SIGNED DATA DEPENDENCIES
IN LOGIC PROGRAMS

by
Kenneth Kunen

Computer Sciences Technical Report #719
October 1987

SIGNED DATA DEPENDENCIES IN LOGIC PROGRAMS

Kenneth Kunen*

Computer Sciences Department
University of Wisconsin
Madison, WI 53706, U.S.A.

kunen@cs.wisc.edu

September 28, 1987

ABSTRACT

Logic programming with negation has been given a declarative semantics by
Clark’s Completed Database, CDB, and one can consider the consequences of the
CDB in either 2-valued or 3-valued logic. Logic programming also has a proof
theory given by SLDNF derivations. Assuming the data dependency condition
of strictness, we prove that the 2-valued and 3-valued semantics are equivalent.
Assuming allowedness (a condition on occurrences of variables), we prove that
SLDNF is complete for the 3-valued semantics. Putting these two results together,
we have completeness of SLDNF deductions for strict and allowed databases and
queries under the standard 2-valued semantics. This improves a theorem of Cave-
don and Lloyd, who obtained the same result under the additional assumption of
stratifiability.

§1. INTRODUCTION. There have been many recent advances in elucidating the
semantics of negation in logic programming, but some serious problems still remain.

To a first approximation, we may think of the semantics as given by Clark’s Completed
Database [3]. Given a database, DB, we form CDB, which consists of some equality axioms
plus a completed definition of each predicate symbol; roughly, this completed definition is
obtained by replacing the Prolog “if” by an “iff”.

However, the CDB does not always capture the intended Prolog semantics. For ex-
ample, if DB consists of the single clause, p :— —p, then the CDB is p +» —p, which is
inconsistent, so all statements follow logically from it, whereas we would expect anything
resembling Prolog to return “no” to 7— ¢, “yes” to 7— —g, and not to return at all from
?— p. This sort of problem is solved by using 3-valued logic as described in [8] (which is
based on earlier such approaches in [6, 11, 13]). This logic has three truth values, t (true),
f (false), and u (undefined). We use the truth value u, as did Kleene, to capture the notion
of a computation which fails to halt. Our CDB is verbatim the same as Clark’s original
definition, but we use its consequences in 3-valued logic (with Kleene’s truth tables), rather
than in 2-valued logic.

The 3-valued semantics is weaker than the 2-valued, in the sense that every query
supported in the 3-valued semantics is also supported in the 2-valued semantics, but not

* This research was supported by NSF Grant DMS-8501521.

1

conversely. In 3-valued logic, the CDB is always consistent. In the example just considered,
the 3-valued semantics forces ¢ to be f, =g to be t, and p to be u, corresponding exactly
to what Prolog does. In fact, in the propositional case, it is easy to prove a completeness
theorem (see [8]), showing that any query clause is supported by the 3-valued semantics
iff there is a Prolog-style derivation of it. The abstract notion of a Prolog-style derivation
is essentially given by Clark’s Query Evaluation Procedure [3], or, more formally, by the
notion of an SLDNF derivation [12].

Although this 3-valued CDB approach seems like a good approximation to the in-
tended semantics of negation in Prolog, it still leaves us with two major problems.

Problem 1: Incompleteness. In the non-propositional case, SLDNF is incomplete.
Furthermore, as pointed out in [9], it is unlikely that any modification of SLDNF will lead
to completeness unless we depart completely from the spirit of Prolog.

Problem 2: Many people will find 3-valued logic not as natural or easy to understand
as 2-valued logic. This is not a mathematical problem, but it does indicate a failure to
give programmers a clear and understandable explanation of the declarative meaning of
their Prolog programs.

The purpose of this paper is to discuss sufficient conditions under which these prob-
lems go away. Regarding Problem 1, we shall show (Theorem 4.3) that the condition of
allowedness (see [15, 1] or §2 — roughly, this says that every variable occurring in a clause
must occur at least once within a positive literal in the body of that clause) is sufficient
to guarantee completeness of SLDNF for the 3-valued semantics. Regarding Problem 2,
we shall show (Theorerm 3.6) that the condition of strictness (see [1] or §2 — roughly, this
says that no predicate depends on another predicate both positively and negatively) is
sufficient to guarantee that the 3-valued and 2-valued semantics coincide.

If we put these results together, we have that, under the two conditions, allowedness
and strictness, SLDNF is complete for the 2-valued semantics. This is an improvement
of the earlier result of Cavedon and Lloyd [2], who proved completeness if one had these
two conditions plus a third, stratifiability. [2] dealt directly with 2-valued models, and
used the methods of Apt, Blair, and Walker [1] to construct 2-valued models of stratified
databases. Stratifiability (defined in [1] or §2) says roughly that there are no cycles of data
dependency through a negation. This notion seems to be great interest in its own right
(see [10]), but turns out to be irrelevant here, although we shall see that the methods of
[1] are useful even when dealing with non-stratified databases.

