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Abstract

The stereo matching algorithms proposed in the research literature have been fairly successful, but none
has completely solved the problem. We present a number of steps toward improving matching by: (1)
analyzing and reformulating a number of important matching constraints, including uniqueness, coarse-to-fine
multiresolution, fine-to-coarse multiresolution, detailed match, figural continuity and the disparity gradient. (2)
Building an algorithm that integrates the influence of these constraints cooperatively and in parallel using the
General Support Principle. This principle states that except for uniqueness, only positive constraint influences
are employed. (3) Implementing this General Support Algorithm using a connectionist network. Such a
network allows the constraints (o be integrated naturally in a parallel, relaxation computation. The resulting
connectionist network has been simulated and tested. It generally produces a high percentage (95-99%) of
correct matching decisions. This testing has enabled us to understand the types of problems that locally defined
constraints can not accommodate, and leads to ideas for non-local mechanisms to address these problems.
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1. Introduction

An important goal of intermediate-level computer vision is to obtain three-dimensional information about
a scene. Stereo vision, the matching of images obtained from cameras with slightly different views of the
world, plays an important role in this process. This matching converts the two-dimensional information
available in each image into a three-dimensional depth map. However, the process of determining this
matching is itself difficult and computationally intensive. For each point in an image there is a large number of
possible matching points in the other image. Usually, at most one of these matches is valid. The goal of the

matching process is to select the valid matches and eliminate the invalid ones.

Many solutions to the stereo matching problem have been proposed in the computational vision literature.
These tend to be fairly successful, but they also have a number of problems. First, the algorithms tend to
produce spurious matches at certain important locations in images, primarily at significant occluding
boundaries. Second, they are sensitive to noise in the images. This includes problems with extraneous edges
and with missing edges, especially along contours. More significant structural differences between the images
cause even greater problems. Third, they often have difficulty producing correct matches when image features
include repetitive patterns. Finally, the algorithms are generally slow. The quality of matching might be
improved by using more information in the matching process. Unfortunately, with a sequential model of
computation, the use of this extra information makes the efficiency problem worse. This may force rich sources

of information to be ignored in favor of computationally feasible solutions to the matching problem.

This paper presents a number steps toward solving these problems. First, we present a careful analysis of
the constraints used by stereo algorithms to select valid matches. Our analysis exposes weaknesses in the
assumptions motivating the constraints, in their definitions, and in their actual use. This results in a new
formulation of some of the constraints. It also leads to the conclusion that none of the constraints proposed thus
far is completely sufficient for stereo matching. One way to overcome the difficulties with the individual
constraints is to integrate their influences. If done properly, many of the weaknesses of the individual
constraints can be overcome. This occurs when the different constraints are not susceptible to the same

problems.

The need for integrating multiple constraints leads to our proposal of the General Support Algorithm for

stereo maiching. The algorithm organizes the influence of the constraints using the General Support Principle.



The principle states that, with only one exception, all the constraints used in stereo matching provide only
positive influence in selecting the valid matches. The constraints incorporated into this algorithm are all defined
locally as pairwise interactions between matches. The algorithm is implemented using a connectionist network.
This provides a natural model for constraint integration by allowing the constraints to interact cooperatively and
in parallel to select the valid matches. Connectionist networks structured this way are similar to relaxation

networks that have been used frequently in computational vision.% 20

1.1. Stereo Problem

There are several stages to the binocular stereo problem. These include (1) determining the imaging
geometry, (2) detecting image features for matching, (3) finding the matches between these features (the
correspondence problem), and (4) interpreting the results. The focus of our work is the correspondence
problem. In it there are many possible matches for each feature (matching primitive). Usually, at most one of
these matches is valid. Constraints are used to help select the valid matches from among the candidates.
These constraints are derived from assumptions about the continuity of surfaces as well as assumptions about

the imaging geometry and image formation process.

The standard imaging geometry for the stereo problem is shown in Figure 1. The cameras are assumed to
have point lenses and the images are formed through perspective projection. The lines of sight of the cameras
are normal to the center of the image plane, they intersect the focal point, and are parallel to the x-axis in the
x—z plane. This model of imaging geometry, called the parallel model, is common to most of the stereo

matching algorithms that appear in the literature.

A number of definitions that are important for the remainder of the paper are described as follows. Given
a point (xo,yo) in one image, the epipolar scanline for (xq,yq) is the line in the other image containing
candidate match points for (x,y,). In the parallel model the epipolar scanline is parallel to the x -axis for each
point. This causes some problems when the matching primitives have an orientation component. Those
parallel to the epipolar scanline are often ambiguous. Many algorithms ignore the matching of such points
(horizontal edges in the parallel imaging model). In the General Support Algorithm we only match a horizontal

edge when it is relatively isolated from other horizontal edges.

The baseline is the distance along the x -axis between the focal points of the two cameras. In Figure 1

this distance is 24.
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Figure 1. Parallel model of stereo imaging geometry.
The disparity of a maich is the distance between the matching points in the image. It is used to
determine the depth of the scene feature corresponding to that point. If (x;,yo) is the left image point and

(x, o) is the right image point, then the distance to the scene point is given by

, = 2fd
(i —x,)

where f is the focal length of the lens, and d is as above. Note that points closer to the images involve larger
disparities.

Connectionist models are motivated by the perceived organization of the brain.%>35 In a connectionist
network there are simple computing elements (called nodes) and a massive interconnection network among
these nodes. The connections communicate the weighted value of the activation of a node. Each node
determines its activation based on its prior activation and the input it receives from its incoming connections.
The overall computation of the network is organized around iterative changes in the activations of each node.
In networks such as the ones used here, the iterations involve feedback between the different nodes. This

continues until network settles on a solution. This style of computation is similar to relaxation.20



1.2. Previous Work

Stereo matching algorithms can generally be categorized by the types of primitives that they use as input
to the matching process. This ranges from point-based matching to matching of sophisticated skeletal
structures. A common early approach uses an interest operator to select points in an image and then seeks
corresponding points in similars area of the other image.?- 14 Barnard and Fischler’s survey of stereo algorithms
highlights a number of these.* These algorithms tend to fail when the image data are regular and when there are

intensity profile differences between the images, especially at occluding boundaries.

The most common algorithms are those that match edges. Unless they arise from noise, edges may be
atiributed to physical features of the scene. This makes them more localized than pixels whose values can not
be directly attributed to any specific scene feature.2* The major problem with matching edges is the abundance
of candidate matches for each edge. This implies the need for constraints to assist in selecting the valid

matches from among the candidates.

To avoid the problem of selecting matches from among numerous candidates, some researchers have
attempted to match higher level primitives. These more sophisticated matching structures have fewer candidate
matches.5 10.15.28 This avoids the need for using many constraints. Unfortunately, the structures necessary for
matching are difficult to reliably extract. Also, slight appearance differences between the two images often

cause significant differences in the structures that are extracted.

