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PARALLEL AND SERIAL SOLUTION OF

LARGE-SCALE LINEAR COMPLEMENTARITY PROBLEMS

Karen M. Thompson

Under the supervision of Professor Olvi L. Mangasarian

ABSTRACT

This thesis is concerned with developing algorithms for solving large-scale
versions of the linear complementarity problem (LCP), which consists of finding
an n—dimensional vector z such that z > 0, Mz +¢ > 0, and z(Mz + ¢) = 0 where
M is an n-by-n real matrix and g is a n—vector. The first algorithm we propose is
an asynchronous parallel successive overrelaxation (SOR) algorithm which is suit-
able for large sparse symmetric problems. The second algorithm is a distributed
version of Lemke’s classical algorithm for solving the LCP. We design the algo-
rithm for a loosely—coupled network of computers. The third is a serial two-stage
successive overrelaxation algorithm for the symmetric positive semidefinite LCP.
This algorithm concentrates on updating a certain prescribed subset of variables
which is determined by exploiting the complementarity property. We demonstrate

that this algorithm successfully solves problems with as many as 10,000 variables



v
which cannot be tackled by other current algorithms. A fourth hybrid algorithm
finds an exact solution for the positive definite symmetric linear complementarity
problemdin a finite number of steps. In this algorithm we use a successive over-
relaxation preprocessing step. This provides us with a partition of the variables
into two sets. We then combine a projected Newton step along one set of vari-
ables with a projected gradient step along the complement of that set, thereby
determining a feasible descent direction. We demonstrate that the preprocessing
step provides an effective partition so that in many cases the algorithm will termi-
nate after one additional step. We also demonstrate that the algorithm efficiently
solves medium-sized problems as well as large problems with the special property
of many zeros in the solution. The final algorithm we propose is a modification of
the previous hybrid algorithm so that it can handle positive semidefinite symmet-
ric matrices. Finally, we test the various algorithms on randomly generated test

problems to demonstrate their effectiveness.
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Chapter 1

INTRODUCTION

This thesis is concerned with developing efficient algorithms for solving large-
scale linear complementarity problems. We first discuss relevant aspects of this

problem.

1.1 LARGE-SCALE PROGRAMS

Currently, industry often uses heuristic methods to estimate solutions of
large-scale programs rather than attempting to solve these problems exactly. This
is largely due to two inherent difficulties in solving large-scale programs. The first
difficulty is that computing time may be prohibitive. Industry must balance the
cost of solving the program against the savings that may be obtained by arriving
at an optimal solution rather than a sub-optimal solution. Secondly, large-scale
programs may have tremendous data storage needs. Therefore effective algorithms
for large-scale programs must address these issues.

Much work in large-scale programming has focused on using existing methods
for smaller programs and employing sparsity—preserving features. See [Gill & Mur-
ray74] for details on adapting Newton-type and quasi-Newton type algorithms for
Jarge scale-programming. Often large-scale programs have a preponderance of ze-

ros in the data matrices. Therefore, one way to address both difficulties is to take
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advantage of this property. To avoid excessive computation time we eliminate
any unnecessary floating point operations such as a multiplication by a zero ele-
ment. To address storage considerations, we need only store non-zero elements.
An appropriate data structure is used to indicate where the zeros lie. Therefore
the general procedure is to make sparse factorizations of the data matrices. From
here we compute the next iterate. Then we update the factorization and con-
tinue. We note that in the absence of special structure the factorizations may fill
in. Therefore costly sparsity—preserving techniques rely heavily on special matrix
structures.

Some mathematical programming problems can be solved by algorithms which
keep initial data intact thereby completely preserving sparsity. These algorithms
are ideal for large-scale programs because there is no danger of fill-in since only the
original elements of the data matrices are used at a given iteration. Mangasarian
[Mangasarian84] has proposed completely sparsity—preserving methods for linear

programming and separable quadratic programming problems.

1.2 PARALLEL COMPUTING

Parallel algorithms can provide greater storage capacities as well as speed up
computing time and therefore are an important tool for large-scale programming.
There are two approaches to developing parallel algorithms.

The first approach is to distribute certain operations in an existing serial op-

timization algorithm among several processors. For example, several processors



may compute a given function evaluation thereby speeding up the entire compu-
tation time. If an algorithm can be largely distributed we may be able to produce
an effective distributed version of an existing serial algorithm. The considerations
for designing such an algorithm will include finding an efficient way to store data
and divide computations evenly in order to avoid communication overhead and
idle processor time.

The second approach to developing parallel algorithms must be employed
when the original algorithm is serial in nature. In this case, the serial compo-
nents dominate the algorithm. Therefore a distributed program will provide little
speedup and may in fact take longer if the communication overhead exceeds the
computational speedup. In this case a new algorithm must be developed. Often
this involves breaking up the problem into smaller subproblems solving or partially
solving these problems in parallel then invoking a stepsize to find a new iterate for
the original problem. Some examples of these types of algorithms can be found in
[Chang86],[Chen87],[Feijoo85],[Mangasarian & DeLeone86b],[Medhi87], and [Pang
& Yang87]. For a general discussion and a survey of parallel optimization see

[Schnabel84].

1.3 LINEAR COMPLEMENTARITY PROBLEM

In this thesis we focus on solving the large—scale linear complementarity prob-

lem (LCP). The problem consists of finding an n—dimensional vector z such that




z>0
Mz+q¢g2>0
z2(Mz+4¢)=0

where M is an n X n real matrix and q is a n—dimensional real vector. We note
that when M is positive semidefinite the LCP constitutes a necessary and sufficient

condition for solving the problem
min f(z) := min Y +
= —zMz + gz
z>0 2202 1

Linear complementarity problems arise in finite difference schemes for free
boundary problems [Cryer71] and economic equilibrium problems [Hogan75]. In
addition we can formulate bimatrix games and linear and quadratic programs as
LCPs.

The best known method for solving the LCP is due to [Lemke65]. This is
a direct method which moves from vertex to adjacent vertex of a polyhedral set
until the LCP is solved or until it is determined that the LCP is unsolvable. This
method is effective on relatively small-sized LCPs which have special properties
such as positive semidefinitenes. Shiau, [Shiau3] proposes an iterative linear
programming algorithm which solves LCPs when M is positive semidefinite in a
finite number of steps. Iterative methods such as successive overrelaxation have

been proposed for large sparse symmetric LCPs. Examples of these algorithms



can be found in [Cryer71] and [Mangasarian77]. These methods take advantage of

sparsity and therefore are very effective for large-scale LCPs.

1.4 PROPOSED METHODS

In Chapters 2 and 3 we propose parallel algorithms for solving the linear
complementarity problem. In Chapter 2 we present an asynchronous successive
overrelaxation algorithm. This is an extension of a gradient projection successive
overrelaxation algorithm (GPSOR) proposed by [Mangasarian & De Leone86b].
Here we design an algorithm so as to minimize communication overhead by making
the algorithm asynchronous. In Chapter 3 we present a distributed version of
Lemke’s algorithm for solving the LCP. This algorithm is designed for a network
of computers which is a loosely coupled system with relatively high communication
costs, such as the CRYSTAL multi-computer, [DeWitt et al84]. Data is stored
and activities are divided among processors to minimize communication costs. We
demonstrate that for p << n where p is the number of processors and n is the
problem dimension, the speedup is nearly p when n is large.

