Register Allocation and Code Scheduling
for Load/Store Architectures

by

Wei-Chung Hsu

Computer Sciences Technical Report #722

October 1987

REGISTER ALLOCATION AND CODE SCHEDULING

FOR

LOAD/STORE ARCHITECTURES

by

WEI-CHUNG HSU

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN -- MADISON

1987

Abstract

To achieve high performance, the structure of on-chip memory in a single-chip
computer must be appropriate, and it must be allocated effectively to minimize off-chip
communication. Since the off-chip memory bandwidth of single-chip computers is
severely limited, data caches that exploit spatial locality to achieve high hit rates are not
appropriate. A register file, which can be managed by compilers, might be more
effective than a data cache as an on-chip memory structure. With a load/store
architecture, compilers can separate operand fetches from their use by scheduling code,
thus achieving high hit rates without increasing memory traffic. Register allocation also

exploits temporal locality better than a data cache does.

This thesis investigates how effective register allocation could be and studies the
interdependency problem between register allocation and code scheduling. A model of
perfect register allocation is explored. An algorithm for optimal local register allocation
is then developed. Since the optimal algorithm needs exponential time in the worst
case, a heuristic algorithm which has near-optimal performance is proposed and
compared with other existing heuristic algorithms. Through trace simulation, the
perfect register allocation model is shown to be much more effective in reducing off-

chip memory traffic than cache memory of the same size.

Code scheduling interferes with register allocation, especially for large basic
blocks. Two methods are proposed to solve this interference: (1) an integrated code
scheduling technique; and (2) a DAG-driven register allocator. The integrated code
scheduling method combines two scheduling techniques—one to reduce pipeline delays

and the other to minimize register usage—into a single phase. By keeping track of the

number of available registers, the scheduler can choose the appropriate scheduling
technique to schedule a better code sequence. The DAG-driven register allocator uses
the Dependency DAG to assist in assigning registers; it introduces much less extra
dependency than does an ordinary register allocator. Both approaches are shown to

generate more efficient code sequences than conventional techniques in the simulations.

iv

Acknowledgements

It has been my privilege and good fortune to work and study with Professor James
Goodman for whom I have the greatest respect. I would like to take this opportunity to
thank him for all his encouragement, support, and direction. His enthusiasm,

encouragement and patience have made this thesis possible.

I would like to thank the other members of my committee: Charles Fischer,
Marvin Solomon, Guri Sohi, and John Beetem. I learned how to write a compiler from
Charles. Marvin taught me the optimizing compilers skills. Guri spent many hours

discussing with me. John offered me extremely helpful comments.
Thanks are also due to my dear friends, especially, Phil Pfeiffer and Matt Farrens,
for their help in revising my writing.

I would be amiss, if I didn’t acknowledge how fortunate I've been to have a family
that has given me the strength to follow my dreams. I would like to express my deepest

gratitude to my wife, Diane, for her sacrifice and endurance over these many years.

Table of Contents

Chapter 1: Introduction

1.1. On-Chip MEMOTYcocevrrrereruerermrnrerenssnsensessassenesesssesssansssescsssenes
1.2. Data Cache Or REGISLETScevereererererernernseresneresnssesesecesenssssens
1.3. Research Problemscccceneeeerereneeeeeeresnnessinesiscsessssesessesens
1.3.1. Register AlIOCAtIONceeevrrrrrerneenencreessenesereseresesessenssenes
1.3.2. Code Schedulingcccveerrrveerreenerensreresernesersessassesssesnsens
1.3.3. Large Basic BIOCKSccceeerereruruenerereresenernssesssssessassesessones

Chapter 2: On the Use of Registers vs Data Cache to Minimize
Memory Traffic

2.1. The Behavior of Local Accesses and Global Accesses
2.1.1. Temporal Locality and Spatial Localityecervevenee
2.1.2. On-chip Memory for the Stackecceeeeevereveeerveeennenee

2.2. Register Allocation and Procedure Callscccoervrvreruennnnee.

2.3. A Model for Perfect Register AlloCationcccevruerereveneeencns
2.3.1. How Realistic is the Perfect Register Allocation?
2.3.2. An Initial EValuationececeveveveemeeerencereseessensscenssessnans

Chapter 3: Optimal Allocation in Basic Blocks

3.1. The MOdELucuiiiccirerecrernrereeneeseseeeseseenese s e sesessesones
3.2. Finding a Shortest Path in the WDAGc.cooeveererrevereerenenene.
3.3. The Rules for Pruning the WDAGooooveerervveeenireeereeerereeenns
3.4. The Algorithm to Find An Optimal Allocationcc.cue....
3.5. SPECial CASESooeeererrrrerereenrereierenereeererereeresenesesesressessssesees

ii
iv

0 J hh b DN -

3.6. A Heuristic AIZOTIthMccccoeerrrerrrercerereenerensenerersenseoscnsaennans
3.7. Existing Heuristic AlgOTithimscccceceeeveverereccennnercscncennens
3.8. EVAlUALIONcocourrrrcrrreereresesenenserererersseaesesessassssseonsssoscssssssansseans
3.9. Replacement vs Graph COlOTINgccceeeueveereennrereeveseseononsaenns
3.10. The Reevaluation of the Perfect Allocation Model
3.11. Global Register ALIOCAtIONccccererererreecerreresnerersereansnorsnsacnes
3.11.1. Previous WOTKccceeeeeeccecrenennrcenssesassesesnsseseressssessscnsanens
3.11.2. Important Considerations for Good Allocations
3.11.3. Branch FreqUENCYc.cccesrerrreenercrnerererenseseneseenesesessens

3.11.4. The Extension of Local Allocation to Global Alloca-
BHOTL uveeerreeneesneeieeeeeeseesssscsssesessosnseesnsesssnsesnnsesssessssnesassssesssssesssnsens

3.11.5. Some Required Modificationsceceeeeveervereressseenenenes
3.12. Register Allocation of Global Variablesc.ceeeveevrererennene.

Chapter 4: Compiler Techniques for Increasing Basic Block Size

4.1. Reducing Conditional JUMPScceveererereneeensererenesecssnscnnne
4.2. Code DUPLICALIONcoceeerrrerererenerrnnreeremneneseseacesssssssessasssessssenns
4.2.1. LoOD UNTOLUNGcoerererernrenrernerierenireresennssesssesesesessasncssnes
4.2.2. In-Line EXPanSionccccceceeeeeveveveeeriscnsnsesesesssesesensasscsens
4.2.3. Code RepLCationccccceeerruereneereecsneneencsesssssssensessesssonns
4.2.4. Trace Schedulingcccceevereeverereeenireeceeseeeeessesereseessaenns
4.2.5. Unswitching and Multi-versionccceeevveveeereeueseenen.
4.3, OthETSocuiirrineeieeennecnetonsnensonsaessssessssssesesssessssassesessasessasosssssens

Chapter 5: Code Scheduling with Limited Register Spilling

5.1, INtTOQUCLIONcoeeereuerrereerrrerenrreneeneseneresnessssesessossessesssonsssssnens
S.2. BACKZIOUNAcoviemmuerenrererreereneerereeerseesessenesesseseesessesessesssassseneense
5.2.1. Code Scheduling Constraints: The Dependency DAG

ooo

vii

5.2.2. The Use of Low Level Intermediate Languages 88
5.2.3. Prepass or POStPASS?ccvveevieereerrenreeeeeseesessesessessenesssenes 89
5.2.4. Two Conflict Scheduling Techniquescceceeveveueevenenee. 90
5.3. A Solution for Prepass Schedulingcccoeeveeeereeervemneencveennee 93
5.4. Implementation NOLEScccereeeererrererererseeereseereresseseessesessenes 95
5.4.1. CSP, CSR and AVLREGcovrvrerrrrerrrerercreresrersseesones 95
5.4.2. Renaming of Pseudo-RegiSterscoevvveveecrnnreenernccenne. 97
5.4.3. Interlock Checking at Scheduling Timeccceurvvneee.. 97
5.4.4. Leader Set and Ready Setcoveeeevrererenereerennencnnneecsaene. 99
5.4.5. Integrated Scheduling Algorithmceveveerevereeenerennnne. 100
5.4.6. A Variation on Profitable Register Spillingc..c.cu...... 102
5.5. Scheduling Loads and StOreseceeeeevermeeeeesereeseeneecsesneneen. 104
5.6. Simulation Studies and DiSCUSSIONc.ceeeeverrereeeerererneneeannn. 106
S.6.1. SIMUIAtONScccovvureerrrerrrernereeeerererereseseeseseneneessaeesesessases 106
S:6.2. DISCUSSIONcorerierrvererrereersrenrerenresessersesessesessesessesessenesseseane 115
5.6.2.1. General DiSCUSSIONcoueeerererernerernenseereeneneresrenenescnens 115
5.6.2.2. Total vs Available RegiStersocerervruerereevrneeenennae. 120
5.6.2.3. Problems with Multiple Functional Pipelines 124

Chapter 6: DAG-Driven Register Allocation

6.1. MOLIVALIONeovreeerernnensctrnenseenecseseecscaesssesessaensasssssnsasees 130
6.2. Balancing DAG RecOnStruCtionceceeeeeveneseeceseeesenensnns 131
6.2.1. Free WAR Dependenciesoeeeeeeeeereeeneeceeennnersesnensen. 132
6.2.2. Balancing the Growth of the DAGocoevveeeevevrernnnnn. 134
6.3. Implementation NOLESccccerveeererrererereeererennererreseeceneesessssnsnns 138
6.3.1. Update Dependent Relation Incrementally 138
6.3.2. Update EIT Dynamicallyccceceruereerereereneeeereenesneersennnns 139
6.3.3. Replacing Live REGISETSccvveevveeereenerirenceeeereeeenenans 141
6.3.4. The AlIZOTIthIMcoevinuirrereeeeeereeecreeeceeee e eee e 141
6.3.5. EXaMDIEcoeeeimtrerritereireteeeeeee et en e eene 143

6.4. The Performance of DAG-driven Register Allocation 148

Chapter 7:

7.1. Summary of Results
7.2. Suggestions for Future Research

References

Conclusions

oo

oo

--

viii

ix

List of Figures
Figure 2.1 Cache Simulations for Stack AcCesSescccccecerernnraeannnrecenennnnnees 14
Figure 2.2 Cache Simulations for Global ACCESSeScccecerrecreescrranecnasranen. 15
Figure 2.3 Cache Simulations for Global Accesses (Bus Traffic) 16
Figure 2.4 Compare Global Accesses to Stack ACCeSSESccceevumueniicinennne 17
Figure 3.1 WDAG for Optimal Register Allocationcccccvvnvrerrcrrereeneees 34
Figure 3.2 Selection between Clean and Dirty Registerscc.ccuuuuuenunnnne. 46
Figure 3.3 Selection between Dirty-Live and Dirty-Dead Registers 47
Figure 3.4 Extension to Global Register Allocationcccoceemmnnnnieiecnnnes 65
Figure 4.1 Unrolling A Fortran DO LooOpccccccverirerrinenennnennenennennennnnnes 71
Figure 4.2 Loop Unrolling and Register Allocationcccceeerrenneceirereccnnanes 72
Figure 4.3 Unrolling A WHILE LOOPcccccviiiiiernimnnennnnennneneeeceseisenisresanes 73
Figure 4.4 Code Replicationccccccevirmemennueicesicnnsnnnecciennenmeneesiorenansesnassnes 77
Figure 4.5 Code Replication with Multi-way Branchccccceeeccnvecrcacnsnenns 78
Figure 4.6 Trace Schedulingcccoveevirimmuniinnneniccissoisscsseessessensosssssssosns 79
Figure 4.7 UnSWitChingcoccvvvvvruemmeemmntnnnereninnmeecscsscssssessssssensessasarenseene 82
Figure 4.8 Multi-versionccueieeeciiieiiiinnennneiiionesiesnniciscsnnnenmosssenennes 83
Figure 4.9 Loops Before Loop Fusioncccourveiiiiiiimineniiiicrenneniiosiennee 84
Figure 4.10 Loop After Loop FusSioncccccrvrmmmneiiieicecrveessnicoransensessennnns 84
Figure 5.1 Example Program and its Dependency DAGccoevveueeiiicienee 89
Figure 5.2 Prepass and Postpass Schedulingcc.cccvvvriervnnnncieeenecnssenneces 92
Figure 5.3 New Dependency Edges Added by Register Allocation 92
Figure 5.4 CSR Minimizing the Use of RegiSterscccccvvvevercerrrannannecens 93
Figure 5.5 Code Sequence Using Integrated Scheduling «........cccccevvvuicrvencncne. 95
Figure 5.6 Local Variables Make Single Assignments Non-Trivial 98
Figure 5.7 Renaming of Local Variablesccccccieviiinnnnnnicerinsnneneeecennns 98
Figure 5.8 WAR Detection for Live-On-Entry Variablescccccceeeeeennnnnnne 99
Figure 5.9 Weighted DAG Identifying Critical Pathsccccceceeeeerereennnennnne. 103
Figure 5.10 Comparisons of Scheduled Code Sequencescccoeeuuecrrercunne 104

Figure 5.11 Pipelined Implementation of Our Model Architecture 107

Figure 5.12 Comparisons of Execution Cycles (Highly Pipelined Model)

ooo

ooo

Figure 5.14 Comparisons of Spill Code (Highly Pipelined Model)
Figure 5.15 Comparisons of Spill Code (Medium Pipelined Model)
Figure 5.16 Comparisons Based on A Single LOOPcooceevereerruesuvesnenns
Figure 5.17 One Explanation of the Anomaly in Postpass Scheduling

Figure 5.18 Comparisons Using Total Number of Registers (Highly Pipe-
HNEA) .oveneieiciccciitcr e eesnterneetee e e streste e e esseesseesssnsesnesssaesonaans

Figure 5.19 Comparisons Using Total Number of Registers (Medium
Pipelined)cccoouieiecimnnnnieierennecreneeseesssessieseesseosseesesesassensensans

Figure 5.20 Linear Pipelined Model (10-5tages)ceeuveveeeceeecveerseeseesane
Figure 5.21 Linear Pipelined Model (5-Stages)ccceoeeeererecrueeesoeesneerenne
Figure 5.22 Bypass NetWOTKc.ccceeeveeruiereeereresueesossseeeesesssnsesssnsiossesses
Figure 6.1 Free WAR Dependenciesccoeeererereeerseeeesseessneessseessacsnee
Figure 6.2 Computations of EIT and EFTccoceevveeeieeeneeerceeecsneesenennes
Figure 6.3 Example DAGcccouenreneereiireeneeinceseeeneseesnesesssessesossasesnanses
Figure 6.4 Another Example DAGoouooriereenreererecneeseeecnseeneesasessosnns
Figure 6.5 Complications due to Spillingcccceevueeerueeercercnvorsseernsn
Figure 6.6 WDAG with Computed EFTccooveeeeeuireeseeeenseecesssneeessassns
Figure 6.7 DAG-Driven Allocation vs Postpass Scheduling I
Figure 6.8 DAG-Driven Allocation vs Postpass Scheduling II
Figure 6.9 DAG-Driven Allocation vs Integrated Prepass Scheduling I

ooo

ooo

List of Tables

Table 3.1 Rapid Growth of Register Configurations
Table 3.2 Replacement Process of Example 1ueeevereeeeeeererronne
Table 3.3 Replacement Process of Example 2cocveevernveeennnnen.
Table 3.4 Evaluation of Heuristic Register Allocation Algorithms I

Table 3.5 Evaluation of Heristic Register Allocation Algorithms IT .
Table 3.6 Bus Traffic of Perfect Register Allocation and Data Cache

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

35
49
50
53
35
58

Chapter 1

Introduction

1.1. On-Chip Memory

Advances in semiconductor technology have made it possible to design and
fabricate an extremely high-perfofmance CPU on a single chip. It will soon be possible
to fabricate a single chip containing more transistors than the CPU of a modern
supercomputer. However, the performance of these single-chip processors will be
severely limited by the memory systems. This is because off-chip memory access is
slow and, more importantly, the pin bandwidth— the rate at which data can be moved
through the pins of the chip — is limited.

Many recent innovations in single-chip processors involve ways to bypass this
rigid constraint on memory/processor interaction, primarily by introducing additional
memory in one form or another on the processor chip. The on-chip memory can be
accessed much faster than off-chip memory, and can supply a bandwidth as high as
necessary. Unfortunately, the on-chip memory cannot be as large as needed for high-
performance computers. In fact, the memory necessary to support a single-chip, high-
performance processor will require many chips for the foreseeable future. So the on-

chip memory can only be thought of as the top of the memory hierarchy.

A memory hierarchy is effective because of two kinds of locality of memory
references: spatial and temporal. Spatial locality refers to the property that memory
accesses over a short period of time tend to be clustered in space. Temporal locality
refers to the property that references to a given location tend to be clustered in time.

Using spatial locality is very effective in increasing the hit ratio of a memory hierarchy.

However, techniques for exploiting spatial locality, such as prefetching or using a large
transfer unit often increase the bandwidth requirement of the memory system. Due to
the limited pin-bandwidth, features of the on-chip memory that exploit spatial locality
must be used carefully to avoid increasing the off-chip traffic. In other words, temporal

locality should be favored in designing the on-chip memory.

1.2. Data Cache or Registers

Memory references can be divided into three kinds: instruction accesses, local
variable accesses (i.e. the run-time stack), and global variable accesses. Since
instructions exhibit temporal and spatial locality in a very consistent manner, some
form of on-chip memory is clearly warranted, as suggested in several studies [SmitJ83,
Moto82, Alpe83, Henn84]. The organization of such memory is also well-understood
[SmitJ85].

In Chapter 2, a study of data reference behavior shows that local data accesses
exhibit a very high temporal locality. This implies that local data, like instructions, is a
good candidate for the on-chip memory. Global data accesses, on the other hand, rely
primarily on spatial locality to achieve high hit rate. Due to the pin-bandwidth
limitation, a large transfer unit may result in long latency times because the unit must
be time-multiplexed over only a few pins. In addition, much of the transferred data
may be useless (for example, when the stride of the array references is not one). The
redundant traffic is harmful to the already limited bandwidth. One possible solution to
this problem is to have a smart data cache which can correctly prefetch the needed data,
thus achieving a high hit rate without increasing data traffic. However, it is hard to

envision an efficient hardware prefetch algorithm which will handle intermixed

reference patterns. Even if there is such an algorithm, it may be costly to implement and
may slow down the basic cache operations. Therefore, on-chip data caches for global

data references are unlikely to be effective.

Unlike instruction memory, the data memory can be controlled to some extent by
the programmer. For example, frequently used variables can be allocated to registers,
reducing redundant address calculations and memory traffic. In addition, data can be
preloaded into a register and referenced several instructions later. With a pipelined
implementation, memory access operations can be overlapped with computation

operations, effectively hiding the memory latency.

Ideally, this “exact prefetch” scheme which fetches exactly the data needed will
always have a data “hit” without increasing off-chip data traffic. A load/store
architecture (also referred to as register-oriented architecture; e.g. the Cray-1S
[Cray82]) serves such a purpose. Such architectures encourages the heavy use of
registers to decrease redundant memory traffic [Henn82], and are easy to pipeline
[Kogg81]. Although programs for load/store architectures may be larger, which implies
an increased instruction bandwidth, load/store architectures have significantly lower
data memory bandwidth [Radi82, Henn84]. Lower data memory bandwidth is highly
desirable since data access is less predictable than instruction access. Thus, it can be
advantageous to trade increased instruction bandwidth for decreased data bandwidth.
Load/store architectures have been adopted in some recent high-performance VLSI
architectures [Henn84, Patt85, Radi82, Good85, Birn86, Neff86].

The use of a set of registers has additional advantages: (1) it outperforms a data
cache by nearly a factor of two in both speed and cost [Ditz82]; (2) it potentially can

use better replacement algorithms with information available at compile time to

allocate and purge data more effectively than a data cache; (3) registers make the
coherency problem for multiple processors easier to deal with — registers should
perhaps be thought of as local memory. The major problem with the use of a set of
registers is that static (compile-time) binding may perform poorly when most of the
information for management cannot be obtained until run-time. For example, memory
aliasing and conditional branching often force compilers to perform conservative
allocation and scheduling, decreasing the efficiency of the static management.
However, improvements in compiler technology (i.e. anti-alias analysis
[Nico85,Coop84,CoutB86] and software branch prediction [Fish81]) enable compilers
to perform efficient allocation and scheduling for certain applications, notably scientific
computations. For applications which make static binding more difficult, a data cache
may be a better candidate, since the cache is better adapted to dynamic program

behavior.

The other argument which favors data caches is that data caches are architecture-
independent — they can be used to improve system performance without affecting
programs. This is a more compelling argument for implementations of architectures
defined before the availability of cache. In order to increase performance, many newer
computers make the cache visible. For example, the IBM 801 [Radi81] and the HP
Spectrum [Bim86] have instructions to allocate and free cache lines. Also, system
programmers make the control program share the same stack with user programs to
increase the cache hit ratio [Radi82]. Therefore, data caches are no longer transparent
to programmers in some high-performance architectures. Although a visible cache can
be more effective through the use of cache hints, we believe the effort necessary to

provide effective hints to the cache is comparable to the effort necessary to allocate

registers effectively.

1.3. Research Problems

Load/store architectures simplify code generation in some aspects, but they need
more optimizations to realize the full advantage of the architecture features [Birn86].
Two compiler optimization techniques, register allocation and code scheduling, are

crucial to the effectiveness of a load/store architecture.

1.3.1. Register Allocation

Register allocation is a difficult but important function of an optimizing compiler.
In the literature, the phrase “register allocation” has been used to describe two phases in
a compilation: (1) register allocation, which refers to the decision of what names in a
program should reside in registers; and (2) register assignment, which refers to the
association of preallocated symbolic registers with real registers. Since the register file
is the top of the memory hierarchy, it should be small and must be used efficiently. In
this thesis, we are primarily dealing with the register assignment problem.

Local allocation refers to the assignment of registers over an entire block of
straight-line code. An early exposition of this problem appears in the description of the
Fortran I compiler [Back54, Cock70]. Horwitz er al. [Horw66] published a paper on
this subject, giving an optimal algorithm for index register allocations. Kennedy
[Kenn72] provided a refined version of Horwitz’s algorithm. Freiburghouse [Frei74]
proposed the “usage count” algorithm, compared it to some other heuristic algorithms,
and concluded “usage count” is efficient for local allocation. His paper assumed the

memory always keeps a correct copy of the contents in registers, therefore, Belady’s

algorithm [Bela66] is optimal in his case. Fischer [Fisc87] gave an allocation algorithm
that favors replacing clean registers to reduce the number of necessary store
instructions. Although Horwitz’s and Belady’s algorithm are known to be optimal in
local register assignment, they are inadequate for general purpose register allocations.
Detailed explanations will be given in Chapter 3. A model for finding an optimal
assignment, which generates a minimal number of loads and stores for spilling, has
been established in Chapter 3. Rules for speeding up the computation have been
provided.

Global allocation refers to the assignment of registers over a portion of the
program that includes branches or high-level control constructs. A simple solution,
known as “reference count” [Aho86], identifies frequently used data items (statically)
and allocates them to registers over a portion of program (e.g. a loop), has been used in
Fortran H compiler [Lowr69] and a Modula II compiler [Powe84]. More sophisticated
approaches [Day70, Beat74, Kim78, Wulf75, Leve81] try to allocate more variables to
registers by assigning a register to several variables which have disjoint lifetimes.
Approaches [Chai81, Chow84] based on graph coloring model have claimed to be
effective and elegant for global register allocation. However, instruction traces from
IBM 801 and MIPS, which applied graph coloring allocation in their optimizing
compilers, showed that there are still many load/store instructions compared to the trace
from RISC [Patt85]. This is probably due to the increased cost of procedure calls: the
more registers allocated, the more loads and stores needed for procedure calls to save
and restore them. Wall [Wall86] proposed delaying register allocation until link time
so that simultaneously live procedures will be allocated different sets of registers to

avoid register saving and restoring. Two mutually exclusive procedures can share the

same set of registers. This is similar to a procedure-level graph coloring approach.
Wall used 52 registers to perform the link time allocation. In Chapter 2, we study a
model of “perfect” register allocation. Assuming all procedures are in-line expanded,
all loops are fully unrolled, and all branches are correctly predicted, we would like to
know how many registers can be effectively allocated. The effective number found is
about 32, much smaller than the number in the RISC microprocessor, which is 138.
The key point of effectively using a small number of registers is judicious spilling, a
weak point of graph coloring allocation. We discuss the issue of register spilling in

Chapter 2 and 3.

1.3.2. Code Scheduling

Code scheduling creates a semantically equivalent code sequence that has more
overlapped operations and less wait time in a pipelined execution. It effectively hides
latency of memory and functional units. Hiding latency has the effect of reducing
pipeline interlocks. Code scheduling can be performed by hardware during execution,
using dynamic code scheduling [Wiss84], or by the compiler at compile time, using
static code scheduling. Dynamic code scheduling has been used in CDC 6600 and IBM
360/91. Due to its expense and its complexity, which may slow down the basic clock
period, dynamic code scheduling has not been widely applied today. Research on static
code scheduling includes [Arya85, Ausl82, Henn83, Youn85, Gibb86, Site78]. Arya
formulates code scheduling as an integer programming problem {Arya85]. Auslander
[Ausl82] describes code scheduling before register allocation (Prepass), while the
others [Henn83, Gibb86, Site78] are concerned with scheduling after code generation

and register allocation (Postpass). Prepass scheduling may introduce extra register

spilling since code scheduling lengthens pseudo-register lifetimes, increasing the
number of simultaneously live registers. Postpass scheduling, on the other hand, may
suffer from more restricted parallelism due to improper allocation of registers. This
interdependence between register allocation and code scheduling has been studied in

Chapter 5. Two solutions have been proposed and tested in Chapter 5 and 6.

