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ABSTRACT

Let b : ZZ% — IR be a mesh-function with compact support. It is shown that the
difference equation

Y bk - j)aly) = f(k), ke Z?,

has a bounded solution a if |f(j)| = O((1+|j]) ") for some exponent n which depends on
b. This result is the discrete analogue of the existence of tempered fundamental solutions
for partial differential operators with constant coefficients. It is applied to prove optimal
convergence rates for interpolation with box-splines.
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1. Introduction

Let b be a function with compact support defined on the integer lattice 7Z°. We
consider the difference equation

(a) (bsa)k) = 3 blk — j)als) = F(k), ke Z°.

jez?

Typical examples arise from discretization of partial differential equations and in interpo-
lation problems.

Standard theory for (A) requires that the characteristic polynomial

(1) B(z) := Zexp(z'jx)b(j)
J
not vanish. In this case, the difference equation is easily solved. Multiplying both sides of
(A) by exp(tkz) and summing over k yields
BA=F

where, as in (1), we denote Fourier series by capital letters. It follows that a(y) are the
Fourier coefficients of F'/B. In particular,

is a fundamental solution of (A), i.e.

NYS - 1, ifk=0;
(3) Zb(k —7)b(5) = 6(k) := {O, otherwise.
J
Therefore,
(4) a=>bxf.

This proves the following well known

Theorem. If B(z) # 0 for all z, then b, defined by (2), satisfies
16(5)| = O(exp(~cls]))
for some positive ¢, and, for bounded f, the unique bounded solution of (A) is given by

(4).

If B(zo) = 0, then a(y) = exp(:jzo) is a nontrivial solution of the homogeneous sys-
tem. Therefore, the standard theory which is based on (2) — (4) does not apply. However,
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also in this case, the system (A) still has a bounded solution provided the data decay
sufficiently fast.

Theorem 1. There exists a fundamental solution b of (A) with

(5) b(5)| = O((1 +14)™)

for some m > 0 which depends on b. Therefore, in view of (4), there exists a bounded
solution a of (A) if |f(j)| = O((1 + |j])~™) for some n > m + d.

As will become clear from the proof given in Section 2, this theorem is the discrete
analogue of the well known result about the existence of tempered fundamental solutions
for differential equations with constant coefficients. Some applications of Theorem 1 are
discussed in Section 3.

2. Fundamental solutions

The difference equation (A) is the discrete analogue of the differential equation
(D) p(D)p =¥

where p is a polynomial in the partial derivatives D,, v = 1,...,d. Lojasiewicz [L59]
showed that (D) has a tempered fundamental solution, i.e. there exists a tempered distri-
bution p such that

p(D)(B+o) =9

for any rapidly decreasing test-function 1. He considered the more general case when p is
an analytic function, and this settled the “division problem” posed by Schwartz. In the
polynomial case, a simplified proof of Lojasiewicz’ result was given by Hoérmander [H58].
The main step in either proof is to show that the map

© = Py
is bounded below in the topology of the space of rapidly decreasing test-functions. The

corresponding estimate applies in particular to periodic functions and, for this case, can
be formulated as follows, using the standard norm

|Glm = sgp(l + 7)™ g ()]

for the periodic function G(z) =}, exp(ijz)g(J)-
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Proposition. For any r there exists an integer v’ (necessarily > r) and a constant ¢ so
that

(6) 114‘7' S C|B.A‘r’ for all A € “I?Zriodic'

This proposition is easily deduced from the corresponding result in [H58]. Inequality
(4.3) in conjunction with the remarks after Theorem 1 in that paper implies that, for any
analytic function p,

(7) 1§0‘7",S < dp@‘r',s’
where
l©]r,s == max sup 1£E£Da<p($)|
jai<r QZGIRd
i<«

and 7', s’ depend on r,s and p. To derive (6) from (7) let x be a smooth cut-off function
which is equal to 1 on [—, W}d and note that

|A|, < ¢'|xAlro < ec'|xBA|y o < c"'|BA|.

We now apply the Proposition to prove Theorem 1. By (6), the functional

(8) Ag: BA — a(0)
is well defined on V := {BA: A € C3; 4.} and
(9) ‘AoG} S C)G.ms G e V.

By the Hahn-Banach Theorem, we can therefore think of Ay as the restriction to V of a
bounded linear functional A on the space of all functions G with |G|, < co. Therefore, A
can be represented in the form

AG =) M=7)als)
-
with |A(j)] = O((1 + |71)™). In particular, for any compactly supported a,

a(0) = Y _A(=4) Y _b(s - k)a(k),
7 k

hence, with a = 6(- — £),

6(—0) = D M=5)b(j — ) = > _b(—L - H)A(),

J
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or, 6 = b+ A. This completes the proof of Theorem 1.