In the remainder of this section we briefly discuss a number of important general approaches that have
been taken. These include cooperative algorithms, dynamic programming algorithms, and algorithms
employing multiple constraints. The analysis of the major constraints used in these algorithms, including

uniqueness, multiresolution,24 figural continuity,?’ and the disparity gradient,3233 is deferred to Section 2.

Cooperative matching techniques were employed by Marr and Poggio in their first algorithm in which
they proposed the compatibility, continuity and uniqueness constraints.26 A number of cooperative matching
algorithms have subsequently been proposed.3-22:3%.40 One major problem with cooperative techniques is that
they incorporate only a few constraints. Thus, these algorithms (1) do not incorporate additional constraints
such as figural continuity and multiresolution that are useful in maiching, (2) are unable to detect situations that
the constraints can not handle, and (3) require a large number of iterations. However, recently, researchers

have attempted to incorporate the search for disparity discontinuities directly into regularization equations.” If



successful this will remove a major problem in (2).

A second approach incorporates matching constraints into dynamic programming algorithms.1:2:23.29,34
These algorithms work on each epipolar scanline separately, matching the edges from left to right within the
scanline. Thus, they rely heavily on uniqueness and the lack of reversals (the ordering constraint). Dynamic
programming techniques have tended to work fairly well, although they employ some restrictive assumptions.
It is also not clear how well they adapt to repetitive image structures, noise and significant occlusions (they
handle these by allowing edges to go unmatched). Finally, since dynamic programming is essentially a
sequential operation, the stereo algorithms relying on it tend to be slow. This latter criticism is somewhat

mitigated by the recent development of specialized hardware that handles simple images in a few seconds.30

A number of researchers have employed multiple constraints in solving the matching problem. This
includes work by Baker and Binford,2 Eastman and Waxman,? and Grimson.12 Most of these algorithms use the
constraints sequentially. Thus, each constraint is used to correct the matching errors of prior stages. Usually,
once a correct match is rejected it can not be recovered. The General Support Algorithm presented here offers

an alternative. It integrates the constraints cooperatively, and in parallel.

1.3. Organization of the Paper

In the remainder of the paper we develop the General Support Algorithm and present results of testing it.
Specifically, Section 2 analyzes important matching constraints. This analysis leads to a reformulation of a
number of the constraints as well as the conclusion that no individual constraint is sufficient to completely solve
the stereo matching problem. Section 3 uses the analysis of the constraints and the ideas involved in
connectionist models to develop the General Support Algorithm. The simulation and testing of this algorithm
are described in Section 4. Finally, in Section 5 we discuss improvements to the General Support Algorithm
using non-local mechanisms to explicitly handle difficult matching situations that locally-defined constraints

can only handle implicitly through cooperative interaction.

2. Matching Constraints Analysis

This section presents a careful analysis of the major matching constraints. This analysis emphasizes the

assumptions behind the constraints and their general formulations. The main result of this will be the



conclusion that no constraint is sufficiently general to work in all matching circumstances. Also, based on our
observations, new formulations of some of the constraints are described. In this analysis we assume that the
constraints are incorporated into an edge-based matching algorithm. In such an algorithm compatibility
predicates are used to determine which edges might match. In our case, a pair of edges, one from each image,
form a candidate match if (1) they are in the same image row, (2) their disparity is within a maximum allowed
disparity determined by the minimum distance to a point in the scene, and (3) they have compatible

orientations.

2.1. Uniqueness

The uniqueness constraint has been used either explicitly or implicitly by nearly every stereo matching
algorithm.26 It is stated as follows: Each matching primitive in an image should match at most one primitive
from the other image. It is derived from the assumption that each image point corresponds to one point in the
world. Uniqueness is the only match selection constraint that will be used to inhibit candidate matches in our
General Support Algorithm. This is allowed because it is a statement about match limitations. All the other

constraints make statements about what constitutes a valid match.24

The assumption behind the original form of the uniqueness constraint is not always valid when the
matching primitives are edges. Specifically, the smoothing process involved in edge detection may cause more
than one feature to be merged into a single edge in one image. Because of the different perspectives of the two
cameras, these merged features may appear as distinct edges in the other image. A case where human do not
enforce uniqueness is shown in Figure 2.26 In the figure, the result of matching is the impression of one vertical

bar floating above another in space. Thus, the vertical line in the right image matches both bars in the left.

The example shown in Figure 2 motivates our reformulation of the uniqueness constraint. It is based on
Marr and Poggio’s definition of one-sided uniqueness,?* which states that for a given match between image
points [ and r, at least one of the two points must have no other match. In the General Support Algorithm we
define uniqueness in terms of two separate influences on a candidate match (I,r). The first is from the strongest
of the competing matches for . The second is from the strongest of the competing matches for r. In the
context of our algorithm, this will enforce normal uniqueness except in occasional circumstances. In addition,
it will be able to gradually force the correct interpretation of some ambiguous matches. Without separating the

two uniqueness inputs this would not be possible.



Left Image Right Image

Figure 2. Non-unique matching bars.

2.2. Detailed Match

The detailed match constraint states that candidate matches where the edges have similar appearance are
more likely to be valid. This follows from the assumption that the images are taken from similar viewpoints, s0
that edges are likely to have a similar appearance in both images. Unfortunately, differences in the cameras,
inaccuracies introduced by digitization, and slightly differing viewpoints can cause significant variations in the

appearance of an edge in the two different images.

Detailed match complements the compatibility requirements used in defining the candidate matches. In
determining compatibility, the two edges must have roughly equivalent orientations. In determining detailed
match, we compare the average intensities on either side of the edges involved in a candidate match. This has
been used in a number matching algorithms.!»2:23 In our formulation, two intensity comparison measures are
employed. The first measure compares the intensity values on both sides of the edges. The second provides
support when the intensities on only one side of the edges match. Matching edges that satisfy single-sided

similarity often occur near occlusions where there is a discontinuity in disparity.

2.3. Multiresolution Matching

Correspondence between similar matches at multiple resolutions provides another useful constraint. It is
based on a number of assumptions about the relationship between edges detected at different resolutions. It was
first proposed by Marr and Poggio 2* implemented by Grimson,!! and has been used frequently since

then.12.17.38,45,47 Marr and Poggio’s definition was strict enough that no other constraints were needed. There



are a number of problems with such a use of coarse-to-fine matching. These relate to the assumptions behind
multiresolution matching. First, as shown by Mayhew and Frisby,2’ matching by humans can occur outside of
the range of the coarsest filter. This implies that there ought to be disparities larger than the range of this filter.
Thus, simply choosing the nearest match at the coarsest level, as in the Marr-Poggio algorithm, is not sufficient.
Second, some of the edges at coarser levels may be averages of a number of features at finer levels. Matches
between such edges will not always provide a meaningful measure of disparity for edges at finer resolutions.
Third, there might not be any relation between the edges detected at different resolution levels.33 For example,

in an image with grass behind a picket fence, only the fence will appear at coarser resolutions.