§2 will give precise definitions of the various syntactical notions used. §3 describes
the basic methods in constructing models and converting 3-valued models to 2-valued
models. §4 presents the completeness result mentioned above. §5 makes some remarks on
possibilities for extending our results.

§2. SYNTAX. We assume that our language for predicate logic is fixed in advanced,
and contains, for each n > 0, a countably infinite set of n-place function symbols and
a countably infinite set of n-place predicate symbols. 0-place function symbols are called
constant symbols, and 0-place predicate symbols are called proposition letters. In addition,

our language has a symbol, ‘=", for equality; this symbol never occurs in a database, but
is used in forming the CDB.

A literal is an atomic formula or a negated atomic formula. A program clause is of
the form

o Al,...,An ,

where « is atomic, A1,..., A, are literals, and n > 0; if n = 0, we write « :— true, or just
«. The database, DB, will always be a finite set of program clauses.
A query clause is of the form

Ay vy A

where n > 0; if n = 0, we just write true. Of courses, actual queries will have n > 1,
but it is useful to consider the case n = 0 when we consider intermediate goals in SLDNF
derivations (see §4).

We now consider the data dependency relation. Let PRED be the set of all predicate
symbols. We use J to denote immediate dependency; thus, if p,¢q € PRED, then p J ¢
iff DB contains a clause in which p occurs in the head and g occurs in the body. Let >
denote the least transitive reflexive relation on PRED extending J; so, p > ¢ means that p
hereditarily depends on q. Of course, J and > depend on DB, but there will be no danger
of confusion here, since we shall only discuss one database at a time.

As does every transitive reflexive relation, > has two associated relations on PRED.
Let ~ denote the equivalence relation defined by: p =~ ¢ iff p > ¢ and ¢ > p. Let > denote
the transitive irreflexive relation defined by: p > ¢ iff p > ¢ and ¢ % p.

If P C PRED, we call P downward closed iff for all p € P and ¢ € PRED, g < p
implies ¢ € P. Note that this implies that P is a union of equivalence classes. Observe
that < is acyclic. When we get to semantics (§3), we shall build models for the CDB by
induction on <, treating each equivalence class as a unit. In one step in the induction, we
have interpretations defined for some downward closed set, P, of predicate letters, and we
extend this interpretation to an equivalence class minimal above P.

When we discuss criteria which allow 3-valued models to be converted to 2-valued
models, it will be important to consider whether predicates depend on other predicates
positively or negatively. This signed dependency is defined as follows. We say p 21 ¢ iff
there is a clause in DB with p occurring in the head, and ¢ occurring in a positive literal in
the body. We say p J._; g iff there is a clause in DB with p occurring in the head, and ¢
occurring in a negative literal in the body. Let >, and >_; be the least pair of relations
on PRED satisfying:

P41 P

and
plig&qg>;r = p>i5T.

Note that by making > and > reflexive, we always have p > p and p > p, so
that, in the case of a singleton equivalence class, {p}, these partial orders do not distinguish
whether or not p is defined recursively from itself. This distinction is often important, but
turns out to be irrelevant for this paper. The important distinction for us will be whether
p >_1 p — i.e., whether p is defined negatively from itself.

Following [1], DB is called stratified iff we never have both p ~ g and p >_; ¢ - that
is, within each equivalence class, all dependencies are positive. Following [1], DB is called

3

strict iff we never have p >,1 q and p >_; ¢. Let us call DB semi-strict iff we never have
p >_1 p. It is easy to verify that semi-strict means that all dependencies are strict within
each equivalence class — that is,

2.1 Lemma. DB is semi-strict iff for no p and ¢ do we have p ~ ¢q, p >41 ¢, and
p2-14¢. O

Clearly, then, semi-strict follows from either strict or from stratified. We remark
briefly on how this will be used in the semantics. Every CDB is consistent from the
point of view of 3-valued logic, but semi-strict guarantees that we have consistency in
2-valued logic — i.e., that the CDB has a 2-valued model. Strictness is needed to get the
stronger fact that every query which is true in all 2-valued models for the CDB is also
true in all 3-valued models. Stratifiability is largely irrelevant in this paper, except that it
implies semi-strictness, and our construction of 2-valued models in the semi-strict case by
induction on < is a generalization of the construction of Apt-Blair-Walker [1] for stratified
DB. Semi-strictness was considered also by T. Sato [14] under the name “call-consistency”.

If P C PRED, a signing for P is a map, S : P — {+1,—1} such that whenever
p,q € P and p <; q, S(p) = S(g) - ¢. Clearly,

2.2 Lemma. If PRED has a signing, then DB is strict. If DB is strict, P C PRED,
a is a >-largest element of P, and 1 € {+1,—1}, then P has a signing S defined by:
S(p) =1-k whenever p€ P and p <y a. O

As we shall see in §3, signings will allow us to convert 3-valued models to 2-valued
models. Whenever a predicate has value u, we convert the value to t if the sign of the
predicate is +1, and to f if the sign is —1. Strictness does not always imply the existence
of a signing. For a counter-example, consider:

a :- p.
a - q.
b :- p.
b:-—nq.