1.3.3. Large Basic Blocks

Typically, basic blocks are small. For small basic blocks, performance differences
between spilling algorithms are minuscule, and the interdependency problem is almost
negligible. However, small basic blocks offer limited parallelism. Without sufficient
parallelism, the latency of the memory or the function units cannot be hidden since
there are not enough independent instructions to be executed while one instruction is
waiting. With the increasing emphasis on parallel processing, especially on instruction

level parallelism, researchers are looking for ways to obtain large basic blocks.

Usually, the smaller a unit (e.g., a procedure, a basic block), the higher the
overhead for unit transitions. For example, the procedure call overhead (saving and
restoring registers) is proportionately higher for small procedures. Branches are
relatively more expensive for small basic blocks in pipelined processors. Furthermore,
small basic blocks often require more load/store instructions: Temporaries which reside
in registers and are live on exit are stored to memory and reloaded when referenced in
some later basic block. With large basic blocks, many such redundant loads and stores

can be avoided.

Fifteen years ago, when saving memory space was the major concern, most

optimizing compilers produced code that was as small as possible. Since small program

units permit more code sharing, they were favored. For example, the BLISS/11
optimizing compiler [Wulf75] tried to detect groups of similar expressions and replace
them by a single subroutine. With decreasing memory cost and rapidly increased main
memory size [Pohm83], static code size is not as important as before in determining
system performance. In Chapter 4, techniques for generating large basic blocks are
discussed. Those techniques that increase static code size but not dynamic code size
are favored. In order to support pipeline/parallel processing, future optimizing

techniques may favor large basic blocks, increasing the importance of this research.

10

Chapter 2
On the Use of Registers vs Data Cache to Minimize Memory Traffic

2.1. The Behavior of Local Accesses and Global Accesses

Recent research papers [e.g. Patt82, Hase85] have examined the use of on-chip
memory to reduce local data accesses from off-chip memory. In order to understand
how the on-chip memory could be used more effectively to reduce off-chip
communications, we conducted an experiment to study the behavior of local data

accesses and global data accesses.

To investigate data access locality, we used a trace-driven cache simulator. We

generated and used five different traces for a VAX-11! architecture running UNIX?
version 4.2BSD:

SORT The standard UNIX sorting program sorting the first 1000 entries in the on-

line dictionary.

GREP The UNIX string matching program, searching through the dictionary for a
string.

COMPACT
A program using an on-line algorithm which compresses files using an
adaptive Huffman code.

CACHE A cache simulator program simulating a fully associative, write-through
cache.

AS The standard UNIX (VAX-11) assembler translating an assembly program
jmalloc.s.

! VAX is a trademark of Digital Equipment Company.
2 UNIX is a trademark of AT&T.

11

The traces were collected on a VAX-11 by a program using the UNIX ptrace
system call, which sets the VAX trace bit to trap after each instruction. The instruction
is then interpreted and memory references are recorded. Thus the trace represents a
single process executing without interruption. This is unrealistic in a time-sharing
environment where frequent interruptions occur for task-switching and terminal
handling. It is reasonable here because we are studying the locality characteristics of
local and global accesses, not the effectiveness of a cache, which is profoundly affected
by task switches. As we mentioned in the previous section, we are only interested in
data caches. Therefore, the traces we used here include only data fetches and stores. In
addition, the traces are split into two independent streams — global data accesses and
stack accesses. Since some local variables may be allocated in registers rather than the
stack by the standard C compiler (because of the use of register “hints” in C), we
removed all register hint declarations from the source programs to force all local

variables to be allocated in the stack.

Two cache parameters, total cache size and line size, were varied in this
experiment. The other parameters we used were: fully associative placement algorithm,
write-back policy, LRU replacement algorithm, four byte bus width, and write
allocation policy (fetch-on-write [Smit82]) for a write miss. These parameters may be
unrealistic, but are indicative of the best case. Traces are typically 100,000 instructions

long so that cold start effects can be ignored.

2.1.1. Temporal Locality and Spatial Locality

Figure 2.1 shows that a small data cache for the stack can have a very high hit

ratio by taking advantage only of temporal locality. This confirms observations of

12

others [Haik84]. A 128-byte cache with four-byte lines has a hit ratio as high as 98.6%
on the average for stack accesses. Since the stack reuses the same storage, it has high
and consistent temporal locality. An on-chip cache favors high and consistent temporal

locality since a single-chip processor cannot have a wide bus due to the pin limitation.

In Figure 2.2, which is for global accesses, the miss ratio for larger line size is
higher when the cache is small and is lower when the cache is large. When the cache
size is fixed, a small line size means that there are more lines in the cache; that is, the
cache can exploit more temporal locality. A large line size means that there are fewer
lines in the cache, so that temporal locality is sacrificed for spatial locality. One
interesting observation in this figure is that all the knee points occur when the cache has
eight lines. Beyond the knee points, increasing the cache size has little effect on hit
ratio. This implies that for global accesses, there are a few “hot spots” which contribute
largely to the observed temporal locality. When the cache is small and the line is large,
the number of lines in the cache is not large enough to catch all the “hot spots”.
Therefore the miss ratio is much higher than the cache with the same size but smaller

lines. This is also known as “cache pollution” [Smit82].

According to Figure 2.2, it is possible to have a small data cache (smaller than 2K)
with high hit ratio (over 95%) for global accesses. However, the cache must use large
lines to exploit spatial locality to get the high hit ratio. From Figure 2.3, we learn that
doubling the line size often doubles the bus traffic. Since the pin-bandwidth is limited,

a large line size is undesirable for an on-chip cache.

13

Omep R vwn~Z

VOQA

48 -
45 4
42 4
39 -
36 -
33 -
30 -
27 -
24 4
21 4
18 4
15 4
12
9 .
6 4
3-

Stack Access (Average)

Line size (bytes)
4
8
16
32
64

INRRY:

3 4 5 6 7 8
Cache Size (2**X bytes)

Figure 2.1 Cache Simulations for Stack Accesses

14

OH'HNW wm;—-g

-~ RN~

72 -
68 -
64
60 -
56 -
52 4
48
44 4
40 4
36 -
32 4
28
24 -
20 4
16 4
12 4
8 -
4 4

Global Accesses (Average)

\ @----a
X o--o

o e
S

Vv

-~

Q Line size (bytes)

4
8
16
32
64

3 4 5 6 7 8
Cache Size (2**X bytes)

Figure 2.2 Cache Simulations for Global Accesses

15

Q) Fete ey iy B e w o td

OO O r~

*

~—n O T xRN

Global Access (Average)

64

32

16

3 4 5 6 7 8 9
Cache Size (2**X bytes)

Figure 2.3 Cache Simulations for Global Accesses (Bus Traffic)

16

OremnX ©vnn

- R~

64 -
60 -
56 -
52 4
48 4
44
40 4
36 -

32
28 -
24
20
16 4
12 -
8 -
4

Stack Access and Global Access (line size = 4)

]] i 1 I b ’-'-_l-]

2 3 4 5 6 7 8 9

Cache Size (2**X bytes)

Figure 2.4 Comparison of Global Accesses to Stack Accesses

17

2.1.2. On-chip Memory for the Stack

We have found that an on-chip data cache for the stack can be very effective.
Other on-chip memory structures are also possible for the stack. For example, the
register stack and the Top-of-Stack (TOS) approaches. The register stack approach
organizes an on-chip register file as a stack of register sets, allocated dynamically on a
per procedure basis. This feature encourages compilers to allocate as many local
variables as possible to the registers. Since each procedure call allocates a new register
set, there are no memory accesses required to save/restore registers until the register
stack overflows. It has been used by a wide range of machines (e.g. RISC I, C/70,
Pyramid). The TOS approach automatically keeps the top of the stack in a high speed
buffer. It has been exploited in the Symbolics 3600 machine. The C machine [Ditz82,
Ditz87] demonstrates an elegant combination of the above two approaches. It works as
a register stack with variable set size and preserves the semantics of the stack. Another

interesting variation can be found in the Dragon computer [McCr84].

It is interesting to note the similarities between the “stack cache” and a data cache.
The stack cache uses the LRU algorithm for replacement. Its (variable) line size is a
stack frame. Only two address tags are required in the stack cache — the highest and
the lowest address (MSP and SP) of data in the register stack. The stack cache has the
advantage that replacements caused by pop up underflows (when a catch is executed)
do not require the replaced frame to be flushed out to memory, since the frame is dead.
Nevertheless, the stack cache is more restrictive than a conventional cache since it can
only hold TOS variables. Non-TOS variables are likely to be active as well because
procedures may pass their local variables as by-réference parameters to other

procedures, though the compiler can allocate space for such variables on TOS if making

18

a redundant copy is allowed.

The stack cache (also a register stack) uses a relatively large line size — a frame.
As we have discussed in the previous section, when a cache uses a large line size, it
requires a larger size to capture the same number of active lines due to temporal
locality. This explains why a register stack typically needs more entries. For example,
equating four bytes of cache memory to one register, we found that 32 or 64 registers
(i.e., 128 or 256 bytes of cache memory) yielded 98.6% and 99.7% hit ratios
respectively. Though it is possible to achieve such high hit ratios using 32 or 64
registers, RISC I uses 128 and the C/70 uses 1024 registers. Then why does the stack
cache in CRISP have only 32 cache registers? This is because the CRISP optimizing
compiler [Band87] performs stack compression to minimize the frame size (line size).
We note that the top of the memory hierarchy should be very fast. The basic cycle time

of the machine may well be constrained by register access, which is a function of the
register file size [Henn84, Ditz86]°.

We feel that using small lines to exploit temporal locality is especially important
for on-chip memory. Not only does it produce less bus traffic, but its fine granularity
allows small storage to capture temporal locality more effectively (the samller the line,
the more lines can be kept in the cache). For example, if only half of the variables in a
procedure are active during a call (the other half may be used for error handling or in a
path which is not executed during this call), it is wasteful to keep the whole frame on

the cache. It may be argued that a high hit rate is also important to minimize the effect

3 Ditzel reports that doubling the number of registers increases the basic clock cycle by
roughly 30%.

19

of memory latency. However, if the small storage is a register file, then the latency can
be overlapped with instruction execution in a pipelined processor by separating operand

load from operand use, a common technique in supercomputers.

In order to use a small storage as effectively as a data cache for the stack without
paying the cost of space overhead (e.g. address tags) and time overhead, we studied the
use of a register file, managing it as a nearly perfect cache at compile time. Radin said

[Radi82]:

All the registers which the CPU can afford to build in hardware should be directly and
simultaneously addressable. Stack machines, machines that hide some of the registers
to improve Call performance, and multiple-interrupt-level machines all seem to make
poorer use of the available registers.

There are similarities between the function of register allocation and the function of a
cache. For example, in register allocation, the placement algorithm is essentially fully
associative, the line size is a register, the replacement algorithm might be Belady’s
MIN [Bela66], the write policy is write-back, and so on. The compiler has the
advantage of better algorithms, but the disadvantage that it lacks run-time information.
If necessary, compilers can use profiling information collected from previous runs to
optimize the code generation, as has been proposed in the Bulldog compiler [Elli85] as
well as the Fortran I compiler [Back57]. In addition, using registers has the potential to
reduce more memory traffic than using a data cache. Two examples will serve to
illustrate this: (1) When a new activation record is pushed and the first local variable is
initialized, a write miss might occur. If write allocation is used, a whole line will be
fetched. Because this is a new activation record, all old values in the fetched line are
useless, resulting in unnecessary fetches. Radin points this out as a motivation for

cache hints. (2) When replacing a dirty line, a write operation is required. However, if

20

the dirty value will never be used again, then the write operation is not necessary.
Caches cannot identify those “dead” lines while a compiler usually can. Note that even
cache hints will not work in this case unless an entire block is dead. In register
allocation, when a register is replaced, if the variable currently in the register is dead,

no store instruction is needed.

One obvious question is how to deal with the register saving/restoring overhead

across a procedure call. We will discuss this question in detail in the next section.

2.2. Register Allocation and Procedure Calls

An elegant method of register allocation has been developed by G. Chaitin,
primarily for the PL.8 compiler in the IBM 801 project [Chai81, Ausl82, Radi82]. In
this approach, the problem is formulated as a graph coloring problem: Each node in the
graph stands for a computed quantity or a local variable that resides in a machine
register, and two nodes are connected by an edge if the quantities are simultaneously
live. The goal is to assign different colors (registers) to connected nodes. When the
compiler cannot color the graph with a number of colors equal to the number of
available registers, it must add code to store and reload register contents to and from
storage. The implementation showed that a fast heuristic method for assigning colors to
these particular graphs generally resulted in a very good assignment. A later algorithm
(developed at Stanford and used in the MIPS project) is based on a similar model,
supplemented with an enhanced spilling algorithm [Chow84]. Both graph coloring
algorithms claim to work very well: rarely is there a need for code spilling [Radin82,

Chow84]. However, Patterson has claimed:

About 30 percent of the 801 instructions are LOAD or STORE when large programs
are run; the MIPS has 16 registers compared to 32 for the 801, about 35 percent of

21

them [sic] being LOAD or STORE instructions. For the Berkeley RISC machines, this
percentage drops to about 15 percent, including the LOADs and STORES used to save
and restore registers when the register-window buffer overflows. [Patt85]

If the graph coloring algorithm requires little code spilling, why is the number of loads

and stores so high? Apparently because of procedure calls.

Normally, register allocation is done only within a procedure. If more registers
are used in a procedure, then the opening cost of the procedure is higher: More
stores/loads are required to save/restore those registers when a procedure call or return
is executed. The observation that register allocation increases the cost of procedure
calls has been reported several times [e.g. Ditz82, Henn84]. Because of the register
saving/restoring overhead, procedure calls become the most costly source language
statement [Patt82]. Multiple register sets have been adopted in architectures such as
RISC 1, Pyramid [Raga83] to speed up procedure calls. Though the approach of
multiple register sets is effective for eliminating the load/store overhead on procedure
calls, this technique introduces new problems: the large number of registers may slow
down the basic cycle time, consume a large area of silicon, and increase process
switching time.

Again quoting Patterson,

If compiler technology can reduce the number of LOADs and STORE: to the extent
that register windows can, an optimizing compiler will be clearly superior to a multiple
register window scheme [Patt85].

We are therefore interested in knowing if compiler technology can achieve a more

effective use of the chip area than that of a more complex architectural scheme.

Modem compilers use procedure integration, or in-line expansion to reduce the

procedure call overhead [Alle80, Ausl82, Chow83, Macl84]. Procedure integration is a

22

good program optimization technique though it may increase program size. It can
reduce procedure calls, create larger basic blocks, remove parameter passing overhead,
remove dead code and perform some computation at compile time through constant
propagation, and allow better global optimizations [Alle72, Alle80, Sche77, Macl84,
Ball79]. The experimentation with complex instructions in the 70s was an attempt to
introduce the notion of an assembly language-level procedure corresponding to a high-
level language statement. The recent interest in simple instructions [Radi82, Henn84,
Patt85] is in part motivated by the observation that in-line expansion of these
procedures (i.e., compiling a program down to the micro-instruction level) reduces the
number of steps in the execution of the program. Although in-line expansion increases
the code space if procedures are called more than once (statically), it usually increases
only the static code size, not the dynamic memory bandwidth (the latter is especially
important for designing VLSI processors with instruction caches). In addition, modern
programming practice encourages the use of many small procedures, many of which
may be called from exactly one place. If most of the procedures in a program are just
called once in the text, in-line expansion will decrease rather than increase the code
space [Sche77]. When an on-chip instruction cache is used, in-line expansion must be
done more carefully, since a procedure that is called more than once in a loop may
overflow the cache after expansion. This suggests a judicious in-line expander which

takes the size of the instruction buffer into account.

Procedure integration can reduce the number of procedure calls, but it cannot
remove register saving/restoring overhead entirely. In-line expansion creates many
more local variables in the calling procedure, and increases the degree of their

interference. More registers are required to color the more complex interference graph.

23

When compilers run out of registers, they must resort to register spilling. Therefore,
rather than eliminating register saving/restoring overhead, the procedure integration
technique may merely shift the problem from procedure calls to spilling. Alternatively,
it allows a compiler to make effective use of more registers, if they are available

[Radin82].

One weak point of the graph coloring algorithm is that it does not handle spilling
very well. The spilling process (at compile time) is slow and may generate many more
loads/stores than necessary. When the coloring algorithm is blocked, it will spill the
node for which the cost of spilling is the smallest (where the cost is defined as the
estimated number of references to that node). This process continues spilling, node by
node, until the interference graph can be colored. This method has two drawbacks: (1)
the estimated cost of each node may be misleading since, at run time, some branches
are traversed more frequently than others; (2) spilling the node with least cost may not
lead to the minimal number of load/stores. Sometimes, spilling a combination of two or

more nodes may cause fewer loads/stores [Hsu85].

Chaitin claims spilling is not a problem, because (1) it occurs rarely; and (2) it
converges quite rapidly [Chai82]. However, if we want to reduce the overhead of
procedure calls by procedure integration, then many more variables will interfere with
each other. The interference graph becomes more complex, which makes the spilling
process slow and results in poor code. Therefore, allocation algorithms based on graph
coloring will not work well with procedure integration techniques. In other words,

procedure integration works by increasing use of registers until spilling occurs.

If we have a very large number of registers available, say 1024, then the

performance of a spilling algorithm is perhaps not so important. However, VLSI

24

constraints force the most effective use of limited area. Therefore, we need a model

which is amendable to efficient spilling.

2.3. A Model for Perfect Register Allocation

We have explained that using a set of registers may reduce bus traffic better than a
data cache for the stack. In this section, a model is introduced to examine the
performance of an optimal register allocation compared to a near-perfect data cache for
the stack, and to study the degree of performance degradation resulting from
conventional compilers. If the performance difference is insignificant, further research
in this area may not be worthwhile. A load/store architecture is used and a “perfect”

register allocation is defined as follows:
(1) Every memory word can be allocated to a register.
(2) Future memory reference information is known.

(3) Registers can be dynamically allocated (e.g. a variable can be allocated in

different registers at different iterations of a loop).

2.3.1. How Realistic is the Perfect Register Allocation?

There is a gap between the perfect allocation model and today’s practice in
compilers. With improving compiler techniques and innovative architectural features,

the gap could be reduced. We discuss the gap as follows.

(1) Non-scalar variables are not easily allocated to registers. For example, arrays and
strings are typically assigned to primary memory. However, with appropriate
architecture support, non-scalar variables can be allocated in registers. For

example, arrays can be allocated in vector registers [Cray82]. Moreover, a section

25

of memory can be allocated in contiguous registers, for example, Cray-1 has

instructions to move blocks of data from memory to B or T registers.

Possible memory aliases—a data item can be reached through different names (or
pointers)—often prevent variables from being allocated in registers. With
improving anti-alias analysis techniques [Nico85, Coop84, CoutB86], this
restriction will become less severe. In-line expansions can also reduce much of

the alias problem caused by parameter passing.

(2) Due to conditional branches and loop structures, only a limited amount of
information concerning future references can be obtained at compile time.
Nevertheless, through the use of loop unrolling, code replication, and branch
prediction, the available information concerning future references can be
increased.

(3) Usually, variables are bound to registers statically. Once the instruction has been
generated, the register designation cannot be changed at run time. For example, in
a loop, if variable A is allocated in register 1, the instruction to reference A is
bound to register 1 and can not be rebound to other registers from one iteration to
another. (Notice that the model essentially assumes all loops are fully unrolled
and all procedures are in-line expanded) If we unroll the loop several times, it is

possible to bind the different instances of variable A with different registers.

2.3.2. An Initial Evaluation

To measure the performance of a “perfect” register allocation, we use a simulator

which is basically a cache simulator with the following characteristics:

26

(1) Itis fully associative;
(2) TItusesa Write Back strategy;

(3) The transfer unit is equal to the addressing unit, which is one word, i.c. one

register; and

(4) The replacement algorithm should be an extension to Horwitz’s algorithm, which
optimizes the bus traffic.

Although in the literature, Horwitz’s algorithm [Horw66] was referenced as the
algorithm for minimum bus traffic, it is inadequate in our case. This will be discussed
in detail in the next chapter. Two important performance metrics are often used in
cache simulations: miss ratio and bus traffic. It is more precise to use the bus traffic as
the performance measurement in our case. However, measuring the optimal bus traffic
is much harder than measuring the optimal miss ratio (as will be shown in the next
section). On the other hand, the Belady’s MIN algorithm, which optimizes the miss
rate, is simple, and fast. Therefore, we choose it to do the initial evaluation. This is not
too unreasonable, since a lower miss ratio often means less bus traffic. In the next
section, after the introduction of the algorithm for optimal bus traffic and its heuristic

version, we will use them to reevaluate the perfect allocation model.

The traces are the same as in the previous section. For this experiment, “perfect”
register allocation can achieve only the minimal miss ratio (since MIN is used), not the
minimal bus traffic. In the initial study, “perfect” register allocation results in 15% ~
35% less bus traffic than a data cache with the same size using LRU replacement
algorithm. This initial evaluation is encouraging. In the next section, we will show that

much more bus traffic can be eliminated by using the algorithm that optimizes the bus

27

traffic.

The performance of the “perfect” register allocation is also compared to
conventional compilers, the UNIX C compiler and the Modula-2 compiler [Powe84].
From the experiment, on average, there are 190,000 memory references in a trace. The
“perfect” register allocation results in about 35,000 memory accesses with 8 registers.
This means it can decrease the memory accesses by about 80%. The percentage is 90%
with 16 registers and 92% with 32 registers. If the register “hints” were used for the
most frequently used variables (only 6 registers are available for allocation in VAX-11,
but we modified the assembly programs to make use of 8 registers), the UNIX C
compiler can decrease the number of memory accesses by 40% for sort program, 53%
for grep and 32% for cache. The Modula-2 compiler performs more optimizations than
the UNIX C compiler. It uses registers for subexpression temporaries, loop indices,
loop limit values and scalar variables. It can decrease the number of memory accesses

by 50% for the sort program (we rewrote the sort program in Modula-2).

Due to inaccessibility, we have not compared to some state of the art optimizing
compilers, for example, the PL.8 compiler [Ausl82], the UOPT [Chow83], and the
Wall’s approach for interprocedure allocation [Wall86). Wall claims that 60% to 90%
of the loads and stores of scalar variables can be removed using his link-time allocation

scheme with 52 registers.

The perfect register allocation shows a great potential of using registers to
effectively decrease bus traffic. This potential has not been fully utilized by the
conventional compilers. As will see in the next chapter, it can perform even better by

saving unnecessary stores.

28

Chapter 3
Optimal Allocation in Basic Blocks

In 1966, Horwitz et al. [Horw66] published a definitive paper on index register
allocation in straight-line programs. Their algorithm minimizes the number of loads
and stores. Later algorithms [Lucc67, Kenn72] are mainly improvements of Horwitz’s.
Horwitz reduces the problem of index register allocation to that of finding a “shortest
path” through a WDAG (Weighted Directed Acyclic Graph). In order to prevent the
WDAG from growing too rapidly, Horwitz provides rules to restrict the growth. The
weights that Horwitz uses in the WDAG are based on two basic operations for index
registers: Read and Modification. A modification is, basically, a read followed by a
write. Since the basic operations for general purpose registers are read and write (For
example, the instruction “ADD r3, rq, r,” reads registers r; and r, and writes register
r3), the rules in Horwitz’s algorithm are inadequate for general purpose register

allocation.

3.1. The Model

We modify the cost function of Horwitz’s model and build a new set of rules
suitable for general purpose registers. Our model is based on a load/store machine

architecture.

X = {ry,ry,...ry} is a set of pseudo-registers. We assume that, at the allocation phase,
pseudo-registers are assigned to temporaries, local variables, frequently used constants,
etc. Later in the assignment phase, a register allocator maps pseudo-registers to real

registers. This technique has been used widely [Leve81, Kim78, Ausl82, Madh§82,

29

Davi84, CoutA86]. A pseudo-register is an allocated pseudo-register if it is currently
associated with one real register, otherwise it is unallocated. We assume that each

pseudo-register has an associated memory location in which to store its content.

S = {clean, dirty} is a set of two states. The clean state means that the value of an
allocated pseudo-register is consistent with the value in the pseudo-register’s
corresponding memory location. The dirty state means the value of an allocated

pseudo-register is not consistent with its value in memory.

0; = (q,-l,q,-z...,q?’) is a register configuration, where N is the number of real registers
and q,j belongs to X x S. We assume that in the initial configuration Q¢ each q6 isa
pseudo-register that will never be used.

P = {I]5,...I,} is a sequential program, a sequence of pseudo-register operations.
There are two operations: read and write. A pseudo-register must be allocated before

the operations are applied to it. A read from an allocated pseudo-register will not
change its state, while a write to it will put it in a dirty state.! A program here means a

sequence of pseudo-register reads and writes.2 The ith symbol of the program is called

1 A load instruction, which copies data from the memory to a register, by
definition, is a write operation to registers. Thus, a load instruction will put the allocat-
ed pseudo-register in a dirty state. However, if the load instruction copies data from the
pseudo-register’s corresponding memory location to the pseudo-register, then the
pseudo-register should be in a clean state. Therefore, a load from the pseudo-register’s
corresponding memory location to the pseudo-register is treated as a read rather than a
write.

2 The model we have defined is not a realistic one in that it does not deal with mul-
tiple register reads and writes in a single step. However, this simplified model is useful
for making good replacement decisions. Simple extensions to accommodate such com-
plications have been made in one of our implementations.

30

the ith step. As in Horwitz’s paper [Horw66], we use r to denote a read from pseudo-
register r, and r* to denote a write to r. For the register configuration, we also use r to
denote that pseudo-register r is in a clean state and r* to denote that ris in a dirty state.
We can specify an example program as follows :

% x
Fa ryrarzrors

The above program is a register access trace from the following sample program
segment:

MOVE ra, #1

ADD ry, ry, r,

STORE ri, X(r 0)

A = (Q,,..Q,) is a register allocation for a program P (of n steps). It is a sequence of

register configurations.