In spite of these problems, multiresolution can be a useful matching heuristic. Our reformulation of it
relies on an analysis of multiresolution edge detection. First, in general, edge errors can occur at any
resolution.!® At the coarser resolutions they may come from averaging a number of features. At finer levels
errors arise due to noise in the image. Second, edge locations tend to be less accurate at coarser resolutions.
However, the position of a particular edge only changes locally between resolution levels.46 Finally, edges

which persist across multiple resolutions tend to be physically significant.2’

In the General Support Algorithm we use multiresolution matching in two ways. The main use of it is
similar to Marr and Poggio’s approach. That is, matches at a given resolution are used to provide support for
matches at the next finer resolution (i.e. coarse-to-fine). The disparities of the finer level matches must agree
with the disparities obtained at the coarser levels, and the finer level edges must be in nearly the same spatial
position as the coarse level edges. The second use of multiresolution matching is to allow coarser level matches
to receive support from similar matches with similar disparities at the next finer resolution level (i.e. fine-to-
coarse). This is an important new use of multiresolution since coarse level matches often receive little support
through other constraints. Note that this definition involves pairwise interactions between matches, whereas the

Marr-Poggio definition used the coarse results to locally re-align the images for finer resolution matching.

2.4. Figural Continuity

The figural continuity constraint was developed by Mayhew and Frisby as part of a competing theory to
those proposed by Marr and Poggio.2” The constraint states that edges along a contour should match edges
along a similar contour in the other image. It is based on two assumptions: (1) contours in the scene appear

similarly in both images, and (2) contour extraction and matching can occur cooperatively. This is the



Binocular Raw-Primal Skeich (BRPS) conjecture.

The similar contours assumption of figural continuity is not completely general for a number of reasons:
(1) groups of edges arising from fine texture are not always part of smooth contours, (2) occasionally, a single
contour in an image can arise from multiple contours in the scene at different depths, (3) figural continuity
assumes that scene contours appear similarly in the two images. The latter is not always the case in real images
because of noise in the image formation process and because of appearance differences between the two
images. In addition to these problems, figural continuity does not provide any means of distinguishing between
matches along similar contours. In spite of these problems we will make strong use of figural continuity. Our
formulation will be a purely local one where figural continuity is determined pairwise between matches. This

avoids some of the above problems, but it is still sensitive to gaps in contours caused by noise.

Figural continuity is one example of the continuity constraints that have been used for stereo vision.26
Each makes assumptions about object, depth or surface continuity that are usually true, but are violated in
certain circumstances. In the next subsection we discuss constraints with similar assumptions about surface
continuity, but that provide support between matches for edges that are not locally known to be part of a

contour. Together these constraints will provide a strong formulation of object continuity assumptions.

2.5. Disparity Gradient and Gaussian Support

A constraint that has recently received a lot of attention is the disparity gradient32:41.42 It is a measure of
similar disparity values for two candidate matches. Similar ideas were developed by Prazdny using a
Gaussian-support model based on the assumption of object cohesiveness.33 Both the disparity gradient and
Gaussian-support are based on the assumption that objects occupy a well-defined three-dimensional volume.
The constraints thus assume that points from the surface of an object appear with relatively similar disparities in
an image. The disparity gradient is formally defined as follows. Suppose /, and [, are points in the left image,
and r, and r, are points in the right image. Further suppose that (/,,7,) is a candidate match and (/,,7;) is a
candidate match. Let p; be the point half way between [, and ry, let p, be the point half way between [, and
ro. Further, let disp (I,r) be the disparity of a match. Then the matches support each other if

I disp (I1,ry) —disp (15,1 |

D(p1,p2)
where D (p,q) is the Euclidean distance between two points. (The value 1 is called the disparity gradient

<1




circumstances, or (2) to incorporate a number of the constraints in such a way that the weaknesses of one
constraint are compensated for by the strengths of the other constraints. We examine each of these possibilities

in turn.

The search for general constraints motivates much of the work in stereo vision. While this research may
produce improved constraints, it is unlikely that an all-encompassing constraint will be produced. Such a
constraint must be based on general assumptions about objects in the world. In addition, it must account for
differences in the appearance of objects in both images, including noise, and variations in the two images
arising naturally from occlusions and differing camera positions. These two goals reflect the need for
generality in defining the constraint. They conflict with the third requirement - that is, the constraint must be

strong enough to accurately discriminate between all of the valid and invalid candidate matches.

The alternative approach to overcoming the weaknesses of the individual constraints involves integrating
a number of them. This is the approach taken in the General Support Algorithm. We use the following

guidelines in constructing such an algorithm:

° The algorithm should work on a wide range of images. This includes random-dot stereograms and

natural images. In addition, domain-specific assumptions should not be incorporated into the algorithm.

. The algorithm should overcome the weaknesses of the individual constraints. This is simply a
restatement of the main reason for using multiple constraints. In situations where one constraint is weak

or inapplicable, other constraints should provide matching information.

. The algorithm should produce a higher percentage of correct matching decisions (correct matches, or
correctly finding no match for an edge) when more constraints are providing useful matching
information. Thus, any conflict between the constraints should not show up as a reduction in the number

of correct matching decisions.

. The algorithm should work effectively in matching situations that have been problematic for other
algorithms. This includes noise that shows up as spurious matches and missing primitives, occlusions,

and periodic image features.

° Ideally, the use of additional constraints should not slow down the algorithm, at least in a parallel
implementation. This may be possible in a connectionist network, where the cost of using additional

information is in the number of nodes and connections defined. Thus, if we assume that such an
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implementation is possible, we may coarsely measure the time for the network in terms of the number of

iterations required.

3.2. The General Support Algorithm

The design of the General Support Algorithm (GSA) attempts to meet the above guidelines for constraint
integration. It employs constraints that are defined locally as pairwise relations between candidate matches, or
functions of a single candidate match. The GSA is essentially an iterative, parallel, relaxation algorithm. Using
the constraints, each candidate match propagates its strength to other matches, and in turn is influenced by those

matches. This is repeated until the GSA determines which matches are valid.

In the remainder of this section we describe the algorithm in detail. This includes the General Support
Principle which we use to organize the influences of the constraints, the local definition of each constraint and
how the algorithm follows the constraint integration guidelines. The details of its connectionist implementation

are given in Section 3.3.

3.2.1. The General Support Principle

The GSA organizes the influence of the constraints using the General Support Principle (GSP). This
principle states that, except for uniqueness, constraints are only used to support candidate matches. There are a
number of reasons for defining the GSP and using it to organize the interactions of the constraints. First,
however, we consider some of the implications of the GSP as it affects what the GSA will and will not accept

as a valid match.

In the absence of noise and occlusion, uniqueness would be sufficient for eliminating all invalid matches
since every edge would have at least one valid match. However, in reality there are invalid matches that can
not be removed through the uniqueness. To solve this problem we also iteratively decay the strength of a
candidate match. During each iteration of the GSA, candidate matches receive support from other matches,
altering their strengths. After each iteration decay is used to reduce these strengths. Thus, noise matches that
receive little support will be suppressed over time. In general, the valid matches are those whose constraint

support overcomes the inhibiting influences of uniqueness and decay.