This is strict (and also stratified), but the first 2 clauses prevent p, q from having different
signs, while the last 2 clauses prevent them from having the same sign.
The following example illustrates how some of these concepts fit together:

1. a :- —b.
2.b :- = a.
8. a :- p.
4. a - = p.
5.p - p.

The equivalence classes are {p} at the bottom, with {a,b} above it, along with all the
trivial singleton equivalence classes of letters not mentioned at all. This database is semi-
strict but is neither strict (since @ >,; p and a >_; p) nor stratified (since a = b and
a >_1 b). We can build a 2-valued model for CDB by induction on <. Starting at the
bottom, we satisfy the completed definition of p; since this is a tautology, p <> p, we may
assign p either t or f. We then move up to the equivalence class {a, b}, and find values for
a and b, which satisfy b «+» —a and a < (=bV pV —p), which means that ¢ must be t and
b must be f; in this example, the value for p turns out to be irrelevant, but if we deleted

4

clauses (1,4), then a would have to have the same value as p. Of course, proposition letters
not mentioned at all in the database must be assigned value f. So, the CDB for (1,...,5)
is consistent in 2-valued logic. However, a must be true in all 2-valued models, whereas a
is not a 3-valued consequence of CDB (and of course, Prolog will not return an answer to
the query ?7— a). The relevant thing here is that strictness is violated; a depends on p both
positively and negatively, which makes it impossible to convert the 3-valued model that
assigns u to a, b, and p, to a 2-valued model which assigns f to a. The lack of stratifiability
is irrelevant — if we deleted the (1,2), the DB would become stratified, but we still would
have the same problem with a. However, if we deleted (3), the DB would become strict,
and we would have a signing defined by S(a) = —1; S(b) = S(p) = +1. This would allow
us to convert the u to f for a while converting b and p from u to t.

For queries consisting of more than one literal, we need an addition to our definition
of strictness. Consider the database

a - p.
b :- = p.
p - p.

This is strict (and also stratified). Since —(a A b) is a 2-valued consequence of CDB, an
answer of “no” would be supported in 2-valued logic to 7— a, b, but no answer is supported
in 3-valued logic. The problem is that even though DB is strict, the query clause depends
both positively and negatively on p. If ¢ is a query clause, we say ¢ >; p iff either a >; p
for some a occurring positively in ¢ or a >_; p for some a occurring negatively in ¢. We
call DB strict with respect to ¢ iff for no predicate letter p do we have both ¢ >41 p
and ¢ >_1 p. DB could be strict with respect to ¢ but not strict, since strictness could
be violated by letters upon which ¢ does not depend. To prove that a given 2-valued
consequence, ¢, of CDB is also a 3-valued consequence, what we shall really need is that
DB is strict with respect to ¢ (to allow conversion of 3-valued to 2-valued models for the
letters upon which ¢ depends), plus that DB is semi-strict (to allow these 2-valued models
to be expanded to models for all the letters).

For the completeness result (with respect to 3-valued logic) in §4, strictness and related
notions are irrelevant — the hypothesis there will be allowedness [15, 1]. DB is allowed iff
for each clause,

ai— A, An

in DB, and each variable, X, which occurs anywhere in that clause, X occurs in at least
one positive literal, A;, in that clause. Likewise, a query clause is called allowed iff every
variable which occurs in the clause occurs somewhere in a positive literal in that clause.
So, for example, the query clause 7— —¢(X),r(X) is allowed. In the completeness proof,
SLDNF will try to first investigate the positive literal, »(X) in an attempt to bind X
and avoid floundering. The fact that DB is allowed guarantees that all intermediate goal
clauses are allowed also. Note that the only allowed unit database clauses are ground.

§3. SEMANTICS. Recall that we are always working with a fixed language in
predicate logic. A 3-valued structure, A, for the language consists of a non-empty set, 4
(the domain of discourse), together with an appropriate assignment of a semantic object on
A for each of the predicate and function symbols of the language. More precisely, whenever

5

f is an n-place function symbol with n > 1, A(f) is a function from A™ into A;if n =0
(f is a constant symbol) then A(f) € A. Whenever p is an n-place predicate symbol other
than ‘=’ with n > 1, A(p) is a function from A™ into {t,f,u}; if n = 0 (p is a proposition
letter) then A(p) € {t,f,u}. A(=) is always true identity; i.e., A(=)(a,b) is t iff a and b
are the same object, and f otherwise. A 2-valued structure is simply a 3-valued structure
in which the value u is never taken.

We use Kleene’s truth tables of the propositional connectives other than ‘«’, which
is given Lukasiewicz’s truth table — that is v <+ w is t iff v = w and f otherwise. In our
applications, the connective < will occur only as the “iff” in the CDB.