If the pseudo-register accessed at the ith step is in the (i-I)st configuration (i.e. the
pseudo-register is allocated), it is said to be a hit. If not, it is said to be a miss. No loads
or stores are required for a hit. A read miss requires one load to fetch data from the
memory location into a real register. A write miss needs no loads. Register
replacement is required for a miss. When replacing a dirty pseudo-register, one store is
required to update its correspénding memory location. However, if the dirty pseudo-

register is dead (i.e. its content will never be used again), update is not necessary.

We define two distance functions: (1) NEXTRD(,x) returns the number of steps
from step i to the first step after i that reads pseudo-register x; and (2) NEXTWR(,x)
returns the number of steps from step i to the first step after i that writes x. If no
instance of the appropriate access is found, the functions return . An allocated

pseudo-register x is said to be DEAD at step i if: (1) NEXTRD(i-1,x)=co (x will never

31

be read again) or (2) NEXTWR(i-1,x) < NEXTRD(i-1,x) (the next access of X is a
write). Q;_; and Q; are either equivalent or different in only one component. Suppose
that Q;_, differs from Q; in that g/, = (x,s) whereas g/ = (x’, s") and x # x’. We define

the cost of a configuration change, Cost(Q;_;, Q;), as follows:

A) Store cost:
If s=clean
then cost= 0
else If s=dirty and x is DEAD
then cost =0
else cost = 1
If a register is clean, no register store is needed as its value is already
in the corresponding memory location. If the register is dirty and dead,
there is no need to store the value; if the register is dirty and live,

one store instruction is needed to update memory.

B) Load cost:
If s’=clean
then cost=1
else If s"=dirty

then cost=0
The state 5 is clean means this is a read miss. A read miss needs one load

instruction to fetch data from memory into a register.

The state s’ is dirty means this is a write miss. A write miss needs no fetch.

Cost(Q;_,, Q;) is the sum of the Store cost and the Load cost.

32

The above cost function differs from that of Horwitz in two aspects:

(1) In our model, a write miss does not need an additional (read) memory access. In
Horwitz’s model, because the basic operation for writing an index register is a

modification, it does.

(2) In our model, if the next access of a pseudo-register x is a write, the replacement
of x needs no stores to update the memory. This never happens in Horwitz’s model

because there are no direct write operations.

With our model, index register allocation [Horw66, Kenn72] is a special case of
general purpose register allocation in which a write to pseudo-register r is always

preceded by a read of pseudo-registerr.

The cost of a register configuration Q ; is defined as:

Cost(Q;) = §; Cost(@;1, 0)
i=1

The cost of an allocation A of a program with n steps is defined as:

Cost(d) = 3 Cost(Q;_1, O;)

i=1
A WDAG can be constructed as follows: For each step of the program we
associate a node of the graph with each configuration that may occur at this step; the
given initial configuration is the only one associated with step zero. We can then draw
a branch from any node associated with the ith step to any node associated with the
(i+1)-st step, giving this branch a weight which is the cost of getting from the first
configuration to the second. The problem of minimizing Cost(4) can then be

considered as finding the shortest path in this graph from the initial node to some node

33

associated with the last step of the program. That is, we find an register allocation A

which generates minimal number of loads and stores.
Example
Assume there are only two real registers.
. o * *
The input programis: ry ror3ry ry

The complete WDAG is shown in Figure 3.1 (costs of allocation are shown in
parentheses, costs of configuration changes are associated with edges). The optimal

allocation of this example is obtained from the rightmost path with a cost of 2.

3.2. Finding a Shortest Path in the WDAG

The search of a shortest path in the WDAG can be conducted by the construction
of a search path tree [Sedg83]. The obvious approach to finding such a shortest path
(an optimal allocation) is to enumerate all possible (legal) allocations for a given
program, and to pick the one with least cost. Since the number of different
configurations is finite for fixed M (M is the number of pseudo-registers) and N (N is
the number of real registers), the search tree will not grow exponentially propotional to
n (n is the number of steps). It will be bounded by the maximal number of different
configurations. However, the number of different configurations grows exponentially
with N and M. In a legal allocation, the pseudo-register at the ith step must be in the ith
configuration to become an allocated pseudo-register. And each allocated pseudo-
register can be in a clean or a dirty state. The number of different configurations,

therefore, is C(M-1, N-1)x 2V From Table 3.1, which is generated from this formula,

34

step 0 -- empty

9
step 1 11" 1"~ (0)

1
step 2 12 ‘}}I*QL‘
step3 13 | 1312 (3) 113 (2)

oL/l/10

step4 12* | 1317 (3) 12" (2)

step 5 rl r1 125 @) 311 @) || I'2"(2)
Figure 3.1 WDAG for Optimal Register Allocation

we see that the search tree method is computationally infeasible even for moderate
values of M and N. Horwitz er al [Horw66] provided some rules to restrict this

exponential growth; we shall do likewise.
3.3. The Rules for Pruning the WDAG

In order to make this model computationally feasible, we define a set of rules to
prune the WDAG. A configuration Q; is partitioned into four disjoint sets as follows:

set 1 (DEAD set) =
{xorx IxinQ;,xis DEAD }

set 2 (CLEAN set) =
{ x I x in Q;, NEXTRD(i,x) < NEXTWR(,x) } This set consists of all the
variables which are clean and will be read after step i before being written.

(M) Number of (N) Number of Number of
Pseudo-registers Real registers Configurations
10 2 36
10 4 1344
10 8 9216
15 2 56
15 4 5824
15 8 878592
20 2 76
20 4 15504
20 8 12899328
20 16 254017536
25 2 96
25 4 32384
25 8 88602624
25 16 85688582144
30 2 116
30 4 58464
30 8 399559680
30 16 5082890895360

Table 3.1 Rapid Growth of Register Configurations

set 3 (DIRTY;DEAD set) =
{ x I xin Q;, NEXTRD(,x) < NEXTWR(i,x) and x is DEAD after step
i+NEXTRD(,x) } This is a set of pairs that exhibit the reference pattern:
x c--x.--x orx "'x."”.

set 4 (DIRTYLIVE set) =
{x" Ixin Q;, NEXTRD(i,x) < NEXTWR(,x) and x is not DEAD after step
i+NEXTRD(,x) } This is a set of pairs that exhibit the reference pattern
x . e . x LY x.

Observations:

(1) Replacing an element from the DEAD set is always cheaper than replacing
elements from other sets. This is obvious since the cost of replacing a dead register

is 0.

36

(2) Among elements in the CLEAN set, replacement of the most distant one gives
minimal cost. This is the Belady’s MIN algorithm.

Proof:

Suppose allocated pseudo-registers x and y in Q;, operations / i =Xx,I =y, such
that i < j <k, and that there isnox € { I, | n=i+1,j-1 },andno y e {1, 1
n=i+1,k-1}. Assume /;,, is not in Q;, and one of registers x, y will be replaced.
Two possible configurations, Q;}; and Q;2,, are produced at step i+1, and they
differ in exactly one element, x € Q;}; and y € Q:2,. Let us isolate the
remaining N-1 elements from x and y so that they are replaced under the same
replacement strategy. For example, if an element z is replaced from Qii_l then the
z in Q% must be replaced too; if x is replaced from Q;}, then y must be
replaced from Q,-.ZH . At step j, there are two configurations: Q jl_l , which comes
from Q;1,, and Q j2_1 which comes from Q;2, . The cost associated with Q ﬁ_l and
sz_l are the same, because they use the same replacement strategy from step i+1

to step j-1.

At step j, there are two cases:

(A)x isin le_l : this is a hit for le.l .
Since there are no cost for a hit,
Cost(Q;") = Cost(Q;;) ¢y
Because Qj2_1 is originated from Q;2, and there is no x € {I, | n=i+1,
j-1}, x will not be in sz;l . This is a miss for jSil . One load
instruction is required to fetch x and a store cost of U (O or 1, depending

whether the replaced element, say z, is clean or dirty) for replacement.

37

Cost(@?) = Cost(Q2,)+1+U @
(D If the replaced element z =y :
Then U =0 and sz has the same configuration as Q.

Because

Cost(@® = Cost(Q?;)+1
= CostQl;)+1
= Cost(Q) +1

Therefore, Cost(le) < Cost(sz). Hence, replacing y at step i is

cheaper.

(ID) If the replaced element z #y
le differs from Q j2 in exactly one element, which is z in Q jl and y
in Q2.
Because the cost of changing configuration Q! to sz is (1 + U),

where 1 is the cost to fetch y and U is the cost to replace z, and

Cost(@;") + (1 + U)
= Cost(Q;';)+1+U from (1)
= Cost(Q?;)+1+U
= Cost(@}) from (2)

Therefore, if there exists an optimal cost path through Qj2, then
there will be an optimal path through le. Hence, replacing y at

step i is not worse than replacing x .

(B) x isnot in Qj{-l .

If x was replaced during the configuration changes from Q;}; to 0 jl_l ,

38

then y must have been replaced during the changes from Q,%l to O ﬁ_l.
Therefore, O jl_l and Qj'ﬁl have the same configuration. Both Q j1_1 and
Qﬁ_l have a miss at step j. By replacing the same element, O jl and Q j2
must have the same cost. Hence, replacing y at step i is not worse than
replacing x.

From the above, it is clearly better to displace the variable w.ith the greater

distance. Thus we displace the one which is read farthest away.

(3) If there exists a dirty register x* and a clean register y in Q; such that
NEXTRD(i,x) < NEXTRD(,y) (the clean element y has distance greater than the

dirty element x), then replacing y is always cheaper.
Proof:

Suppose allocated pseudo-registers x*, y in Q;, operations / i =%, I =y, such
that i < j <k, and that there is no x € { I, | n=i+l, j-1 }, andnoy e {1, |
n=i+1,k-1}. Assume J;,, is not in Q;, and one of registers x*, y will be replaced.
Two possible configurations, Q;1, and 0:%,, are produced at step i+1, and they
differ in exactly one element, x* e Ol and y € Q,-il. Since one store
instruction is required to update x s memory location,

Cost(Q;2,) = Cost(Q;1,) + 1.

Once again, we isolate the remaining N-1 elements from x* and ¥ so that they are
replaced under the same replacement strategy. As described before, Q jl_l comes

from Q;,, and Qﬁ_l comes from Q2.

At step j, there are two cases:

39

(A) x"isin le_l : this is a hit for Qﬁ.l .

x* isin le_l implies y is in Qj%_l .

Since Cost(Q;) = Cost(Q;l;) + 1 and during the configuration

changes, the identical elements from both configurations are replaced.

Therefore,

Cost(Q/21) = Cost(Q1;) + 1 (3)

Because there are no cost associated with a hit,

Cost(Q,') = Cost(Q},) 4)

Because there is a miss for Q j2_1 , one load instruction is required to fetch

x and a store cost of U (0 or 1) to replace an element z.

Cost(Q?) =Cost(Q2,) +1+U)

(I) If the replaced element z = y:
Then U=0 and Q j2 has the same configuration as Q jl except that x
is dirty in Q jl but clean in Q j2. It takes one store instruction to

change a dirty state to a clean state.

Cost@? = Cost(Q2;)+1
= (Cost(Ql;)+1)+1 from (3)
= Cost(Q})) +2 from (4)

To make Q jl the same configuration as sz, one store instruction is
required to change x from dirty state to clean state. Because

Cost(Q,')+1 < Cost(Q?), replacing y at step i is cheaper.

(ID) If the replaced element z # y
To make le the same configuration as sz, z in le should be

40

replaced by y and x in Q jl should be changed from dirty to clean.

This costs (2+U), one for fetching y, one for cleaning x, and U for

replacing z.

Cost(Q,") + (2 + U)
= Cost(@l;)+1+(1+U) from (4)
= Cost(Q?,)+1+U from (3)
= Cost(Q? from (5)

Therefore, if there exists an optimal cost path through Q jz’ then

there will be an optimal path through le. Hence, replacing y at

step i is not worse than replacing x.

(B) x isnotin Q,-l_l .

Ifx* was replaced during the configuration changes from O}, to 0 jl_l ,

then y must be replaced during the changes from Q;2; to Qﬁ.l.

Therefore, the cost of configuration changes from Q;}; to Q j1_1 is one

higher than the cost of configuration changes from Q,2; to Q ,-2_1 .

Cost(Q j2—1) =

=
Cost(@2;)+ 'Y Cost(Q2,,02

k=i+2

j -1
Cost@l)+1+('Y CQL,, oM -1

k=i+2

-1
Cost@l)+ 'Y C@QL, 0

k=i+2

Cost(Q jf.l)

Now, le_l and sz_l have the same configuration and with same cost.

Both O jl_l and QO j2—1 have a miss. Replacing the same element, both le

and sz have the same cost. Hence, replacing y at step i is not worse

41

than replacing x.

From the above, it is clearly better to displace the clean variable with a greater

distance.

(4) If x € DIRTY-DEAD set (set 3) and y € DIRTY sets (both set 3 and 4) such that
NEXTRD(i,x) < NEXTRD(,y), then replacing y is always cheaper.

Proof:

Suppose allocated pseudo-registers x*, y* in Q;, operations I; = x, I =y, such
that i < j <k, and that thereisnox € { I, I n=i+1,j-1 },andnoy € { I, |
n=i+1,k-1}. x is DEAD after step j. Assume /;,; is not in Q;, and one of dirty
registers x*, y* will be replaced. Two possible configurations, Q,-ll and Q,—il , are
produced at step i+1, and they differ in that x* e Q;}; andy* e 02, . Because
both x* and y" are dirty, Cost(Q;2,) = Cost(Q;%;). The remaining N-1 elements
are separated from x* or y* so that they should be replaced under the same
replacement strategy. As described before, Qj1_1 comes from Q;};, and sz..l

comes from Q;2, .

At step j, there are two cases:

(A) x"isinQ};: thisis a hit for Q}1;.
Since Cost(Q;2;) = Cost(Q;.;) and the same elements are replaced
during the configuration changes from Q;,; to @;_,, therefore,
Cost(Q2;) = Cost(Q}1;) ©6)
Because there is a hit for 0!,

Cost(Q,") = Cost(Q,1) ©)

42

Because there is a miss for Q j2_1 , one load instruction is required to fetch

x and a store cost of U (0 or 1) to replace an element z.

Cost(Q) = Cost(Q?,) +1+U ®)

(D If the replaced element z =y *s
Then U = 1. sz has the same configuration as Q jl except that x is
dirty in Q jl but clean in Q j2. Since x is DEAD after step j, there is
no difference in terms of store cost between replacing a dirty x and
a clean x after step j. Therefore, O jl and Q j2 can be treated as the

same configuration. In other words, it takes no additional cost to

make Q jl and Q jz equivalent.

Cost@? = Cost(Q?2;,)+1+1 from (8)
= Cost(Qjl;)+2 from (6)
= Cost(Q/") +2 from (7)

Because Cost(le) < Cost(Qj2 , replacing y' at step i is no more

costly than replacing x*.

(I If the replaced element z #y*
Since x is DEAD after step j, x* in Q! is equivalent to x in 0% in
terms of store cost. Therefore, to make Q jl the same configuration
as sz, only z in Q jl should be changed to y*. This takes a cost of
(1+U). U is the cost of replacing z and 1 is the cost of fetching y.
No load and store are required to change ay toy".

Cost(Q") + (1 +U)

Cost(@;L,) + (1 +U) from (7)

43

Cost(@72,) + (1 +U) from (6)
Cost(Q?) from (8)

Therefore, if there exists an optimal cost path through Q j2, then
there will be an optimal path through Q. Hence, replacing y* at

step i is not worse than replacing x .

(B) x isnotin Q!.
Both x* and y* have been replaced during the configuration changes
from Q;; t0 Q;. Cost(Q;) = Cost(@2,). Since both 0, and 02,
have a miss, and assuming the same element will be replaced, Cost(Q jl)

= Cost(Q jz). Hence, replacing y at step i is not worse than replacing x.

We may now state the rules for the generation of configurations for step i+1 from

a configuration Q; when there is a miss.

Rule 1: (This is based on observation 1)
If there exists an x in the DEAD set, then generate only one configuration
0Q; 41, in which x (select any one x if there are more than one exists)
is replaced by I, ;,
and exit.

Let C = max{ NEXTRD(, x), xinQ; },
D =max{ NEXTRD(,y),y" in Q;} and
X, be such that NEXTRD(,x.) =C.

Rule 2: (This is based on observations 2 and 3)
If C > D then generate only one configuration Q;,;, in which
x, is replaced by 1;,, and exit.

Let C’ = max{ NEXTRD(i,x), x € set 3},
D’ = max{ NEXTRD(i,x), x € set 4}, and
x4 be such that NEXTRD(, x,) = C’.

44

Rule 3: (This is based on observation 4)
If C’ > D’ then generate a configuration Q; ,,, in which
x4 is replaced by I; ;.
For each x in Q; such that x € set 4 and NEXTRD(, x) > C,
generate a configuration in which x is replaced by 7, ;.

3.4. The Algorithm to Find An Optimal Allocation

A configuration, along with its cost and parent information, is called a node. The

i
cost of a node is (as before) > Cost(Qj._l, Q;), computed along the path from the root
]

to the current node. We start from an initial configuration Qo with cost 0, and generate
a set of nodes associated with step 1. The set of nodes for step i will be called
NODESET(). Subsequent steps are as follows:

1).i:= 1, generate the NODESET(1) from Qo

2). whilei<ndo
i=i+1
for each node N in NODESET(-1) do
if Hit then N” = N, insert N’ into NODESET(i), parent(N’)=N.
if Miss then generate nodes from N as described in rules 1, 2,
and 3 as above.
od
od
(Every time a new node is inserted into NODESET(), compare it with each
node in the set. If two nodes have the same configuration then keep
only the one with the smaller cost.)

3). Find the node N in NODESET(n) with the least cost.
Trace back through the parent pointers to get the allocation.

In the example in Figure 3.1, Belady’s MIN algorithm needs 3 loads and 1 store
(the left path). The optimal allocation needs only 2 loads and no stores (the right path).
If the above algorithm is used, then only the right branch will be generated.

45

3.5. Special Cases

If we assume every pseudo-register is read only once, i.e., there are no common

sub-expressions 3 the pruning rules can be simplified. Since every pseudo-register is
read only once, the DIRTY-LIVE set does not exist, nor does the CLEAN set. A clean
pseudo-register exists because it is spilled and reloaded into a real register at its use.
However, since it is read only onée, it is dead right after its use. Therefore, there are
only two sets exist: DEAD and DIRTY-DEAD. The simplified rules are stated as

follows:

Rule 1:
If there exists an x in the DEAD set, then generate only one
configuration Q;,,, in which x is replaced by I;.,,
and exit.

Let D = max{ NEXTRD(,x), x* in Q; }
x4 be such that NEXTRD(,x;) =D.

Rule 2:
Generate one configuration Q; ,,, in which x, is replaced by I;
exit.

The above pruning rules are essentially Belady’s algorithm. Due to our definition, a
dead register x has an access distance of =, Combining the above two rules, the

register having the greatest access distance gets replaced.

With the assumption that each pseudo-register is read only once, the program
structure is either a tree or a forest. In such a case, a variation of the Sethi-Ullman

algorithm [Aho86] can be used to determine the instruction sequence so that a minimal

3 A local variable or a constant that is allocated in a pseudo-register can be defined as a
common sub-expression if it is read more than once.

46

number of load/store instructions are required.

3.6. A Heuristic Algorithm

The rules that we proposed in the previous section eliminate many unnecessary
branches in the WDAG. This makes the algorithm practical for small programs.
However, because there are three cases where none of our pruning rules are applicable,
complete enm&aﬁon is still impractical for large programs. The cases not subject to
pruning are: (1) elements in the DIRTY sets (sets 3 and 4) that have a distance greater
than that of the most distant clean one; (2) elements in the DIRTY-LIVE set that have a
distance shorter than the most distant element in the DIRTY-DEAD set; (3) all
elements in the DIRTY-LIVE set. To avoid complete enumeration, we introduce

heuristic rules for each case to predict which register might be best for replacement.

Case1:

Figure 3.2 Selection between Clean and Dirty Registers

In Figure 3.2, if the distance of y ---y is close enough to that of x* - - -x, then
replacing y may be cheaper. This is because the two alternatives may involve the same
number of misses, but replacing y needs no stores. Note that replacing the most distant

register can reduce misses while replacing a clean register can save stores. Thus a

47

tradeoff exists between saving stores and reducing misses. The heuristic rule we
propose is to use a weighted distance as the selection criterion. For clean pairs (like
Y *--y), their distance is multiplied by a weight w,, w; > 1. This makes the clean

elements more likely to be selected.

Case 2:

Figure 3.3 Selection between Dirty-Live and Dirty-Dead Variables

With reference to Figure 3.3, replacing y* - - - ¥ +++y might be better than replacing
x* -+-x---x", even when the distance of x* -+ - x is greater than the distance of
y* -+ -y. This is because replacing x at step i needs one store, but replacing it at step k
needs no stores. One store is required to replace y, regardless of whether it is replaced
at step 1 or step k. Therefore, if x remains in the register until step J, one store might be
saved. This save likely will occur only when the distance of y* - - - y is close to that of
x*x. Otherwise, additional misses may require additional loads and stores. In this
case, the distance of x* -+ -x -+ - x" pairs is multiplied by a weighting factor, w,, 0 <

W2<1.

Case 3:

48

For all elements in the DIRTY-LIVE set, access distances are used as the selection

criterion.

Heuristic Algorithm WC (Weighted Cost)

1) i:=1, generate Q; from Q.
2) whilei<ndo
=i+l
Generate Q; from Q;_; as follows :
2.1) If there is a Hit at step i then Q; := Q;_;.
2.2) If there is a Miss then
2.2.1)if thereis ax € set 1 then
replace x by I;.
else
222)max =0
reg :=0
foreach x; in Q;_; do
case
x; € set2: distance :
x; € set 3 : distance :

NEXTRD(-1x;) * w,
NEXTRD(-1, x;) * w,

x; € set 4 : distance := NEXTRD(-1, %)

esac
if distance > max then
max := distance, reg :=j

od

replace x,,, by I;.

od
Examples

We illustrate the algorithm with two examples. To simplify the illustration, we set

w) statically to 3.0 and w, to 0.45 in the following example. In these two particular

cases, WC yields optimal bus traffic.
Example 1:

Assume there are only two real registers and the input program is:

* ®
ryrararar;

The replacement process is shown in Table 3.2.

Belady’s MIN algorithm produces 4 misses; it needs 3 loads and 1 store. The
heuristic algorithm WC also produces 4 misses, but it needs only 2 loads and no stores.
MIN can minimize the number of loads only if a write-through policy is used. From the

above example, we understand that MIN cannot minimize the number of loads if the

write-back policy is used instead.

Example 2:

Assume there are two real registers, and the program is:

sequence | rl* | r2 3 | 2* | rl Results
miss X X X - X 4
replace - - rl - r3 -
MIN
load 0 1 1 0 1 3
| store 0 0 1 010 1
_Eanﬁgu- - i* [ri* | B3 | 3 rl
ration - - 12 2 | r2* 2%
miss X X X X - 4
replace - - 12 3 - -
wC
load 0 1 1 0 0 2
store 0 0 0 0 0 0
configu- - r1* | rl1* | rl1* | r1* r1*
ration - - 12 13 | r2* 2*

Table 3.2 Replacement Process of Example 1

50

riryrsroriry rsrarsrary ..
The replacement process is shown in Table 3.3:
At step 3 there is a miss. If we displace r, (as in MIN), eventually the number of
load/stores needed will be 5. If we displace r, instead (as in WC), then a minimal cost
of 4 can be obtained. Note that r is farther away than r,, but displacing r, produces a

higher cost than displacing .

The best values of w; and w, depend on input programs and the number of
available registers. We have investigated a method of finding an appropriate weight for
w) and w, adaptively. The method is to increase w; when the miss ratio is getting
lower and decrease w, when the miss ratio is getting higher. This is motivated by the
belief that, when the miss ratio is high, decreasing misses is more important than saving
stores. This adaptive approach requires good initial values for w; and w,, and does not

show much improvement over the original algorithm. We therefore believe that

1* [% | 13 12 rl | rd* | 5% | ™4 5 2 | r1* | res
miss X X X - X X x - - X x 8
replace - - rl - 3 rl n” - - 4 15 -
MIN
load 0 0 1 0 1 0 0 0 0 1 0 3
store 0 0 1 0 0 0 1 0 0 0 0 2
configu- - rl1* | r1* | 13 3 rl | rd* | rd* | r4% | 4% | 12 } ¢
ration - 2* | 2% | 2% | 2% [2% | 5% [15* | r5* | 5% | r1*
miss X X X X - X X - - X X 8
replace - 2 3 - rl 2 - - 4 15 -
wC
load 0 0 1 1 0 0 0 0 0 1 0 3
store 0 0 1 0 0 0 0 0 0 0 0 1
configu- - r1* porl* | orl* | rl* | r1* | 4% | 4% | 4% | ¥ | 2 2
‘ ration - - ”* | 3 12 12 r2 | r5* | rS* | r5* | r5* | ri*

Table 3.3 Replacement Process of Example 2

51

selecting static values would be cost effective. Our experiments suggest that values of

w in the range of 1.1 to 1.5 produce good resuits.

3.7. Existing Heuristic Algorithms

Freiburghouse evaluated four allocation algorithms [Frei74]): MIN, Usage Count,
LRU, and LRL (Least-Recently-Loaded). These four algorithms assume write-through
(i.e. memory always holds correct copies of all registers), and therefore all generate
many more stores than necessary. Kim and Tan [Kim78] have extensively studied
register replacing problems. Their “life range analysis™ is similar to ours. When a live
register must be replaced, they pick the most distant one; we call it the Farthest First
(FF) algorithm. Fischer presents an algorithm [Fisc87] that tries to eliminate more
stores. When replacement of a live register is needed, his algorithm chooses the most
distant clean variable first; if there is no clean one left, the most distant dirty one is

replaced. We call this the Clean First (CF) algorithm.

