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REMARKS ON THE SOLUTION OF TOEPLITZ SYSTEMS OF EQUATIONS

Seymour V. Parter

Introduction

In this survey we recall some of the theory of Toeplitz
matrices which is relevant for the gquestions which arise in the
inversion of Toeplitz systems of equations. In the course of our
presentation we discuss some examples and raise some particular
gquestions. Much of our discussion is based on the classical
results of G. Szego [7]; M. G. Krein [47; Calderon, Spitzer and
Widom [3], G. Baxter [1] and I. Gohberg.

A recent paper [2] by J. Bunch provides an excellent

background for reasons for the interest in questions discussed

here.
A Toeplitz matrix is an (n + 1) x (n + 1) matrix of the
form
to to1 °°e t—n_
t to to1
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Most of the methods for the "fast" inversion of T, rely on the

Levinson algorithm (see [2], [5]) which uses the decomposition
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with tgy set equal to "one". Then T is obtained with the
aid of T;ll. With this fact in mind Bunch considers the

matrices
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Observe that T; 1is singular while the condition number of T,
is 5.828... . However, when one studies Toeplitz systems one is
interested in large n. Let us consider the extended Bunch
example: T, 1is a tridiagonal matrix with "1" on the main

diagonal and "1" on both the first subdiagonal and first

superdiagonal. All other entries are "O". The eigenvalues of
this T, are

(n) = TTk . -
(1.4) Ak 1 + 2 cos I3 K 1,2, ..(n + 1) .
Thus, T is singular if and only if n = l(mod 3)

~

[let k = % (n + 2)]. However, if n f 1(mod 3) then T;l
exists but (a) condition number of T  ~ 1/n and (b) there are
very many eigenvalues x%n) = 0(1/n). So, either T, is
singular or badly conditioned and deflation techniques and/or
singular value decomposition techniques will not be easily

applicable.

Ouestion 1: Can we construct an example of Toeplitz matrices

T which for large n possess the "Bunch" property: T is

n n-1

singular and T, is nonsingular and well conditioned?



2. General Theory:

Let f(9) ~ ¢ tmeime and x(8) ~ = xjeije. Then (formally)

(2.1) £(e)x(e) ~ | { ] tk_jxj}eike
(x)  (3)
Let x = {xj}"Jf’:_oo and define the operator T[f] by
(2.2) (TLE1x)y = Z tr_ 5%y
J
If, for every formal doubly infinite sequence x = {xj} we
define
() = 1 x5etl0,
then
<\ ~
(2.3) TL[£1x (8) = £(0)x(8)

Hence, the Toeplitz operator T[f] defined on the (formal)
doubly infinite sequences is isomorphic to multiplication and
T[£1Tlg] = T[£g].

Now let us consider two special cases.
Case 1: Let 22 = {x = {xk}ﬁz_w; X [xklz < w}. Then T[f] is a
bounded map with T[f] = 22 » g2 if and only if
f(e) ¢ L (=m,m). Moreover, (T[£]1)~! exists as a bounded map

2 if and only if [1/f(e)] e L_(-n,n). And, we have

on %
TL£171 = Tr1/£].

Case 2: Let ¥ = {x = {xk};:z_°° : suplxkl < »}. Then T[f] is
a bounded map with T[f] : 2 » 2® if and only if f(e) has an
absolutely convergent Fourier Series. 1In this case we write

f ¢ A. Moreover, T[£]"!l exists (Wiener-Levy theorem) if and

only if f£(6) # 0. Then 1/f ¢A anda TL£1™! = T[1/£]1.

We now turn to the semi-infinite case.