If 7 is a term with variables among X1,..., X, (n > 1), then we define, in the obvious
way, A(r) : A™ — A. There is some danger of confusion here, since we do not require
that all the X; actually occur in 7, but this will always be clear from context — to avoid
confusion in abstract discussions, we might display 7 as 7(X1,...,X,). If 7 is a closed
term, A(7) € A. Likewise, if ¢ is a formula with free variables among X7,..., X, (n > 1),
then we define, in the obvious way, A(¢) : A™ — {t,f,u}, using the truth tables as in [8].
If ¢ is a sentence (no free variables), then A(¢) € {t,f,u}.

Observe that the interpretation of ‘=" is always standard 2-valued identity and func-
tion symbols are interpreted as functions in the standard mathematical sense. Thus, the
truth value, u is never taken by a formula which is made up of just ‘=’ and function
symbols.

Let CET, Clark’s Equational Theory, be the equational axioms of the CDB; CET
doesn’t depend on DB. As in [8], we only consider structures which satisfy CET. These
are characterized by the following three conditions. First, A(f) is a 1-1 function for each
function symbol, f of 1 or more places. Second, A(f) and A(g) have disjoint ranges when-
ever f,g are distinct function symbols of 0 or more places. Third, whenever X; actually
occurs in the term 7(Xi,...,X,), and a1,...,a, € A, we have a, # A(7)(a1,...,ay); this
is a formalization of the occurs check.

An Herbrand model is a model whose domain of discourse is the set of all closed terms,
with function and constant symbols having their natural interpretations. Any model of
CET contains an isomorphic copy of an Herbrand model.

We say that A is a model of the CDB iff all the sentences of the CDB have truth value
t in A. In 3-valued logic, the CDB is always consistent (i.e., has a model). This fact is
discussed explicitly in [8], but the result is actually implicit in the earlier paper of Fitting
[6]. To construct a 3-valued model of the CDB, first fix a model of CET, and then form
a sequence of structures by iterating the 3-valued analogue of the van Emden - Kowalski
[5] operator T' (details below). All the structures in the sequence have the same domain of
discourse and interpretation of the function symbols, but the predicates change; the initial
model in the sequence has all predicates undefined (u). The operator T is not in general
continuous, so the sequence may be transfinite, but since T is monotone, there is some
closure ordinal, at which stage one gets a model for the CDB. Unlike the van Emden -
Kowalski case in pure Horn logic, this model is not minimal — that is, it may make some
statements true which do not in fact follow from the CDB. For example, if the DB is

p(0).
p(s(X)) - p(X).

r(0).

r(s(X)) :- r(X).

q :- p(X), - r(X).
then ¢ will become f at stage w if we start on the Herbrand universe. However, if our
original model of CET contained an element which was in the range of s* for each k, then
g will be u in the final model of the CDB; by our procedure below (Theorem 3.6), this
model could then be transformed into a 2-valued model of the CDB in which ¢ is true.

[6] starts with the Herbrand universe. [8] shows essentially that if one begins with
an Ni-saturated model of CET, then the procedure actually closes at stage w, and only
sentences which follow from the CDB are made true.

We now describe the details of this iteration; in fact, we shall describe a generalization,
which is related to the remark make in the introduction that one may define models by
recursion on the data dependency relation, >. Suppose we have a set of predicate letters,
P C PRED. A P-structure is a structure A as above, except that A(p) is defined only
for p € P (but A(f) is defined for all function symbols). CDB|P denotes the equational
theory, CET, together with all sentences of CDB which only use predicate symbols in P. If
Ais a P-structure, P C Q C PRED, and B is a Q-structure, we call B an ezpansion of A
iff B has the same domain of discourse as does A and agrees with A on the interpretations
of all function symbols and all predicate symbols in P.

If P is downward closed (see §2), A is a P-structure, and A is a model of CDB|P,
we shall construct an expansion of A to a PRED-structure which is a model of all of
the CDB. Consider DB, P, and A to be fixed. Let L be the set of all expansions of A
to PRE D-structures. We consider {t,f,u} to be a semilattice, whose only relations are
u < t and u < f. This makes £ into a complete semilattice in the obvious way. [has
as a bottom element the structure Bg, in which all predicates not in P are identically u.
We define an operator, T' : £ — L as follows. Given B € L, an n-place p € PRED, and
ai,...,an, we must explain how to compute v = T'(8)(p)(a1,.-.,an) € {t,f,u}. v will be
t iff for some clause ¢ in DB of form

p(T1y. e 3Tp) 1= W

with variables Y1,...,Ym, and some by,...,bn € A, we have B(¢)(b1,...,bm) =t and
each B(r;)(b1,...,bm) = a;. v will be f iff for every ¢ in DB of that form, and every
bi,...,bm € A, we have either B(¢)(b1,...,bm) =T or some B(r;)(b1,...,bm) # a;. Vv is
u otherwise. Using the facts that P is downward closed and A satisfies CDB|P, one can
show that if p € P, then T(B)(p) = B(p) = A(p) — i.e., T(B) indeed is in L. Likewise,