3.8. Evaluation

To evaluate the effectiveness of different heuristic algorithms and compare them
to the optimal one, we used trace-driven simulation. Two sets of traces are used in the
simulation study: a few ordinary C program segments and the Lawrence Livermore
Loops [McMa72]. We compiled C programs into their assembly language, and
converted a sequence of instructions into a sequence of register reads and writes. Then
we used this sequence as input data. To get more pseudo-registers, we assigned as many
local variables to registers as possible (using register hints in C). Since our C compiler

only takes up to 6 register hint variables, we had to allocate more variables and

52

temporaries to registers at the assembly level. Usually the basic block we obtain from
an assembly program is small. We can, however, intentionally trace some control flow
to obtain a larger basic block, as with trace scheduling [Fish81]. Further, in order to
have more local variables (so that more symbolic registers will be used), we expanded

some procedure calls in-line. This set of traces consists of:

A basic block from unix utility grep.

A basic block from unix utility sort.

A basic block from a subroutine in a cache simulator program.

An enlarged basic block (by trace scheduling) from a cache simulator.
An enlarged basic block (by in-line expansion) from a cache simulator.
Randomly synthesized program segments.

A synthesized program segment with in-line expansion and trace
scheduling to get larger basic block.

AN WN -
~J

The other set of traces are the first twelve Lawrence Livermore Loops. Since loops 1, 3,
4, 11, and 12 are tight loops, we unrolled them several times to get larger basic blocks.
Although loop unrolling is effective, it should not be overused. Many computers have
instruction buffers to reduce instruction fetches from memory during loop executions. If
the enlarged loop body overflows the instruction buffer, its execution may be slowed
down rather than sped up. Therefore, we unrolled the loop several times until the loop
size was close to a limit. The assembly code of the loops has been hand optimized so
that more common subexpressions can be allocated in registers. In addition, the
assembly code programs are run through a code scheduler, which reschedules a
program to reduce conceivable interlocks when the target machine is pipelined. Code
scheduling typically lengthens the lifetime of pseudo-registers so that more pseudo-
registers will be live simultaneously. This will cause more register replacements when
the number of registers is small. The simulation results of the two sets of traces are

shown in table 3.4 and table 3.5.

Number o=__f_ loads and stores Generated

Input | #of wC True
Trace | regs | LRU | MIN | FF | CF | wl=1.25 | Optimal
w2=0.98
2 34 24 19 | 20 19 18
1 4 13 9 4 4 4 4
8 3 3 3 3 3 3
2 27 20 14 | 14 14 14
2 4 15 9 6 6 6 6
8 7 6 6 6 6 6
2 28 22 14 | 12 12 12
3 4 19 13 6 6 6 6
8 10 7 5 5 5 5
2 47 38 24 | 24 24 24
4 4 32 24 13 | 13 13 13
8 16 16 11 | 11 11 11
2 83 70 46 | 43 43 43
5 4 62 49 21 | 25 22 21
8 47 39 13 | 13 13 13
2 35 28 18 | 20 19 18
6 4 28 20 9 {10 9 9
2 42 38 29 | 28 28 27
7 4 39 26 12 | 12 12 11
2 110 89 75 | 74 73 71
8 4 85 61 34 | 37 34 34
8 51 42 17 | 16 16 15

Table 3.4 Evaluation of Heuristic Register Allocation Algorithms

53

Input

Number of loads aéd stores Generated

of wC True
Trace | regs { LRU | MIN | FF | CF | wl=1.15 | Optimal
w2=0.99
2 113 101 9 | 100 96 96
Loopl 4 108 76 60 64 60 -
8 95 50 19 22 19 19
2 86 74 67 69 68 67
Loop2 4 76 55 40 43 41 39
8 61 38 12 14 12 12
2 68 58 51 51 50 49
Loop3 4 60 43 26 25 25 25
8 48 27 6 6 6 6
2 66 57 48 50 48 48
Loop4 4 60 44 29 30 29 28
8 50 29 11 10 11 10
2 70 59 49 51 50 49
Loop5 4 62 41 24 23 23 23
8 41 25 6 5 5 5
2 69 58 55 54 53 52
Loop6 4 66 43 30 29 31 28
8 48 23 6 5 5 5
2 107 92 84 82 82 82
Loop7 4 98 71 55 52 51 51
8 83 48 17 15 15 15
2 246 | 220 | 213 | 217 213 210
Loop8 4 237 186 | 161 | 164 160 -
8 216 146 93 97 92 91
2 67 61 55 58 55 55
Loop9 4 62 50 36 36 36 35
8 54 34 14 14 14 14
2 121 103 91 91 91 91
Loop10 4 116 74 53 55 54 -
8 72 52 29 41 29 -
2 68 55 46 46 47 43
Loop11 4 53 38 24 27 24 24
8 42 27 12 12 12 12
2 66 59 57 58 56 56
Loop12 4 64 47 40 42 38 -
8 55 29 14 13 14 13

54

Table 3.5 Evaluation of Heristic Register Allocation Algorithms (for Livermore Loops)

55

When w is equal to 1, our heuristic is close to the FF algorithm; when w, is a
very large number it degenerates into the CF algorithm. Thus, the Weighted Cost (WC)
algorithm will always have an intermediate result between that of FF and that of CF
when only w is used. With a properly selected w,, the WC result usually is close to the
lower of the two (FF and CF), as shown in Table 3.4 and Table 3.5. In addition, with
the help of w,, WC will sometimes outperform both FF and CF.

Since LRU and MIN, which were used to evaluate register allocation [Frei74],
assume that memory always holds correct copies of all registers, these algorithms
generate many more stores, as shown in Table 3.4 and Table 3.5. Therefore, we will

exclude LRU and MIN in the following discussions.

Table 3.4 shows that for small basic blocks with small numbers of variables (trace
1,2,3), the three algorithms (FF, CF, and WC) perform identically to the optimal
algorithm. This means, for the small basic blocks which are common in C programs, a
heuristic algorithm like FF or CF is good enough. For larger basic blocks with more
variables (trace 5,8), the heuristic algorithms produce slightly more loads and stores
than the optimal one. Among the heuristic algorithms, FF sometimes outperforms CF

and vice-versa, while WC always has intermediate results close to the lower.

Table 3.5 represents results from large basic blocks. Without our pruning rules, it
is computationally infeasible to obtain an optimal allocation of registers for large basic
blocks. Although our optimal algorithm also failed to obtain an optimal allocation of
registers in a few cases, due to insufficient memory space, it did terminate in most
cases, allowing us to make comparisons with the heuristic algorithms. Table 3.4 shows
that heuristic algorithms have near-optimal results even when basic blocks are large,

but with more observable difference when compared with the results of small basic

56

blocks. This confirms that heuristic algorithms being studied are effective for register
allocation for large basic blocks. Our heuristic algorithm (WC) has slightly higher
complexity in implementation (less than 20 lines of C code) but usually outperforms
both FF and CF. Therefore, we believe the WC algorithm is a good candidate to be

considered when allocating registers for large basic blocks.

3.9. Replacement vs Graph Coloring

The well-known graph coloring allocation [Chai81, Chai82] can be applied to
local register allocation. In the graph coloring model, register spilling refers to storing a
pseudo-register into memory and reloading it at a later time. Spilling is synonymous
with “replacing a live register” in this chapter. Graph coloring allocation is an elegant
approach if no spilling is required. But once the coloring process is blocked due to
insufficient colors (registers), trouble begins. The spilling process is slow, and it is hard
to decide (1) which node to spill; (2) how many nodes must be spilled; and (3) where to
insert spilling code. Chaitin claims spilling is not a problem in their implementation,
because (1) spilling occurs rarely; and (2) spilling rapidly reduces the interference
graph to be colorable. This is true for small basic blocks (or small procedures if it is
applied to global register allocation). However, if we want to use optimizing
techniques like in-line expansion and loop unrolling, then the increase in local data

items will complicate the interference graph and make the spilling a hard problem.

In graph coloring allocation, if the interference graph of a straight-line program is
N-colorable, then the coloring algorithm will give an allocation with no additional loads
and stores, that is, an allocation with cost 0. If a graph is N-colorable then, at any

program point, the number of live registers will not exceed N. This implies that there

57

exists at least one empty register or dead allocated pseudo-register that can be replaced
at no cost. Thus, an allocation with cost 0 can also be found by our algorithm. When
the interference graph is not N-colorable, the graph algorithm blocks and has to resort
to a replacement algorithm. The spilling algorithm used by Chaitin [Chai82] is similar
to a reference count algorithm [Aho86, Powe84] which does not adequately consider
clustered accesses. Therefore, the replacement based algorithm is superior to the graph
coloring algorithm in straight-line programs. It is unfair, however, only to make
comparisons for straight-line programs, since graph coloring allocation is designed
primarily for global allocation. Nevertheless, the replacement based algorithm can be
extended to global allocation, and the extension can take advantage of software branch
predictions [Fish81]. The extension to global allocation will be described in the next

section.

Register replacing is similar to the replacement problem in a paging system or in a
cache. The difference is that a compiler can use look-ahead techniques to exploit future
information at compile time. By using the future information, register replacement can
be handled efficiently. The graph coloring model, which is often handicapped by the
spilling problem, depends on either a large number of registers or small procedures to
avoid spilling. Since typical procedures are small, as are basic blocks, register spilling
is unlikely to occur. However, this does not mean that we should encourage the use of
small procedures and small basic blocks. There is a cost associated with each state
transition from one procedure or basic block to another. For procedures, that cost is
register saving and restoring. For basic blocks, that cost is initial loads at block entry
and final stores at block exit. The smaller the unit, the higher the transition overhead.

Therefore, larger units give better opportunity for more efficient allocation. In addition,

58

recent research in pipelined and parallel processing require large basic blocks to supply
sufficient fine-grained parallelism [Fish81, Elli85]. As the size of basic blocks becomes

larger, the problem of good register replacement becomes more important.

3.10. The Reevaluation of the Perfect Allocation Model

Since we have already studied algorithms for minimizing bus traffic, the “perfect”
register allocation model can be reevaluated. The heuristic algorithm (WC) is used
rather than the optimal algorithm to gauge ideal performance because (1) the optimal
algorithm requires exponential time and space; it is infeasible to be used to evaluate a
trace with millions of steps, and (2) the algorithm WC has near-optimal performance

even with large basic blocks.

Comparison of Bus Traffic
(Average of five traces)
no. of words | Cache (LRU) | Registers (Perfect Allocation)
2 55271 40294
4 36022 22534
8 23716 10563
16 6183 1987
32 1201 70
64 187 12

Table 3.6 Bus Traffic of Perfect Register Allocation and Data Cache

Table 3.6 shows that using registers has the potential for less bus traffic than a data
cache, especially when the registers have an effective size of 32 or larger. It is hard to
conclude how much difference this makes in improving the execution speed. However,
if the off-chip data bandwidth is the performance bottleneck and the stack access is the
major part of the data bandwidth, then halving the stack access traffic might nearly

double the performance. The reader may argue that increasing the cache size may be

59

more effective in reducing the bus traffic. But for a limited on-chip area, registers can

be more effective.

Although it is difficult to attain performance approaching that of ideal allocation,
compiler techniques are improving; anti-alias analysis has been developed and used
[Nich85, CoutB86]; new programming languages such as Euclid [Pope77] and Ada
[Ledg81] are designed to restrict uncontrolled aliases; and research on software branch
prediction is being conducted [ENi85, Fish81, HsuP86]. We therefore believe that

using registers to reduce off-chip memory accesses for the stack has a promising future.

Some computer architects favor architectures which simplify the optimization
work of a compiler. However, the successful development of portable optimizers
[Chow83, Ausl82] reduces the cost and effort of the optimization work. In addition, we
believe that in order to use a limited storage effectively, sophisticated allocation is
necessary. For example, if the CRISP (C machine) wants to use its limited top-of-stack
area effectively, its compiler should minimize the frame size of each procedure so that
more frames can be captured in the top area. (In fact, this is done in one of the CRISP
compilers [Band87]) Also, if a frame size is larger than the top-of-stack area, then it is
the compiler’s responsibility to allocate frequently used variables on the top of the
frame to speed up their access.

3.11. Global Register Allocation

In previous sections, we discussed local, or intra-basic-block register allocation.
Now we want to extend our algorithm to global, or,inter-basic-block register allocation.
The approach we used in local allocation used registers to hold values for the duration

of a single basic block. However, when this approach is used globally, we were forced

60

to store values of the temporaries or variables which are dirty and live on exit at the end
of each block. To save some of the stores and corresponding loads, we must keep these
registers consistent across block boundaries. Since programs spend most of their time in
inner loops, most of the global allocation algorithms pay attention to allocating registers

in inner loops.

3.11.1. Previous Work

A simple yet effective algorithm, known as reference count [Aho86], has been
used in the Fortran H compiler [Lowr69] and a Modula II compiler [Powe84]. This
algorithm identifies frequently used variables, constants, and base addresses by

counting their static references, and allocates to registers as many as possible.

Day [Day70] formulates global register allocation as an integer programming
problem. Branch and bound algorithms which lead to optimal solutions are given.
Heuristic algorithms are also provided. One heuristic algorithm is similar to the
reference count algorithm. Interferences among variables are analyzed so that more
than one data item can be allocated to one register. Day’s algorithms are based on the
IBM/360 model, for which data items can be accessed directly from storage. This is

different from our model which is based on a Load/Store architecture.

Beatty [Beat74] separates the register assignment process into three steps— local
allocation, global assignment and local assignment. He starts with locally allocated
variables, and extends their lifetimes by moving their loads and stores to less frequently

executed parts of the program.

Harrison [Harr75] applies Belady’s MIN algorithm to the flow constructs of real

programs. Global flow analysis techniques are used to gather information which guides

61

the register allocation. Branch frequency information is also used so that variables in

the most frequently executed part have priority to be allocated in registers.

Wulf, er al. [Wulf75] separate register allocation from register assignment in the
Bliss-11 compiler. Temporary names (TN) are assigned to selected variables, common
subexpressions, and loop invariants in the TN phase and are mapped to real registers in
the PACK phase. The order in which TN’s are considered for assignment to registers
depends on an accumulation and balancing of costs. TN’s that occur in loops are given
more weight than others. Lifetimes of TN are also analyzed so that two TN’s can share

a register if they do not interfere with each other.

Kim [Kim78, Kim79], like Beatty, describes a system for manipulation of
individual loads and stores. All variables are initially allocated in registers. Then,
lifetime analysis is used to determine sections of the program over which the number of
variables that are alive exceeds the number of available registers, so that some of them
must be spilled to memory. Instructions to store and load those spilled variables are
inserted into the program, and moved around to the so-called “edge block”. The
corresponding loads and stores in the “edge block™ can be removed. Also, loads and

stores can be moved to less frequently executed parts of the program.

Chaitin, et al., [Chai81, Chai82] use graph coloring techniques to do global
register allocation in the PL.8 optimizing compiler. Though the graph coloring
technique has been suggested by Yershov [Yers71], Cocke [Alle76], and others, it was
successfully developed and implemented by Chaitin. The global register allocation is
formulated as a graph coloring problem: Each node in the graph stands for a computed
quantity that resides in a machine register, and two nodes are connected by an edge if

two quantities interfere with each other, that is, if they are simultaneously live at some

62

point in the program. The problem is to assign different colors (registers) to connected
nodes. It is hard to obtain an optimal coloring, but the implementation showed a fast
heuristic method for assigning colors to these graphs generally resulted in a very good
assignment. When the compiler cannot color the register conflict graph, it must add
code to spill some nodes. Spill decisions are made on the basis of the register conflict
graph and cost estimates of the value of keeping the variable in a register rather than in
memory. The cost of spilling a node is approximately equal to the number of references
to that variable, where each reference is weighted by its estimated execution frequency.
Chaitin et al., assume that each instruction in a loop is executed ten more times than it
would be if it were outside the loop. The graph coloring model is uniform and

systematic in its handling of machine idiosyncrasies.

Chow and Hennessy [Chow84] also use the graph coloring techniques in their
UOPT, a portable machine-independent global optimizer. They adopt the notion of
priorities in node-coloring. The assignment of priorities is based on estimates of the
benefits that can be derived from allocating variables in registers, including allowances
for loop nesting depth and access variable clustering. Each node in the interference
graph is a live range for some variable. If the number of colors is not enough for
coloring the interference graph, the compiler will assign colors to those nodes which
have higher saving cost. Then by splitting long live ranges into short subranges, a
variable may be assigned to a register for a short time. Chow and Hennessy’s model is a
little different from Chaitin’s, since they assume each variable can be accessed from
storage directly. The coloring process is therefore easier to terminate (in Chaitin’s
model, the spilling process must be iterated until the graph can be colored. In Chow’s

model, it is easy to stop the coloring process just by assigning colors to those nodes

63

with higher saving cost and leave the uncolored ones in storage). Despite their delicate
spilling process, Chow and Hennessy’s implementation of the live range of variables
restricts the sharing of registers. A live range of a variable is an isolated and contiguous
group of nodes in the control flow graph in which the variable is defined and
referenced. Each variable in a procedure is assumed one live range even though it may
be defined multiple times. Assume two frequently used variables A and B, each is
defined several times but both are never live sim,ultaneously. Based on Chaitin’s model,
A and B can share the same register. In Chow’s model, since A and B both have high
priorities, their live ranges will be assigned to different registers (colors). Although a
live range can be split into several smaller live ranges, spliting only occurs when the
colors are used up. When the colors are used up, A and B have already been allocated
and their live ranges will not be split.

3.11.2. Important Considerations for Good Allocations

In addition to the common principle that frequently used data items should be
allocated in registers, there are some important criteria in designing good register
allocation algorithms. From the previous work, the criteria can be listed as follows: ¢))
variables (including temporaries) with disjoint lifetime should share registers; (2) the
information of variable access clustering is important in handling spilling; (3) loads and
stores (spilled code) should be placed in less frequently used blocks. We will show that

extending our local allocation scheme to global allocation fulfills the above criteria.

64

3.11.3. Branch Frequency

A register allocation algorithm could allocate registers more effectively if it could
predict which parts of a program will execute more frequently. Ideally, we would like
to know not only which loops execute more frequently, but also relative execution
frequency for different subsections within a given loop. One compiler attempted “hot
spot” optimization of this sort: the original Fortran I compiler, which used branch
frequency information in its optimization phase [Back57]. Traditional static analysis
techniques, which assume equal branch probabilities for all program paths, fail to

generate good code when one branch is taken most of the time.

3.11.4. The Extension of Local Allocation to Global Allocation

The extension of our local allocation algorithm to global allocation is based on the
approach used by the Fortran I compiler. A brief outline of this extension is as follows.
Using estimated branch frequency, regions are formed so that registers can be assigned
to the most frequently executed areas first, then to the next most frequently executed
area, and so on, until the entire program has been treated. Each region is a path (or a
trace [Fish81]) which can be treated as a basic block. When a path has been processed,
the register configurations at each Split and rejoin are recorded (see Figure 3.5) in order
to maintain consistency with the processing of other paths. A similar process has been
applied in different studies [Back57, Kenn72, Harr75, Mosh8S5, Kran86]. Figure 3.4
serves to illustrate this idea. Implementation detail of trace scheduling can be found in
[ELli85]. In Figure 3.4(a), a flow diagram shows a loop with an IF-THEN-ELSE
structure inside its body. Suppose the path A-B-D is taken more frequently than the
path A-C-D. Then the register allocator will treat A-B-D as a basic block, and allocate

65

registers accordingly. Register configurations are recorded at the split and rejoint as
shown in Figure 3.4(b). Then the allocator performs register allocation for block C.
Load and store instructions are inserted around block C to maintain the consistency
with the register configurations at the split and rejoint. The approach is to optimize a

more frequently used path while letting a less frequently used path pay an extra price, a
principle that has been used widely.

l &
A | A A

—— SPLIT
/. | —a]reg config

of exit_A

v
\.4
e

\ reg config
/ | of entry D

| REJOIN

D D

(a) (b) (©)

Figure 3.4 Extension to Global Register Allocation

66

Our replacement-based allocation algorithm keeps frequently used data items in

registers (it works like a perfect cache); reuses registers for variables having disjoint

lifetime (it replaces dead registers first); and takes variable access clustering into

account in spilling registers (which register to spill is based on its access distance).

Combined with trace scheduling techniques, the replacement-based allocation

algorithm will place the spilled code (loads/stores) in a less frequently used area.

Therefore, this approach is designed to fulfill the important criteria stated before.

3.11.5. Some Required Modifications

)

)]

Some modifications are necessary for the above extension.

In local allocation, if a variable (a pseudo-register) is dead, then no stores are
needed to update its value in memory when it is spilled. This is a little tricky in
global allocation, since a variable may be dead in the current trace but live on a
split trace. In order to generate correct code, a store must be inserted if the spilled
variable may be livg and dirty. Therefore, global flow analysis should be used to
tell whether a variable is dead or not — it is dead at a point if its current value will

never be used again — rather than only looking ahead on the current trace.

Initial allocation needs to be selected carefully if the trace is in a loop. The
approach used in the Fortran I compiler was as follows: The loop was first
considered to be unrolled once, and allocation carried out in normal fashion
through the first of the two copies, with look-ahead extending into the second
copy. The content of registers on exit from the first copy thus determined was now

applied as the initial condition.

67

(3) Itis easy to do allocation for the first selected trace. But for later selected traces,
the allocator needs to maintain the consistency at the rejoins. It needs some care

to avoid generating too many redundant register movements.

(4) The instructions inserted for spilling should be moved to less frequently executed
parts of a program (e.g. outside a loop). Kim’s work [Kim79] can be applied for
such a purpose.

3.12. Register Allocation of Global Variables

While we have concentrated primarily on accesses to local variables up until now,
many programs make extensive use of global variables, and these must be supported
efficiently as well. From Ditzel’s study one might conclude that global variables are
accessed infrequently [Ditz82]. However, Ditzel’s study is largely based on system
applications; there are clearly many applications (e.g. scientific computing) where
many, or even most, variables are global. There is strong evidence that a cache is often
not effective for global variables [Axel83]. From our study reported in chapter 2 we
concluded that major temporal locality in global accesses comes from a small number
of scalar variables. Because they are accessed frequently, these scalar variables are
obvious candidates for registers. However, many of these references are complicated
by aliasing problems — being passed by reference parameters to procedures, for
example — and therefore cannot be allo-cated to registers. In-line expansion

overcomes this restriction by reducing the use of aliases.
The remaining global accesses exhibit little temporal locality and therefore cannot
be supported well by any on-chip memory relying primarily on temporal locality.

Spatial locality is exploited in a cache to raise the hit ratio so that memory latency can

68

be hidden. Caches that bring in large blocks work if they have sufficient bandwidth, but
are wasteful in the use of the available processor/memory bandwidth. On-chip cache
must be designed to minimize this bandwidth [Good83] and therefore is unlikely to
perform well. Not only will unneeded data be fetched, but anticipation of requests is
very difficult.

The use of registers can potentially overcome both of these constraints. The
program can preload data into registers when it has advance knowledge of their use.
The one seeming advantage that a cache has is that more than a single word can be
requested and transferred at a time. We note that the same mechanisms can be
employed for registers. In fact, registers are more flexible because the words fetched
need not be contiguous. The fetched data then can be placed in vector registers, queues
or other structures visible to the programmer. Preloading fetches exactly the data that is
needed, therefore unlike the cache, no additional traffic is introduced. The task of
preloading is typically performed by code scheduling— rearranging code sequence at
compile time-so that load instructions can be overlapped with other operations.

Ideally, preloading can achieve 100% hit rate without adding more traffic.

Code scheduling detects the parallelism in a program, arranges independent
instructions to be interleave so that latency can be hidden (both memory latency and
functional unit latency). There are two problems associated with code scheduling: (1) it
is not very effective if the basic blocks are small, since small basic blocks have very
little parallelism; and (2) it often complicates the task of register allocation. In the next
chapter, we discuss the issues of large basic blocks and compiler techniques to generate
large basic blocks. In chapters 5 and 6, the interdependency of register allocation and

code scheduling is studied and some solutions are proposed.

69

Chapter 4

Compiler Techniques for Increasing Basic Block Size

A basic block is a sequence of consecutive instructions which may be entered only
at the beginning, and when entered are executed in sequence without branches (except
at the end of the basic block). It is the basic unit for local optimizations, including code
scheduling. Typically, basic blocks are very small. For example, Clark [Clar84] found
that 25 percent of the VAX instructions executed are branches. This means that the
average size of a dynamic basic block is only three instructions long. Although for
RISC type architectures [Patt85], branch frequency tends to be lower, branches still
constitute a high portion of the instructions executed [Henn84]. For pipelined
machines, branches not only cause high penalties in execution but also severely limit
the usable parallelism due to small basic blocks. Eliminating branches and generating
large basic blocks, therefore, is of great importance in making effective use of pipelined
machines. Some compiler techniques for generating large basic blocks are discussed in

this section.

4.1. Reducing Conditional Jumps

If it can be determined at compile time that a conditional branch will always take
just one of the possible paths, then it can be removed, along with the path which is
never taken. Constant propagation [Wegm84] and copy propagation [Aho86] are two

ways to eliminate such unnecessary branches.

Short-circuit code [Logo81] is often generated for boolean operations in many
compilers. It has the advantage that fewer instructions will be executed since some

expression evaluations can be bypassed. However, short-circuit code uses many

70

conditional branches, resulting in many tiny basic blocks. In order to obtain larger

basic blocks, short-circuit code should be avoided if the language definition allows.

With appropriate architectural support, the number of conditional branches can be
further reduced. For example, the max instruction, which takes two operands and
returns the bigger one, can be used to implement a C statement like a=(b>c?b:c)
without using a conditional branch.. Although it is difficult for the compiler to use this
feature in code generation, the programming language can be augmented with function
calls. When programmers use the max function call, the translation is quite straight
forward. Ellis [Elli85] suggested a more generalized machine instruction, select,

select(b, x1, x2)
which returns either x1 or x2 depending on whether b is true or false, to avoid

unnecessary conditional branches.