In general, little can be said about the dependence of m on b. However, in the
univariate case (d = 1), a more precise statement is possible.

Theorem 2. Ifd = 1, then Theorem 1 holds with m + 1 equal to the highest multiplicity
of zeros of B. In particular, if B has only simple zeros, there exists a bounded fundamental
solution, and consequently (A) has a bounded solution for data f which satisfy 3 |f(5)| <
00.

Proof. Assume that zo,...,z, are the zeros of B, repeated according to their mul-
tiplicity. Denote by H(zo,...,Z,; f) the Hermite interpolant of f at the points z, by a
trigonometric polynomial of the form > _,exp(iv-)c(v). Then, a suitable functional A
can be explicitly defined by

_ 1 " G(z) — H(zo,-..,Zn;G)(z)
27 B(z)

—@

(10) AG : dz.

Indeed, since H(zg,...,T,;BA) = 0 for any smooth function 4, A(BA) = a(0). To
estimate the growth of

A(J) = Aexp(—ij)
as |j| — oo, we substitute G(z) = exp(—ijz) in (10), set z := exp(iz) and write G —
H explicitly as the remainder term in polynomial interpolation. Writing the resulting
expression as a contour integral yields

N 1 20y » 20, 2]() (2 — 20) * - (2 — 2p) dz

2 B(z)

where z, := exp(iz,), B(z) := B(z) and |...] denotes the divided difference. This contour
integral is computed by summing the residues inside (outside) the unit circle for j < 0
( > 0). We consider only the case j < 0, the other being similar. Assume that zB(z) =
(2 — z.)"T1R(z) with R(z.) # 0 and |z.| < 1. Then,

1 dr ([Zm---ﬂnaZ]()‘]('z‘zO)“'(z—zn)> :
|z=2z.

residue|, = T R(2)

It is well known that the divided difference
Mf

of f at the multipoint set M can be written explicitly as a sum

MIf =) > s eDf(2)

zeM s<H#=z
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with #2z the multiplicity of z in M and ¢, s a rational function in the elements of M which
is independent of f. In particular,

[zo,...,zn,z]()"j = ¢f 27+ ZZ -7 —1) (~—j—u+1)c,,,“(z)z;j_“

v o pu=0

where m,, + 1 is the multiplicity of z, and ¢, ¢, , are functions which do not depend on ;.
It follows that

residue,, = O((1 + |7)™* ™)

as |j] — oo.

To illustrate the main result of this section, we explicitly construct a fundamental
solution for the discrete Laplace operator in two dimensions, i.e. we consider the difference
equation

—da(v,p) +alv - Lp) +alv+1,u) +a(v,u—1) +a(v,u+1) =f(v,u),

(11) (v,u) € 2.

In this case , ) . .
B(z) = —4+ (™ + ¢ + (€ + )
= -4(sin2 g + sin® 12)“), z = (u,v).

Since B has only an isolated zero at the origin, the functional A can be defined by

AG = — 1 / G(u v) G(O O) dudv.
™)

4(2m)? sin? % 5+ sin® 3

That this integral exists and is finite follows from the estimate

lA(’| < -———/ 2 +52(0 O)‘ dudv
1 / min{2|Gloo: [u]18uC oo + [o1[18sGlec} ,
- 16 [—m,m]2 u2+02
< / min{2)1Gl oo o([184Glloo + 194 |1oo)}——-cw

Substituting G(z) = €Y%, j = (v, u), we find that

__ VU LTUY
Aly) = ! /[ i ! dudv

) A
—m,r]2 Sin° 5+ sin’

wje
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Figure 1. Construction of a Green’s function for the discrete Laplacian

with the estimate

27 \/577
/O / min{2, p(lv| + i)} £ipfcw

2m /(IV|+|MI)\/5W
0

|A(7)]

IA

IA

d
min{2, p} —pﬁdﬂ

The exact value of A(7) is a little more difficult to obtain. We rewrite the integral as

-1 ¢ -1
(12) v, p) = ____/ COS /U COS 4V do du.
[—myw]

2(2m)? > 2 —cosu —cosv

Clearly, A(0) = 0 and A(v, p) is symmetric about the lines v = 0, 4 = 0, and v = u. Since
a = ) is the solution of the difference equation (11) for f = 6,

(13) — 4\, p) + Ay — 1,u) + A+ L,p) + Ay, — 1) + Ay, p+ 1) = 6(k, v).