3.1 Lemma. If B € £, then T'(B) = B8 iff B is a model for the CDB. ©
Since T is monotone, it has a fixed point by the usual Knaster-Tarski Theorem. Hence,

3.2 Theorem. If P C PRED, A is a P-structure, P is downward closed, then there
is an expansion of A which is a (3-valued) model for the CDB. O

Now, suppose we want a 2-valued model for the CDB. Of course, there need not be
any, as the well-known example, p :— —p shows, but under certain conditions on DB, we
may convert 3-valued models to 2-valued models. The simplest condition is the existence

7

of a signing (see §2), which can tell us which u values to change to t and which to f.
Actually, the signing need only be defined on predicate letters whose interpretation is
u at some places. Suppose that Q and P are disjoint subsets of PRED and A is a 3-
valued Q U P-structure. Suppose that S : @ — {+1,—1}. Define 2val(A,S) to be the
Q U P-structure which has the same domain of discourse as does A, which interprets
predicates in P and function symbols the same way A does, and in which, for ¢ € Q,
v = 2val(4,S)(q)(a1,...,an) is computed as follows: Set w = A(q)(a1,...,an); then v is
w if wis t or f; if w is u, then v is t if S(g) = +1 and f if S(¢) = —1. One easily verifies:

3.3 Theorem. Suppose that Q and P are disjoint subsets of PRED, Q U P is
downward closed, and A is a 3-valued model for CDB|(Q U P) such that the interpretation

of each letter in P happens to be 2-valued. If S is a signing for Q, then 2val(4,S) is a
2-valued model for CDB|(Q U P). O

It follows, of course, that if there is a signing for PRE D, then the CDB has a 2-valued
model, but in fact we can prove this just using the weaker fact that DB is semi-strict. It
is here that we use a recursion on < in direct analogy with Apt-Blair-Walker [1].

3.4 Theorem. Suppose that P and Q are disjoint subsets of PRED, and both P
and P U Q are downward closed. Suppose also that DB is semi-strict on @ and that A is a
2-valued model for CDB|P. Then A has an expansion to a 2-valued model for CDB|(PU Q).

Proof. Since predicate symbols not mentioned in DB can (must) simply be defined
to be universally f, we may assume that all symbols in @ are actually mentioned in DB,
so that in particular Q is finite. Since < is acyclic on @, we may produce the expansion by
recursion on <, so that without loss of generality, we may assume that Q consists of just
one equivalence class, which is minimal over P. In this case, there must be a signing, S,
for . By Theorem 3.2, let B be an expansion of A to a 3-valued model for CDB|(P U Q).
Then, by Theorem 3.3, 2val(B, S) is a 2-valued model for CDB|(P U Q). ©

In particular, taking P to be empty and Q to be PRED, we have
3.5 Corollary. If DB is semi-strict, then the CDB has a 2-valued model. ©

However, as pointed out in §2, semi-strictness is not enough to prove the stronger
result that every 2-valued consequence is also a 3-valued consequence. In general, call a
formula, ¢, a 3-valued consequence of the CDB iff its universal closure, V¢, has value t
in all 3-valued models of the CDB; ¢ is a 2-valued consequence iff V¢ is t in all 2-valued
models. Obviously, every 3-valued consequence is also a 2-valued consequence.

3.6 Theorem. Suppose that ¢ is a query clause, DB is strict with respect to ¢, DB
is semi-strict, and V¢ is a 2-valued consequence of the CDB. Then V¢ is also a 3-valued
consequence of the CDB.

Proof. Assume that A is a 3-valued model of the CDB in which V¢ has value f or
u. We show how to construct a 2-valued model, D, for the CDB, in which V¢ has value f.
Let P be the set of all predicate symbols which are < some symbol occurring in ¢. Let S
be the (unique) signing for P such that for each p occurring in ¢, S(p) is —1 if p occurs
positively, and +1 if p occurs negatively. Let B be the reduct of A to P; that is, B is
exactly the same as A, except that B(p) is defined only when p € P. Let C be 2val(8,S).

8

B is a 3-valued, and C a 2-valued model for CDB|P. In B, ¢ is u or f at some values of its
variables, and at these values, ¢ will be f in C, so V¢ is f in C. By Theorem 3.4, C has an
expansion to a 2-valued model, D, for the CDB, and of course V¢ is still f in D. 0.

