this paper, we have discussed the effects of faults on the performance of cache
memories. Faults in cache memories can arise both due to defects in manufacturing and due to
transient/permanent errors during normal operation. We discussed the nature of such faults, saw
how such faults could be identified and evaluated the performance degradation of various cache
organizations due to faults using a detailed simulation analysis. We saw that in most cases,
caches can be organized so that the performance degradation of the cache due to faults is quite
insignificant. In other cases, a restricted use of ECC might be appropriate. There are two major
conclusions of this research: (i) by choosing an appropriate cache organization, one need not use
ECC for the on-chip cache memory and (ii) one need not blindly discard processors that have
some flaws in their on-chip caches. With a proper cache organization, such chips could still
function correctly with possibly an insignificant loss in cache performance.
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