Therefore, all values of A(v,u) can be computed from the knowledge of A(27,0), n =
0,1,..., and (13) (cf. Figure 1). Indeed, (13) for (v,u) = (0,0) and symmetry yields
A(1,0) = 1/4. Now suppose that A(v,u) is known for |v| + |u| < 27 — 1 (shaded region).
Given the value of A(27,0), we can compute A(2n —1,1) using (13) and symmetry (points
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labeled 1). Then, (13) is used to compute successively A(2n — s,s), s = 2,...,7n (points
labeled 2,3). Finally, we compute A(n + 1+ s,7 — s), s = 0,...,n, using symmetry for
s =0 and s = n (points labeled a,b, ¢, d).

Therefore, we need to compute only the integral

cos2nu — 1
A(2n,0) = dvd
(21,0) 27r2/ / 92— cosu—cosv Y

cos2nu — 1
\/2+cosu -1
Vo Ton(z) -1 dz
27 _1\/2+x — 11— z2
' Top(z) - 1 dz
2r /o, z+1 4—(z+1)2

where Ty, is the Chebyshev polynomial. We may determine the coefficients in the expan-
sion

Ton(z -1—Ztlz+1

as
_1)lgt-1 -1
= (Tzﬁ [T, =12,
tos=0

from the fact that T, satisfies the differential equation
(1 - z3)y" — 2y’ + (2n)*y = 0.

With the substitution z + 1 = 2sinf, we have that

i

A(27,0) = Mzuzl 1/ (sin )~ db

l+ (S
S



3. Applications to Cardinal Interpolation

In this Section we apply Theorem 1 to interpolation with translates of box-splines
which generalizes recent work by Chui, Diamond and Raphael [CDR87|.

Box-spline interpolation is a special case of cardinal interpolation. In cardinal in-
terpolation, one is given a compactly supported function b on R (and not just on Ed),
and is to construct a sequence a for which the function

bra = Y b(-—ja(s)

jezd

agrees on 7% with a given function f. Hence the problem is equivalent to solving the
difference equation

bjra=1,

with
f| = f]zd.

If b is a fundamental solution of this difference equation, and L is defined by

L:i=bxb= Z b(- — j)l;(j)a

]‘ezd

then
Li=Lsfi= S L( - )I0)

]ezd

is a cardinal interpolant to f, provided it makes sense. Specifically, if
(14) b(7) = O((1 + 151)™),

then Lf is defined and bounded for any f with

(15) f(z) =0((1 +|z])”™) for somen >m+d.

We will call such I a fundamental solution of order m of the cardinal interpolation
problem.

We have particular interest in the case when b is the box-spline Mgz. The box-spline
Mz :R?— IR can be defined by its Fourier transform

Mz(z) == H sinc(éz/2)

E€E
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where E is a multiset of vectors in Z* and sinc(t) := sin(¢)/t. As is apparent from this
definition, the box-spline is a natural generalization of the univariate cardinal B-spline M,
which corresponds to
E={1,...,1}.
r times

The basic properties of Mz are discussed in [BH83]. For the purpose of this paper we
merely note that Mg is a positive piecewise polynomial of degree #E — d with compact
support which is continuous if every subset of #5 — 1 vectors from 2 spans IR?.

In the following we assume that Mz is continuous. Theorem 1 provides the following

Corollary 1. Define the fundamental spline

with b a fundamental solution of (A) for b = Mgz and satisfying (5). Then, for any
continuous function f with |f(j)| = O((1+]s|)~™) (in particular any function with compact
support) there exists a bounded cardinal box-spline interpolant

Lef= ) Ls(-—5)f()

JEZ!

Schoenberg, in his classical results on univariate cardinal interpolation (reported, e.g.,
in [S73]), assumes that the characteristic polynomial Bg := Zj exp(ij-)Mz(7) does not
vanish. Under this assumption, multivariate cardinal interpolation with box-splines was
studied by the authors [BHR85]. Only recently Chui, Diamond and Raphael [CDR87]
consider the more general case when Bz has isolated zeros or vanishes on a hypersurface.
The above Corollary generalizes their results, establishing existence under no assumptions
on Bz whatsoever.

The simplest example which illustrates cardinal interpolation when the characteristic
polynomial has zeros is quadratic spline interpolation at knots. In this case, the cardinal
interpolant is a linear combination of the shifted B-splines My(- —1/2 — 7), 7 € 7, and
the difference equation for the coeflicients is

a(k)/2 +a(k —1)/2 = f(k).
This difference equation has the bounded fundamental solution

oo {(=1)7,  forj>0;
b(s) {(_1)J+1, otherwise,

showing that a bounded interpolant exists for functions f with Zj If(7)] < co. This
remains true in general:



Corollary 2. For cardinal interpolation with shifted univariate B-splines, i.e., with b =
M, (- — 1), there exists a bounded fundamental spline.