4.2, Code Duplication

Code duplication is a common way to trade code space for more parallelism.
Many techniques belong to this category. They include loop unrolling [Dong79], code
replication [HsuP86], trace scheduling [Fish81], in-line expansion [Sche77],

unswitching [Alle72], and multiversion program transformation.

4.2.1. Loop Unrolling

Technique and advantages

When a loop is unrolled, its body is replicated so that the calculations performed

in several iterations of the unmodified loop are performed in one iteration of the

71

unrolled loop. In Figure 4.1, a Fortran DO loop is unrolled four times. The basic block
in the unrolled loop is four times larger than before. Loop unrolling reduces the number
of branches that must be performed, and increases the oppertunitsies for more local
optimizations. Furthermore, calculations from several iterations can often be

overlapped, increasing parallelism.

Loop unrolling is also helpful for register allocation. In Figure 4.2, after loop
unrolling, Y(I) can be identified as a common subexpression and thus be allocated in a

register, saving store and load instructions.

DO10I=1,N
Y@ = Y() + A*X ()
10 CONTINUE

(a) original loop

M =N - MOD(N,4)
DO10I=1M4
YD) = YD) + A*X(D)
Y(I+1) = Y@+1) + A*X(I+1)
Y(1+2) = Y(I+2) + A*X(I+2)
Y(I+3) = Y(I+3) + A*X(I+3)
10 CONTINUE

DO 11I=M+1,N
Y@ =YQ@) + A*X(D)
11 CONTINUE
(b) unrolled loop

Figure 4.1 Unrolling A Fortran DO Loop

72

DO 101I=1,100
Y(@) = Y(@-1) + X(D)
10 CONTINUE

(a) original loop
DO 101=1,100,2
YD) =Y(I-1)+ XD

Y(I+1) = YQ) + X(+1)
10 CONTINUE

(b) unrolled loop
Figure 4.2 Loop Unrolling and Register Allocation

Limitations

Loop unrolling is not as effective for WHILE loops as for DO loops. In the
unrolled WHILE loop, neither the number of branches will be reduced nor the size
of the basic block will be increased as shown in Figure 4.3. However, if we are
confident the WHILE loop will iterate many times, unrolling it gives an opportunity
to apply trace scheduling optimizations. We will describe this further in the section

on trace scheduling.

One important constraint on loop unrolling is the presence of “instruction buffers”
on most advanced computers. If the unrolled loop overflows the instruction buffer (or
instruction cache), then increased instruction fetches may slow down execution.
However, it is well-known that instruction prefetch is very effective on straight-line
programs. Therefore, via prefetching, the instruction fetch delays caused by unrolled
loops may be negligible. However, this argument assumes extremely high memory

bandwidth so that instruction prefetching will not interfere with data fetching. Since

73

While (A() <= N)
Body;

(a) original loop

L10: IF (A() > N) EXIT
Body;
IF (A() > N) EXIT
Body;

IF (A(D) > N) EXIT
Body;
Go To L10;

(b) unrolled loop

Figure 4.3 Unrolling A WHILE Loop
limited memory bandwidth is the major performance bottleneck of modem single-chip
processors, the unrolling depth must be a major concern. A smart optimizing compiler
would take the size of the instruction buffer and the number of pipeline stages into

account to determine how many times a loop should be unrolled.

4.2.2. In-Line Expansion

Technique and advantages

In-line expansion (also called procedure integration) is a program transformation
that replaces a call to a procedure by the body of that procedure. This transformation
eliminates the overhead of the subroutine calls: control linkage, registers

saving/restoring, and parameter passing. It allows better global optimizations, because

74

more constants can be propagated, more common subexpressions can be found, and

better register allocation can be done. It also makes the data dependency analysis more

exact, since only the effects of the one call must be taken into account. In-line

expansion is very effective in increasing the size of basic blocks. First, it eliminates

two branches (a call and a return). Second, since the actual parameters are often

constants, by propagating the constant parameters some conditional branches can be

eliminated at compile time, producing larger basic blocks.

Limitations

1)

)

3)

Recursive procedures. Recursive functions or procedures cannot be eliminated by
in-line expansion. However, recursive procedures are not used very often. About
12% of PASCAL procedures are recursive according to Madhavji’s study
[Madh82]. In addition, recursive procedures can be transformed into nonrecursive
or iterative routines. Although a recursive procedure can not be entirely
eliminated, expanding it several times is still helpful in assisting optimizations.
For example, expanding the Ackermann’s function a small number of times can
produce a significant speed up. The C++ compiler expands some recursive

procedures once.

Procedure environments. In block structured languages, procedures are usually
associated with complex environment. In-line expansion of those procedures must
handle the associated environments correctly. In the VAXELN Pascal compiler

[Macl84], formal procedures and nested procedures are not expanded in-line.

Separate compilations. Without the procedure body, in-line expansion can not be

performed. One distinction between debug runs and compilation runs should be

4)

75

made here. In typical programming environments, a program is broken into many
small compilation units because speed of compilation is important. After the

program is debugged, the compilation units can be merged into a few large ones.

Code space restriction. One major concern is that in-line expansion may
significantly increase the code space when a procedure is called many times
statically. In theory, the code space could be exponentially increased by in-line
expansion if every procedure calls more than one procedure and is called more
than once. Especially when a procedure is called several times in a loop, its
expansion may cause the loop body overflow the instruction buffer. However, in
practice, many procedures are used on the purpose of clarity, modularity and data
abstraction. These procedures are simple, small and often called only once. For
example, no code space explosion have been experience by Scheifler [Sche77] and
MacLaren [MacL84]. How to expand procedures selectively is of great
importance. The PL.8 compiler expands leaf procedures and simple functions
because their bodies are relatively small compared to the calling overhead. The
Standford UOPT includes a cost-driven in-line expansion phase {Chow85]. P. Hsu
[Hsu86] suggested limiting in-line expansion only to those execution paths that
having a high probability of being taken. Ball [Ball79] described a technique for
predicting the code improvement that can be expected due to constant folding and
test elimination when a procedure call involving constant actual parameters is
expanded in-line. A precise prediction of which procedures should be expanded
would be extremely hard to obtain. However, a simple guideline can be given: do
not expand a procedure which is relatively large, has few constant parameters, and

is called many times statically.

76

4.2.3. Code Replication

Technique and advantages

In order to make the Decision Tree Scheduling (DTS) algorithm more effective, P.
Hsu suggested one technique called code replication [HsuP86]. As shown in the Figure
4.4, two if-then-else structures can be merged into a large decision tree. The joint block
S5 is replicated in each leaf of the decision tree, thus increasing the size of the basic
blocks of the leaves. The size of basic blocks can be further enlarged when code
replication is used with multi-way branches [Fish80, Karp85]. For example, in Figure
4.5, which assumes the two conditions in Figure 4.4 are independent, the use of multi-

way branch can produce larger basic blocks.
Limitations

Code replication increase code space rapidly. Therefore, P. Hsu used this

technique primarily for those frequently used branches in the decision tree.

4.2.4. Trace Scheduling

Technique and advantages

Trace scheduling [Fish81] is a technique for code compaction across basic block
boundaries. There are four phases in the scheduling process. First dynamic information
concerning the flow of control of the program is obtained and is used at compile time to
perform “software branch prediction”, the prediction of which paths are more likely to

be executed. A selected path is called a “trace”. Once a trace has been selected for

g

85

S3

S5

S4

83

Figure 4.4 Code Replication

S5

S5

77

78

T.T TF F.T FF

s1 s1 s2 Y)
s3 s4 $3 54
S5 S5 S5 S5

Figure 4.5 Code Replication with Multi-way Branch
compaction, some preprocessing is performed on it so as to disallow code motion of
operations that would alter variables which are live off the trace. Then the scheduler is
allowed to compact the entire trace as if it were one large basic block. After
compaction, the scheduler will have made many code motions across conditional
jumps. These code motions may have altered the state of the program with respect to
jumps into or out of the trace. To restore the correctness of the program, new code is

inserted at the trace exits and entrances to recover the correct machine state.

The example in Figure 4.6 illustrates the process of trace scheduling. Four basic
blocks which represent an if-then-else structure are shown in the example. Suppose the
block sequence 1, 2, and 4 is the selected trace. The instruction E=3 is not allowed to

move from block 2 to block 1 in the preprocessing stage since it will alter variable E

79

which is live in block 3 and which is on the off trace. The scheduler can move
instruction A=B+C from block 1 to block 2, or move instruction T=D from block 2 to
block 1 (assume T is not live in block 3). If the instruction A=B+C is moved from block
1 to block 2, then a replication of this instruction should be inserted in the recovery

block between block 1 and block 3.

From the example in Figure 4.6, it is obvious that a large basic block can be
created just by moving instructions from block 1 to block 2. The expense is that the
same number of instructions should be replicated in block 3. This transformation has

the same flavor as code replication.

! A=B+C I,'I ; ',':
5 {lt=D | i
if X>10 S [fX>10] ¢
A
E=3 Y=E @ £ +Cf [
T= A=B+2 |} SO
< / \,-«\Ajw
4 d \
A=B+2 .

Figure 4.6 Trace Scheduling

80

Trace scheduling was originally designed for code compaction. But it is also
useful for code scheduling. Both code compaction and code scheduling require large
basic blocks to be effectively used.

Trace scheduling is most effective when used with loop unrolling. In the section
on loop unrolling, it was mentioned that unrolling WHILE loops is not as effective as
unrolling DO loops. However, with trace scheduling, all conditional jumps in the
unrolled loop can be predicted as “fall through” (not taken branches) as long as the loop
will be executed many times. The combination of loop unrolling and trace scheduling
creates a notion of a pseudo basic block, a long section of code, with a single entry and
multiple exits, all of which except the last one are unlikely to be taken. A pseudo basic
block can be treated as a basic block as long as some care is taken during
postprocessing to maintain the correctness of the program. Some architectures make
this especially easy (e.g. WISQ [Ples87]). With loop unrolling, it is easy to obtain large
pseudo basic blocks.

Limitations

The success of trace scheduling heavily depends on the correct prediction of
branches. For scientific applications, most branches are highly predictable, and so trace
scheduling is quite effective. Some studies [Ditz87] have reported that for non-scientific

computation, branches can also be predicted with a high success rate. If this is true,

then trace scheduling may also be successfully applied to non-scientific applications.

Trace scheduling is restricted to some extent by instructions which cannot be
moved across basic blocks, as with the instruction E=3 of block 2 in the example.

However, these instructions could be moved across basic blocks as long as we provide a

81

way to undo them when the branch prediction turns to be wrong. The WISQ [Ples87]
architecture, for example, has a feature to nullify instructions easily, thus making trace

scheduling more effective.

Although Nicolau has shown that trace scheduling does indeed terminate
[Nico85], trace scheduling can lead to code space explosion [Elli85]. However, for
scientific code with simple control structures and few cascaded conditionals, code

explosion can be controlled.

Trace scheduling is hard: it is hard to implement, it may need programmers to
specify conditional jump probabilities and assertions for memory-reference.

Furthermore, it takes lots of time to compile.

4.2.5. Unswitching and Multi-version

Technique and advantages

Unswitching [Alle72] is a technique which hoists loop-invariant branch tests
outside the loop and replicates the loop body so that once the execution falls into the
correct replicated loop, there is no more intra-loop branching. Figure 4.7 illustrates such
an approach. The loop body will be doubled if there is one loop invariant test,
quadrupled if there are two independent loop invariant tests, and so on. This program
transformation will make a loop execute more efficiently than before in a pipelined
machine. This idea can be extended to a more general approach. In many programs, it
is common to define some flags at the beginning of the execution and test the flags
repeatedly. Since many flags are not changed during program execution, these tests are

unnecessary. One possible transformation to reduce redundant tests is to replicate the

82

program several times so that there are several versions, each of which corresponds to a
particular set of test values. The invariant tests are checked at the start of execution,
and then the corresponding version is selected. All of the invariant tests in each version
can be removed through constant propagation. Figure 4.8 shows an example of the

multiversion approach.

Unswitching and multiversion approach expands primary static code size but not
necessarily dynamic code size. With decreasing memory cost and increasing main

memory size, static code size is less dominant than it was a decade ago. Limitations

Unswitching and multi-version transformation increase code space drastically.
Without proper control, it may cause code space explosion. The execution frequency
estimate of loops and the number of tests that can be hoisted should be taken into

account to determine whether the above transformation is profitable.

S
3
g
=}
N
w

P
\

A
<

Figure 4.7 Unswitching

83

| V TF ET EF
|

loop: |
endif’ (T2) ... lversion version |version |version
| 1 2 3 4

|
if (T1) ...
llf()r2)

if(‘,rz)
|

all test of T1 and T2 will be removed from each version
Figure 4.8 Multi-version

4.3. Others

4.3.1. Loop Fusion

Loop fusion (also called loop jamming) is a conventional compiler optimization

that transforms two adjacent loops into a single loop. For example, the loops

would be fused as:

84

DO10I=1N
A() =B®
10 CONTINUE

DO20I=1N
CI =DM +ED)
20 CONTINUE

Figure 4.9 Loops Before Loop Fusion

DO10I=1N
A) =B
CM =D®) +E®
10 CONTINUE

Figure 4.10 Loop After Loop Fusion

Fusion helps to reduce the overhead of loops. More importantly, the basic block size is

increased. Several limitations should be considered:

(1) Sometimes, loop fusion is not legal. For example, the following loops cannot be
fused, since the original data dependency will be changed if the two loops are
fused.

DO10I=2N
A =B®D
10 CONTINUE

DO20I=2N
CI =Ad+1)
20 CONTINUE

(2) Loop fusion may decrease spatial locality. For example, the loops in Figure 4.9
may be very efficient since the loops can take advantages of the high spatial
locality of array B. The fused loop in Figure 4.10 may be less efficient due to

competing accesses of arrays B, D, and E.

(3) The increased loop size may overflow the instruction buffer.

85

86

Chapter 5
Code Scheduling with Limited Register Spilling

5.1. Introduction

Pipelining is a common technique used in high-performance computers [Kogg81].
It increases system performance by overlapping instruction execution. Ideally, more
pipelined stages (i.e. a more finely segmented pipeline) means higher throughput.
However, the presence of branch instructions and inter-instruction data dependencies
often restricts the effectiveness of a long pipeline. Hardware techniques like issuing
instructions out of order and internal forwarding [Toma67, Thor70] have been used
occationally to alleviate the data dependency problem. However, they are not used
widely because (1) they are expensive; (2) their complexity may slow down the clock
rate. On the other hand, code scheduling, a software technique that rearranges the code
sequence at compile time to reduce possible run-time delays, has been shown to be
effective for improving the performance of pipelined processors [Henn83, Youn85,

Gibb86].

Code scheduling works because parallelism exists in basic blocks. The code
scheduler can interleave several independent instruction sequences so that the hazards
can be largely eliminated. However, the observed parallelism in typical basic blocks is
often limited to a factor of two to three [Tjad70]. This implies that pipelines with more
than three stages may be ineffective. This is probably one reason why most
commercial microcomputers do not have many pipelined stages in their
implementation. Vector processors [Hwan84] often have long pipelines, since vector

operations consist of long sequences of operations on different array elements with no

87

inter-operation data dependencies. Large basic blocks allow code schedulers to find and
exploit more parallelism within programs [Elli85]. Compiler techniques to generate

large basic blocks have been discussed in the previous chapter.

While code scheduling is effective in reducing pipeline interlocks and hiding
memory latency, it creates a problem for register allocation. Code scheduling increases
the time between a write to a register and the reads after the write. Having longer
register lifetimes increases the number of simultaneously live registers, interfering with
register allocation. Code scheduling may cause the register allocator to spill some
registers. This is a major reason why researchers choose postpass code scheduling —
code scheduling after the register allocation is done [Henn83, Gibb86] — rather than
prepass scheduling. However, since the register allocator may inadvertently introduce
dependencies by allocating the same register for unrelated instructions, postpass code
scheduling is more restricted than prepass code scheduling. When basic blocks are
small, this restriction makes little difference. But for large basic blocks and long

pipelines, it may make a significant difference in performance.

We introduce two approaches to attack the interdependency problem between
code scheduling and register allocation. This chapter describes a code scheduling
technique which combines two code motion techniques — one to reduce pipeline
delays and the other to minimize register usage— into a single phase. By keeping track
of the number of available registers, the scheduler can choose the appropriate
scheduling technique to schedule a better code sequence. This technique also considers
spilling as a trade-off with runtime interlocks because for some heavily pipelined
processors, spilling may not be more expensive than long interlocks. The other

approach is based on a DAG-driven register allocator which uses a Dependency DAG

88

to assist in assigning registers; it introduces much less extra dependency than does an

ordinary register allocator. It will be described in the chapter 6.

5.2. Background

5.2.1. Code Scheduling Constraints: The Dependency DAG

Code scheduling algorithms generally reorder instructions to improve program
execution time [Henn83, Gibb86]. The ordering must preserve the original partial order
imposed by operational precedence constraints. DAGs (Directed Acyclic Graphs) are
normally used to represent program precedence constraints [Aho86]. A DAG defines
legal evaluation orders within a basic block; nodes represent instructions, and edges
represent serialization dependencies between instructions. An edge leading from
instruction A to instruction B indicates that A must be executed before B in the
scheduled code sequence. An example code sequence and its dependency DAG are

shown in Figure 5.1. This example program will be used repeatedly in this chapter.

5.2.2. The Use of Low Level Intermediate Languages

The use of intermediate languages (IL) simplifies the code generation and
optimizations. The PL.8 compiler [AusI82] uses a low level IL with an unlimited
number of symbolic registers. In the register allocation phase, the symbolic registers are
mapped into a limited number of physical registers. The IL used in this paper is very
similar to the assembly language of a load/store, register-register, three-address format

machine. We will use it to illustrate examples.

89

h=f+g 3 Mul R3,R1,R2
4 Load R4, c
source program 5 Load RS, d
6 Add R6,R4,R5
7 Load R7,e
8 Add R8,R1,R7
9 Mul R9, R6,R8 0
10 Add R10,R3,R9

11 Stor R10, h @0
5

-0 ae 2lmarsy (D) (D) ({ ©
| ©

IL program
Dependency DAG

Figure 5.1 Example Program and its Dependency DAG

3.2.3. Prepass or Postpass?

Since a source language program is first translated into an IL program, code
scheduling can be done either before register allocation (prepass) or after register
allocation (postpass). The advantage of prepass scheduling is that the full parallelism of
the program could be used. Its drawback is the overuse of registers which causes
excessive register spilling. The in(.:reased instructions for register spilling will slow
down the computation. Postpass scheduling does not increase spilled code, since
register allocation has already been done. However, the register allocator is likely to
assign the same register for unrelated instructions; sometimes, this sort of allocation is
unavoidable. The reuse of registers introduces new dependency constraints, making

code scheduling more restricted. An example in Figure 5.2 illustrates the pros and cons

90

of the above two scheduling policies. In Figure 5.2, the same program as in Figure 5.1

is used. The IL program is at the top, PR means pseudo-registers.

In the above example, we assume a stack is used to manage the register pool: dead

registers are returned to the top of the stack and new registers are allocated from the top

of the stack'. The DAG in Figure 5.1 is used for prepass code scheduling. The original
DAG, which is based on the dépendencies of pseudo-registers, preserves maximal
parallelism. After the register allocation, the reuse of registers forces new dependencies.
For example, the reuse of register 4 in instruction 7 adds a write-after-read (WAR)
dependency [Rama77] from instruction 6 to 7 (Figure 5.3). This newly introduced
dependency prevents instruction 7 from overlapping instruction 4 or 5, in postpass
scheduling, introducing artificial pipeline delays. However, the code sequence of
prepass code scheduling consumes five registers while the code sequence of postpass
scheduling requires only four. If only four registers are available, the prepass code

needs load and store instructions to spill registers.

3.2.4. Two Conflict Scheduling Techniques

Two code rearranging techniques could be applied during the optimization phases.
They are: (1) code scheduling [Henn83, Gibb86, Youn85] to avoid delays in pipelined
machines as we have discussed before — we call this technique CSP (Code Scheduling
for Pipelined processors) for short, and (2) code reorganization [Davi86] to minimize
the number of registers required — we call it CSR (Code Scheduling to minimize
Registers usage) for short. CSP could be applied before and/or after the register

1 Alternate allocation policies are discussed in section 5.4.

1 Load PR1,2a

2 Load PR2,b

3 Mul PR3, PR1,PR2
4 Load PR4,c

5 Load PRS,d

6 Add PR6,PR4,PRS
7 Load PR7, e

8 Add PRS8,PR1,PR7
9 Mul PRY, PR6, PR8
10 Add PR10, PR3, PR9
11 Stor PR10, h

PREPAS STPASS

code scheduling register allocation

4 Load PR4,c 1 Load R1,a
5 Load PRS5,d 2 Load R2,b
7 Load PR7,¢ 3 Mul R2,R1,R2
1 Load PR1,a 4 Load R3,c
2 Load PR2,b 5 Load R4,d
6 Add PR6, PR4,PRS 6 Add R3,R3,R4
8 Add PRS,PR1,PR7 7 Load R4,e
3 Mul PR3,PR],PR2 8 Add R1,R1,R4
9 Mul PR9Y,PR6, PR8 - 9 Mul RI1,RL,R3
10 Add PR10,PR3,PR9 10 Add R1,R1,R2
11 Stor PR10, h 11 Stor R1,h
register allocation code scheduling
4 Load Rl,c 4 Load R3,c
5 Load R2,d 5 Load R4,d
7 Load R3,e 1 Load Rl,a
1 Load R4,a 2 Load R2,b
2 Load RS,b 6 Add R3,R3,R4
6 Add RI1,R1,R2 3 Mul R2,R1,R2
8 Add R3,R4,R3 7 Load R4,e
3 Mul R4,R4,R5 8 Add R1,R1,R4
9 Mul R1,R1,R3 9 Mul R1,R1,R3
10 Add R4,R4,R1 10 Add R1,R1,R2
11 Stor R4, h 11 Stor R1, h

Figure 5.2 Prepass and Postpass Scheduling

92

solid lines -- original dependencies.
dashed lines -- dependencies added by register allocation
Figure 5.3 New Dependency Edges Added by Register Allocation

allocation phase while it only makes sense to apply CSR before register allocation. The
use of CSP has been discussed; we now introduce the use of CSR in the following

example.

As in Figure 5.2, a typical register allocation for the IL program requires four registers.

The rearranged code sequence using CSR (as in Figure 5.4) needs only three registers.

The rearranging technique that generates the above code sequence has been used
in the code generation phase to determine better evaluation orders of expression trees or
DAGs. The well-known Sethi-Ullman algorithm [Seth70] generates the optimal
evaluation order (using minimal number of registers) of expression trees. Heuristic

algorithms are also available for DAGs with common subexpressions [Aho77].

93

4 Load PR4, c 4 LoadRl,c

5 Load PRS,d 5 Load R2,d

6 Add PR6, PR4, PRS 6 Add R1,R1,R2
1 Load PR1,a 1 LoadR2,a

7 Load PR7, e after 7 Load R3, e

8 Add PRS, PR1,PR7 == register allocation ==> 8 Add R3,R2,R3
9 Mul PRY, PRS, PR6 9 Mul R1,R3,R1
2 Load PR2,b 2 Load R3,b

3 Mul PR3, PR1, PR2 3 MulR3,R2,R3
10 Add PR10, PR3, PR9 10 Add R1,R3,R1
11 Stor PR10, h 11 StorR1,h

Figure 5.4 CSR Minimizing the Use of Registers

Recently, Davidson [Davi86] has separated this optimization technique from the code
generation phase and implemented it as an independent code reorganization technique.
The key idea of this optimization is to prevent a register from holding a temporary too

long. Hence the number of simultaneously live registers could be reduced.

CSP and CSR conflict with each other. CSP tends to increase the lifetime of each
pseudo-register while CSR wants to shorten it. If CSP and CSR are implemented in
different optimization phases, they will interfere with each other. Using one or the
other technique on a per block basis may yield poor results when the number of
available registers varies within a basic block. We propose, therefore, to integrate CSP

and CSR into a single phase so that they will be friends instead of foes.

5.3. A Solution for Prepass Scheduling

The major disadvantage of prepass scheduling is that it may overuse registers
causing register spilling. We propose to integrate CSP and CSR in prepass code

scheduling to control register spilling. The basic idea is to keep track of the number of

94

available registers during code scheduling. Since each issued instruction may create a
new live register and terminate the lifetime of some registers, we can count the number
of available registers. When there are enough registers, the scheduler uses CSP to
reduce pipeline delays. When the number of available register is getting low, the
scheduler switches to CSR to control the use of registers. The following example

explains this approach.

Example

Suppose the input program is the same as in Figure 5.1 and there are four?
registers available for this program. Our new code scheduler will schedule the program

in a sequence like:

4 Load PR4,c
5 Load PRS,d
7 Load PR7,¢e
1 Load PR1,a

The scheduler must now choose between issuing instruction 2, which activates one
register, and instruction 6, which frees one net register. Since the available registers
have been used up, CSR takes charge of scheduling, and issues instruction 6. We then
return to CSP and instruction 2 is issued after instruction 6. The complete reorganized

code sequence is as in Figure 5.5.

Notice that this code sequence uses four registers, the same number as the postpass

code sequence used. Compared to the postpass code sequence as in Figure 5.2,

2 A machine typically has eight or 16 general purpose registers. However, we assume
that other registers have already been preallocated to frequently used variables or con-
stants and thus only four are left for this basic block.

95

4 Load PR4,c 4 LoadRl1,c
5 Load PRS, d 5 LoadR2,d
7 Load PR7,e 7 Load R3, e
1 Load PR1,a 1 Load R4, a
6 Add PR6, PR4, PRS 6 Add R1,R1,R2
2 Load PR2,b == register allocation ==> 2 Load R2,b
8 Add PRS, PR1, PR7 8 Add R3,R4,R3
3 Mul PR3, PR1, PR2 3 Mul R4,R4,R2
9 Mul PR9Y, PR6, PR8 . 9 Mul R1,R1,R3
10 Add PR10, PR3, PR9 10 Add R4, R4, R1
11 Stor PR10, h 11 StorR4, h

Figure 5.5 Code Sequence Using Integrated Scheduling

however, this code sequence has fewer runtime interlocks.