In justifying the General Support Principle the main observation is that the constraints are derived from

assumptions about objects and their appearance in images. These assumptions lead to assertions concerning

12



relationships between valid matches. For example, the disparity gradient’s assumption is that pairs of matches
from the same surface will satisfy the disparity requirements. There is no claim about pairs of matches from
different surfaces. They will often violate the disparity gradient limit. (Prazdny33 gives a similar argument.)

Similar arguments can be made about the other constraints.

Another justification, following from the local definition of the constraints, can be given in defense of the
General Support Principle. Specifically, since the constraints are defined as pairwise relations between
candidate matches, there is no way to locally distinguish between the following possibilities: (1) the constraints
are outside the assumptions of the constraints, or (2) one or both of the matches are invalid. For example, two
matches from different surfaces are allowed to violate the disparity gradient requirements, whereas matches
from the same surface are not. With purely local constraint interaction these cases can not be distinguished.
We rely on the lack of support for a match (or weaker support than one of its competitors) to eliminate it. This

is a "least commitment" strategy in defining the local interactions between the constraints,

3.2.2. Constraints Used in the GSA

The General Support Algorithm incorporates the following constraints: uniqueness, disparity gradient,
figural continuity, coarse-to-fine and fine-to-coarse multiresolution support, and detailed match. Except for
uniqueness, each of these constraints is defined locally as pairwise relations between candidate matches, or as
functions of the two edges involved in a candidate match. The local nature of each constraint is either built into
the assumptions behind the constraint or in the actual formulation of it. In the remainder of this section we
discuss the influence of each constraint and how some constraints complement each other in their definition of

support.

Uniqueness is necessary for any stereo algorithm matching primitives as simple as edges since there are
usually multiple matches for each edge. The particular form of uniqueness defined here is useful for resolving

matches when there are periodic patterns.

The disparity gradient and figural continuity are complementary surface structure constraints. Both
reflect surface continuity assumptions. Figural continuity provides strong support between matches that locally
appear to be along the same contour. The disparity gradient gathers support over a broader region based on
similar disparities. It provides support between textural features of a surface and between points on a contour

that are too distant for figural continuity’s local contour requirements. Figural continuity is sensitive to gaps in

13



contours and cannot discriminate between locally-similar contours. The disparity gradient overcomes these
difficulties by gathering support in a larger region. On the other hand, the disparity gradient sometimes
provides only weak discrimination between matches. Figural continuity is usually a much more certain
indicator that a match is valid. In ambiguous situations, matches receiving strong figural continuity support are
strengthened more quickly than other matches. The strengthened matches will then reinforce other maiches

through the disparity gradient.

Multiresolution is most useful for identifying persistent features of the images and propagating support
between appropriate matches for these features at various resolution levels. This accelerates the matching
process, and provides strong indication of disparity for the most significant features. This helps to resolve the
matches for ambiguous regions at finer resolutions. Note that, contrary to previous algorithms,24

multiresolution support is computed simultaneously at all resolution levels.

Detailed match serves two main purposes. First, since it provides an additional initial indication of what
matches might be valid, it tends to accelerate the matching process. Second, it can help overcome ambiguities
due to periodic image patterns. It does this by providing additional similarity measures for edges in a match
using the regions surrounding the edges. When a coherent set of matches in a periodic pattern receive this

support, the relaxation process of the General Support Algorithm will eventually select them as valid.

One commonly used constraint, the ordering constraint (i.e. matches must maintain the order of the
edges in each row of the images) is not used in the GSA. There are two main reasons for this. first, it relies on
limiting assumptions about the types of surfaces. More importantly, it is not necessary. None of the constraints
will allow support between matches that violate the ordering constraint (the disparity gradient between these
matches is greater than 1). Thus, in order for two nearby matches violating the ordering constraint to both be
accepted as valid, they must both receive strong support independently in the same neighborhood. This is
exactly when the ordering constraint should not apply. In all other cases the activity of the General Support

Algorithm will implicitly implement the ordering constraint.

Finally, because of the General Support Principle, a number of other constraints can easily be
incorporated into the matching algorithm. Two examples of this are focal gradient®! and optical flow
measures.3:44 They would both add support as a function of the edges of a candidate match. In the case of

optical flow, this support is added when the flow vectors of the two edges match, indicating approximately
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similar depths for the edges. The focal gradient has been used to obtain an approximate measure of depth by

measuring the spread in the response of the edge detector. The additional support can come either from (1)

comparing the blur measure of the two edges, or (2) using the depth obtained from the focal gradient as a coarse

measure of disparity.

3.2.3. Following the Guidelines for Integrating Multiple Constraints

Below we list how the General Support Algorithm follows the guidelines for integrating multiple

constraints. Section 4 contains further discussion based on the experimental results.

The GSA should work on many different types of images. There are two main reasons why this is true:
(1) the algorithm matches edges, which can be reliably extracted in a wide range of images, and (2) as we

have seen, the GSA employs no domain-dependent assumptions.

The GSA overcomes the weaknesses of the individual constraints. This can be seen in two ways: (1) the
situations in which the constraints are prone to error do not overlap. This is most easily seen in the
complementary definitions of the surface continuity constraints: figural continuity and the disparity
gradient. (2) Because a number of constraints are used, the individual constraints can be restricted to

matching situations where they work best.

Section 4 emphasizes the quality of the matching by the GSA, but unfortunately, appropriate statistical

data from other algorithms are not available.

The GSA should work in a number of difficult types of matching circumstances. Solutions to some of
these problems are reflected in the formulation of the constraints and in their integration. For example,
one common problem is that of fragmented contours. Figural continuity is sensitive to this problem, but
the disparity gradient helps to overcome it by gathering support in a wider region. Another example is
that the use of one-sided uniqueness and detailed match sometimes helps to correctly handle scenes with
periodic features. Finally, the problem of finding matches for occluded edges is implicitly addressed by
the use of decay and uniqueness. An explicit solution requires non-local matching mechanisms (see

Section 5).

The use of more constraints does not increase the time required by the algorithm. Additional constraints

can increase the number of iterations needed for matching because of inconsistencies with other

15



constraints. However, because of the General Support Principle, this conflict can only occur indirectly
through support for competing matches. Also, since we rely on a number of constraints, we have

implemented each constraint more conservatively.

3.3. Connectionist Implementation of the GSA

The General Support Algorithm is implemented using a hierarchical connectionist network. The lower
levels represent the input images and implement edge detection. The highest level is the matching network. It
is designed so that (1) each node represents a distinct potential match, and (2) most of the constraints are
implemented directly in the connections between candidate match nodes. The matching works through a
sequence of iterations. At each iteration each node computes its new activation and output. This new

activation is based on the old activation, the decay rate, the supporting input and uniqueness.

In the remainder of this section we consider the activation and output functions of the nodes in the
network, the implementation of the constraints, weight assignments for the constraints, and some additional

issues concerning the design of the GSA.