Following Clark [3], DB is called hierarchical iff it has no recursions whatever; that
is, each equivalence class is a singleton, and we never have p J p. For such databases, it is
easily proved by induction on < that every 3-valued model for the CDB is in fact 2-valued; it
is then immediate that the 3-valued and 2-valued semantics coincide. Clearly, hierarchical
implies semi-strict, but it does not imply strict, nor does strict imply hierarchical. One
may generalize Theorem 3.6 as follows. Suppose P C PRED is downward closed, DB
is semi-strict, and DB restricted to P is hierarchical. Let ¢ be a query clause such that
no predicate outside of P depends both positively and negatively on ¢. Then V¢ is a 2-
valued consequence of the CDB iff it is a 3-valued consequence. As special cases, P = 0 is
Theorem 3.6, and P = PRED is the fact that the 2-valued and 3-valued semantics agree
for hierarchical databases.

§4. A COMPLETENESS RESULT. Here we deal only with 3-valued models,
and study the concept of allowedness (see §2). If ¢ is a formula, we say that CDB = ¢ iff
the universal closure, V¢ has value t in all 3-valued models of the CDB. Although, as we
have pointed out, in general it is necessary to consider models which extend the Herbrand
universe, we note that by [8], we may generate consequences of the CDB by a construction
which only involves the Herbrand universe. For this section, let Ap be the structure whose
domain of discourse is the Herbrand universe, and in which all predicates are identically
u. For a given DB, we may iterate T as above and define A,11 = T(A,). Although none
of the A, nor their limit, A,,, need be a model for the CDB, we have:

4.1 Theorem (see [8]). For any ¢, CDB |= ¢ iff V¢ is t in A, for some n. O

If one wants to prove a completeness theorem of the form that every supported answer
is eventually returned, it is natural, then, to induct on the stage at which the answer gets
supported.

Let Q be the set of all query clauses. Let RET be the set of all pairs, (¢, 0), where
¢ € @, o is a substitution, and ¢ acts only on the variables occurring in ¢. If ¢ is ground,
the only possibility for o is “yes”, the identity substitution. RET is the set of all possible
(query, answer) pairs. If ¢ is any substitution and ¢ € @Q, let o|¢ be o restricted to the
variables actually occurring in ¢; so (¢, 0]¢) is always in RET.

The semantic import of allowedness is given by:

4.2 Theorem. Suppose DB is allowed and ¢ is an allowed query. For each n, there
are only finitely many ¢ such that (¢,0) € RET and V¢o is t in Ay; furthermore, all such
o are ground.

Proof. Induction on n. ©

The next step is to say precisely what we mean by SLDNF. This is defined in [12], but
the definition is a little complicated, as one must simultaneously define what a derivation
is and what a finitely failed SLDNF derivation tree is. Since we do not actually need the
structure of these derivations, but only the set of derivable answers, it is a little easier to

9

work directly with an inductive definition of the set of answers returnable by SLDNF. We
define a subset, R. C RET (the set of all such pairs actually obtainable by SLDNF with
the given database), and a subset F C @ (the set of finitely failable queries). R and F
are defined simultaneously by recursion to be the least sets satisfying the following closure
properties:

0 trueRyes.

R+ If ¢ is o A9, o is a positive literal, (8 :— 8) € DB, 0 = mgu(e,), and
(0 Ap)oRm, then ¢R(om)|o.

R— If ¢ is ~a A%, @ a positive ground literal, o € F, and Y Ro, then ¢Ro.

F4 Suppose that ¢ is o A ¢ and « is a positive literal. Suppose that for each
(8 :— 0) € DB, if (8 is unifiable with «, then (6 A ¢)(mgu(a, §)) € F. Then
¢ €F.

F— If ¢ is ~a A %, o a positive ground literal, and aRyes, then ¢ € F.

In the above, before computing an mgu, we assume that the query clause and the
database clause are renamed to have disjoint variables — the usual “standardized apart”
assumption. When we say that ¢ is A A ¢ (A is @ or ~a), we mean that X is some literal
occurring in ¢, and v is ¢ with one occurrence of A deleted. Note that clause F+ includes
as a special case that if « fails to unify with the head of any clause in the database, then
a A Y fails.

It is easy to see that this definition is equivalent to the one via SLDNF trees — in fact,
an SLDNF tree headed by a query, ¢, may be viewed as a backward search for a ¢ such
that ¢Ro. We may thus state our completeness result formally as:

4.3 Theorem. Suppose that DB is allowed and ¢ is an allowed query clause. If
CDB [¢o, then ¢Ro. If CDB |= =3¢, then ¢ € F.

The proof will be “by induction”. Before beginning, let us note some features that
the induction must have. First, since F and R are defined simultaneously in terms of each
other, we must prove both parts of the theorem simultaneously, presumably by induction
on the least n such that the relevant statement is t in A,. Second, the induction cannot
be quite that simple, since the reduction from n to n —1 could take an unspecified number
of SLDNF steps. In the positive case, if CDB = ¢o, then o must be ground, which makes
matters a little easier, but suppose ¢ is p(X),—¢(X); perhaps —¢(X)o first becomes t at
stage 10, whereas p(X)o is t by stage 5. We would like to work on the —¢(X) first, to
reduce the 10 to 9, but of course we cannot — we must work on p(X) until the X becomes
ground. Thus, we must actually induct on the stages at which the various literals within
a clause become t individually.