In Chapter 4 we exploit the complementarity property to develop a two—
stage SOR algorithm (TSOR) which solves symmetric, positive semidefinite LCPs
faster than the ordinary SOR algorithm. The SOR algorithm does not directly
exploit the complementary property. Because of this property, if we know a priori
which variables remain positive at a solution then solving the LCP reduces to

solving a system of equations where the number of equations corresponds to the




6
number of positive variables at a solution. The idea of TSOR is to take a finite
number of SOR iterations as a preprocessing step. From there on we guess which
variables will remain positive at a solution. We then obtain a good feasible descent
direction by concentrating computational effort on these variables. We find this
direction by iteratively solving the corresponding system of equations using the
SOR iteration for solving equations and combining this with a gradient direction
along the remaining variables. We show that we can solve the equations to any
accuracy and still arrive at a feasible descent direction. By providing for the
possibility of revising the set of positive variables in the algorithm we establish
convergence of this method.

In Chapter 5 we propose a hybrid algorithm for positive definite LCPs based
on the ideas in Chapter 4 and work by [Bertsekas82]. As in Chapter 4 we use an
SOR preprocessing step and then partition the variables. Here, instead of using
the SOR iteration in the second stage we exactly solve the corresponding system
of equations. We show that we can identify the solution in a finite number of
steps.

In Chapter 6 we modify the algorithm in Chapter 5 to handle positive semidef-
inite LCPs. We note that in this case the system of equations that must be solved
in the hybrid algorithm may be inconsistent. Therefore instead we solve a per-
turbed system of equations which is guaranteed to have a solution. This provides
us with a feasible descent direction once it is combined with a gradient direction

along the remaining variables.
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Finally, in Chapter 7 we present comparative computational results for

the various proposed algorithms based on tests on randomly generated positive

semidefinite LCPs.

1.5 NOTATION

All matrices, vectors and scalars are real. The following notations are used
throughout this thesis.
1) The n—dimensional real space is denoted by R™.
2) Given a vector z, we shall denote its J th component by z5. We say z > 0 if one
has z; 2 0 for all j. For a given scalar )\, we define (A\)4 = max{0,A}. If z € R",

th

we write z. for the vector whose 7" component is (z])_}

3) Superscripts are used to distinguish between vectors, e.g., zl, 22

4) The scalar product of two vectors z, y will be written zy.

5) All matrices are indicated by uppercase letters. The j th row of M is indicated
by M] The 5 th column of M is indicated by M e The transpose of M is indicated
by MT . The symbol I indicates the identity matrix of appropriate dimension while
e shall indicate a vector of all ones of appropriate dimension.

6) Real valued functions defined on subsets of IR™ are denoted by f. We write V f
to indicate the gradient vector, where V f(z) = (agéi) o 8gz(;) ).

7) Forz e R, || 2z ||= (sz)l/ 2 is the standard Euclidean norm. We also have

P

| 2 |lr= (zM=)1/2.
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8) We indicate bibliographic references by author’s name and year of publication,
e.g., [Mangasarian77]. All references are arranged alphabetically and chronologi-

cally for each author.

9) The end of the proof of an assertion is indicated by | §



Chapter 2
PARALLEL ASYNCHRONOUS SUCCESSIVE

OVERRELAXATION ALGORITHM

2.1 INTRODUCTION

In this chapter we propose a parallel asynchronous successive overrelaxation

algorithm to solve the linear complementarity problem which we define as follows
Mz+q¢g>0,2>0,2(Mz+q¢)=0

where M is a n X n symmetric matrix and ¢ is a vector in IR™. The serial SOR

iterate is as follows:
A1 = (zz — wE(Mzi +q+ K(zi”*"1 - zz)))+

where E is a positive diagonal matrix in IR"X™  is some positive number, and
K is some substitution operator such as the lower or upper triangular part of M.
Related work has been done on parallel iterative methods for solving the

system of equations

Az =D

Missirlis, [Missirlis85] proposed a Jacobi-type parallel iterative scheme based on
finding an approximation of the Neumann series to A~1. Conrad and Wallach,

[Conrad & Wallach77], propose a parallel Gauss—Seidel method based on breaking
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the matrix A into blocks. They show convergence for diagonally dominant systems.
An asynchronous algorithm was proposed by [Barlow & Evans82| for matrices A

which have the special structure

4= [IBﬂ

Previously proposed parallel SOR algorithms for solving the LCP have been
described in [Mangasarian & De Leone86a] and [Mangasarian & De Leone86b].
Both methods required synchronization after each update of z. By contrast al-
gorithms proposed here require communications only after asynchronous multiple
updates of z. Pang and Yang, [Pang & Yang87], propose a parallel asynchronous
algorithm which breaks the matrix M into blocks and makes multiple iterations in
parallel. The algorithm proposed here is an asynchronous version of [Mangasarian
& De Leone86a).

The significance of developing an asynchronous algorithm lies in the need
to develop efficient parallel algorithms. Ideally, the idle time of all processors
as well as redundant computing time should be zero. If an algorithm consisted
of p independent tasks which required the same amount of computing time we
could assign the work to p different processors and complete the work p-times as
fast. However, optimization algorithms have serial components, thereby requiring
communication between the processors. If communication must occur often then

communication costs become a large part of the computation time. Therefore it 1s
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desirable to communicate as little as possible without degrading the convergence
properties of the algorithm.

In this chapter we propose a more general version of GPSOR than [Man-
gasarian & De Leone86b], which can be implemented in an asynchronous way.
Like Pang and Yang’s work we divide the matrix M into blocks and perform mul-
tiple iterations in parallel. However, Pang and Yang’s method requires a two stage
regular splitting of M which can only be guaranteed for positive definite M. In
contrast our method requires positive semidefinite M.

Sections 2.2, 2.3 and 2.4 discuss the previous work of Mangasarian and De
Leone found in [Mangasarian & De Leone86b]. Section 2.2 will develop optimality
conditions for the Gradient Projection Successive Overrelaxation Algorithm (GP-
SOR). In Section 2.3 we specify the GPSOR algorithm and present convergence
proofs. Section 2.4 develops Mangasarian and De Leone’s parallel GPSOR.

Our principal contribution is contained in Sections 2.5, 2.6 and 2.7 where we
discuss the proposed Asynchronous SOR (ASOR) algorithm. Section 2.5 devel-
ops optimality conditions for the proposed ASOR. In Section 2.6 we specify the
algorithm and present convergence results. Finally in Section 2.7 computational

results are presented.
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2.2 OPTIMALITY CONDITIONS FOR THE LCP

We start by recalling that the LCP is equivalent to finding z € IR"™ such that
z=(z—w(Mz+ q))4 for some w >0 (2.1)

The proof of this can be found in [Mangasarian77]. The above relationship suggests

an obvious algorithm. Given 2 e R,
zi+1 — (zz _ w(Mzi + q))+

Tf M is symmetric this algorithm is a gradient projection algorithm. We can modify
this algorithm by updating z component by component and using the most current
information to update subsequent components. Therefore the modified algorithm
would be
p(z) = (2 — wE(Mz + g + K(p(2) — 2)) (2:2)
where w is some positive number, E is a positive diagonal matrix in R XM and K
is some substitution operator such as the strictly lower or upper triangular part
of M. Clearly, a fixed point of this algorithm also solves the LCP.
We will now develop optimality conditions which are thoroughly developed in

[Mangasarian & De Leone86b]

Theorem 2.1. (GPSOR optimality condition) Let M,K,E € R"*", ¢ € IR™,

w > 0 such that E is a positive diagonal matrix.

(a) If z solves the LCP and (wE)~1 4+ K is positive definite then p(z) = z where
p(z) is a solution of (2.2).

(b) If p(z) solves (2.2) and p(z) = z then 2 solves the LCP.
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Proof :

See [Mangasarian & De Leone86b] N
The following result shows that given proper choices of K and E we can

develop an optimality function 6(z).