3.3.1. Node Activation and Output Functions

The activation of a node depends on the combined influences of the supporting constraints, uniqueness,
decay and the node’s prior activation. The supporting input to a match is a weighted, linear combination of the
constraint input, given by:

N

I = 2 (0] I Wji

j=1
where the O; are outputs from other match nodes, and the wj; are the connection weights. Uniqueness input is
given by:

B; = B max (0; | j € Left;) + B max (O | k € Right;)

where Left; is the set of competing matches for the left edge of match i, and Right; is the set of competing
matches for the right edge. This implements our formulation of uniqueness. The new activation is:

A,‘ =(1—delta)A, +1" +Bi

where § is the decay factor. The output, O; is simply a threshold function of the activation:
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A, A0
0,‘= O Ai<¢

where ¢ is the threshold parameter. The activation is limited to the range {-1..1], and the output is allowed to be
in the range [0..1]. When the activation of a node reaches 1.0 it is said to be saturated, and it remains at 1.0 for

the duration of the matching procedure.

3.3.2. Constraint Implementation

As noted previously, most of the constraints are implemented locally as pairwise relations between
candidate matches or functions of individual matches. In this subsection we consider the details of the
implementation of these constraints. (The uniqueness constraint is built directly into the activation function for
a match node described above.) Our description here will define the range of support of a constraint and the

weight of its connections.

Detailed match requires that the smoothed intensities on either side of the edges of a given match be
compared separately. This produces three additional inputs to a candidate match: (1) input when the low
intensity side of the edges is similar, (2) input when the high intensity side is similar, (3) input when both sides
are similar. These are mutually exclusive. For (1) and (2) the weight of this input is BASE_ONE_SIDE . For
(3) the weight is BASE BOTH SIDES. A small subnetwork is required to determine the detailed match

support.

The disparity gradient implementation is straightforward. Two matches (/;,r;) and (J;,r;), support each
other if they are within the disparity gradient limit as defined in Section 2.4. In addition, their distance,
distance , is limited to the range MIN_DISTANCE to MAX_DISTANCE. Support between matches closer than
MIN DISTANCE is govemed by the figural continuity constraint. MAX DISTANCE is determined by the

maximum allowed disparity.

To determine the connection weight for the disparity gradient, let

disp_diff = | disp (I;,r;) —disp (;,r;)!. Then the weight is given by:

W = BASE DG c
" distance (disp_diff +¢)
where ¢ =1 is a constant, and BASE DG is a parameter controlling the overall strength of the disparity

gradient. The inverse distance term reflects the likelihood that the candidate maiches are from the same

surface.32 The ¢ / (disp_diff +c) term scales the support as the disparity difference between the matches
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increases. Without it, the disparity gradient only weakly discriminates between candidate matches for an edge.
However, this scaling tends to favor surfaces that are parallel to the image plane. (Note that Prazdny’s
Gaussian support model does this also.33 ) Increasing ¢ reduces the favoring of fronto-parallel surfaces, but

decreases ability to discriminate between matches.

Figural continuity is implemented between pairs of candidate matches over a limited distance. A pair of
matches will support each other if they may be part of the same contour in each image and if they meet the
disparity gradient requirement. The disparity gradient is used to ensure similarity between the contours. The
actual support between these matches is weighted inversely by their distance apart. The weight is scaled using

the parameter BASE_FC':

. BASE FC
" distance

The implementation of multiresolution support is straightforward. Coarse support for a match is found by
searching the next coarser resolution near a given match for a match that has (1) similar positions and
orientations, and (2) nearly identical disparities. The weight is given by BASE _COARSE TO_FINE. Fine-to-
coarse support has the same requirements and has a weight of BASE_FINE TO_COARSE. Note that these
multiresolution weights involve no distance factor. The main reason for this is that the position of an edge at

differing resolutions can vary.

3.3.3. Weight Assignment

The remaining problem in defining the network is to establish the values of the various parameters, and
thereby set the connection weights. These parameters are associated with the implementation of the constraints
and the definition of the activation function, including the uniqueness parameter, B, and the decay parameter, S.
Our approach to parameter assignment involves three steps: (1) develop heuristics for the relative values of the
parameters and their approximate values, (2) use simple synthetic images representing difficult matching
problems to refine the values, and (3) fine tune the values through experience with random-dot stereograms and

real images.

Many connectionist models use leaming algorithms for weight modification. Unfortunately, such
algorithms are inadequate for this problem. Those that employ supervised learning3® would require a priori

identification of all the valid and invalid matches for a large set of images. Those using unsupervised learning
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13,37 require internal feedback from a more complete vision system to adjust the weights. Without such a

system, unsupervised weight adjustment would tend to reinforce errors made in determining the valid matches.

In taking an analytical approach to weight assignment, we claim that there is a fairly wide range of useful
values for the parameters. The reasons for this are as follows. First, because of the General Support Principle
(GSP) the supporting constraints only conflict indirectly through the uniqueness constraint. Second, because of
the iterative, cooperative nature of the algorithm, under normal circumstances the valid matches in a region of
one image form a coalition of support. Within the coalition there is usually support through a number of
constraints. Thus, precisely set values for these weights are not crucial. The implications of these statements
are twofold: (1) the most important parameter assignment involves the relative strength of uniqueness and
decay versus the supporting constraints, and (2) important test cases occur when there is strong competition

between conflicting groups of matches.

3.3.3.1. Heuristics for Weight Assignment

The observation that the valid matches form a coalition of support provides us with our first weight
assignment heuristics. Specifically, when there are a number of conflicting matching interpretations for an area
of an image, the algorithm must have enough time to identify the valid matches. This implies that the constraint
support parameters be relatively low to allow a consensus to emerge. If the parameter values are too large, the
algorithm might accept too many matches. This also implies that the value of the uniqueness parameter, 3,
needs to be relatively large. When there are nearly equivalent competing matches, relatively minor differences
in the support for those matches should decide between them. When 2 8 = 1.0 this occurs naturally. The decay
rate & is set much smaller since it mostly concemned with eliminating candidate matches that receive little

support.

There are a number of other heuristics that allow us to qualitatively relate the supporting constraint
parameters, and to relate these to uniqueness and decay. For example, the relative strength of the parameters
for figural continuity and the disparity gradient is defined through two observations. First, both constraints are
derived from assumptions about the appearance of an object surface in the images and they complement each
other in their definition of support for a match. This implies that BASE FC =BASE_DG. Second, the
disparity gradient defines support over a two-dimensional area (although the matches are relatively sparse),

whereas figural continuity is defined over a limited range in one dimension. This implies that
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BASE FC » BASE DG. The relative weights for these parameters is a trade-off between the two

observations. In practice we have found that BASE_FC =2XBASE_DG works well.

Next, we need to define the multiresolution parameters. Coarse-to-fine is the strongest of the support
parameters since it is the least ambiguous. However, it should not be large enough that it can not be over-
ridden by a coalition of support from other constraints. Fine-to-coarse support is used to compensate for weak

support that coarser matches receive through other constraints. Thus, we want BASE_FINE TO_COARSE = 8.