5.4. Implementation Notes

3.4.1. CSP, CSR and AVLREG

There are two major parts in our approach: CSP and CSR. The use of CSP in our
work is based on the work by Young [Youn85]. We also take ideas from others
[Gibb86, Henn83] to improve the CSP algorithm. Young [Youn85] assumes the target
machine has multiple functional units whose pipelines vary in length. Instructions
complete whenever they leave their particular functional unit pipelines. The estimated
execution time of each instruction is used to compute the cumulative cost of each node
in the DAG. This cumulative cost identifies which node is on the critical path during
instruction scheduling. Instructions are scheduled in a topological sort order of the
DAG. Nodes on the current critical path have higher issue priority. In contrast to

[Henn83], hardware interlocks are assumed rather than using software to enforce

96

interlocks. We also generalize the way of checking interlocks at code scheduling time

from Gibbons [Gibb86] and Hennessy [Henn83] in our scheme.

The CSR used in our approach is quite different from earlier work [Seth70,
Aho86], which determines the complete evaluation order of an expression tree [Seth70]
or a DAG (having common subexpressions) [Aho86] to minimize the number of
registers used. In our approach, when CSR is called, the evaluation order of the DAG
has been partially determined (some nodes have been issued). The goal of CSR at this
point is to find the next instruction which will not increase the number of live registers,
or if possible, decrease that number. Our CSR does not decide the total evaluation
order. The basic approach of our CSR is to find an instruction that frees more registers
than the number of live registers it creates. When no such instructions exist, the
scheduler looks for instructions on partially evaluated paths, since once the partially

evaluated path is fully evaluated, registers may be freed.

Switching between CSP and CSR is driven by the number of available register,
AVLREG. CSP is responsible for code scheduling most of the time. When AVLREG
drops below a threshold (say, one) CSR is invoked. After AVLREG is restored to an
acceptable value, CSP resumes scheduling. AVLREG is initially determined by the
total number of registers minus the number of registers live-on-entry. We assume a
global data flow analysis [Aho86] supplied the information of registers live-on-entry.
Reference counting is used to determine when pseudo-registers are dead and can be
freed. We increase AVLREG when there are freed registers, and decrease AVLREG

when instructions create live registers.

97

5.4.2. Renaming of Pseudo-Registers

A single assignment rule— every pseudo-register is written only once statically —
is used to maintain maximal scheduling flexibility. An intuitive implementation is to
assign a new pseudo-register whenever there is a write. This implementation has
problems with local variables. For example, in Figure 5.6, if X is allocated to different
pseudo-registers in disjoint blocks, which pseudo-register should be referenced by X in
the join block? To avoid this problem, we assign a unique pseudo-register for each
local variable (if the variable has no possible aliases), and a unique pseudo-register for
every newly created temporary. Since a local variable may be written more than once
in a basic block, a renaming procedure is performed to enforce single assignment. This
renaming makes reference counting realizable. The example in Figure 5.7 shows the

renaming of local variables.

Renaming simplifies detection of dependencies. Since each pseudo-register is only
written once, there should be no WAR (write-after-read) and WAW (write-after-write)
dependencies at the pseudo-register level. However, WAR detection is still needed for
the case depicted in Figure 5.8, where pseudo-register X is live-on-entry to the basic

block and will be written later in the basic block.

S5.4.3. Interlock Checking at Scheduling Time

In load/store, register-register architectures, all interlocks can be resolved at the
instruction issue stage [Kogg81, Cray82]. The code scheduler can use instruction cycle

time estimates to minimize execution delays due to interlocks resulting from varying

X=A

B=X+C
X=D+B
B=X+E

N

X= X=

\/

Y=

98

Figure 5.6 Local Variables Make Single Assignments Non-Trivial

Move PR1, PR2

Add PR3, PR1, PR4

Add PR1,PR5,PR3 ==renaming =>
Add PR3,PR1,PR6

il
v

Figure 5.7 Renaming of Local Variables

Move PR11, PR2

Add PR13,PR11, PR4
Add PR1, PRS, PR13
Add PR3, PR1, PR6

99

NS

y=x1

x is live-on-entry

A~

Figure 5.8 WAR Detection for Live-On-Entry Variables

length functional unit pipelines. At code scheduling time, each issued instruction
reserves a destination register (primary register receiving the computation result, if
any). If this instruction takes N cycles to execute, then the number N is put in the
reservation table. After each instruction is issued, all positive numbers in the
reservation table are decreased by one. We say an instruction “will have interlock” as
long as any of its primary registers are reserved. The maximum “cycles remaining”
value of the primary registers is the length of the instruction’s interlock. Since we
assume hardware interlock resolution, estimates do not have to reflect hardware

behavior exactly.

5.4.4. Leader Set and Ready Set

A leader of a DAG is a vertex with no predecessors. An instruction may not be

issued until it becomes a leader. As instructions are issued, their nodes are removed

100

from the DAG and some successor nodes become new leaders. All leaders are
maintained in a leader set. Instructions in the leader set lacking interlocks with
previously issued instructions are promoted from the leader set to a ready ser. All the

instructions in the ready set are ready to be issued.

S.4.5. Integrated Scheduling Algorithm

(1) Rename pseudo-registers to enforce single assignment.

(2) Read in the basic block, create the DAG and calculate the reference count of each

pseudo-register.
(3) Compute the cumulative cost of each node in reverse topological sort order.
(4) Issue instructions in topological sort order.

Here are details of step 4:
4.0 Calculate the leader set.
while (leader set or ready set is not empty) do

4.1 Move nodes with no interlocks from the leader set to the ready set.
4.2 if (AVLREG > threshold value) then
if (ready set is not empty) then
select one node from the ready set with maximum cumulative cost.
else
select one node from the leader set with maximum cumulative cost.
endif
else {invoke CSR}
if there are nodes in the ready set that can free registers then
select one node which frees the most registers.
if there are more than one such node then
select one with maximum cumulative cost.
endif
else
if there are nodes in the leader set that can free registers then
select one which frees the most registers.

101

if there are more than one such node then
select one that has the fewest interlocks.
endif
else
find a partially evaluated path, (for example, one of its
RAW dependency has been lifted)
select one node from the leaders of this path.
if there are no such partially evaluated paths then
select any one node from the ready set or leader set (if the
ready set is empty).
endif
endif
endif
endif

4.3 Issue the selected instruction
if the issued instruction creates one live register then
decrement AVLREG by 1.
for each pseudo-register referenced in this instruction do
decrement its reference count by 1
if the reference count drops to O then
increment AVLREG by 1.
endif
end for
Remove this instruction from the DAG
Remove all dependencies caused by this instruction
Reserve the destination register in the reservation table.

4.4 Insert new leaders into the leader set

end while

The input program used in this example is the same one as used in section 2. In

addition, we assume the following timing for the relevant functions.

Function Timing(clock periods)

Load 4
Store 1
Add 2
Multiply 3

102

It may take more than one clock period to finish a store operation. However, as far as
the issue logic is concerned, a store does not cause any subsequent instructions to be
blocked from issuing. We also assume that the initial value of AVLREG is 4. The
weighted DAG is shown in the Figure 5.9 The code sequences generated by prepass
code scheduling, postpass code scheduling, and our algorithm are shown in Figure 5.10.
Notice that, since the number of available registers is 4, prepass code scheduling incurs

spilling costs.

5.4.6. A Variation on Profitable Register Spilling

In the above algorithm, we have assumed that register spilling is more costly than
run-time interlocks. This assumption may not be true for highly pipelined machines.
(1) In highly pipelined machines, a pipeline interlock could be very long compared to

the issuance of a couple of spill instructions.
(2) Spill code can often be scheduled to run in otherwise wasted cycles.

(3) Registers that have not been changed (e.g. registers containing loop invariants),

can be spilled at a lower cost.

(4) The inserted load/store instructions can be moved to reduce the urgency of data
dependency. In the PL.8 compiler this is done by a second pass code scheduling
(additional code scheduling done after register allocation).

Since some machines make spilling relatively less expensive, (e.g. in the CRAY-1,
spilling A register to B register is not costly) we have developed a variation of the
algorithm to consider profitable register spilling. The variation operates as follows:
when available registers are running out and the next selected instruction has a long

interlock with a previously issued instruction, the scheduler checks if there is a live

103

Weighted DAG

boldface numbers associated with nodes are cumulative costs
italic numbers associated with edges are execution time estimates

Figure 5.9 Weighted DAG Identifying Critical Paths

104

Prepass Postpass Integrated
1 Load R1,a 4 LoadR3,c 1 Load R1,a
4 Load R2, ¢ 5 Load R4, d 4 LoadR2, c
5 Load R3,d 1 LoadR1,a 5 Load R3,d
7 Load R4, e 2 Load R2,b 7 Load R4, ¢
s Stor R4, stacktop+1 6 Add R3,R3,R4 6 Add R2,R2,R3
2 Load R4, b 3 Mul R2,R1,R2 2 Load R3, b
6 Add R2,R2,R3 7 Load R4, e 8 Add R4,RI1,R4
s Load R3, stacktop+] 8 Add RI,RI,R4 3 Mul R], R1,R3
8 Add R3,RI1,R3 9 Mul R,R1,R3 9 Mul R2,R2,R4
3 Mul R1,R1,R4 10 Add R1,R1,R2 10 Add R1,R1,R2
9 Mul R2,R2,R3 11 StorR1, h 11 StorR1, h
10 Add R1,R1,R2
11 Stor R1,h
(22 cycles) (20 cycles) (18 cycles)

Figure 5.10 Comparisons of Scheduled Code Sequences

pseudo-register which could be spilled at a low cost. If there is at least one such
register, the scheduler will revert to CSP scheduling to favor instructions having no
interlocks and/or are on the critical evaluation path. Later in the register allocation

Phase, the register allocator will take care of the spilling job.

Because of the uncertainties involved in predicting how inserted load instructions
will interfere with subsequent register usage, we have only attempted to guess at a good

threshold value for determining when spilling is worthwhile.

5.5. Scheduling Loads and Stores

In load/store architectures, only load and store instructions are allowed to access
memory. They need special treatments since they are accessing resources other than

the register file. We can simply assume the memory is a single resource. Under this

105

assumption, each load instruction is logically dependent on all previous store
instructions, and each store instruction is dependent on all previous loads and stores,
This simple assumption introduces minimal complexity but maximal restriction to the
code scheduling. Relaxing this assumption will certainly improve the performance of
code scheduling but the problem of aliases is difficult: how to distinguish two memory
references at compile time. Unless there is enough information to distinguish memory
references, (for example, using an anti-alias analyzer) the compiler can only make the

WOrst case assumption that every memory reference is an alias of others,

Gibbons [Gibb86] makes an assump.tion that load/stores using different base
address registers are referencing different memory locations in his code scheduler. In
our experiment, we assume there is information to distinguish memory objects. For
Some memory objects that may be aliased with others, preserved pseudo-registers are
used to compute their addresses, Load and store instructions using the preserved
pseudo-registers are assumed to be dependent and will be scheduled strictly in their
logical order.

So far we have assumed an interleaved memory system so that several memory
access operations can be overlapped. Memory access conflicts and access hazards often
degrade the performance of the memory system. A memory access conflict occurs when
4 memory request is accessing a busy module. A memory access hazard exists when
more than one memory request references the same memory location, and an incorrect
Sequence of memory operations can result in using wrong data or storing wrong
information into memory. Due to insufficient information, compilers can only enforce
load and store instructions in their logical order but not schedule them to avoid access

hazards. However, a well-designed memory controller can schedule memory access

106

operations at run-time to reduce access conflicts and resolve access hazards [Liou85].

5.6. Simulation Studies and Discussion

5.6.1. Simulations

In this section, we show some experimental results concerning the effectiveness of
our new approach. An interpreter and a simple performance simulator have been built
to evaluate how fast instructions can be issued for a hypothetical machine. The
hypothetical machine is the same as that used in examples of the previous sections. Its
architecture has a load/store, register-oriented, three-address instruction format. It has a
single general purpose register file. The number of registers and the degree of
pipelining of the machine can be varied by changing the parameters in a profile. The
pipelined implementation of our model architecture is shown in the Figure 5.11. The
hypothetical machine has hardware hazard detection and an interlock mechanism. We
assume in the machine that data dependencies are the only reason to block instructions
from issuing. There are, of courses, other reasons to stop the smooth flow of a pipeline.

However, they are beyond the scope of this chapter.

We use the first twelve Livermore loops [McMa72] for benchmark programs.
Loop unrolling techniques [Dong79] have been used to obtain large basic blocks. Since
unrolled loops may overflow an instruction buffer, decreasing performance, we unroll
loops until their program size is a little less than some predefined limit. In our
simulation, this limit is 32 instructions. Although 32 is relatively small compared to the
instruction buffer in modern supercomputers (CRAY-1 has a buffer size of 256,

CRAY-XMP has a size of 512), it is large enough to study the interdependency between

107

Y

| fuhctign unit1 |
-y P '
inst inst oo
— fetch |decode _'; fux'ic ug.utz
> register file »[1 1
——>{ memory access

Figure 5.11 Pipelined Implementation of Our Model Architecture

code scheduling and register allocation. All of the loops are translated into the IL of the

hypothetical machine with standard optimizations [Ausl82] done by hand.

Different approaches for code scheduling that have been tested in the simulation

are:

(1) Prepass: IL. --> CS --> RA

(2) Twopass: IL --> CS -->RA --> CS

code scheduling is performed both before and after register allocation. The

second pass scheduling is primarily for the inserted load/stores introduced by

register spilling.

(3) Postpass: IL --> RA --> CS

108

(4) Postpass with round-robin register allocation (PostRR for short):

The regular register allocation uses a stack to manage register reuse. Some
papers [Henn83, Youn85] suggest using round-robin allocation, which cycling
through registers, to reduce the inadvertent dependencies introduced by register
reuses. Hence we implemented PostRR as a variation of general Postpass. The
code scheduling algorithm for approaches (1) through (4) is essentially the CSP

part as discussed in section 5.4.
(5) Ours0: As described in the section 5.4.6.

This algorithm does prepass code scheduling with appropriate control of register

usages.
(6) Ours1: A variation of Ours0.

This version considers spilling a register as an alternative when the next issuing

instruction has long interlocks with previously issued instructions.

All the above approaches used the same register allocator, which uses a replacement-

based algorithm as we have discussed in chapter 3.

In Figure 5.12, we present the relative performance of six different approaches.
The performance measure is the number of clock cycles needed to issue and execute a
program. The number of available registers is varied from 4 to 30. The machine is
assumed to be heavily pipelined (HP for short), similar to the CRAY-1 [Cray82]. We
assume 11 clock periods (CP) for a load, 3 CPs for an add , 6 CPs for a multiply, and so

on. Figure 5.13 is similar to Figure 5.12 except that the machine is not so heavily

109

pipelined. In Figure 5.13, a load takes 6 CPs, an add takes 2 CPs, an multiply takes 3

CPs, and so on.

Figures 5.12 and 5.14 share machine assumptions, as do Figures 5.13 and 5.15.In
Figures 5.14 and 5.15, the measure is the number of instructions. Since prepass code
scheduling often results in register spilling, the sizes of its resulting programs are

usually larger than programs of postpass scheduling and our scheduling scheme.

110

- Qo

O e M Ko o =N - O

o~

O OO

260 -
N 254 -
u 248 -
m 242 .
236
230 -
224

Comparisons (HP)

218 X

212 |
206 -
200 -
194 4
188 -
182 -
176 -
170 4
164 -
158 -
152 -
146 -
140 -
134 -
128 -
122 -
116 -
110 -
104 4

98 |

92 .

86 -

80

A
3,
&

Ty rrrrrr rrrrrrrr T rTTTrTTTTT T

2345678 9101112131415161718192021222324252627282930
Number of Available Registers (AVLREG)

Figure 5.12 Comparisons of Execution Cycles (Highly Pipelined Model)

111

VRO RO KOO~N MmO ~oodc'Z

pl~

OO0 -

153 -

Comparisons

150- e

147 -
144 4
141 -
138 -
135 -
132 4
129 4
126 -
123 -
120 -
117 -
114 4
111 -
108 -
105 -
102 -
99
96 -
93 -
90 4
87 -
84 -
81 -
78 -
75
72 4

69

LANNEE A N RS BN N RN SN M | 1 L L L LI A LI B | i L L

2345678 9101112131415161718192021222324252627282930
Number of Available Registers (AVLREG)

Figure 5.13 Comparisons of Execution Cycles (Medium Pipelined Model)

112

O moodeZ

0O e O N e D

50 -
49
48 -
47 -
46 J
45
44
43 -
42 -

40 -
39 -

Comparisons of Spilling Code (HP)

38 - Oursl

37 -
36 -
35 4

Ours0

344 po =B = =

33

ryYrrTrrrrrr o rrrrr T T T rTrTTTTT T T T

2345678 9101112131415161718192021222324252627282930
Number of Available Registers (AVLREG)

Figure 5.14 Comparisons of Spill Code (Highly Pipelined Model)

113

0o =moolde'Z

B O e O e

50 -
49 -
48 -
47 -
46
45 4
wl
43 4
42
41 4
40 |

Comparisons of Spilling Code

39 - Pre

38 -

37 - Oursl

36 -
35 4

Po

34 - 5B = 5

33

LI L] LR L B | L L I L [| ¥ LB i LI 1 I L)

2345678 9101112131415161718192021222324252627282930
Number of Available Registers (AVLREG)

Figure 5.15 Comparisons of Spill Code (Medium Pipelined Model)

114

“QAOHOTW WOO~N =mo =oo3e Z

ouwn M

99 -
96 -
93 -
90 -
87 -
84 1
81 -
78 -
75
72 4
69 -
66 -
63 -
60 4
57 -
54 4
51 4
48 -
45 4
42 4
39

36

Comparisons on Loop3 (HP)

LANNE D DR Y RNNRY T SRR DA B | YT T T Tt TTTT T T

2345678 9101112131415161718192021222324252627282930
Number of Available Registers (AVLREG)

Figure 5.16 Comparisons Based on A Single Loop

115

5.6.2. Discussion

5.6.2.1. General Discussion

(D

2)

Using Figures 5.12 through 5.15, we make the following observations.

In Figures 5.12 and 5.13, prepass code scheduling usually has better performance
than postpass scheduling unless the number of available registers is very low.
This is because prepass scheduling has much better flexibility to schedule code,
especially when more parallelism exists. However, we should not conclude that
prepass scheduling is better than postpass scheduling. In Figures 5.14 and 5.15,
the prepass scheduled programs have significantly larger size than the programs of
postpass scheduling. Larger programs may execute more slowly, since larger loops
are more likely to overflow the instruction buffer, and inserted load/store
instructions increase the number of memory fetches and stores. Additional
load/stores will slow the computation seriously if memory bandwidth is the

performance bottleneck.

Our approach Ours0 outperforms both prepass scheduling and postpass scheduling
as shown in Figure 5.12 and 5.13 while the additional load/store instructions of
Ours0 are only slightly (less than 3%) more than postpass scheduling, as shown in
Figure 5.14 and 5.15. Therefore, we believe our approach has better performance,
in general than the others.

In theory, if there are an infinite number of registers, all the different approaches
have the same performance. As shown in in Figures 5.12 and 5.13, all the curves

level off to the same point when the number of available registers becomes large.

3)

116

However, minimizing the number of registers is critical for designing high-
performance computers; for register access to be fast, the size of the register file
should be small [Henn84]. Hence, the more important question is how to use
registers efficiently, so that we do not need a very large register file. As shown in
Figures 5.12 and 5.13, the curve of our approach levels off quickly, implying that
better scheduling can use a (relatively) small number of registers efficiently.

A register file can be used to hold temporaries and frequently used variables. An
efficient algorithm uses fewer registers for temporaries, leaving more registers for
frequently used constants and variables. The number of registers is well-defined in
an architecture. Yet the architecture can have quite different implementations. A
highly pipelined implementation requires moré registers for temporaries so that
interlocks can be reduced. When a highly pipelined implementation is used, the
approach of using better algorithms to make effective use of the register file is
more favorable than the approach of redesigning the architecture with more

registers.

Advances in silicon technologies may make it relatively easy to have a large
number of registers on-chip in the near future. However, for GaAs technology,
which is much faster than silicon technology, the amount of on-chip memory
allowed is very limited [Milu86]. In a technology hierarchy or a memory
hierarchy,. the space in the top level is always limited, and efficient algorithms are

necessary to make effective use of the scarce space.

The variation of our algorithm, Oursl, which considers register spilling as an

alternative when the issuing instruction has long interlocks with previously issued

4)

117

instructions, has slightly better performance than OursO in Figure 5.13. As in
Figure 5.12, Oursl has significantly better performance only when the number of
registers is very low and when the machine is highly pipelined. Although Ours1
does not have an impressive performance improvement over Ours0 in general, we

still believe register spilling is an important alternative when the machine is

~ heavily pipelined. Live-through variables, which are live on entry and live on exit

in a basic block but are not referenced in the block, are good candidates for
spilling when there is a need for free registers. Loop invariants may also be

spilled at a low cost.

An inserted load instruction may have a long interlock with the next instruction
which uses the operand. Therefore, it is important to reschedule the inserted load
and store instructions. Since the algorithm Oursl does not use a second pass to
reschedule code, it might be expected to suffer from a performance degradation
caused by those inserted load and stores. This is not the case because the register
allocator will do partial scheduling at the time the load/stores are inserted. This
partial scheduling is performed as follows: when a load (or a store) instruction is
inserted, the register allocator looks at the generated code sequence backwards to
find a place which is legal yet away from the current use. This simple placement

method is much cheaper than a complete rescheduling process.

Some compilers designed for pipelined processors use round-robin register
allocation, which cycles through the registers available for use. Intuitively, this
allocation policy seems to avoid the situation of having a long evaluation path due
to the intensive reuse of certaixi registers. In Figure 5.13, postpass scheduling with

round-robin allocation does outperform stack allocation most of the time. It is

118

also true in Figure 5.12 except when the number of available register is low. Since
every reuse of a register will add some WAR dependencies to the DAG,
combining two parallel evaluation paths into a sequential one, without having the
detailed information of the DAG, no allocation policy will be uniformly superior
to others in balancing the length of merged evaluation paths. One alternative to
the current approach is to provide DAG information to the register allocator. With
the DAG information, the register allocator may be able to reuse registers in a way
such that the depth of the new DAG can be minimized. In the next chapter, we

will introduce such an approach.

Some anomalies exist in Twopass and Postpass scheduling experiments. Since
they can not be observed from Figure 5.12 and 5.13 which are figures averaged over 12
loops, Figure 5.16 is used to present the curves of a single loop. The following

discussions are based on Figure 5.16.

(1) The Post curve in Figure 5.16 exhibits a deterioration in performance when the
number of registers is increased from five to six. The PostRR curve exhibits a
similar anomaly for the transition from six to seven and nine to ten registers.
These anomalies result from variations in induced dependencies, as illustrated in
Figure 5.17. The DAG on the left hand side has five available registers while the
DAG on the right hand side has only four. Round-robin register allocation was
used. Notice that after register allocation, the left DAG is more restricted than the
right DAG. Because the right tree in the left DAG can not be interleaved with the

left tree any more, instructions are forced to be executed in a sequential order.

Figure 5.16 also showed that sometimes Post (stack register allocation)

2

119

outperforms PostRR (round-robin register allocation) and vise versa. This
supports our previous assertion that no allocation policy will be superior to others

without detailed DAG information.

Two-pass scheduling is used to improve the performance of prepass scheduling.
The second scheduling pass is used to schedule the inserted load/store instructions.
In Figures 5.16, the anomaly of the Twopass curve occurs when the number of
registers is eight, nine and ten. Not only is the performance poorer than the single
pass scheduling but the curve also exhibits a deterioration in performance when
the number of registers is increased. When there are enough registers, no inserted
load/stores are required for spilling. When there are no inserted load and store

instructions, a second pass scheduling is useless. This confirms the correctness of

solid lines -- original dependencies.
dashed lines -- dependencies added by register allocation

Figure 5.17 One Explanation of the Anomaly in Postpass Scheduling

120

the PL.8 compiler in applying a second pass scheduling only when there are
inserted load/stores. The performance deterioration anomaly is due to the effect of

register allocation as we have explained previously.

5.6.2.2. Total vs Available Registers

In the simulation studies, the number of available register is used rather than the
total number of registers. Since each loop needs a different number of registers to be
allocated for the loop invariants (e.g. base addresses, constants) and the frequently used
variables (e.g. loop index variables), if the total number of registers is used, the number
of available registers for each loop will be different. In order to observe a more
consistent behaviour, all loops are assigned the same number of available registers to
start with. For example, loop two needs four registers allocated across the loop and loop
eight needs 20; if eight registers are assigned to loop one, then 24 registers should be
assigned to loop eight since they can both having four available registers to start with.
In order to study the interplay between code scheduling and register allocation, using
the number of available registers makes more sense. However, it is informative to see
how the loops work with a total number of registers, because in real machine
simulations, the machine resources (registers) will not be changed with different

application programs.