Theorem 2.2. (Continuous optimality function for an LCP) Let w > 0 and
E € IR"X™ be a positive diagonal matrix and let K be a strictly lower or upper

triangular matrix, or let (wE)'~1 + K be a P-matrix. Then

6(z) == || p(z) — = || (2:3)

is a nonnegative continuous function on IR™ which vanishes only on solution points

of the LCP.

Proof :

Nonnegativity follows from the nonnegativity of a norm. The function 6(z)
vanishes only on solution points of the LCP as a consequence of Theorem 2.1.
Finally continuity follows for K strictly lower (upper) triangular, because p(2)
can be computed componentwise pj(z),j =1,...,n(j =n,...,1) as a unique
piecewise linear, and hence continuous function of z. For the case when (L«JE)'"1 +
K is a P-matrix, p(z) exists and is unique [Murty83], and by Theorem 3.3 of

[Mangasarian & Shiau86] is Lipschitz continuous and hence continuous in z. I
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2.3 GRADIENT PROJECTION SOR ALGORITHM

We now make the blanket assumption that M is symmetric. Therefore the

LCP can be considered as necessary optimality conditions for
) 1
min f(z) := -Z—zMz + gz (2.4)

The following is the specification of the serial GPSOR algorithm due to Man-

gasarian and De Leone.

Algorithm 2.1.
Direction Generation: Define the direction
&' = p(zi) _ 4 (2.5)
such that
p(#) = (2 — wE(Mz' + ¢+ K(p(z") = 2Ny (26)
where E is a positive diagonal matrix, w > 0 and for some v > 0
AWE) L+ K)z> 7| z|? VzeR" (2.7)

Stop if & = 0, else continue.



15

Stepsize Generation

zi+1 = zi + )\di
Fl4 + N = min{ FE 4 AdY) | £+ A 20F (28)

Note that because f is quadratic (2.8) is easy to solve. Now we can use the
optimality function to prove convergence results for the algorithm. The following
two theorems are convergence results for Algorithm 2.1 found in [Mangasarian &

De Leone86b]. We repeat them here for completeness.

Theorem 2.3. (Serial GPSOR convergence) Let M be symmetric. Either the
sequence {zz} generated by algorithm 2.1 terminates at a solution of the LCP or

each accumulation point of {zz} solves the LCP.

Proof:

The sequence {zz} terminates only if for some i, p(zz) = 2%, in which case by

Theorem 2.1, z¢ solves the LCP. Suppose now {zz} does not terminate and that
% is an accumulation point of {zz} Let pi = p(zz) We then have for ¢ =0,1,...

that

_ViA)d = V) - )

£ - wB(M# 4+ g + K — )~ PlwB) " - 2]

1 = 1, gy -1
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> Z_ Z 2 2. 3
>|p*—= H(wE)"l—}—K (By Lemma 2.2 [Mangasarian77])

>yl -2 2 (By (27)

= 8(z")?

Hence

V() > 40242 > 0,i =0,1,... (2.9)

Now let { 24 } be a subsequence converging to the accumulation point 2. We claim
that p'J = p(zg-) s bounded. For if it were not bounded it would follow from (2.6)

that

J J
Tim —-Zi(f?l—z Jim <—wEI{_I3§i;2-—)+
7R p(z )| I | p(z77) |

and hence for some accumulation point p we would have

p=(—wEKp)y, p#0. (2.10)

This however is equivalent to 0 # p > O,p((wE)—'l +K)p=0, ((L«)E)'1 +K)p>0
since a = by < a—b2=0,a 2 0,a(a — b) = 0. But this contradicts (2.7).
Consequently, without loss of generality, let { 2" ,pzj } — (2,P) and hence{ d'3 } =

d = p — z. Now, since pzj > 0 it follows that
A9 4T = (11— N2 +Ap§. >0 for 0<A<L1
Consequently

FE D 2 fT 2 T for 0<AST
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Letting j — oo we have that
fE4+ M) = f(2) for 0<A<1
Hence V f(z)d > 0. Combining this with (2.9) gives
0> —Vf(z)d= lim —Vf(z'9)dJ > lim 46(z'1)% > 0
]—')OO ]—-)OO

Hence

0= lm 6(z'7)=6(2) (By Theorem 2.2)
J—C0
=|| (z—wEMZ+q+K@-2))+ —Z| (By (2.3))

By (2.7), ((wE)_‘1 +K) is positive definite, and hence by Theorem 2.1, Z solves
the LCP. &

When K and E are chosen appropriately we have special cases described in

the next corollary.

Corollary 2.4. (GPSOR special cases) Condition (2.7) of Algorithm 2.1 holds
under either of the following two assumptions:
n
(i) K=LorU,and 0 <w <  min 2/E;; > IM]-Z]
n =1

P =
I#9
ii) K=LorU, E= D—1 > 0, M is positive semidefinite and 0 < w <2

where

L+D+U:=M, (2.10)

and L is the strictly lower triangular part of M, U is the strictly upper triangular

part of M and D is the diagonal of M.
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Proof :

See [Mangasarian & De Leones6b] B

2.4 THE PARALLEL GPSOR

If we choose K = L as in Corollary 2.4 we see that zj-'H replaces Z;' during
the computation of z?‘H for all [ > j. This selection of K produces an algorithm
which is sequential in nature. The idea Mangasarian and De Leone use to develop
a parallel GPSOR is to find an appropriate K which will allow the algorithm
to be split into parallel parts. Therefore K is chosen to be a block diagonal
matrix consisting of the strictly lower triangular part of the principal submatrix
of each horizontal partition of the matrix M. Then the new algorithm can be easily
distributed on to a number of processors equal to the number of submatrices in the
horizontal partition of M. This choice of K was first proposed in [Mangasarian
& De Leone86a) for a different SOR procedure which didn’t involve a stepsize.
Therefore, to get convergence an w restricted to an interval depending on E and
K must be chosen. In practice this resulted in small w which resulted in a slow
algorithm. GPSOR allows a choice of w in the range (0,2) when M is positive
semidefinite. To specify parallel GPSOR, partition the matrix M into p contiguous

horizontal blocks as follows:
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where the blocks MI]. correspond to the variables z7. and {I7,79,... ,Ip}is a
J
consecutive partition of {1,2,...,n}. Now partition MI]- as follows:

M~y :=|M+.+. Ms,
z; Mz,1; 1113.:]

where I;? is the complement of 7 j in {1,2,...,p}. Therefore, Ml—j I]. is a principal

square submatrix of M. Now

Ms.+. :=Ly.7.+D7.7. +Ut.7.
IJIJ IJI] IJIJ I]I]

where LI]- Ij and UIj Ij are the strictly lower and upper triangular part of M. Ij Ij ,
and D7.7. is the diagonal part of M7 .7 ..
J=J 377
Now define K as follows:
Inn .
IoT
K = 272 ) (2.11)

L1p1p

Algorithm 2.1 can now be performed for each row block Ij for 7 =1,...,p
simultaneously. We are now ready to specify the algorithm.
Algorithm 2.2 Parallel GPSOR Algorithm for the LCP
Let {I,Z9,..-,Ip} be a consecutive partition of {1,2,...,n} et E be a
positive diagonal matrix in IRPX™ and let 20 > 0. For i = 0,1,2,... do

the following
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Direction Generation Define the direction
iy _ L
. ' ' le (z ) ZII
d* = p(24) — 2 = (2.12)
N 2
PIp(z ) ZIp

such that p(zz) satisfies

. ZZ = |z .me T, 1\4 Z’2
PIJ( )= ( I] :Z]I]( I]
+qr.+ L. .z“l—-zi, 2.13
q‘jzj jZJjZ]( Ij _'IJ N+ ( )

for j=1,...p wherew > 0 is chosen so that for some v >0
-1 2
z7 . ((WET. 4+ Ly.r)zr. 2 27. Vzr. 2.14
7,(wET;) 1,7,)°1; vl =g, 17 Ve, (2.14)

forj=1,...,p
Stop if db = 0, else continue.