To summarize, in addition to some quantitative relations between the parameters we have the following

ordering of the parameters:

B > BASE COARSE TO FINE > BASE FC > BASE FINE TO_COARSE = D > BASE DG
Finally, the two detailed match weight parameters should be significantly smaller than the others.
Clearly, BASE BOTH SIDES >BASE_ONE SIDE. Also, BASE_ONE _SIDE > BASE_BOTH _SIDES /2

since the appearance of one side of an occluding edge can vary significantly between two images.

3.3.3.2. Further Parameter Tuning Using Synthetic Images

The second step in parameter tuning is to use synthetic images that represent significant tests for the
values and the algorithm. One example is the non-unique matching bars of Figure 2. In this example the
strength of figural continuity, multiresolution, and slight disparity gradient support along each contour should
be enough to barely (this ensures that one-sided uniqueness is usually enforced) overcome one-sided
uniqueness and decay. Figure 3 shows another image pair. In this case, assume that a bar in one image could
match both bars in the other. Hence, there are two uniqueness inputs for each match. In looking at the figures,
it is obvious which bars should match. However, the only difference in support is that the correct matches
receive greater disparity gradient support. Thus, with the disparity gradient support between the correct
matching bars these matches should be chosen. When the disparity gradient only provides support along each
bar no matches should be accepted. Other synthetic images include a number of types of periodic patterns.
These are useful for refining the detailed match parameters and ensuring that uniqueness can assist in resolving

ambiguities.
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Left Image Right Image

Figure 3. Synthetic image example. See text for discussion.

3.3.4. Further Issues in the Design of the GSA

Before examining the performance of the algorithm, we briefly discuss some additional issues in the
design of the General Support Algorithm. These include the size of the network, edge detection, and network

termination conditions.

3.3.4.1. Network Size

One of the main problems with the General Support Algorithm is the size of the network. A
straightforward implementation of the network described above would require k p m N 2 match nodes for a
given resolution. Here k is the number of different compatible orientations for a given orientation, m is the
number distinct orientations that the edge detector recognizes, p is the number of distinct disparity values, and

the image size is N by N. This assumes that there must be a distinct node for every possible match.

An alternative implementation, requiring slightly more complicated candidate match determination,
significantly reduces the number of nodes required. Assuming that there is at most one edge at each position,
then for any two points, one in each image, there can be at most one candidate match. If one node represented
all the matches between edges at the two points, a significant savings would be realized. Specifically, the total
number of match nodes would be reduced to p N2. To realize this savings, two problems must be addressed.
First, there must be a means to ensure that only pairs of compatible edges can activate a match node. Second,

match nodes no longer represent any orientation information. Figural continuity and multiresolution require
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this for defining connections, but the disparity gradient, which defines the most connections, does not. The
solutions to these problems require the use of conjunctive connections.® That is, groups of connections are
multiplied together before forming the weighted input to a node. Thus, if the output from the edge detector is
binary and there is one conjunctive connection for each compatible set of orientations, only compatible edges
will activate a candidate match. Similarly, conjunctive connections may be used to limit figural continuity and
multiresolution to compatible orientations. With this additional complexity in defining some of the network

connections a significant saving in the number of match nodes and connections is realized.

3.3.4.2, Edge Detection

Another issue we have not addressed completely is edge detection in the lower levels of the network.
The General Support Algorithm assumes that the edges are detected and provided as input to the initial phase of
matching. In practice we have not attempted the connectionist implementation of an edge detector. This has
simplified timing considerations since we assume that all edge inputs are available in the initial phase of
matching. The only assumptions that the General Support Algorithm makes about edge detection is that (1) the
edges are relatively sparse, and (2) when an edge appears at multiple resolutions, it does so with similar

positions and orientations.

3.3.4.3. Termination Conditions

A number of researchers have attempted proofs that their networks will reach steady state conditions.?
We have no such proof for the General Support Algorithm. There are several reasons for this: (1) the output
function is real-valued, making it more difficult to determine what constitutes a steady-state. (2) The structure
of the network is irregular. Networks that are known to reach a steady-state are highly regular. (3) The GSA is

designed to handle realistic input. Its behavior on arbitrary, uncorrelated data is unpredictable.

4. Experimental Results

This section presents experimental results using random-dot stereograms and real images. The section is
divided into four parts. Section 4.1 describes the simulation of the networks. Section 4.2 presents the matching
results for random-dot stereograms. Section 4.3 covers results in matching real images. Section 4.4 analyzes

the results in terms of the guidelines stated in Section 3.1 for an algorithm that integrates multiple constraints.
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In addition to the images presented here we also ran the algorithm on the synthetic images described previously.

In each case the algorithm works as desired.

4.1. Connectionist Simulation of the General Support Algorithm

The first step in testing the GSA is designing a realistic, practical simulation of it. The main observation
used in doing this is that matches are sparsely distributed. Thus, for a given pair of input images, we build only
those nodes that represent a candidate match, and we only define connections between these candidate matches.

The result is a subnetwork that is functionally isomorphic to the entire network for this pair of images.

The simulation subnetwork is built using the results of edge detection. Edges are located using the
Marr-Hildreth edge operator.25 This operator is shaped with a central positive region surrounded by an
extended negative area. In the General Support Algorithm we use three different sizes of this operator, with
central positive region diameters w = 3,6, 12. Although not required in theory, in practice a small threshold is
used on the magnitude of the zero-crossing, and some minor thinning of non-horizontal edges is necessary. The
results of edge detection are provided as input to the simulation. The simulation uses this input to determine the
candidate matches and build the connections between them. (No matches are allowed for horizontal edges
along contours of length two or more in a given row in an image.) The initial activation for each match is set at
a base level plus any additional support from a detailed match. The simulation is allowed to run for either a
given number of iterations (usually a max of = 16) or until only a small percentage (usually =1%) of the

matches have outputs in the intermediate range 0.25 to 0.75.

Finally, the simulation was run using the following parameter values: BASE_Coarse_to_Fine = 0.225,
BASE Fine to_Coarse = 0.1, BASE FC =0.15, BASE DG =0.08, D =0.12, B=0.5,
BASE Both_Sides = 0.02, and BASE _One_Side = 0.12. All of these values except BASE_DG were used for all

of the test described below. BASE DG varies with the density of the matches. This is discussed further below.

4.2. Random-Dot Stereograms

Random-dot stereograms have frequently been used for testing matching algorithms.2! They are useful
for studying matching for two main reasons: (1) there are no monocular depth cues that might assist in the
stereo process, and (2) the correct disparity is known for every point. The latter gives an objective measure of

matching accuracy that is not available for real images.
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Our method of testing stereograms is as follows. All stereograms used are a series of planar surfaces.
The 256 by 256 images are first generated with 50 percent dot density. After this the stereograms are treated as
normal inputs to edge detection. The network is run using BASE_DG =0.06. The results of matching are
recorded in two ways. First we generate a "disparity image”. That is, for each edge with an accepted match in
a given image, the disparity of the match is recorded as an intensity. The second method of data collection is to
automatically compare the disparities of the matches to the known correct disparities. A match is counted as

correct if its disparity is within 1 of the surface disparity.