The proof is a direct consequence of Theorem 2 and the fact that the Euler-Frobenius
polynomial

B, -(z) := Zexp(ijx)Mr(j - 7)

has at most one zero mod 27 and this zero is simple (see, e.g., [M76]). In fact, the Euler-
Frobenius polynomial has a zero only when 7 = 0 (1/2) and r is odd (even).

Finally, we discuss the approximation order of cardinal interpolation. Denote by

Lnfi=) L(-/h=3)f(jh)

the cardinal interpolant with respect to the scaled lattice R7ZZ%, h < 1. We show that Ly
has the optimal approximation order as h — 0.

Theorem 3. Assume that b is normalized, i.e., that }:J b(y) = 1, and that any polyno-
mial p of total degree < r can be written as a linear combination of integer translates of b.
Then, for any function f € C™+4+7 (where m is defined in (14)) with compact support {1,

I/ = Liflloo,0 = O(RT).

This result is a generalization of Theorem 1 in [CDR87] in that here there are no
assumptions made on the characteristic polynomial B. The asserted convergence rate is
optimal in the following sense. According to wellknown results by Strang&Fix [SF69] and
others, for a normalized b, the distance of all sufficiently smooth functions f from the space

S}, := span <b(-/h - J')>]€zd

is O(h") if and only if
(16) 7T'<7- C &91,

i.e., all polynomials of degree < r can be written as linear combinations of integer translates
of b. In the proof of the theorem, we will make use of the fact detailed in [B87] that (16)
is equivalent to having convolution with b degree-preserving on n.,. By this we mean
that, with 4 denoting the linear map of semi-discrete convolution with b, i.e.,

87 =3 b(- - )15),

jezd
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(and b normalized), we have
(17) BpE P+ Tegegp forallpe m,.

The assumption that f has compact support is convenient because of the polynomial
growth of the fundamental function L. For an arbitrary smooth function f, Theorem 3
can be applied to fy where x is a smooth cut-off function and this yields convergence of
cardinal interpolants on arbitrary bounded domains.

We begin the proof with the following lemma.

Lemma. For any (univariate) polynomial p with p(0) = 0,

For the proof, it is sufficient to show that L# = @, i.e., that L « by = b. But this
follows at once from the fact that

Lxb = (bxb)xb =bx(bxb) =b.
| | )]

This gives the identity £L = 1— (1 —8)*+ L(1— 5)°,s € IN, and so provides the useful
error formula

(18) f-Lf=(0=p)1—-L(1-8)°f

We make use of this error formula in the following way. Since b is normalized, i.e.,
Y ez 7)) =1,
(L=B)f(k) = > _ bk = 5)(f(k) = 1(7))
is a first-order difference, hence (1 — £)°f(k) is an s-order difference of f, hence boundable
in terms of D*f. Thus the second term in (18) is of the order (Rs + sR;)™*¢|| D f||, with

R the radius of a ball containing the support of f. As to the first term, we use (17) to
conclude that (1 — 8) 7., = {0}. This implies that, for s > r,

(1 - B)°f(z)] <comnsty,s inf  sup |(f — p)(y)]
PEM<y ly—zi<sh,
< const (sRp)"||D" 1|}
This shows that
(19) |f — Lf]| < const||D"f|| + const (Rs + const)m+dHDsfH,

with the various constants independent of f.
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Since

Lnf= Y L(/h—3)f(jh) = c_nLonf

]ezd

with o f := f(-h), it follows that the error in this scaled interpolation scheme is O(h") +
O(h~™7%h%), hence O(h") if f is smooth enough, i.e., if f has m + d + r continuous
derivatives.

As an application of Theorem 3, consider interpolation with the Zwart element, i.e. the

o

box-spline corresponding to & = {(1,0),(1,1),(0,1),(—1,1)}. In this case, the difference
equation for the coefficients A of the fundamental spline is

1, 1/, v . .
“b(v,u) + §<b(u L) + b+ 1) + b, — 1) + b, o+ 1)) = 6(u,v)

which is very similar to the discrete Laplace equation. Therefore, by slightly modifying
the computations at the end of section 2, one can show that

b(v,u) = 8(~1)"THH A, 1)

with A defined in (12). In particular the coefficients b grow logarithmically and thus
Theorem 3 holds with f € C*T% for any o > 0.
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