Stepsize Generation

Sl i ig
where
F25 + A = min{ F(F +AdD)|2t +Adb >0} (2.15)

The direction generation can be performed in parallel on p processors. The
stepsize generation is performed and the new value of 241! is shared between p

processors.

The following results are from [Mangasarian & De Leone86b).
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Theorem 2.5. (Convergence of the Parallel GPSOR Algorithm) Either the se-
quence {zz} generated by the Parallel GPSOR Algorithm 2.2 terminates at a

solution of the LCP or each of its accumulation points solves the LCP.

Corollary 2.6. Condition (2.14) of algorithm 2.2 hold with either of the following

two assumptions:

(i)0 < w< _ min min 2/E;; > | M;; |
J:l,...,szIj lEIj

l#1
(i) 0<w<2,E= D—1 and M is positive semidefinite.

2.5 OPTIMALITY CONDITIONS

Parallel GPSOR must be synchronized after every iteration. On a loosely
coupled network this would involve communicating information after every iter-
ation. Because the SOR iteration is relatively cheap communication costs may
be a large proportion of the total time, thus causing the algorithm to be inef-
ficient. Therefore, it would be advantageous to construct an algorithm that is
asynchronous.

The proposed asynchronous algorithm is a multi-sweep GPSOR. The idea of
the algorithm is that each processor makes multiple updates of sz before sharing
information. Assuming K is defined as in (2.11) we have

p% (2)

p(z) == L :
PIIP;(Z)
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where

kj()"<kj 1()"— Er.7.(M7 kzj 1()
Z) = Z w T . z
PL; PL; i2;\(MI;Pr

20

+az; +LI-I-(ij(Z) ~p j_l(Z)))) (2.16)
I A 2 Z; +
We now develop optimality conditions for multi-sweep GPSOR.

Theorem 2.7. (Optimality Conditions for Asynchronous SOR)

Let M,K,E € R"*™, g€ IR", w >0 such that E is a positive diagonal matrix.

(a) (Necessity)If z solves the LCP and (wE)_1 + K is positive definite, then
p(z)=z.

(b) (Sufficiency) If p(z) = z, (wEIj)—l + LI]-I]' is positive definite and

Mt.T.
(wEI].I]. )—1 + LIjIj - ————23——3— is positive definite Vj, then z solves the LCP.

Proof :

Part (a) follows from the proof of part (a) in Theorem 2.1. We now prove
part (b).

k. _
Suppose pIJ_ (z) = ZIj Vj. If k]' — 1 Vj, then the result follows from part
J
b of Theorem 2.1 because this is equivalent to communicating after each update.
L.
Therefore we will show that if pI; (2) = zl—j then p%g = sz in which case the
result follows from Theorem 2.1.
k-
Suppose that z7. # plz(z) but z7. = pI]. (z). Then z7. is an accumulation
=y J J J -

point for the following iterate:

zi_H: zi,—wE . (M. .zi,+q .+ My qczqc+ L. ~Zi+1"—zi.))
7 = (g — B My ez Myt ;7,7 — )+
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where {I1,%9,-..,Ip} is a consecutive partition of {1,2,...,n} and I;-: is the
complement of 7, in {1,2,...,p}. Then by Theorem 2.1 of [Mangasarian77]| we

have that sz solves the following LCP:

wr.=Mr.7.27. +q7. + My 7¢27¢ 20
Ij IJIJ I] qIJ IJI]C. IJC.

Mr.7T.
since (wEIj I’j)_—l + LI]-IJ- - ——21—-1— is positive definite. But by Theorem 2.1

part a and (wEIj Ij)'“l + KI]'Ij positive definite this contradicts the fact that

sz # p%j (z). Therefore from Theorem 2.1(b) # solves the LCP. |

2.6 ASYNCHRONOUS SOR ALGORITHM

We are now prepared to specify the algorithm.
Algorithm 2.3.

Direction Generation Define the direction

di = p(zi) — zi

Let 2% := [z&—y zZIc] Define p%j () = zZI] Then pli_ is defined as in (2.16).
J

Choose EIjIj and w > 0 such that for some 71,79 >0

-1 MIJ'IJ 2
y(LIjzj+(szjzj) - w>rm vl Yy (2.17)




y(bg,z; + (szjzj)'l)y >y llyll? vy (2.18)

stop if d* = 0 else continue.

Step Generation
R 2 N R ALl
where
£+ Xidf) = min{ f(2* + AV + A > 0}
We can now use the optimality results to establish convergence for Algorithm

2.3.

Theorem 2.8. (ASOR Convergence) Let M be symmetric and positive semidefi-
nite. Either the sequence { zi} generated by Algorithm 2.3 terminates at a solution

of the LCP or each accumulation point of {zz} solves the LCP.

Proof :

The sequence terminates only if for some ¢, p(2%) = 2% in which case z* solves

the LCP. Suppose {22} does not terminate and Z is an accumulation point of {z’}

_VH()E = V) ~ 2)

. k, . . . k .
- 2 1.2y _ L2 . _ ? Pr 1y _
=V, R D) - ) =~ VAL ()~ #1)
Therefore define

' IO S 7
f%j(zzj) = f(zfl’zl'z""’ZI"“”zI-)
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For ease of notation we will drop the superscript ¢ on f%(z;[] ). Then
J
i K _ i kj
-—szf(z )(ij - sz) = fzj(zI.) -~ fz-(PI.(ZI))

—*HPI (ZI) ZI “MII

> fzj(z;iz.) ——fr(pl-».(zz.))

5 H PI (ZI ) — ZI “MI 7;

(By (2.17) and Theorem 2.1 [Mangasarian77])
> -
2l ez, ¢ &7 “LI 1;+WELz) " ~M1;1;/2

] ]
+ - ZT.)— Z7.

(By Theorem 2.1 [Mangasarian77])

> | plzj(z:i[j) - z_i[j 12 +5 5 | PI (z:[ ) - ZI “MI 1
(By (2.17))

> 710Ij (sz )2 (By positive semidefiniteness of M)

Hence,
Ry T \2 2y — 12
~Vf(z;)d =2 ’)’(91—1 (zzl) + ... GIp(zIp) )=~6(z")" =0
Now let {zzj } be a subsequence converging to z. We claim that p(zzj ) is
bounded. Suppose p(zzj ) is not bounded and suppose
( p%l (7)) A

. 1 (.2
P(sz) _ pIz(z ‘7)

L, ) )
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Then
1 p%k(zzj ) (
lim ———— = Jim (—wE7, 7, L7, T
oo | g () et TR TEE

and hence for an accumulation point p we have

p%—k(zij ) )

9+
| of, G

p=(-wEBp L7, P+ P70
This however is equivalent to
_ _ ~1 _
0#p2>0,/(wEr 1) + L )P=0
-1 _
(wBg 7)™ + Kz,7,)p>0
But this contradicts (2.18). By induction on [ for pZIk(sz ) we see that p(zzj ) is
bounded. Without loss of generality let { 2, p(zzj )} — {2, 7} and hence d=p—z.
Since p(zzj) >0
A3 AT = (1= 02T +Ap(z'7) >0 for 0<A<]
Consequently
F(z49 +AdT) > f(zzj+1) > f(z'F1) for 0<A<1
and letting j — co we get
f(z4+ M) > f(2) 0<AL1
Hence Vf(2)d > 0 and
0> —Vf(z)d= lim —Vf(z'7)d'J > lim ~8(2'3)% > 0
J—+00 J—00
Therefore §(2) = 0. Then by Theorem 2.7 and conditions (2.17) and (2.18) 2

solves the LCP. H§

When E is chosen appropriately we have the following special case.
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Corollary 2.9. (Special Case) Conditions (2.17) and (2.18) of Algorithm 2.3 hold
when M is positive semidefinite, ET.7. = Df-ll—, >0and0 < w< 2.
I 177
Proof:

(i)
«(wBr.7.)  +L7.7. - MIjzj )z =
7757 3% 2

Ly.7.+VUr1. + D17,

-1 it Tt it
=z(w “Dy.7.4+L1.7. - - z
(0™ D1, + L1;1; 5 )

1 -1 2
= 2(2w =)Dy .7.)2 27| *
57(( )P1,1;) I 21l
where the last inequality follows form the positivity of DI]- Ij and 0 < w < 2.