An example stereogram is shown in Figure 4. Part (a) of the figure gives the disparity of the surfaces
encoded as intensity. Darker points are closer to the viewer. White patches indicate locations that are occluded
in the other image. No matches should be found for these points. The background surface is disparity 0; the
others are 6, 12 and 18 pixels. Note that in the right image the three non-zero disparity surfaces align. This
gives rise to a significant occlusion in the left image. Part (b) of the figure shows the actual stereograms. Part
(c) shows the results of intermediate level (level 1) edge detection. Part (d) gives the level 1 disparity image
resulting from matching. (The matching ended after 10 iterations.) Points with no edges or no matches appear
as white. Table 1 summarizes the statistical results of matching for each resolution level. The second through
fifth columns of this table represent, in order, correctly finding no match for an edge, incorrectly finding no
match, (0.6 was used as the cut-off between valid and invalid matches) finding the correct match, and finding an
incorrect match. The sixth column represents the number of correct matching decisions. A correct decision is
either finding the correct match for an edge, or correctly rejecting all matches for an edge. The seventh column
gives the number of incorrect decisions. The final set of statistics is given in Figure 5. It shows the percentage
of matches whose output is in the intermediate range 0.25 to 0.75 as a function of iteration number. Most

matches are determined by the fifth iteration.

Correct Incorrect | Cormrect | Incorrect Correct Incorrect || Percent

No Match | No Match [ Match Match Decision | Decision || Correct
Left 0 761 7 16,584 474 17,345 481 973
Left1 442 20 8,087 221 8,308 241 97.2
Left2 156 39 3,365 289 3,521 328 91.5
Right 0 605 5 16,680 494 17,285 499 97.2
Right 1 409 27 9,278 219 9,278 246 97.1
Right2 160 25 3,525 289 3,525 314 91.8

Table 1. Matching results for stereogram in Figure 4.
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In addition to the high percentage of correct decisions, there are several things to note about the results:

. A large percentage of the errors involve occluded regions. For example, 98 of the 474 incorrect matches
at level 0 in the left image are for occluded edges (for 473 occluded edges it correctly found no matches).
The numbers are higher in the right image, 217 of 494. In addition, the occluded match errors in one
image generally appear as errors for non-occluded edges in the other image. Thus, approximately 315 of
474 errors in the left image involve occlusions. The main reason for the differential between the left and
right images in terms of the number of occluded edges with matches is that there is a larger occluded
region in the left image. Support between matches in an occluded region is essentially random. More
coherent support comes from outside the occluded region. In the left image this support is generally
further away from a given match and is therefore weaker. In addition to the matchings for the occluded

edges, there are also errors near step changes in disparity that don’t directly involve occlusions.

° At the coarsest resolution the results are somewhat poorer. There are two possible explanations for this.
First, the edges are somewhat sparser at this level, leading to weaker support for a given match. Second,
the errors could simply be due to measurement errors. That is, matches are counted as valid if they are
within +1 pixel of the surface disparity. As the edges become coarser, their position errors tend to

increase (see Section 2.3 for our discussion of this), and so do their disparity errors.

° Finally, there are a number of edges for which multiple matches are found. These are counted as errors
(161 of them in the left image, level 0) if the two edges in the other image are not adjacent (this can occur
when a horizontal contour switches 10 a more vertical one). The number of double matches is nearly zero

at the coarse resolution.

The algorithm was run on several other stereograms as well. The percentage of correct matching

decisions for these images was similar to the above example.

4.3. Real Images

The simulations for real images were run in the same manner as stereograms. The matching for each
stereo pair was allowed to run for up to 16 iterations or until fewer than 1% of the matches had outputs in the
intermediate range. The parameter BASE DG is varied between 0.055 and 0.09 depending on the density of

the edges in the images.
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Collecting reliable data on the results is more difficult for real images. We attempted to follow similar
procedures as for random-dot stereograms in producing disparity images and matching statistics. However,
since the ground truth disparity was unknown, we used subjective judgment to determine whether the algorithm
made correct matching decisions. The images were graphically displayed, and for each edge, the candidate and
accepted matches were highlighted. Statistics on correct decisions were then gathered using the following
judgment criteria: First, the disparity of a match was compared to an approximately known disparity for the
region of the image. Second, the two images were carefully examined to discern, subjectively, if matching
edges appeared to be the same physical edge. This was mostly based on the structure of the images. A limited
percentage of the edges were actually checked. This procedure gave a rough quantitative measure of how well
the algorithm performs, and allowed us to examine the results in detail to observe where the algorithm

succeeded and failed.

We tested the algorithm on the images in Figures 6-14. The figures show the images, intermediate results
of edge detection (level 1) and level 1 disparity images. The captions of the figures indicate special features of
the results. The statistics for these examples are summarized in Table 2. The second and third column of this
table give the number of edges examined and the percent of correct matching decisions. The fourth column
shows the parameter BASE_DG used. The fifth through seventh columns of the table give the percent of
matches in the intermediate range after the sixth, ninth and twelfth iterations. The final column shows the total
number of iterations required. Finally, the graph in Figure 5 shows the number of intermediate nodes as a

function of the number of iterations for three tests.

Overall, the results show a high rate of correct decisions. In addition, there are several other general
comments to note about the results. First, the disparity images are sparser than the edge images. This is
because unmatched edges do not appear in the disparity images. These are usually horizontal edges, but they
may also be occlusion edges. Second, the graphs shown in Figure 5 indicate widely varying percentage values
and peaks. This variation is due to the percentage of matches that are eventually accepted since most invalid
matches never reach the intermediate range. For example, the apple image had 46% acceptance, the rocks
image had 19% acceptance, and the sandwich image had 43% acceptance. The main reason for the low value

in the sandwich image is that matches are sparser than in the apple image.

The level O matching results were not included because some of them were too dense to carefully

analyze. Of those that we could analyze, by far the worst performance was for the ball image (89%). In this
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image the fine resolution edges are extremely dense and regular. This causes a high degree of ambiguity that

the algorithm could not completely overcome. We have more to say about this in Section 5.

4.4. Discussion

The General Support Algorithm has been experimentally shown to be successful in producing a large
percent of correct matching decisions in the examples tested. Note that we emphasize the percentage of correct
matching decisions. A correct decision occurs when either the correct match is found for an edge, or when the
algorithm correctly finds no matches for an edge. An incorrect decision occurs when an incorrect match is
found for an edge, or when the algorithm misses the correct match for an edge. Other algorithms have
compared the number of valid matches to the number of invalid matches. Optimizing this figure is misleading

since it can lead to an overly sparse set of matches.

In Section 3 we discussed how the GSA was designed following the guidelines for constraint integration.
Here, we briefly evaluate its performance in terms of these guidelines. (Unfortunately, it is difficult to separate
the influence of the constraints because the constraint definitions used in the algorithm rely on the existence of
the other constraints. This makes it inappropriate to compare the performance of the algorithm with and
without certain constraints. Also, in examining the results of matching, it is difficult to assign credit or blame to

particular parts of the algorithm.)
. The algorithm matches a wide range of images from random-dot stereograms to real images.