Let &5 = {x = {x}p—qg ¢ suplx,l < =}. Consider the map



.548

(2.4) (T+[f]X)k = tk_ij, k » 0

3=0
Once more T,[f]l 1is a bounded map of Ly into oY if and only
if f ¢ A. The discussion of T+[f]“l is the result of a
beautiful theory essentially discovered simultaneously by M. G.
XKrein [4] and Calderon, Spitzer and Widom [3].
Define
(2.5) I(f) == %?~[arg f£(2m) - arg £(0)]

Then, T+[f]'l exists as a bounded map from &F to gy if and

only if
(2.6a) £(8) # 0 ,
(2.6D) I(f) =0

If (2.6a) holds but I(f) =k # 0 we have

Case 1: k < 0. T,[f] is invertible on the right and the
nullspace of T,[f] has dimension |Xk/|.

Case 2: k > 0. T,[£f] 1is invertible on the left and the factor
space ¢3/Range T, has dimension k.

Example: f(0) = elk6, 1[f] = k. If k > O then

T+[f]§(6) ~ 3 xjei(k+j)e and the vectors corresponding to

j=0

l,eie, 5o ei(k'l)e are not in Range T,[f]. On the other hand,
if k < 0 these same functions correspond to vectors in the
nullspace of T,[£f].

The case of zf 1= {{xy }p=0" § IXkl2 < »} is not yet
described so completely. As beforijo T,[f] 1is a bounded map
2% to 23 if and only if f(e8) e L (-w,n). But, what about
T+[f]'l? While we do not have a complete theory we have some

knowledge in special cases.



First: If f£(8) ¢ A and (2.6a), (2.6b) hold then T, [£]71

2 to g2

exists as a bounded map from 2% R

Second: If f(8) € L (~w,w) and (a) f(s) 1is real valued with

0 <m = inflf(e)| < supl£f(e)| = M. Then T+[f]_l exists as a
bounded map from 2% to zf.
Third: If £(e) = [£(8)IR(8) with

l£(e)] = 1, R(6) e A

and R(8) satisfies (2.6a) and (2.6b). Then T+[f]_l exists as
a bounded map from z% to Qz.

Finally, let us return to T,p[£f] : Cp47 » Cpyy. Observe
that we have three possibilities concerning the relationship of
T,[f] to T[f] or T4[£].

(a) We are given the specific finite-dimensional problem
(2.7) T, LEIX =Y
(b) We are given a problem T[f]lX =Y and we came upon (2.7) as

a Galerkin approximation.

(¢c) We are given a problem T,[f]X =Y and we came upon (2.7)
as a Galerkin approximation.

Consider the two latter cases (b) and (c) wherein (2.7) is
an attempt to approximate an infinite dimensional problem. We
must Ffirst answer the question: Suppose the infinite dimensional

<o

operator - T[f] on 92 or ¢ or T.LE]l on z% or &7 has
a bounded inverse, can we assert that for n large enough Tn[f]
will have a (uniformly) bounded inverse? Unfortunately, the
answer is: not necessarily!

Consider the doubly infinite cases, & or & . Let

f{o) = eie. Then



T,[£] =

0 s e e e 0] 1 0

Then (i) T,[f] 1is singular for all n, (ii) all of its
eigenvalues are zero, (iii) exactly one singular value is zero
and the remaining n singular values are all "one". This
example involves a complex-valued generating function. Suppose
we require that £(6) be real valued. Then T,[f] Iis
hermitian. However, if f(8) is both real valued and "odd" then
(2.8) T,[£] = ifreal, skew-symmetric], i = /=1 .

Thus, whenever n is even (and n + 1 is odd) T/[f]l 1is
singular. In particular, consider the square wave

(2.9) £(8) = m sgn 9, -1 < 9 < 7

2

In this case ’I‘[f]"l = T[% sgn 6] is a bounded map on g to

22, Suppose we acknowledge this obvious difficulty and restrict
ourselves to the case of odd n (n + 1 even). Is Tn[f] non-
singular? At this time, even for this special case, we do not
know the answer. There is one tool which can help in the general

case.