Let SEQ be the set of all finite (possibly empty) sequences of natural numbers. We’ll
exhibit them in the form 7% = (ny,...,nr), where L is the length of 7. Let < be the least
transitive reflexive relation on SEQ such that 7 < @& whenever 7 is a subsequence of a
permutation of 7, or 7 results by replacing some component, n;, of @, by an arbitrary
finite sequence of numbers less than n;. Let < be the corresponding strict partial order,
som < i iff m <7 and 7 £ m — equivalently, iff 7 < 7@ and 7 is not a permutation of 7.
So, for example,

() < (0,1,1,2,3) < (1,3,1,2,0) < (4,2,0) < (4,2,0,0)

10

As is well-known, the relation < is well-founded, so we may induct on it.

We use these sequences to give a ranking to when the various components of a query
clause become true. More precisely, say ¢ is the clause ay,...,ar. If CDB = ¢o, then
let rank™*(¢o) be (ny,...,nr), where each n; is the minimal n such that Ve; is t in A,.
In particular, rank® (true) = (). The negative case is more complicated. If CDB = —3¢,
call (n1,...,nr) a negative rank for ¢ iff for each ground instance, ¢o of ¢, some a;o is f
in A,,. Since < is well-founded, ¢ must have a minimal negative rank, but this minimal
rank need not be unique. For example, with the empty database, p, ¢ is u at stage 0 and f
at stage 1, so that (0,1) and (1,0) are both minimal negative ranks for p,q. Nevertheless,
we may prove by induction on % that, assuming DB is allowed,

H(n): Whenever ¢ is an allowed query clause:
R: If CDB [¢o and rank™(¢o) = 7, then ¢Ro.
F: If CDB = =3¢ and 7 is a negative rank for ¢, then ¢ € F.

Note that a positive rank is non-0 on all its places, whereas a negative rank may be
0 in some places; this will make the negative cases somewhat harder, as we do not always
have the same freedom to choose a literal to reduce.

Proof of Theorem 4.3. The basis case for H(%) is with @ = () and hence ¢ empty
(true); this follows trivially from clause 0 in the definition of R. For the induction step,
¢ is non-empty, and there are two things to prove, and each has two cases depending on
whether we reduce a positive or a negative literal. These 4 cases correspond in a natural
way to the 4 inductive clauses in the definition of R and F. We are assuming, inductively,
that H(r) holds whenever m < 7.

R+: If ¢ contains a positive literal, let us assume that ¢ is oy A ¢, where «y is
positive and the first literal in ¢. (since the order of a clause does not matter here).
Since ¢ is allowed, ¢ is ground (Theorem 4.2). Since ay0 is t in A,,, there must be some
clause, # :— 6 in DB and a ground substitution, m such that ¢ = (mgu(ai,B))7|¢, and
f(mgu(er,B))m is t in Ap,—1. Then

rank™ ((0 A P)ymgu(ey,B)) <m <@

where 77 is obtained by replacing the ny in @ with a string of length(f) copies of ny — 1.
Applying the inductive hypothesis and the R+ clause in the definition of R, we have that
IRo.

F+: If possible, permute ¢ to the form a; A ¢, where a; is positive and n; > 0.
So, v is of the form as,...,ar. Fix any clause, f:— 6 in DB such that 8 is unifiable
with a;. We must show that § = (8 A ¥) (mgu(e1,f)) is in F, and this will follow by the
inductive hypothesis if we can show that 7 (defined exactly as above) is a negative rank
for 6. Consider any ground instance, éw. If 8(mgu(cy,B))n is f in A,, 1, we are done, so
assume it is t or u. Then ay(mgu(ay,B))r = B(mgu(ey,B))m ist or u in A, , so, since 7
is a negative rank for ¢, a;(mgu(a,B))m is f in A, for some ¢ > 2. In either case, some
literal in 67 becomes false in the corresponding Am;.

R—: If ¢ has no positive literals, it must be ground. Write ¢ as —ay; A ¢. Then
rank™ (Yo) = (nz,...nr) < @i, so by the inductive hypothesis, ¥ Ryes. The unit, a; is f in
Ay, so (n1) is a negative rank for it. If I > 2, then (n;) < 7, so the inductive hypothesis

11

applies immediately to show «; € F. If L = 1, then (n1) = 7, and note that oy € F by
the case F-+, which we just did for 7.