121

Comparisons (highly pipelined)
725 -
N 702 Pre
u 679 .
M 656 -
b
o 633 -
r 610
587
564 - ¢oRass
541 |
518 4

495 - “'
©

- Q

472 4
449
426 4 A
403 -
380 4
357 4
334 4 (\
311 - A
288 - \\
265 4 A
242 .
219 4
196 -
173 4
150 4
127 A
104 4 = A
81 - =

234567 8 910111213141516171819202122232425262 72829303132
Total Number of Registers

” A0 O KOO~

o~

OO O M

Figure 5.18 Comparisons Using Total Number of Registers (Highly Pipelined)

122

Comparisons

WO MO KOO O

o~

71 vy rTrTrrrrirrrtr T rrTTTT T T T T T ll

234567 8 91011121314151617181920212223242526272829303132
Total Number of Registers

Figure 5.19 Comparisons Using Total Number of Registers (Medium Pipelined)

123

In Figure 5.18 and Figure 5.19, the total number of registers is used for the x axis.
If we want to compare Figure 5.18 and 5.19 with Figure 5.12 and 5.13, a fair way is to
look at the curves in Figure 5.18 and 5.19 with the total number of registers more than
eight. Since each loop needs three to ten allocated registers (for frequently used
variables and constants; loop eight needs 20), four Available Registers (the starting
number on the x axis in Figure 5.12 and 5.13) implies 7 to 14 total registers. As in
Figure 5.12 and 5.13, prepass scheduling usually outperforms postpass scheduling and
the algorithm OursO and Oursl are better than either prepass or postpass schedulings.
Twopass scheduling has slightly better performance than OursO and Oursl. In fact,
twopass scheduling has about the same performance as OursO and Oursl except for
loop eight where twopass scheduling significantly outperforms Ours0O and Ours1. Since
loop eight needs 20 registers allocated for variables and constants, the total number of
registers is not enough for many points in Figure 5.18 and 5.19. How many of the 20
allocated pseudo-registers should be spilled in order to facilitate code scheduling in
reducing pipeline interlocks? This is really dependent on how frequently and where the
allocated pseudo-register are used. Obviously, our profitable spilling algorithm is a
little conservative for such a loop so that Twopass scheduling has better performance.
However, as we discussed before, the operand fetch delay due to limited memory
bandwidth has not been taken into account. Twopass scheduling generates many more
loads and stores which will be a serious problem when the memory bandwidth is the

performance bottleneck.

124

5.6.2.3. Problems with Multiple Functional Pipelines

The model architecture that we choose has parallel function units as shown in
Figure 5.11. Two problems should be discussed with such an architecture. The first
problem is the result bus conflict. Since any two functional units may finish at the same
time, the conflict in using the result bus should be solved. This problem can be solved
in hardware by using a “result shift register” to control the result bus [Smit85].
Software solution is also possible by inserting “NOP” when a result bus conflict is
detected at compile time. The second problem is the imprecise interrupts [Smit85].
Suppose instruction i takes more cycles to finish than instruction j does. If instruction j
is issued later than instruction i but finishes earlier, then an exception condition which
occurs after j’s termination but before i’s termination may leave the processor in an

undefined state.

A natural way to avoid the above problems is to assume function units having the
same length. This is similar to a linear pipeline implementation [Smit85]. For those
operations that can be finished early in the pipe, they still proceed to the end of the pipe
so that instructions update the register file in their issue order. The major penalty of
this implementation is the decreased instruction issue rate. Since instructions waiting
for results from simple operations can not be issued until the results propagate through
the pipe and update the register file. In theory, if there is enough parallelism, those idle
slots can be filled up with independent instructions by the compiler. Figures 5.20 and
5.21 are based on a linear pipeline implementation. Since the average loop size is about
32, which does not have sufficient parallelism, it takes many more cycles to execute

(compared to Figure 5.12 and 5.13).

125

b

- O

381 -
N 373 -
u 365
m 357
349
341
333
325 .

VRO == O O O =" - O

M~

O OO

317 -
309 A
301 4
293 -
285 -
277
269 -
261 -
253
245 -
237 -
229 4
221 -
213 -
205 -
197 4
189 -
181 -
173 -
165 -

157

Linear Pipeline (10-stages)

% &

2345678 9101112131415161718192021222324252627282930
Number of Available Registers

Figure 5.20 Linear Pipelined Model (10-stages)

126

“ OO KOO —=N =m0 nooBe'Z

e~

~OOO =

198 -
194
190 -
186 A
182 4
178 .
174 -
170 -
166 -
162 4
158 -
154
150 -
146 -
142 4
138 -
134
130 4
126 -
122 -
118 -
114 4
110 -
106 -
102 4

98 -

94 _

90

86

Linear Pipeline (5-stages)

T rTrrrrr T T T TTTTTTT T TT™

2345678 9101112131415161718192021222324252627282930
Number of Available Registers

Figure 5.21 Linear Pipelined Model (5-stages)

127

In Figure 5.12 and 5.13, Prepass scheduling has worse performance than Postpass
scheduling when the number of available registers is very small. This is because
Prepass scheduling generates lots of loads and stores for spilling and the load
instructions may cause long interlocks with instructions which subsequently use the
operand. In Figure 5.20 and 5.21, it is interesting to note that in the linear pipelined
model, Prepass has better performance than Postpass scheduling even when the number
of available registers is small. In the linear pipeline model, a load instruction takes the
same number of cycles as other instructions while in our previous model a load
instruction takes much longer than other instructions. Therefore, spilling is relatively
less expensive in the linear pipeline model. Thus, spilling is advantageous in reducing
interlocks in a machine model where memory access operations are faster than other
register-to-register operations. Usually, memory operations are much slower than
register-to-register operations. However, if there is an appropriate memory hierarchy,
memory latency can be hidden effectively. For example, the Cray-1 architecture has a B
and T register files, which can be treated as local memory. Data commuting between A
and B register files (or S and T) is faster than other operations. Therefore, spilling A (or
S) registers to B (or T) registers is favorable if long pipeline interlocks are encountered

at compile time.

The algorithm Oursl which considers profitable spilling outperforms Twopass
scheduling for the machine model with 10 pipeline stages as shown in Figure 5.20.
However, Ours1 is inferior to Twopass for the machine model with five stages as shown
in Figure 5.21. This is not because Twopass works better with less pipelined machine
models. This reveals that the algorithm Oursl is not robust over different machine

models. As we described before, when Oursl is issuing instructions from CSR phase

128

and encounters an interlock greater than a threshold, it will revert to CSP. The
threshold value should be varied with different parameters. In the current
implementation, this value is a constant; therefore, Ours1 does not spill as much in the
machine model with five stages as in the machine model with 10 stages, since a 10
stage pipeline model is more likely to have long interlocks compared with a five stage

pipeline model.

For results to be used early, bypass paths may be provided from immediate
pipeline stages to the register file output latches, see Figure 5.22. The added bypass
network can significantly improve the instruction issue rate especially when most
instructions can be finished in a small number of clock periods. However, bypass paths
are complex, expensive, and likely to slow down the clock rate. More importantly,
bypassing creates a difficult problem for code scheduling: if the code scheduler knows
there is a bypass path, then perhaps it should schedule the dependent instructions close
to each other rather than separate them away [Band87]. This is similar to the “chaining”
property of vector instructions on Cray-1 like machines [éray82, Arya85, Bern§6].
Synchronous chaining refers to the immediate transfer of data between pipelines
involved in successive vector instructions. Such chaining requires that the second
instruction be prepared to issue at the time that the first result emerges from a pipeline.
The time at which the first result emerges is called “chain slot” time. Failure to chain
requires that the first vector instruction be carried to completion; when the result vector
is completely stored in a vector register, the second instruction can issue. Analogously,
if an instruction misses the bypassing time then the instruction can not issue until the
previous instruction which computes the result proceeds to the end of the pipeline and

updates the register file. Therefore, the code scheduler can either schedule dependent

129

instructions close to each other to catch up data bypassing or schedule them far away

from each other to avoid interlocks.

bypass nextwork

——y

N N

v

inst inst
fetch decode

A 4

register file

A4

result bus

execution

Figure 5.22 Bypass Network

130

Chapter 6
DAG-Driven Register Allocation

6.1. Motivation

In the previous chapter, we suggested solving the interdependency problem using
integrated prepass scheduling. In this chapter, we study an alternative approach which
is for the postpass scheduling. This approach uses the dependency DAG to minimize
extra dependencies added by register allocator during register allocation. If the DAG-
driven register allocator introduces few extra dependencies, the postpa.ss code

scheduling will not suffer great performance degradation.

There are three advantages to performing code scheduling in a postpass scheduler.
First, the postpass scheduler can be applied both to code output from a compiler and to
hand-written assembly-language code [Henn83]. However, programmers today seldom
use assembly language except where optimal performance is essential or machine
functions are required that are not reflected in the source language. If a compiler can
produce object code that is close to the best hand code (for example, the PL.8
compiler), the necessity for assembly language programming is miniscule. Therefore,

this advantage seems less important than the other two.

Second, postpass scheduling will never introduce any additional spill code, since
register allocation has been done. Although the integrated scheduling method that we
proposed in the previous chapter is effective in controlling register spilling, it still
generates some spill code as shown in Figure 5.13 and 5.14. If minimizing memory
traffic is the major concern, then postpass scheduling should be favored. DAG-driven

register allocation is a way to improve the performance of the postpass scheduling

131

approach.

Last, some architectures have difficulty problems with prepass scheduling. For
example, in the WISQ architecture [Ples87], software branch prediction is used in order
to schedule code across basic blocks. When branch prediction turns out to be wrong at
run time, some of the instructions that are moved from the predicted target block may
have to be undone. This is realized by setting a bit mask, which indicates what
instructions should be nullified, associated with the branch instruction. If prepass
scheduling is used, the bit masks will be set after code scheduling. Later in the register
allocation, some inserted spill code may invalidate the bit masks and require a
rescheduling to make the bit masks correct. Postpass scheduling avoids such an

awkward situation.

6.2. Balancing DAG Reconstruction

We define the width of the DAG as the maximal number of mutually independent
nodes which need a destination register (a store instruction, for example, does not need
a destination register), and the height of the DAG as the length of the longest path of
the DAG. Since we use the single assignment rule in naming temporaries, the
dependency DAG will have a maximal width which exposes maximal parallelism. If
the number of real registers is larger than the width of the DAG, the shape of the DAG
can remain unchanged during register allocation. Otherwise, the register allocator will
reduce the width of the DAG to be smaller than or equal to the number of real registers
by reusing registers. While the width is reduced, the height is increased since each reuse
of registers may merge two evaluation paths into one. The greater the height, the

longer the critical path. The longer the critical path, the less efficient the code

132

scheduling. Therefore, the goal of our DAG-driven register allocator is to minimize the
height of the reconstructed DAG. Two strategies to control the growth of the height of
the reconstructed DAG include exploiting free WAR dependencies and balancing the
growth of the DAG.

6.2.1. Free WAR Dependencies

The reuse of a register creates new dependencies, primarily write-after-read
(WAR) dependencies. We have explained that the added WAR dependencies reduce
available parallelism and result in less effective code scheduling in chapter 5. We
assumed a pipeline structure in which the operand registers are read at the time an
instruction is issued (see Figure 5.11). So long as instructions issue in order (at run
time), WAR hazards at register level will never occur. Therefore, the WAR dependency
edges are essentially used to enforce the logical order of instructions. We assign WAR

dependency a cost of 1, the lowest cost of all dependencies.

Figure 6.1 shows the DAG of the following program segment. Assume there are 5
registers. As the register allocator reads the program, it allocates register R1 through R5
for the destination registers of instruction 1 to instruction 5. At instruction 6, since the
available registers have been used up, the register allocator tries to find a dead register
to replace. Two registers, register 2 and register 4, are dead before instruction 6. As in
Figure 6.1, the reuse of register 4 at instruction 6 introduces a WAR dependency which
is represented as a dashed line from instruction node 5 to 6. This dependency is
redundant since the logical order of instructions 4, 5 and 6 can be enforced by existing
dependency edges. But if register 2 is allocated rather than register 4 to instruction 6,
the added dependency (from node 3 to node 6) is not redundant. Redundant

133

1 Load PR1, a

2 Load PR2, b

3 Add PR3, PR1, PR2
4 Load PR4,c

5 Sub PRS, PR4, PR1
6 Addi PR6, PRS, #4
7 Mul PR7,PRS, PR1

Figure 6.1 Free WAR Dependencies

dependencies are free dependencies, since they will not increase the height of the DAG.

To minimize the increase in height of the DAG, the register allocator will first
select a dead register to replace such that only redundant dependencies are introduced.
In other words, the uses of the dead register are on the dependent path of the current
instruction. For example, in Figure 6.1, when the register allocator allocates register 4
for instruction 6, the last use of register 4 is instruction 5, which is on the dependent

path of instruction 6. Therefore, this allocation introduces no additional dependencies.

134

6.2.2. Balancing the Growth of the DAG

All register replacements which add new dependencies may increase the height of
the DAG. When there are no free dependencies, we allocate registers based on earliest
issue time and earliest finish time. The earliest issue time (EIT for short) of a node is the
maximal path cost from the beginning of the DAG to the node. The earliest finish time
(EFT for short) of a node is the maximal path cost from the node to the end of the
DAG. As the names suggest, the EIT of a node indicates the earliest possible issue time
of that instruction from the beginning of the execution of the DAG. The EFT of a node
indicates the earliest possible finish time from the issue of that instruction to the end of
the execution of the DAG. Figure 6.2 shows the EIT and EFT attributes of each node in
a DAG. If the register allocator assigns two independent paths to share a register, then
a new WAR dependency connects the two paths into one long path. For example, in
Figure 6.1, if the register allocator assigns register 2 to instruction 6, then instruction
node 6 is connected with instruction node 3 by a WAR dependency edge. The maximal
cost of this new path is apparently (EIT 5 + EFI + 1), where 1 is the cost of the WAR
dependency edge.

Intuitively, it seems that selecting a node which has a minimal EIT for connection
will minimize the growth of the height of the DAG. For example, in Figure 6.3, when
instruction node 10 is processed, there are three dead registers: registers 2, 3 and 4.
Replacing register 4 seems a good choice because apparently node 8 has a smaller EIT
than node 5 and node 9 have. That is, connecting node 10 to node 8 minimizes the
increase of the height. This is not always true. Let us look at Figure 6.4, which is the
same as Figure 6.3 except that there is one more path, which is even longer than the

path headed by node 10. If the allocator assigns register 4 to node 10, then node 15 is

135

forced to pick register 2 or register 3. This allocation will result in a longer height than

an allocation which assigns register 3 to node 10 and register 4 to node 15.

The key idea in minimizing the height of the DAG is to balance the growth of the
DAG. The allocator tries not to connect two nodes such that one has a large EIT and the
other has a large EFT. If the current instruction has a high EFT, then the allocator
would select a dead register such that all the nodes the current instruction will connect
to have a small EIT. But how does the allocator know if the EFT of the current
instruction is relatively large or small? This suggests that the allocator should look at
all the unallocated instructions, especially the leader nodes, to determine where the

current instruction stands.

Statically computed EIT cannot be used directly in allocating registers since each
register replacement may change the EIT of some nodes. We will talk about the

implementation in the following section.

136

0.8) 0,8) 0,6 (0,6) 0,10
2.6) @,

2.4)
8

numbers in parenthesis are (EIT, EFT)
assuming each instruction takes 2 clock periods

the double circle is a pseudo node which
indicates the end of the DAG

Figure 6.2 Computations of EIT and EFT

137

14

Figure 6.3 Example DAG

138

10? 15
11 16
12 17
13
18
19
20
Figure 6.4 Another Example DAG

6.3. Implementation Notes

6.3.1. Update Dependent Relation Incrementally

Our first strategy is to select a dead register whose last uses (a pseudo-register may
be read several times, i.e., a common sub-expression) are on instruction nodes on which
the current instruction depends (hence, the added WAR dependencies are all free
dependencies). To quickly answer questions like “does instruction N depend on

instruction M?”, we represent the dependency relation of instructions by an adjacency

139

matrix and perform a transitive closure operation on it [Sedg83]. This is not enough,
however, since the dependent relation is changing incrementally during register
allocation. For example, suppose instruction N does not depend on instruction M in the
original DAG. But when the allocator assigns a register which is used by instruction M
to instruction N, then instruction N depends on both instructon M and all the
instructions on which M depends. In addition, all instructions that depend on N now
also depend on both M and all the instructions that M depends on. The adjacency
matrix should be updated incrementally after every register replacement when the

added dependencies are not redundant.

6.3.2. Update EIT Dynamically

The EIT of each node also changes dynamically due to register allocation. In our
implementation, we associate the EIT attribute with each real register. The EIT of each
real register is updated dynamically and is used to determine which dead register is

most appropriate to assign to the current instruction.

We have defined EIT and EFT in the previous section but have not explained how
to compute them. We briefly describe the computation of EIT and EFT as follows. We
denote the EIT of a node N by EITy, the EIT of a register R; by EITp;, the EFT of a
node N by EFT), the execution time estimate of an instruction I by T}, and the cost of a
dependency edge which leads from node I to node J by T 7~ Initial leader nodes have
EIT of 0. Suppose there are three instructions, A, I;, and C, such that C depends on A
and B. Then EIT is computed by max(EIT, + Ty, EITy + Ty). The computation of
EFT is similar to that of EIT. Consider three instructions A, B, and C, such that B and C
depend on A. Then EFT, is equal to max(EFTy + Tup, EFT. + T4c). Thereis a

140

pseudo node in the DAG indicating the end of the DAG. All end nodes (the nodes that
no nodes depend on except the pseudo node) have a dependency edge lead to the
pseudo node. The EFT of the pseudo node is 0.

There are several attributes for each real register: the EIT field, the T field
(execution time estimate of the latest write operation), a variable length list of new EIT
values (called E-list), and some information for handling register replacements (e.g.
dirty or clean). All fields are initialized to 0 or appropriate values. Suppose an
instruction I reads real register j and k, and writes register i (i, j, and k are assigned by

the register allocator). The attributes are updated as follows:
) EITI = nax (EITRJ + TRj’ EITRk + TRk)

(2) Attach the value of (EIT;) to the end of the E-list of register Rj. If this is the last
read of register Rj, select the maximal value from the E-list and assign it to
EIT;, and then clear the E-list of Rj.

(3) Attach the value of (EIT;) to the end of the E-list of register Rk. If this is the last
read of register Rk, select the maximal value from the E-list and assign it to

ElTp,, and then clear the E-list of Rk.

(4) If one of the last uses of register Ri is on a path which instruction I does not depend

on, then EITy; = max (EITy, EIT; + 1). Otherwise EITy; = EIT,

O) Ty =T,

141

6.3.3. Replacing Live Registers

If there are no dead registers available, a live register is selected. Spill code may
be inserted depending on whether the live register is clean or dirty. For a read miss, a
load instruction is inserted to fetch the operand. Figure 6.5 illustrates these cases. If
register Ri is spilled, the maximal value from its E-list is assigned to EITy;. Then
update EITg; by EITg; + T, . If there is a read miss and the register assigned for the

load instruction is register Ri, EITp; is updated by EITp; + Tjpg.

6.3.4. The Algorithm

The following is an outline of the allocation algorithm
(1) Rename pseudo-registers to enforce single assignment
(2) Use CSR to reduce the number of simultaneously live registers

(3) Read in the basic block, build the DAG and set up a hash table of register

reference histories

(4) Compute the EFT of each node, set up the adjacency matrix representing the

dependency relation

(5) Register allocation:

while there are instructions to be allocated do

foreach pseudo-register in the instruction, in the order of
first operand, second operand, destination do

142

node 4 involves a read miss node 4 involves a write miss and
register R1 is dead after node 3 live register R1 is spilled

———.
-
.
Smae”
-
-
LT

node 4 involves a read miss and
live register R1 is spilled

Figure 6.5 Complications due to Spilling

if (pseudo-register Miss) then
if (Write Miss) then

if (there are dead registers on the dependent path) then
select one and replace;
goto2;
endif
endif
if (there are dead registers) then

143

sort them in ascending order on the EIT field,
count how many remaining leaders have a higher EFT
than the current instruction into a variable P,
if (P+1 is greater than the number of dead registers) then
select the dead register with highest EIT to replace;
else
select the P+1st dead register to replace;
endif
else
normal replacements;
endif
endif
endfor

1: update dependent relation incrementally;
2: update EIT of real registers;

endwhile

6.3.5. Example

The following example serves to illustrate how EIT’s are computed and how
registers are selected for replacement. The sample program is the same as in Figure 5.1.
The IL program is first scheduled using CSR to reduce the number of simultaneously
live registers. The code sequence after the scheduling is in Figure 5.4. For the

convenience of references, the code sequence is duplicated here.

144

1 Load PR4, ¢

2 Load PRS, d

3 Add PR6, PR4, PR5
4 Load PR1,a

5 Load PR7, e

6 Add PRS, PR1, PR7
7 Mul PR9, PR8, PR6
8 Load PR2,b

9 Mul PR3, PR1, PR2
10 Add PR10, PR3, PR9
11 Stor PR10, h

The assumption of the timings are the same as before. That is, a load takes 4 clock
periods, an add takes 2, a multiplication takes 3, and a store takes 1. Following step 3
and 4 in the algorithm, we construct the DAG and compute the EFT shown in Figure
6.6.

Assume there are four real registers. Contents of register attributes will be displayed
step by step.

Step 1: a write miss for PR4. After assigning register 1 for PR4, the contents of

attributes are:

register R1 R2 R3 R4

| tag PR4 invalid | invalid invalid
EIT 0 0 0 0
T 4 0 0 0
E-list empty | empty empty | empty

Step 2: a write miss for PRS; register 2 is assigned to PRS5.

boldface numbers are EFT of nodes
numbers in circle are node sequence number
italic numbers are cost of dependency edges

Figure 6.6 WDAG with Computed EFT

register R1 R2 R3 R4
tag PR4 PRS5 invalid invalid
EIT 0 0 0 0

T 4 4 0 0
E-list empty | empty | empty | empty

145

Step 3: read hits for PR4 and PR5; a write miss for PR6. Both register 1, which holds

PR4, and register 2, which holds PR3, are dead and on the dependent path of instruction

3. Register 1 is selected for replacement. EIT 3 = max(EIT R1+ Tpy, EITp, + Tgo) = 4.

The EIT 5 is attached to the E-list of register 1 and 2. Since instruction 3 is the last read

of both PR4 and PRS, the E-list of register 1 and register 2 will be cleared after the

processing of instruction 3.

register R1 R2 R3 R4

| tag PR6 PRS invalid invalid
EIT 4 4 0 0
T 2 4 0 0
E-list empty | empty | empty | empty

4. Therefore, register 3, which has a lowest EIT, is assigned to PR1.

register R1 R2 R3 R4
tag PR6 PRS PR1 invalid
EIT 4 4 0 0
T 2 4 4 0
E-list empty | empty | empty | empty
Step 5: a write miss for PR7; register 4 is replaced.

| register R1 R2 R3 R4
tag PR6 PR5 PR1 PR7
EIT 4 4 0 0
T 2 4 4 4
E-list empty | empty | empty | empty

146

Step 4: a write miss for PR1. No remaining leaders have a higher EFT than instruction

Step 6: read hits for PR1 and PR7; a write miss for PRS. Since register 4, which holds
PR7, is dead and on the dependent path of instruction 6, register 4 is selected for

replacement.

register R1 R2 R3 R4
ta PR6 PRS5 PR1 PRS
EIT 4 4 4 4

T 2 4 4 2
E-list empty | empty 4) empty

Step 7: read hits for PR6 and PR8; a write miss for PR9; register 1 is replaced.

register R1 R2 R3 R4
tag PRI PRS PR1 PRS8
EIT 6 4 4 6

T 3 4 4 2
E-list empty | empty (4) empty

Step 8: a write miss for PR2. Both register 2 and 4 are dead. They are not on the
dependent path of instruction 8. Since there are no remaining leaders having a higher

EFT than that of instruction 8, register 2, which has a smaller EIT, is selected to
replace.

register R1 R2 R3 R4
tag PR9 PR2 PR1 PR8
EIT 6 4 4 6

T 3 4 4 2
E-list empty | empty 4 empty

Step 9: read hits for PR1 and PR2; a write miss for PRY; register 3 is replaced.

register

R1 R2 R3 R4
tag PR9 PR2 PR3 PRR
EIT 6 4 4 6
T 3 4 3 2
E-list empty | empty | empty | empty

Step 10: read hits for PR3 and PRY; a write miss for PR10; register 1 is replaced.

register

R1

R2 R3 R4
| tag PR10 PR2 PR3 PRS
EIT 9 4 9 6
T 2 4 3 2
E-list empty | empty | empty | empty

Step 11: a read hit for PR10.

The program after the above register allocation is shown as follows:

Load
Load
Add
Load
Load
Add
Mul
Load
Mul
Add
Stor

After code scheduling, the program is:

Load
Load
Load
Load
Add
Load
Add
Mul
Mul
Add
Stor

Rl,c
R2,d
R1,R1,R2
R3,a
R4, e
R4,R3,R4
R1,R4,R1
R2,b
R3,R3,R2
R1,R3,R1
Rl,h

Rl,c
R2,d
R3,a
R4, e

R1,R1,R2

R2,b

R4,R3, R4

R1,R4,R1

R3,R3,R2

R1,R3,R1
RL,h

148

This code sequence takes only 16 cycles. Compared with code sequences in Figure

5.10, this code sequence has the best performance.

6.4. The Performance of DAG-driven Register Allocation

Our test results, based on the same test environment described in chapter 5, show

DAG-driven register allocation significantly improves the performance of postpass code

schedulings (cf. Figures 6.7 and 6.8). We also compared DAG-driven register

allocation to the integrated prepass scheduling as described in chapter 5. For the highly

149

pipelined model (Figure 6.9), the integrated prepass scheduling approach that considers
profitable spilling slightly outperforms the DAG-driven register allocation approach.
However, in the medium pipelined model (Figure 6.10), DAG-driven allocation
approach outperforms all the others. We explain our results as follows: for the highly
pipelined model, where an interlock could be relatively expensive, spilling may be
profitable. Since the integrated prepass scheduling can easily accommodate profitable
spilling, it has slightly better performance than the DAG-driven allocation approach.
The DAG-driven allocation approach has the advantage that it does not increase the
code size at all. Notice that in our prepass scheduling scheme, the switch between CSP
and CSR depends on a threshold value. Without an appropriate value, sometimes it is
too late to invoke CSR~ additional spill code will be generated. The optimal threshold
value varies depending on the complexity of the programs. Therefore, even though the
prepass scheduling scheme was designed to control spilling, it can not completely avoid
any additional spill code. Since DAG-driven allocation introduces no additional spill
code, it outperforms the prepass scheduling method for lightly pipelined machine
models.