(i)
Lz.1. V.1,
~1 -1 iti At
2((WET.T. +Ly.g)z2=2(w "Dr.7.+ z
(wEz,1;) 1,1;)2 = A D1, 5 )

¢ '—‘1 ! 2
2w —~WVDgr. 7.+ My.7.) 27

N =

where the last inequality follows from the positive semidefiniteness of M, the

positivity of D and 0 <w < 2. |

2.7 Computational Experience
The ASOR algorithm was tested on a symmetric LCP formulation of a linear
programming problem. We state the LP in standard form.
min ¢z

st.
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where ¢ € IR™, A € R™*"and b € IR™. The LCP formulation due to Mangasar-
ian [Mangasarian84] is based on the following observation. Consider the following

quadratic programming problem

min c¢z + < | = Hz
2
st.
Az > b

z>0

The unique solution of the above quadratic program is the least 2-norm solution
of the LP provided that e € (0, for some € > 0. We take the dual of the quadratic

program and get the following dual program

€ 2
max cc+—jx +u b— Az) — vz

st.

c-+e:c~ATu~v=0

where u and v are dual variables in IR™ and IR™ respectively. After making
appropriate substitutions we get the following minimization of a quadratic function

over nonnegativity constraints

( mi)no 2—1;” ATiz+v~c!l2 —bu
u,v)>

Then the LCP formulation is an expression of the Karush-Kuhn-Tucker condi-

tions. The algorithm was tested on the CRYSTAL multi-computer. CRYSTAL is
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a set of 20 VAX — 11/750 computers with 2 megabytes of memory each connected
by an 80 megabit/sec Proteon ProNet token ring. We randomly generate an LP
which is known to be solvable. We choose € = .2 and w varies between 1.2 and 1.8.
Primal feasibilities were calculated to an accuracy of 10—°. The primal objective
function values were accurate to four significant digits.

An important question for implementing ASOR is how many updates of z Ij
should be carried out in processor j before sharing information. Pang and Yang,
[Pang & Yang87], suggest using a progressive tolerance. Therefore we iterate in
parallel until the difference between successive iterates is less than a certain tol-
erance based on a progressive accuracy strategy. Pang and Yang report success
with implementations on the IBM 4381 and the CRAY X-MP/24. However, they
compare their method with an earlier version of a parallel SOR algorithm, [Man-
gasarian & De Leone86a], which is not as effective as GPSOR.

In our experience we have noted that it is not always wise to select k > 1.
We can think of the parallel sweeps as being part of an inner iteration while that
step plus the final line search is an outer iteration. Therefore the more sweeps
we do in the inner iteration the more time consuming one outer iteration is. If
the marginal improvement due to extra inner iterations is very small it may not
be worthwhile to choose kj > 1. Our experience has been that near the optimal

point one should use only one sweep.
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We incorporated the following strategy. A master node is in charge of deter-

mining the number of sweeps at a given iteration. If

| uitl —ut |
>r

I ud —ut=1 |

use one sweep. Otherwise, use two sweeps. In our computations we use r = .25.
We note that since we were able to balance the load evenly among the processors
there was no need to have each node carry out a different number of sweeps.
However, this can be changed in case of unbalanced distributions.

Computational results are presented for LPs of size 125 x 500, 250 x 1000, and
1000 x 4000. The two smaller problems have density 5% while the 1000 x 4000
problem has density 8%. Figures 2.1, 2.2, and 2.3 graph time against number
of processors. Each graph represents an average over three random problems.
We note that in these cases ASOR tends to provide slight improvements over
GPSOR. If this algorithm was implemented on a parallel system with a slower
communication medium such as a network of workstations these differences may
become more pronounced. However, on a shared memory processor the savings of
ASOR. diminish.

In figures 2.2 and 2.3 we note that two processors solve the problem more
than twice as fast as one processor. This is due to the fact that the substitution
operator K changes as we move t0 more processors. Therefore we are running a
different algorithm as opposed to simply distributing the program. In these cases

there was a drop in total iterations which accounts for the extra speedup. This
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leads us to a certain side benefit of studying parallel algorithms. That is we can
discover faster serial algorithms! In other words if we use the substitution operator
K used in the two processor case but run it serially we should produce a faster
serial algorithm. This phenomenon was originally discussed in [Mangasarian & De
Leone86b].

Finally we note that further research may provide a more sophisticated cri-
terion to determine how many multiple sweeps should be computed at a given

iteration. Such a criterion may provide substantial improvement in the algorithm.
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Chapter 3
A PARALLEL PIVOTAL ALGORITHM FOR

SOLVING THE LINEAR COMPLEMENTARITY PROBLEM

3.1 INTRODUCTION

In this chapter we propose a  parallel distribution of Lemke’s algorithm,
[Lemke65], for solving LCPs. This distribution is designed to exploit a multi-
computer architecture where a number of processors are loosely coupled such as
CRYSTAL [DeWitt et al84].

Parallel distribution of algorithms such as Lemke’s algorithm allows for solv-
" ing much larger problems in shorter time. See [Schnabel84] for a discussion on
parallel optimization as well as a survey of work done in parallel optimization.
Bhide proposed a distributed algorithm for the simplex algorithm [Finkel et al86].
Preliminary testing was done on small LPs. The initial results showed communi-
cation overhead dominated the calculations.

Phillips and Rosen propose a parallel algorithm for solving the LCP based on
solving a multiple cost row linear program [Phillips & Rosen86]. This algorithm
handles an LCP when M is indefinite. However, they suggest using Lemke’s
algorithm when M is positive semidefinite. They present computational experience

on the CRAY X-MP/48.
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A major trend in computing has been the creation of large networks of com-
puter workstations. See [Agrawal & J agadish86] for a model for parallel process-
ing on these networks. These networks have relatively high communication costs.
Therefore it is crucial that algorithms designed to run on these networks minimize
the need to communicate. The proposed parallel implementation of Lemke’s algo-
rithm is tested on the CRYSTAL multi-computer. We also compare computational
results with an implementation on a tightly coupled multiprocessor, the Sequent
Balance 21000. This machine consists of eight processors running at 10 MHz, with
a 8 kbyte cache sharing a global memory via a 32-bit bus, with 8 megabytes of
physical memory.

Section 3.2 will discuss Lemke’s algorithm. Section 3.3 will discuss the par-
allel implementation of Lemke’s algorithm designed for multi-computers. Finally,
Section 3.4 will present a model for predicting speedups. Computational results
are compared with the predicted speedups. A comparison of results using the

Balance 21000 will be presented.