. The algorithm overcomes weaknesses in the individual constraints. In observing the results we have seen

circumstances where the interaction of the constraints has improved the performance. Most importantly,

Level 1 % in Mid Range After
Number Percent || BASE_DG || 6 9 12 Number of
Examined | Correct Iterations
Apple 555 98 0.08 2 1 10
Ball 561 98 0.055 4 2 1 13
Books 712 96 0.09 4 2 1 15
Fruit 469 96 0.09 9 4 2 16
Pentagon 565 97 0.055 5 3 2 16
Renault 436 98 0.08 6 3 2 16
Rocks 803 97 0.07 6 3 2 16
Ruts 623 99 0.09 8 3 2 16
Sandwich 493 98 0.09 13 7 5 16

Table 2. Matching Statistics for Real Image Pairs.
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in densely textured regions, the matches receiving strong multiresolution and figural continuity support
tend to pull the rest of the matches into correspondence through the disparity gradient. Another example
of this is where weak figural continuity support was overcome through broader based support given by
the disparity gradient. An instance of this is in the Rocks image where the dense fine resolution matches

did not have strong figural continuity support between them.

The GSA produces a high percentage of correct matching decisions. It is unfortunate that there is no way

to directly, quantitatively, compare the results with other matching algorithms.

The GSA works well in circumstances where other algorithms work poorly. It works fairly well in
resolving matches for periodic structures and in compensating for minor structural differences between
images. In the fruit image (Figure 9), the algorithm chose the matches for the table cloth pattern near the
occlusion, but correctly found the matches for this in other places. Also, in general as the structural
differences between the two images increases, the quality of the matching decreases. Finally, the GSA
handles occlusions fairly well. As was shown by random-dot stereograms, most edges that appear in one

image, but are occluded in the other are not matched.

Finally, even with the use of a number of constraints, the matching did not require very many iterations.
This was seen in the percentage of intermediate matches in the middle range as a function of the number

of iterations.

5. Concluding Remarks

The General Support Algorithm uses integration of local constraints to produce high quality stereo

matching. However, there are certain situations that the local constraints cannot explicitly address. For

example, local constraints can not detect occluding boundaries and therefore continue to allow support across

these boundaries. As we saw in the stereogram example, even though most occluded edges do not have

matches, a large percentage of the errors made by the algorithm involved occlusions. Some of these problems

can be solved through non-local matching mechanisms that feed back into the local network to improve the

quality of matching.

The two most difficult problems for local matching constraints are:
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. Structural differences between the two images. This involves occlusions, noise, and significant structural
differences between the contours seen in the two images. Simple examples of each of these can generally
be handled implicitly through the interactions of a number of the constraints. More significant
differences cause a number of matching errors. In Figure 14, there are significant contour differences in
the nearest parts of the sandwich. A more severe example of this is the books image (Figure 8) where

some of the contours in the upper-right comner of the images appear almost arbitrarily.

. Repetitive textures that are either extremely dense or partially occluded. There is often little to
distinguish between matches for these edges. One potential solution to these problems is to use an
independent measure of depth such as the focal gradient. Such a coarse indicator of depth can favor the

correct disparity enough that the ambiguity is resolved.

In addition to these general problems with local constraint interaction, our General Support Algorithm is
sensitive to the density of edges in regions of the images. This problem is relatively minor except in highly

ambiguous regions.

We are presently developing solutions to a number of these problems. The most important of these
involves occlusion detection. This requires the use of additional nodes in the network. A group responds to
average disparities in small region; other nodes can react to sharp changes between adjacent non-overlapping
disparity nodes, thereby indicating an occlusion boundary. This can be used to eliminate disparity gradient
support across occluding boundaries and in some cases directly suppress known occluded matches. A number
of recent algorithms have integrated surface reconstruction with matching and have proposed using the result to
locate occlusions.3: 18 These approaches seem promising, but they do not incorporate significant local matching
techniques. Thus, they require complete surface reconstruction to locate occlusions. However, this is not

necessary, because disparity tends to vary slowly except at occlusions.
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(a) Surfaces as disparity images.

"(b) Left and right stereograms.

AESr S

(c) Level 1 edges

Figure 4. Stereogram example.
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Figure 5. Percent of nodes in the intermediate level of activation as a function of the iteration number. Results
are shown for the stereogram and for three real images.



(c) Level 1 disparity images.

Figurc 6. Apple processor board images. The disparity range between the images was small.
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(b) Level 1 edge detection results.

ges.

vel 1 disparity ima

c

¢ disparity.

ge of a baseball in front of newsprint. The newsprint was all at approximately the sam

Figure 7. Ima

vich no matches should be

!

arcas for w
ges respectively.

At this resolution the periodic pattern is easily resolved. The occluded

found were to the left

ht of the baseball in the left and right ima

and rig



v/

i\t
B 3’:(.{{ |%f~ ;j
Ny /.‘)'f‘";.;

AR
1}/{ !l }L(

(¢) Level 1 disparity images.

Figure 8. Books image. The crrors that occur here were clustered on the books’ edges in the left corner of the
images, and on the table in the upper right part of the images. There were significant variations between the im-
ages in these places.
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(C) Level 1 disparity images.

Figure 9. Fruit image. The matches on the {ruit and on the tablecloth in front of the fruit were almost all
correet. The errors occurred for edges from the tablecloth near the surface of the orange. The combination of
the occluding region and the periodic structure of the table cloth produced incorrect matches for a number of
cdges.
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(b) Level 1 edge detection results.

(c) Level 1 disparity images.

Figure 10. Pentagon image. There arc some significant contour differences between the two images on the in-
terior of the Pentagon. This causes matching confusion that the algorithm did not completely overcome.



(a) Input images.
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(c) Level 1 disparity images.

Figurc 11. Renault autopart image. Almost all of the matches were correct. Errors only occurred sporadically
when there were significant differences in the contours resulting from edge detection.



N A ey
FEGANG
MBI ALY
SRR CE
v /_'I ; e/ l.,‘
o cf(d/\(ﬂ?
,-\,f‘f'i

e avh ey
~

p

ST S : -
?/}w: \-35/ ﬂi{ﬁc@ 5

P

[: ,"\',.E

/i
Y [ ~’r"'-~ 3
\\‘/f' /e NGV ' N ‘\*:h,. i //1 (. A
N ) R NP O boi U le t) Grelin
ARG (‘\'."".-('\*)‘jJnr-‘,"«‘-»,'\'/_‘ '/ﬁ':’fJ/, nod ) S
> R ERT A ERy 3] Yl Sy
ol Y320 ape s e
Lo e, T Y e e an A R A S S A AN ERAV

(c) Level 1 disparity images.

Figure 12. Rocks image. There was a large occlusion in the upper region of the images. The disparity range
between the images was extremely large. Errors were sporadic.,
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(c) Level 1 disparity images.

Figurc 13. Ruts image. There were almost no errors.
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(b) Level 1 edge detection results.
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(c) Level 1 disparity images.

Figure 14. Sandwich image. The appearance of the lower edges of the sandwich varies significantly between
the two images. This caused a small number of errors.
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