Theorem (Szego 1920): Let

m = inf{f(e)} < sup{£f(o)} < M
Let A(n)' 3 =1,2,...{n + 1) be the eigenvalues of T,LE£].
Then
(2.10) m o< Atn) <m,

and, for fixed J 2> 1 we have



(2.11) Agn) > m, Aéﬁ%_j + M as n » o

In fact, let F(A) ¢ C[m,M]. Then

(2.12) Li F( (“)) =1 " F(f(e))da
. 1m{n — Z )\j }—ﬂ{n 8 3]

This last result implies that if f(ep) = 0 and £ is
continuous at 8 we have: For every e > 0 there isa 6§ >0
and the number of eigenvalues Xgn) which satisfy lxgn)l < ¢
is 0(én). Thus, in such case, even if Tn[f] is not singular
it is (very) badly conditioned and deflation techniques or
singular value techniques can be expected to have great
difficulties.

However, the special function (2.9) is not continuous at a
zero. Hence this theorem sheds no light on this case. Therefore
we have computed the singular values of TH[f] for odd values
of n < 299. We find

903 < of®) < x, nodd, n < 299

The inclusion theorems assert that in the case n even and

n < 298 we have exactly one singular value oéﬁi = 0 and
Ogn) > .903, i #n + 1
Question 2: For this special case consider
limit{aé?% :n+» », nodd} = g. Is o = 0? If so, does there
. . (no)
exist a finite np such that 0n0+l = 07?

OQuestion 3: For all cases where f(6) and 1/£f(8) belong to

L (-n,7) find a good method to approximate the solution of
TL£IX = Y.
When dealing with T,[f], £ ¢ A we have a beautiful result

of Raxter [1].



Theorem: If f ¢ A and satisfies (2.6a), (2.6b) then there is
an ng and a B > 0 such that, if n > ng then Tn[f]_l
exists and
i L3170 < B, T [£17Nh, < B
n o0 n 2
As a consequence of the Baxter theorem we also have the following
additional insights. Let I(f) = k # O.
Case 1: k < 0. Consider the matrix obtained from T,[f] by
deleting the first k columns and the last %k rows. This is
Tn_k[e'ikef]. Applying the Baxter theorem we see that for
large n this submatrix is uniformly invertible and T, [f] has
at most k bad singular values. Thus, deflation or singular
value techniques are useful to handle this case.
Case 2: k > 0. Consider the matrix obtained from T,[f] by
deleting the first k rows and the last k columns. This is
Tn_k[e_ikef] and the conclusions above apply in this case also.
he special function f£(9) = elk® j1justrates the remarks above.
In the second case discussed earlier: £(9) real,
£(8) € Ly(=n,7), 0 < m = inf{£f(8)} is uniformly invertible in
2§+1 because of (2.10). Unfortunately there is no comparable
result in the third case, £(8) = |£f(8)IR(8) with
0 <m= inflf(e)l and R(8) ¢ A and T4 [R] invertible. On the

other hand we do know that there is an ng and a k such

that: for n » ng the number of singular values of ToLf] less

than % is < k {(see [6]). 1Indeed, this result holds when
R(9) is merely continuous on -« < § < o and periodic with
period 27. No index condition is required.



Question 4: Suppose f(8) = |£f(8)|R(8) with R(8) ¢ A and

(2.6a), (2.6b) hold. Does the conclusion of the Baxter theorem
hold? If not, can one find an effective way to approximate the
solution of T, [fIX = Y?

Question 5: Suppose f(8) = |£f(8)|IR(8) with R(9) continuous

on =-» < § < «» and periodic with period 2w. Suppose
0 <m= inflf(e)] and (2.6b) holds. What can we say about
T+[f]“l? What can we say about Tn[f]-l?

We close this report with the complex version of Szega's
theorem.
Theorem: Let Ff(0) ¢ L (-w,n). Let M = suplf(e)l|. Let

G{n) > oén > o(n > 0, and let F(A) ¢ Cc[O,M]. Then

1 n+1 (n)
n-+o j=1 -
Proof: This was first proven for f£f(8) = |[£(98)|R(6) with
R(6) continuous on -« < § < « and periodic with period 27
[6]. However, Florin Avram showed me a simple proof in the more

general case.
This work was supported by the U.S. Air Force under AFOSR
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