3.2 LEMKE’S ALGORITHM FOR SOLVING THE LCP

Pivotal methods are based on moving from one vertex to another on a poly-
hedral set S where

S = {z|z > 0,Mz + ¢ > 0} (3.1)
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Mangasarian has shown that the LCP 1s equivalent to a constrained mini-
mization of a concave function [Mangasarian78] which we state in the following

lemma.

Lemma 3.1. (LCP equivalence with a concave minimization problem) Let S be
defined as in (3.1). Then Z solves the LCP if and only if
n n
0=z (75— (Mz+q))+ = min y 2z — (5 — (Mz+9)i)+
. z€S !
1=1 =1
Proof :
First we note that the objective function in the minimization problem 1is
nonnegative on S. Now suppose Z solves the LCP. We need only show that 0 =
n
‘21 z; — (% — (Mz + q); )+
1=
Case I:

Suppose Z; = 0. Then
z— (2 — (MZ + q)5)4 = —(=(MZ+9);)4 =0

since

(Mz +q); >0.

Case II:

Suppose Z; > 0. Then

N

7 — (% —(Mz+q);)+ =7 —(%)+ =0
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since

(Mz + q); =0.

Therefore
n

0= % — (%~ (Mz+9);)+
=1

Hence 7 solves the minimization problem. We now show that if Z solves the
minimization problem that z solves the LCP.

Suppose Z solves the minimization problem. Then z; — (z; —(MZ+¢);)4+ =0
for:=1,2,...,n.

Case I: Suppose z; — (MZz +¢); 2 0= (Mz +q); =0=%; 2 0.

Case II: Suppose z; — (Mz +¢); <0=2% =0= (Mz +q); = 0.

Therefore z solves the LCP. H

The LCP has a solution at a vertex as a consequence of the following lemma

from [Mangasarian78].

Lemma 3.2. If the linear complementarity problem has a solution, it has a solu-

tion at a vertex of S.

Proof:

Because S is contained in the nonnegative orthant, it does not contain any
straight lines ( that go to infinity on both ends) and hence by Corollary 32.3.2 in
[Rockafellar70] the concave minimization problem must have a solution at a vertex

of S, which by Lemma 3.1 must solve the LCP. &
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Lemke’s algorithm [Lemke65] is based on the following equivalence obtained

by enlarging the space of the problem by adding artificial variables.

(w=Mz+ezg+qg=>0 )
Mz+¢=0)

wp = 20
g z20$ = 4 .
(z,ZO)ZO

| z2(Mz+¢) =0 w
(z’ZO)( )ZO
\ wo J

This representation has the advantage that we can easily identify a feasible

point. Before we specify the algorithm we need to state the following definition.

Definition 3.1. The points (z,7g), (w,wq) are said to be almost complemen-

tary if z;w; = 0 except for at most one t.

We are now ready to specify the algorithm due to Lemke.

Algorithm 3.1. (Lemke’s Algorithm)

Step I Let w be basic and z be nonbasic. Therefore w = ¢ and z = 0. Add
an artificial nonbasic variable z( and an artificial basic variable wg = 2. Increase
the value of zg until the most negative w; becomes zero. This corresponds to
pivoting on the row with most negative ¢; and column zg. The problem is now
feasible and almost complementary.

Step II Exchange a nonbasic variable and some basic variable while main-
taining feasibility and almost complementarity. Therefore the nonbasic variable
that enters the basis is the variable complementary to the variable which just be-
came nonbasic. Continue this step until the process terminates at a solution or an

unbounded ray.
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The LCP is feasible if S is nonempty. Lemke’s algorithm will converge to a

solution if the LCP is feasible and M is copositive plus or a P- matrix.

3.3 IMPLEMENTATION OF PARALLEL LEMKE

The time consuming portion of Lemke’s algorithm is the pivoting step. The
pivoting step is O(nz), therefore when n is large each iteration will be very time
consuming. The idea then is to distribute the pivoting among r processors in the
hopes of obtaining a solution r times as fast.

Suppose we are trying to solve the LCP and define
A:=[M e ¢

Then A is the pivot matrix and A.(n +2) is the right hand side where n is the
dimension of the LCP. Suppose that r is the pivot row and s is the pivot column,

then for 7 # r,j # s we have

As ooy
8T
as s _._._._.__._‘_7..

ig T Gy T

ars

The key to parallelizing Lemke’s algorithm is to note that when updating
the pivot matrix we need only elements in the pivot row and the pivot column.
Therefore there are two natural ways to divide the pivot matrix, in horizontal
blocks or in vertical blocks. Then each horizontal or vertical block will be updated

simultaneously in separate processors.
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If we divide the pivot matrix into horizontal blocks each processor has the
portion of the pivot column it needs to update all the elements in its block. There-
fore each processor needs only the pivot row to complete the update. Likewise if
we divide the pivot matrix into column blocks we need only the pivot column to
complete the update.

Because we are considering an implementation on a loosely coupled network
with relatively heavy communication costs we would like to avoid unnecessary
communication. In Lemke’s algorithm we must determine the pivot column and
row. The pivot column is always the column corresponding to the complement of
the variable which last became nonbasic. Therefore locating the pivot column is a
simple matter of keeping track of the location of the variables. This is easily done
independently in each processor. However, we find that the horizontal partition
results in extra communications to complete the ratio test necessary to determine
the appropriate pivot row.

The pivot row is selected by employing a ratio test as follows

argmin (- A n+2

r= .
1<1<n a;s

l a;¢ < 0}.

If the the pivot matrix A is partitioned in horizontal blocks each processor would
find the minimum ratio of the portion of the pivot column it owned. Then a
communication to a master processor would be necessary whereby this proces-
sor would determine the minimum of all ratios and notify the appropriate pro-

cessor with another communication. The processor which owned the pivot row
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would then proceed to share it with all other processors. Therefore this results in
2(p — 1) + 1 communications, the first p—1 communications are needed to
send the master the minimum ratio, the next communication to notify the proper
processor, and finally the last p—1 to send the pivot row.

If the pivot matrix was partitioned in vertical blocks then each processor
either waits for or sends the pivot column. Then if each processor holds a copy of
A.(n +2) each processor can independently determine the pivot row and proceed
with the update. Therefore the vertical division saves p communications.

We suggest the following scheme. Each processor ] holds a column block of
the matrix A and a copy of A 19 in its memory. Then processor j proceeds

through the following steps.

Step I.  Determine the pivot column s
If s is 1n memory
send pivot column
else
receive pivot column
Step II. Ratio Test
Step III. Pivot
Step IV. If complementarity is satisfied then
stop
else

go to step L
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3.4 COMPUTATIONAL EXPERIENCE

Table 3.1 displays the time in seconds to solve three randomly generated

problems of dimension 50, 200, and 425 on the CRYSTAL multi-computer. The

problems were tested using one to eight processors.

Table 3.1

CRYSTAL TIME IN SECONDS

Processors

p

1

Problem Dimension

50 200 425

1.8163 90.8340 629.7770

1.0159 46.5438 316.573

.7808 31.6945 212.6680

6771 24.6202 161.5050

.6261 20.4335 129.9620

5972 17.6500 110.2570

.6011 15.7600 96.0057

6164 14.2546 86.1556

To assess the speedup from using p processors we define the following mea-

surement of speedup.

Computing time on one processor

p= Computing time using p processors.
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An upper bound on Sp would be p. This would occur if there was no overhead

due to the parallelism of the algorithm. Therefore a goal in producing an efficient
parallel algorithm would be to try to approach a speedup of p for p processors.