From the experimental results, both the integrated prepass scheduling and the
DAG-driven register allocation approaches are effective for solving the problem of the
interdependency between code scheduling and register allocation. Conceptually, the
DAG-driven register allocation approach is simpler. However, the integrated prepass
scheduling is more flexible. For example, if there is a long evaluation path coming late
in the code sequence, the prepass scheduler can just schedule this path early so that this
path will be allocated a free register during register allocation. Although we can also

allow the DAG-driven register allocation to move code when it is necessary, this may

150

make the allocator too complicated to be implemented effectively.

151

b
e
I

OO == O RO o~ - Q

o~

O OO -

248 -
N 242 -
u 236 -
m 230
224 -
218 -
212 -
206 -
200
194 _
188 -
182 -
176 -
170 -
164 -
158 -
152 4
146 -
140 -
134 |
128
122 -
116 -
110 -
104 -
98 -
92 .
86 -

80

Comparisons (highly pipelined model)

)
N/
m

[

L LA) LU L L DL SO O N JR N REN S M L UL LR

2345678 9101112131415161718192021222324252627282930

Number of Available Registers

Figure 6.7 DAG-Driven Allocation vs Postpass Scheduling I

152

w0 o3e'Z

RO =M O KOO~ O

o~

OO O M

153 -
150 -
147 -
144]
141 1
138 -
135 -
132 1
129 4
126 -
123 -
120 -
117 -
114 -
111 5
108 -
105 -
102 -
99 -
96 -
93 -
90 4
87 -
84 -
81 4
78 -
75 -
72

69

Comparisons (medium pipelined model)

2345678 9101112131415161718192021222324252627282930
Number of Available Registers

Figure 6.8 DAG-Driven Allocation vs Postpass Scheduling II

153

b
e
r

VOO e~ MY RO o N - O

o~

OO0

248 -
N 242
u 236 4
m 530 .
224 .
218 -
212 -
206 -
200
194 |
188
182 4
176 4
170 -
164 4
158
152
146
140
134
128
122
116 4
110 4
104 -

98

92

86 -

80

Comparisons (highly pipelined model)

3

T T T T e TTTTTTTTT T T T LN D A R A |

2345678 9101112131415161718192021222324252627282930
Number of Available Registers

Figure 6.9 DAG-Driven Allocation vs Integrated Prepass Scheduling I

154

O =H O KooOo~=N =m0 HooHReZ

M~

~OOO ™

153 -
150 -
147 -
144 J
141 -
138 -
135 -
132 -
129 -
126 -
123 -
120 -
117 -
114 -
111 -
108 -
105 -
102 -
99 -
96 -
93 -
90]
87 -
84 -
81 4
78
75
72 4

69

Comparisons (medium pipelined model)

234567 8 9101112131415161718192021222324252627282930
Number of Available Registers

Figure 6.10 DAG-Driven Allocation vs Integrated Prepass Scheduling II

155

Chapter 7

Conclusions

7.1. Summary of Results

Single-chip computers are becoming increasingly limited by the access constraints
to off-chip memory. The off-chip memory latency is long and the off-chip memory
bandwidth is limited. To achieve high performance, the structure of on-chip memory
must be appropriate, and it must be allocated effectively. Since the off-chip memory
bandwidth of single-chip computers is severely limited, on-chip memories that rely on
spatial locality to achieve high hit rate are not appropriate. Experimental data presented
in chapter 2 has shown that memory accesses of global variables exhibit little temporal
locality, except for frequently used scalar variables. Therefore, memory accesses for
global variables are unlikely to be supported well by on-chip data caches. A register
file, which can be managed by compilers, might be a better candidate as an on-chip
memory structure; the compiler can identify dead values to save redundant stores, and

can use look-ahead techniques to perform better replacement.

Load/store architectures provide a clean way to use the register file: (1) their
nature simplifies the model of register allocation, since minimizing loads and stores
minimizes memory traffic; (2) they expose the opportunity to separate load instructions
from instructions which use the operands so that memory latency can be hidden. With
effective register allocation and code scheduling, load/store architectures can be a nice

fit with single-chip computers.

156

Chapter 3 studied the optimal allocation of registers in basic blocks. The
algorithm to find the optimal allocation has been given. The basic approach is to search
for a shortest path in a weighted DAG. Since the weighted DAG grows exponentially in
the worst case with the number of variables in the input program and the number of
available registers, pruning rules have been provided to effectively restrict the worst
case to a very small domain. With the provided pruning rules, the algorithm is used to
evaluate the effectiveness of existing heuristic algorithms for large basic blocks. An
heuristic algorithm which has near-optimal performance and runs in linear time is
proposed as a by-product of the optimal algorithm. An extension of the heuristic
algorithm to global allocation has also been discussed.

A model to evaluate a perfect register allocation has been proposed in chapter 2.
Using the replacement algorithm that we introduced in chapter 3, the performance of
the perfect register allocation has been shown to be much more effective in reducing

off-chip memory traffic than cache memory of the same size.

Small basic blocks often limit the effectiveness of register allocation and code
scheduling. With decreasing memory cost, it may be beneficial to trade code space for
more parallelism. Chapter 4 discussed compiler techniques which generate large basic
blocks. Those techniques are useful in increasing the effectiveness of parallel/pipelined

processing.

Although code scheduling effectively hides memory and function unit latency, it
interferes with register allocation, especially in large basic blocks. Chapter 5 and 6
dealt with this problem and presented two methods as solutions: (1) an integrated code
scheduling technique; and (2) a DAG-driven register allocator. The integrated code

scheduling method combines two scheduling techniques— one to reduce pipeline

157

delays and the other to minimize register usage— into a single phase. By keeping track
of the number of available registers, the scheduler can choose the appropriate
scheduling technique to schedule a better code sequence. The DAG-driven register
allocator uses a dependency DAG to assist in assigning registers; it introduces much
less extra dependency than does an ordinary register allocator. Both approaches were
shown to generate more efficient code sequences than conventional techniques in the

simulations.
In conclusion, this thesis has
(1) discussed the issues in selecting appropriate on-chip memory structures,

(2) proposed an algorithm for optimal local register allocation for load/store
architectures and evaluated how well heuristic algorithms performed for large

basic blocks,

(3) shown that register allocation algorithms can potentially reduce memory traffic

more effectively than a data cache of the same size,

(4) proposed a new scheduling technique and a new allocation technique to deal with

the interdependency between register allocation and code scheduling.

7.2. Suggestions for Future Research

We have discussed the issues of the use and allocation of the register file.
Structures other than a register file, like vector registers and queue registers [Youn85]
are suitable for array accesses. The allocation of vector registers or queues is not yet
well understood, and the scheduling of vector instructions (or queue operations) as well

as its relationship to the allocation should be interesting for further study.

158

Chapter 6 has demonstrated how to reuse registers so that later code scheduling
will not be hamstrung by added dependencies. Since the graph coloring register
allocation is more widely used than the replacement based register allocation, we are
thinking about applying the concept of our work to the graph coloring allocation model.
In graph coloring allocation, assigning a color to two nodes is the same as replacing a
dead register in our model. Therefore, when more than one color can be assigned to a
node, the allocator should be able to select the color which minimizes the added

dependency, if the DAG is provided.

While we have shown the advantages of static management of the register file,
static management is only suitable for languages that expose most information at
compile time. For languages or applications where most of the information can only be
determined at run time, caches are certainly a better choice. Tags, which describe the
type information of data structures, will be useful in assisting cache management: the

cache can use the information described in the tag to perform a more precise prefetch.

Throughout this research, we have assumed that large basic blocks were worth the
trouble of increased code space. Although it is generally true that large basic blocks
provide better opportunities to exploit parallelism, it is not clear if the increased code
space is warranted. While the data accesses may be reduced by more effective use of
registers and access latency may be hidden by better code scheduling, more instructions
may have to be fetched due to the increased code size. Many researchers believe that
instruction caches are more effective than data caches, and therefore are worthwhile in
trading instruction bandwidth with data bandwidth. But we have to be careful not to
push our approach too far. We should be able to answer a question like: given certain

on-chip area, how should we divide this limited memory area for instruction and data.

159

This certainly requires serious experiments on how effective are techniques for
generating large basic blocks, how much more parallelism can be exploited from the
increased blocks, how badly the code space will be increased, and how large the

instruction cache should be expanded to stay effective. ,

160

REFERENCES

[Aho77] Aho, A. V., S. C. Johnson, and J. D. Ullman, “Code Generation for
expressions with common subexpressions,” J. ACM 24:1, 146-160, 1977

[Aho86] Aho, A. V., J. D. Ullman, and R. Sethi, “Compilers Principles, Techniques,
and Tools,” Addison-Wesley, Reading, MA, 1986.

[Alle72] Allen, F.E., and J. Cocke, “A Catalogue of Optimizing Transformations,” in
Rustin[1972].

[Alle80] Allen, F.E,, J. L. Carter, J. Fabri, J. Ferrante, W.H. Harrison, P.G. Loewner,
and L.H. Trevillyan, “The Experimental Compiling System,” IBM J. Res.
Develop., 24, 695-715, 1980.

[Alle81] Allen, F.E., “The History of Language Processor Technology in IBM,” IBM J.
Res. Develop., Vol. 25, Sept. 1981.

[Alpe83] Alpert, D., D. Carberry, M. Yamamura, Y. Chow, and P. Mak, “32-bit
Processor Chip Integrates Major System Functions,” Electronics, pp.113-119,
14, July 1983.

[Arya85] Arya, Siamak, “An Optimal Instruction-Scheduling Model for a Class of
Vector Processors,” IEEE Transaction on Computers, Nov., 1985

[Ausl82] Auslander, M. and M. Hopkins, “An Overview of the PL.8 compiler,”

Proceedings of the SIGPLAN ’'82 Symposium on Compiler Construction, June,
1982.

[Axel83] Axelrod, T. S., P. F. Dubois, and P.G. Eltgroth, “A Simulator for MIMD
Performance Prediction -- Application to the S-1 MkITa Multiprocessor,” 1983
International Conference on Parallel Processing, Bellaire, MI, pp. 350-357,
August, 1983.

[Back57] Backus, J.W., ez al., “The FORTRAN Automatic Coding System,” 1957, in S.
Rosen, editor, Programming Systems and Languages, McGraw-Hill, 1967, PP-
29-47.

[Ball79] Ball, J. E., “Predicting the Effects of Optimization on a Procedure Body,”
SIGPLAN’79 Symposium on Compiler Construction, SIGPLAN Notice 1979

161

[Band87] Bandyopadhyay, Sumit, V. Begwani, and R. Murray, “Compiling for the
CRISP Microprocessor” Proceedings of the IEEE Spring COMPCON 1987

[Bela66] Belady, L.A., “A Study of Replacement Algorithms for A Virtual-Storage
Computer,” “IBM Systems Journal”, Vol. 5, No. 2, 1966.

[Bern86] Bemnstein, David, Haran Boral, and Ron Pinter, “Optimal Chaining in

Expression Trees,” SIGPLAN’'86 Symposium on Compiler Construction June
1986.

[Birn86] Bimbaum, Joel S., and W. Worley, Jr. “Beyond RISC: High-Precision
Architecture,” IEEE Spring Compcon Conference, 1986.

[Chai81] Chaitin, G.J., M. A. Auslander, A. K. Chandra, J. Cocke, M.E. Hopkins and P.
W. Markstein, “Register Allocation Via Coloring,” Computer Language, 6,
1981.

[Chai82] Chaitin, G.J., “Register Allocation and Spilling Via Graph Coloring,”
SIGPLAN 82 Symposium on Compiler Construction June, 1982.

[Chow83] Chow, F. C., “A Portable Machine-Independent Global Optimizer -- Design
and Measurements,” Ph.D. Dissertation, Stanford University, Dec., 1983.

[Chow84] Chow, F., and J. L. Hennessy, “Register Allocation by Priority-Based

Coloring,” Proceedings of the SIGPLAN '84 Symposium on Compiler
Construction. June, 1984

[Clar84] Clark, D., and J. Emer, “A Characterization of Processor Performance in the
VAX 11/780”, Proc. 11th Annual Symposium on Computer Architecture,
ACM/IEEE, June 1984.

[Cock70] Cocke J, and J. T. Schwartz, “Programming Languages and Their
Compilers,” Courant Institute of Mathematical Sciences, NYU, 1970.

[CoutA86] Coutant, Deborah S., Carol L. Hammond, and Jon W. Kelly, “Compilers for
the New Generation of Hewlett-Packard Computers,” IEEE Spring Compcon
Conference, 1986.

[CoutB86] Coutant, Deborah S. “Retargetable High-Level Alias Analysis,” Conf.
Record of the 13th ACM Symp. on Principles of Programming Languages," Jan.
1986

[Coop84] Cooper, K. D., “Analyzing Aliasing of Reference Formal Parameters,” Conf.
Record of the 11th ACM Symp. on Principle of Programming Languages, Jan.
1984.

162

[Cray82] Cray Research Inc., Cray-1 Computer System S Series Mainframe Reference
Manual (HR-0029), 1982.

[Cray84] Cray Research Inc., The Cray X-MP Series of Computer Systems, Technical
Brochure, August 1984,

[Davi84] Davidson, Jack and C. Fraser, “Register Allocation and Exhaustive Peephole
Optimization,” Software-Practice and Experience, Sept., 1984

[Davi86] Davidson, J. W., “A Retargetable Instruction Reorganizer,” Proceedings of
the SIGPLAN ’ 86 Symposium on Compiler Construction. June, 1986

[Day70] Day, W. H. E., “Compiler Assignment of Data to Registers,” IBM System
Journal, 9(4), pp. 281-317, 1970.

[Dong79] Dongarra, J. J. and A. R. Jinds, “Unrolling Loops in Fortran,” Software
Practice and Experience 9, 3, pp. 219-226, March 1979

[Ditz82] Ditzel, D., and H. McLellan, “Register allocation for free: The C machine
stack cache,” Symposium on Architecture Support for Programming Languages
and Operating Systems, 1982.

[Ditz86] Ditzel, D., personal communication.

[Ditz87] Ditzel, D., H. McLellan, and A. Berenbaum “The Hardware Architecture of
the CRISP Microprocessor,” The I14th Annual Symposium on Computer
Architecture, June, 1987.

[ENi85] Ellis, J. R., “Bulldog: A Compiler for VLIW Architectures,” Ph.D. Thesis,
YaleU/DCS/RR-364, Yale University, Feb., 1985

[Fisc87] Fischer, C. N. and LeBlanc, “Crafting a Compiler,” Benjamin Cummings,
1987.

[Fish80] Fisher, J., “An Effective Packing Method for Use with 2"-way Jump

Instruction” Hardware" 13" Annual Microprogramming Workshop, Colorado
Springs, Nov. 1980, SIGMICRO Newsletter, 64-75

[Fish81] Fisher, J.,, “Trace Scheduling: A Technique for Global Microcode
Compaction,” IEEE Transactions on Computers, Vol. C-30, No. 7, July 1981.

[Frei74] Freiburghouse, R.A., “Register allocation via usage counts,” CACM, 17:11
638-642 Nov., 1974,

163

[Gibb86] Gibbons P. B., and S. S. Muchnick, “Efficient Instruction Scheduling for a
Pipelined Architecture,” Proceedings of the SIGPLAN ’86 Symposium on
Compiler Construction. June 1986

[Good83] Goodman, J. R., “Using Cache Memory to Reduce Processor/Memory
Traffic,” The Tenth Annual Symposium on Computer Architecture, pp. 124-131,
June, 1983.

[Good85] Goodman, J. R., J. Hsieh, K. Liou, A. Pleszkun, P. Schechter, and H. Young,
“PIPE: A VLSI Decoupled Architecture” The 12th Annual International
Symposium on Computer Architecture June 1985.

[Haik84] Haikala, L. J. and Kutvonen, P. H., “Split Cache Organization,” Report C-
1984-40, Dept. of Computer Science, University of Helsinki, Finland, Aug.,
1984.

[Hamm77] D. W. Hammerstrom and E. S. Davidson, "Information Content of CPU
Memory Refencing Behavior," Fourth Annual Symposium on Computer
Architecture, pp 184-192, March 1977.

[Harr75] Harrison, William, “A Class of Register Allocation Algorithms,” RC 5342,
IBM Research Report, 1975.

[Hase85] Hasegawa, M. and Y. Shigei, “High-Speed Top-Of-Stack Scheme for VLSI
Processors: a Management Algorithm and Its Analysis,” Proceeding of the 12th
Annual International Symposium on Computer Architecture, June, 1985.

[Henn81] Hennessy, J. L., N. Jouppi, F. Baskett, and J. Gill, “MIPS: A VLSI Processor
Architecture,” Technical Report No. 223, Computer Systems Laboratory,
Stanford University, Nov., 1981.

[Henn83] Hennessy, J. L., and Thomas Gross, “Postpass Code Optimization of Pipeline
Constraints,” ACM Transactions on Programming Languages and Systems 5, 3,
pp. 422-448, July 1983

[Henn84] Hennessy, J. L., “VLSI Processor Architecture,” IEEE Transactions on
Computers, Vol. c-33 No. 12, Dec., 1984.

[Horw66] Horwitz, L.P., R. M. Karp, R. E. Miller, and S. Winograd, “Index Register
Allocation,” J. ACM, pp. 43-61, 13, 1, Jan., 1966.

[HsuP86] Hsu, P. Y., “Highly Concurrent Scalar Processing,” Ph. D. Thesis, University
of Illinois at Urbana-Champaign, 1986

164

[Hsu85] Hsu, Wei-Chung, “Register Allocation for VLSI Processors,” UW Computer
Science Technical Report #619, Nov., 1985.

[Hwan84] Hwang, K. and F. A. Briggs, “Computer Architecture and Parallel
Processing,” McGraw-Hill Book Company, 1984

[Karp85] Karplus, K., and A. Nicolau “Efficient hardware for multi-way jumps and
pre-fetches” 18" Annual Microprogramming Workshop, Dec. 1985.

[Kenn72] Kennedy, Ken, “Index Register Allocation in Straight Line Code and Simple
Loops,” in Rustin[1972].

[Kim78] Kim, J., “Spill Placement Optimization in Register Allocation for Compilers,”
RC 7251, IBM Research Report, 1978.

[Kim79] Kim, J., and C. J. Tan, “Register Assignment Algorithms For Optimizing
Micro-Code Compilers-- Part I,” RC 7639, IBM Research Report, 1979.

[Kogg81] Kogge, P. M., “The Architecture of Pipelined Computers,” McGraw-Hill,
New York, 1981

[Kran86] Kranz, David, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams,
“ORBIT: An Optimizing Compiler for Scheme,” SIGPLAN 86’ Symposium on
Compiler Construction june, 1986

[Ledg81] Ledgard, H., Ada: An Introduction, Springer Verlag, 1981.

[Lee84] Lee, Johnny K.F., and A. J. Smith, “Branch Prediction Strategies and Branch
Target Buffer Design,” Computer, Vol. 17, Jan., 1984.

[Leve81] Leverett, B. W., “Register Allocation in Optimizing Compilers,” Ph.D.
Thesis, CMU CS-81-103, Carnegie-Mellon University, Feb., 1981.

[Liou85] Liou, Koujuch, “Design of Pipelined Memory Systems for Decoupled
Architectures” Ph. D. thesis, Computer Science Department, University of
Wisconsin-Madison, Oct. 1985.

[Logo81] Logothetis, G., and P. Mishra, “Compiling Short-circuit Boolean Expressions
in One Pass,” Software--Practice and Experience, 11 1197-1241, 1981.

[Lucc67] Luccio, F., “A Comment on Index Register Allocation,” CACM, Vol. 10,
Number 9, 1967, pp. 572-574.

[Macl84] MacLaren, M. D. “Inline Routines in VAXELN Pascal” ACM SIGPLAN’84

Symposium on Compiler Construction, SIGPLAN Notice Vol. 19, No. 6, June,
1984.

165

[Madh82] Madhavji, N. H. and I. R. Wilson, “CRAY Pascal,” Proceedings of the
SIGPLAN ’ 82 Symposium on Compiler Construction, 1982

[Mccr84] McCreight, E., “The DRAGON Computer System: An Early Overview,”
NATO Advanced Study Institute on Microarchitecture of VLSI Computers,
Urbino, Italy, July, 1984.

[McMa72] McMahon, F. H, “FORTRAN CPU Performance Analysis”, Lawrence
Livermore Laboratories, 1972

[Milu86] Milutinovic, Veliko, “GaAs Microprocessor Technology” Computer, Vol. 19,
No. 10, Oct. 1986

[Mosh85] Moshier, M. and V. Rajlich, “Slumload: A Register Allocation Algorithm
and its Statistical Analysis,” CRL-TR-2-85, University of Michican.

[Moto82] Motorola, The MC68020 Enhanced M68000 Microprocessor, Product
Review, Motorola Semiconductors, Austin, Texas, March, 1982.

[Myer81] Myers, Glenford J., Advances in Computer Architecture, second edition, Intel
Corporation, Santa Clara, California, 1981.

[Neff86] Neff, Laura “CLIPPER Microprocessor Architecture Overview,” IEEE Spring
Compcon Conference, 1986.

[Nico85] Nicolau, Alexandru, “Parallelism, Memory Anti-Aliasing and Correctness for
Trace-Scheduling” Compilers" Ph.D. Dissertation, Yale University, March,
1985.

[Patt80] Patterson, D. A., and C. H. Sequin, “Design Considerations for Single-Chip
Computers of the Future,” IEEE Transactions on Computers, Vol. C-29, No. 2,
Feb., 1980.

[Patt82] Patterson, D. A., and C. H. Sequin, “A VLSI RISC,” IEEE Computer, 15, 9,
pp.8-21, Sep., 1982.

[Patt85] Patterson, D. A, “Reduced Instruction Set Computers,” CACM, Jan., 1985.

[Pfis85] Pfister, G. F., et al., The IBM Research Parallel Processor Prototype (RP3):

Introduction and Architecture," “Proceedings of the 1985 International
Conference on Parallel Processing” Auguest 1985.

[Ples83] A. R. Pleszkun and E. S. Davidson, “A Structured Memory Access
Architecture,” 1983 International Conference on Parallel Processing, Bellaire,
M1, pp. 461-471, Aug., 1983.

166

[Pohm83] Pohm, A. V., and O. P. Agrawal, High-Speed Memory Systems, Reston, 1983

[Pope77] Popek, J., Horning, J., Lampson, B. et al, “Notes on the design of Euclid,”
Sigplan Notices, Vol. 12, No 3, March, 1977.

[Powe84] Powell, Michael L., “A portable optimizing compiler for Modula-2,”
Proceedings of the SIGPLAN ’'84 Symposium on Compiler Construction, 1984.

[Radi82] Radin, G., “The 801 Minicomputer,” Symp. on Architecture Support for
Programming Languages and Operating Systems, pp. 39-47, March, 1982.

[Raga83] Ragan-Kelly, R., “Performance of the Pyramid Computer,” Proc.
COMPCON, Feb., 1983.

[Rama77] Ramamoorthy, C. V., and H. Li, “Pipeline Architecture,” Computing Surveys
vol. 9, no. 1, March, pp. 61-102.

[Rose67] Rosen, S., Programming System and Languages, McGraw-Hill, N.Y., 1967.

[Russ78] Russell, R. M., “The CRAY-1 Computer System,” Comm. ACM, pp. 63-72,
Jan., 1978.

[Rust72] Rustin, R., Design and Optimization of Compilers, Prentice-Hall, Englewood
Cliffs, N.J., 1972.

[Sche77] Scheifler, R. W., “An Analysis of Inline Substitution for a Structured
Programming Language,” Comm. ACM, 20, 9, pp. 647-654, Sep., 1977.

[Seth70] Sethi, R. and J. D. Ullman, “The Generation of Optimal Code for Arithmetic
Expressions,” Joural of the ACM 17, 6, 1970, pp. 715-728

[Sedg83] Sedgewick, R. Algorithms Addison-Wesley 1983.

[Site78] Sites, R. L., “Instruction Ordering for the Cray-1 Computer,” Tech. Report,
78-CS-023, UC San Diego, July 1978.

[SmitA82] Smith, A. J.,, “Cache Memories,” ACM Computing Surveys, 14, 3, pp. 473-
530, Sep., 1982.

[SmitA85] Smith, A. J., “Cache Evaluation and the Impact of Workload Choice,” Proc.
12th Annual International Symposium on Computer Architecture, June, 1985.

[SmitJ81] Smith, J. E., “A Study of Branch Prediction Strategies,” Proc. Eighth Annual
International Symposium on Computer Architecture, pp. 135-142, May, 1981.

[SmitJ83] Smith, J. E., A. R. Pleszkun, R. H. Katz, and J. R. Goodman, “PIPE: A High
Performance VLSI Architecture,” Proc. IEEE International Workshop on
Computer System Organization, pp 131-138, March 1983.

167

[SmitJ85] Smith, J. E., and J. R. Goodman, “Instruction Cache Replacement Policies
and Organizations,” IEEE Transactions on Computers, Vol. C-34, No.3, March,
1985.

[Thor70] Thomnton, J. E., “Design of a Computer, The Control Data 6600,” Scott,
Foresman and Co., Glenview, I1l., 1970.

[Tjad70] Tjaden, G. S. and M. J. Flynn, “Detection and Parallel Execution of
Independent Instructions,” IEEE Transactions on Computers 19(10):889-895,
October 1970

[Toma67] Tomasulo, R. M., “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journalof Research and Development 1, pp. 25-33, Jan.,
1967.

[Wall86] David W. Wall, “Global Register Allocation at Link Time,” Proceedings of
the SIGPLAN ' 86 Symposium on Compiler Construction, June 1986

[Youn85] Young, H., “Evaluation of a Decoupled Computer Architecture and the
Design of A Vector” Extension," Computer Sciences Technical Report #603,
July, 1985