F—: Say ¢ is ¢pos A Pneg, Where dpos is @1,...,0p, Ppeg is =f1,..., 78, and the «;
and (; are all positive. If we cannot reduce this by F+, then n;, =0for ¢ =1,...,p. This
may then be handled analogously to R— if we can show that some f3; is ground and t in
Anyy;- Say Xi,...,X, are the variables occurring in ¢. Let H be the set of all ground
terms. Since 71 is a negative rank for ¢ and all truth values are u in Ao, we must have that
for each 71,...7, € H, some =f;(v1,...7r) is fin Ayp, .. Let

Si = {(1rer) € H 2 Ay (B5) (1155 90) = 8}

We have just seen that U§=1 S; = H". If B; is not ground, then the projection of S; on
any coordinate corresponding to an X; which actually occurs in §; is finite (by Theorem
4.2). If B; is ground but f in A, ;, then S; is empty. Since H is infinite, it cannot be the
union of finitely many sets each of whose projection on some coordinate is finite, so some
B; is ground and t in A, ;. O

§5. CONCLUSION. One defect in the above completeness result is that the concept
of allowedness is so stringent as to exclude many common Prolog constructs, such as
the definition of equality (equal(X, X)), and both clauses in the standard definition of
member(X,L). As a topic for future work, one would like to replace allowedness and
strictness by weaker conditions; these conditions should be easily testable by a compiler
and weak enough to include the kinds of programs that people commonly write.

One might get better completeness results by strengthening SLDNF to compute more
answers. For example, perhaps a query, 7— —p(X) should not always flounder. Following
the lead of IC-Prolog [4], if 7— p(X) returns the identity, yes, it is safe to fail ?— —p(X),
and if 7— p(X) fails, it is safe to return yes for 7— p(X). Then, with the empty database,
?— =p(X) would return yes and 7— —-p(X) would return no.

Another way to get better completeness results would be to weaken the semantics to
support fewer answers. Consider the database:

p - —g(X).
q(c).
g(X) - —r(X).

rc).
This is both hierarchical and strict, so the 2-valued and 3-valued semantics are equivalent,
and they support a yes answer to 7— —p, although nothing resembling Prolog will return
this answer (see also [9] for more on this sort of example). Perhaps the semantics should
be changed so as not to support this answer. One way to do this would be to change the
notion of “model” to allow structures in which ‘=’ is interpreted as any 3-valued relation
which makes the equality axioms come out t. This would allow a model to contain an
element, a, such that @ = ¢ has truth value u. Then r(a), g(a), and p could be u as
well. The problem with this approach is that now failure would not be supported for
7— ¢(X),q(X), so that SLDNF would not be sound with respect to this semantics.

An alternate approach would be to use intuitionistic logic. In this example, —p does
not follow from the CDB in standard intuitionistic proof theory. One cannot, however,

12

just use intuitionistic proof theory, since if the database is p :— p, an answer of “no” to the
query ?— p,-p should not be supported, whereas =(p A —p) is provable intuitionistically.
Shepherdson [16] has suggested amalgamating intuitionism with 3-valued logic; in this
regard, see also Fitting’s [7].

[

§6. REFERENCES.

Apt, K. R., Blair, H. A., and Walker, A., Towards a Theory of Declarative Knowledge,
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programminyg,
Morgan Kaufman, Los Altos, 1987.

Cavedon, L., and Lloyd, J. W., A Completeness Theorem for SLDNF Resolution, to
appear.

Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.), Logic and
Databases, Plenum Press, New York, 1978, pp. 293-322.

Clark, K.L., McCabe, F. G., and Gregory, S., IC-Prolog Language Features, in: K. L.
Clatk and S. -A. Tarnlund (eds.), Logic Programming, Academic Press, New York,
1982, pp. 253-266.

Van Emden, M. H. and Kowalski, R., The Semantics of Predicate Logic as a Pro-
gramming Language, JACM 23:733-742 (1976).

Fitting, M., A Kripke-Kleene Semantics for Logic Programs, J. Logic Programming
2:295-312 (1985).

Fitting, M, Logic Programming on a Topological Bilattice, to appear.
Kunen, K., Negation in Logic Programming, J. Logic Programming, to appear.

Kunen, K., Answer Sets and Negation-As-Failure, in: J.-L. Lassez (ed.), Logic Pro-
gramming (Proceedings of the Fourth International Conference), MIT Press, 1987,
pp. 210-228.

Lassez, C., McAloon, K., and Port, G., Stratification and Knowledge Base Manage-
ment, in: J.-L. Lassez (ed.), Logic Programming (Proceedings of the Fourth Interna-
tional Conference), MIT Press, 1987, pp. 136-151.

Lassez, J-L., and Maher, M. J., Optimal Fixedpoints of Logic Programs, Theoretical
Computer Science 39:15-25 (1985).

Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, 1984.

Mycroft, A., Logic Programs and Many-valued Logic, Proc. of Symposium on Theo-
retical Aspects of Computer Science, Lecture Notes in Computer Science 166:274-286
(1984).

Sato, T., On consistency of first order logic programs, to appear.
Shepherdson, J.C., Negation as Failure, J. Logic Programming 1:51-79 (1984).

Shepherdson, J.C., Negation in Logic Programming, Proc. of Workshop on Founda-
tions of Deductive Databases and Logic Programming, Washington, D.C., 1986.

13