Expected speedup based on an elementary operation count for the proposed

algorithm will be defined as

e Expected time for one iteration on one processor

P Expected time for one iteration on p processors

Note that we have both serial and parallel components of the aléorithm. Finding
the pivot column ami finding the pivot row are repeated independently in each
processor and therefore can be thought of as serial. This step is O(n). Pivoting is
done in parallel and takes -2—%% steps. We also must take into account communi-
cation costs. At each iteration one processor sends a pivot column in k(n) buffers
to the p — 1 remaining processors. Here k(n) is the number of buffers needed to
send a vector of n real numbers and is given by k(n) := [2]. Therefore k(n) is
the smallest integer greater than or equal to R, where s is the number of elements

that can be transmitted by one buffer. Therefore define

g€ . on2 + Bn _ 2n+
PT 002 /p+ Bt Ak(n)(p—1) 2n/p+ B+ k(n)(p—1)/n

where § is an unknown parameter and 7y is a ratio of time for communication

divided by the time for one operation. Using this definition we can maximize

N

speedup for fixed n by using p = . 7152@—7 x n processors. A least squares fit
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over observed data gives us f = 4.4014 and v = 143.5467. Therefore we would
expect speedup to be maximized when p is 5.9, 16.7 and 28.9 for dimensions 50,
200,and 425 respectively. Clearly, p must be an integer number. Figure 3.1 shows
the percentage of the maximum speedup we obtain for a fixed dimension given
the number of processors p. We see that the curve is steep for p < p where
p = \/ &:];%——;—; % n. However, for p > p the curve decreases slowly. Therefore
when there is a question of rounding p one should round up rather than down.
Table 3.2 compares expected speedup with the speedups obtained on test problems
for problem sizes 50, 200, and 425. Figures 3.2, 3.3 and 3.4 display table 3.2
graphically. Finally figure 3.5 graphs the computed speedups for the different
dimensions so we can see that as n grows large the speedup approaches p for
p << n.

We would expect to get better speedups on a shared memory machine like the
Balance 21000. The implementation on Balance 21000 is similar except we save
on communication costs because .f;he pivot column is in shared memory. Table
3.3 compares computed speedups on Balance 21000 with computed speedups on
CRYSTAL for problem sizes 50,200,425. We see that the CRYSTAL speedups
drop off faster as we move to more processors than the Balance 21000 speedups.
This drop is noticed almost immediately for the smaller dimensioned problem,
however CRYSTAL is competitive with Balance 21000 at dimension 425 through
seven processors. Figure 3.6 displays speedup curves of CRYSTAL versus Balance
21000 for the problem of dimension 50. Figure 3.7 displays speedup curves for the

problem of dimension 425.
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EXPECTED VERSUS COMPUTED SPEEDUPS

50
Sp
1.7878
2.3262
2.6824
2.9009
3.0413

3.0216

53
1.8227
2.4009
2.7458
2.9087
2.9467

2.9065

200

Sp
1.9515
2.8659
3.6894
4.4453
5.1464
5.7635

Table 3.3

Se
1.9646
2.8760
3.7198
4.4857
5.1677
5.7634

425

Sp
1.9893
2.9613
3.8994
4.8458
5.7119
6.5597

CRYSTAL VERSUS BALANCE SPEEDUPS

50
CRYS
1.7878
2.3262
2.6824
2.9009
3.0413

3.0216

Balan
1.8108
2.3928
3.0454
3.3500
3.7222
3.9411

CRYS
1.9646
2.8760
3.7198
4.4857
5.1677
5.7634

200

Balan
1.8891
2.8309
3.6932
4.4933
5.4505
6.3699

55
1.9850
2.9486
3.8845
4.7875
5.6529
6.4767

425
CRYS Balan
1.9959  1.9893
2.9613  2.9762
3.8994  3.9860
4.8945  4.9521
5.7119 58777
6.5597  6.7854
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Chapter 4

TWO-STAGE SUCCESSIVE OVERRELAXATION ALGORITHM

4.1 INTRODUCTION

Successive overrelaxation algorithms are characterized by fast movement into
a neighborhood of the solution followed by slow movement close to the solution.
An active set strategy would therefore be useful after a few initial iterations of the
SOR algorithm. The initial iterates of SOR are designed to identify a good guess
for an initial active set. In large—scale programming this step is crucial. Typically
active set strategies allow at most one constraint to be added to the active set at
each iteration. Lenard, [Lenard79] conducted a computational study of various
active éet strategies on small quadratic programming problems. In her study, in
general the number of changes in the active set appeared to fall in the range of %‘-
to %, where n in the number of problem variables. In addition this number ap-
proximately corresponds to the number of active constraints at the solution of the
test problems. Therefore if the initial active set chosen is not close to the solution
active set an enormous number of iterations may be required for large-dimensional
problems. Since each iteration may involve solving a large-scale problem, this is
not feasible for large-scale programming. Discussion of active set methods can be
found in numerous sources including [Gill & Murray74],[Goldfarb72],and [Hoyle86].

By contrast our proposed two-stage method provides a good initial guess of the

final active constraint set.
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In a related work [Bertsekas82] proposes a projected Newton method. He

proposes a superlinearly convergent scheme for solving

g% f(=)

using the following iteration,
AT = (22 = XD, V()4

where X! is a stepsize chosen by an Armijo-like rule, D; is a positive definite
symmetric matrix which is partly diagonal and f(z) is strictly convex. The portion
of D; which is not diag;)nal may be chosen to be the inverse of the Hessian of f(z)
with respect to the indices corresponding to a subset of the variables. Although
Bertsekas uses an active set strategy to partition the variables into two sets, strictly
speaking this is not an active set method. Active set methods are forced to remain
on a linear manifold until a certain criterion is violated. In contrast Bertsekas’
method allows the iterates to move off the active constraint set at any given
steration. This allows for multiple changes in the active set at any given iteration
hence avoiding the inherent limitations of manifold suboptimization methods.
We propose here a two-stage SOR method. The idea is to use the SOR algo-
rithm until a certain tolerance is reached and then use the current approximation
of the solution to identify a set of constrained variables. We use a second SOR

scheme for solving a complementary system of equations which leads to a new

feasible point at which the process repeats. The use of the SOR algorithm at the
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beginning helps identify a set of active constraints which may be close to the set
of active constraints at a solution. The second step is a Bertsekas-like method
which is sparsity preserving.

Section 4.2 will specify the algorithm and state optimality conditions. Section
4.3 will establish convergence results. Finally, in Section 4.4 we discuss implemen-

tation of the algorithm and computational experience.

4.2 TWO-STAGE SOR ALGORITHM

We consider the problem
min f(z) = 1zMz+ z (4.1)
2>0 2 1 '

If M is symmetric positive semi-definite solving problem (4.1) is equivalent
to solving the symmetric linear complementarity problem.

The idea of Two-Stage SOR (TSOR) is to use the SOR algorithm to approx-
:mate a solution to problem (4.1) and use this approximate solution to partition

the variables into two sets. Define
I:=1(z) = {jlz; > 0} for # a solution of problem (4.1)
Define the set at the ith iterate as follows
Z; = {]|z; < ei} for some € >0, & >e>0. (4.2)

From this we can partition M and z as follows

._. Mz,
M= a0
2
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z = [zIZ ZI.C]
i
where If is the complement of Z; in {1,2,...,n}. We guess that I¢ is the set of

indices of components of z which will be positive in the solution. Therefore we

must solve

to satisfy complementarity. We use an SOR algorithm to approximate a solution
to (4.3). Note that if M is positive definite, ¢ = 0 and IZ-C = 7T, then if we solve
(4.3) we solve (4.1) exactly in one step. |

We are now ready to specify the TSOR algorithm.

Algorithm 4.1.
Let E be a positive diagonal matrix in RXT ] let 20 > 0. Let w > 0 such

that for some v1,7v9 >0
y(@B) L+ Ky 2y vl weR" (4.4)

_ M
YWE) L+ K-y nllyl? WweR" (4.5)
2

Step 1

For 7 < | where [ is a positive integer
A1l = (zZ - wE(Mzi +q+ K(zi+1 - zz)))+

stop if A+ = 2t




58

Step 2

Direction Generation

d' = (p(z) ~ )

where . _
; PIQ(zZ)
pz") = | ' .
PIZ.(Z )
and

kooiy_ k=1 1y i
pre(z) =pzc (2 )-wBgere(Mrereppe () + Mzer, T,

tage + Kzeqe(@he() — o 1) (46)
1 1 1 ] ?

P:lzz-(zz) = (7, ~wBL7, (M, Sty (40

Stop if p(zz) = 2%

Stepsize Generation
AL = 2 + NP
where

F4 4 M) = min{f(F M AL 2 0] (48)

Go to step 2.

We are now ready to state optimality conditions for Algorithm 4.1.
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Theorem 4.1. (TSOR optimality conditions) Let M ,K,E € R" X" ge R", w>
0 and E be a positive diagonal matrix.
(a) If z solves the LCP and (WE f]:)"l + K is nonsingular, where F is any

subset of {1,2,...,n}, then p(z) = z where p(2) is the solution of (4.6) and

(4.7).
(b) If p(z) solves (4.6) and (4.7) and p(z) = z and if (wE)”';1 + K — -424— and

(wE’)"'l + K are positive definite then z solves the LCP.
Proof:
(a) Suppose z solves the LCP. I = {jlzj < €}. It is easy to verify that
27 = (27 — wET7(M72 + 47))+

Consider p‘l[c (2) = zgc —wEgegc (Mgcz+qgc+ K(p_,lzC (z)—z7c))- By rearranging

terms we get
((wEICIC)—l -+ I{Ic_’z'c)p%c(?,’) = ((wEICIc)—-l + I{ICIC)ZIC

Therefore since ((wEl—cl—c)"’"1 + K7cgc s nonsingular p%rc(z) = z. This implies
that p%c(z) — 7 for every k. Therefore p(z) = z.

(b) Now suppose p(z) = 2. One can easily show that
27 2 0,Mgz+4q7 2 O,zI(MIz + ql—) =0
We now show that

z7c > O,Ml‘cz -+ q7c > O,ZIc(MICz - ch) =0 (4:.9)
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is satisfied. It is easy to show that if pé—c(z) = z7¢c and k = 1 then (4.5) is satisfies.
We will show that this is true for arbitrary k. Assume that p%c(z) = z for some

k > 2 but p:lzc(z) # z7c. Then z7¢ is an accumulation point of the iteration
ZZ+1 feroerd Zz — wEIC,IC(MIC.ICZZZ'c + MICIZI ‘*" qIC + I{ICIC(ZZI‘—{C_:L —_ ZZZ'C))

Then since (wEICIc)"l + Kgege — -]LJZZC—IF— is positive definite and by the

argument in Theorem 2.1 of [Mangasarian?7],
MI(;Z —1L ch == 0

But then by part (a) z = p(z). In particular zgcF = p%—c(z). This contradicts the

assumption. Therefore (4.5) is satisfied. B

4.3 CONVERGENCE OF TSOR

In order to prove the convergence result we first need the following two Lem-

mas.

Lemma 4.1. Let f(z) = %zMz + qz. Let the sequence {zz} be generated by the

following SOR iteration
Al =gt wE(Mz+q+ K(zi'{"l - zz))

Then the sequence {f (zz)} is non-increasing.
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Proof :
The proof follows from a simple modification of the proof of Theorem 2.1 in
[Mangasarian77]. 1
Suppose the sequence generated by the TSOR algorithm has a convergent sub-
sequence. Lemma 4.2 will establish the boundedness of the directions associated

with that convergent subsequence.
Lemma 4.2. If 2'J — 7 then d'J is bounded.
Proof :

We have dJ = (p(zzj) — 2 ).

Since the sets T'J are finite without loss of generality assume F =11 =

799 — ... =19 = .... We will show that the components of p(zzj ), p.];:c(zzj)

and p]}-(zzj ) are bounded. We have
L) = (4 -7
pr(z7) = (27 —wErr(Mgpz ) + 9F))+

Suppose p},_— is not bounded. Then we get the following contradiction.

1% . i
0#pr = lim ——p—f—(-i.—]—-)——" = lim (#9 ~wEpgp(Mgzd + 9P+ _
oo ph() || I I oG |

Therefore p.17_-(zzj ) is bounded.

Now suppose p.’;_—c(zzj ) is not bounded. Consider the case when k = 1. Then

we have )
1 ty

Dore(2
0#p= lim fC( )

L = -wFE K D
j——)oo 1 Zj whirere fc_;c'cp
| ple(=7) |
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Therefore ((WE rc j:c)'“l + Kpcre)p = 0,p # 0 This contradicts the positive
definiteness of (uJE')'"1 + K. Therefore { p‘lfc(zij )} is bounded. The result follows
for arbitrary k by induction. H

We are now ready to prove the main result of this section.

Theorem 4.3. (TSOR convergence) Let M be symmetric and positive semidefi-
nite. Either the sequence { zz} generated by Algorithm 4.1 terminates at a solution

of the LCP or each accumulation point of { zz} solves the LCP.

Proof:

The sequence {zz} terminates only if for some 1, p(zz) = zi, in which case by
Theorem 4.1, 2% solves the LCP. Suppose now {22} does not terminate and the z

is an accumulation point of { zz} Let

fIiC(ZIC) = f(ZIZQ, z;i[z.)
and
1,(7) = Fe 1)
We have
=9 e f(4)de = =V ef()pe(=) = 7o)
~ Jrplege) = Fretehele) + 5 1 el = e e

. . 1 . .
> fzzgz(zzc) - fIiC(P%;g(Zz)) t3 I p%(z’) ~ 27¢ “%V[ICIC
7 ] ? it
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(By Lemma 4.1)
2 fre(+7e) - fz§:<p§f(zl>>
(By positive semidefiniteness of M)
- — ((p%{;(zz) — z%_c) + wEI-_cl—_c (MI.czZ + q7c
7 7 171 7 2
+ Kreqe(P7e(=)) = 7pe))
e M 7
 (@Bgege)” (el ~ 7))
1 /.1 T 12
— || pe(2") — 2 o 1¢ -
I pze(=) =21 “MIZ.CIZ.C/ 2-Krere—(wBreze) ™!
(By Taylor Series Expansion)

TII RE ANU S 1
| Pzzg:(z ) “7¢ ”(w Bgege)—\+Kgeqe—Myere/?
T 2 1 T 1
(By (4.6))
> 4 || phe(eh) — e |12
2 2

(By (4-5))

Now, we find a similar result for the second case.

Vg (e, = =Yz, ()er, (<) — 21;)
= —(Mz 2 +ag)(PY, () — 2
= (6}, (1 - 27,) + (@Bg,7) (M7, + 1)

x ((wBz,z) " ok () - i)
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1,0 7
+ |l p7.(2") — 21, _
Z, Z; ”(“’EIZ-IZ') 1
1 /.1 ? 2
it
(By Lemma 2.2. of [Mangasarian77])
> 5|l ok (1)~ # I°

(Since E is a positive diagonal)
Therefore we have

V() =~V pef(2)dge = VT, f(z")dg,
1 2
> 5 || phe() — e 2 +7 11 P, () = o 17
2 2
> v | p(z") = 2 |7

where v = min{%, ¥}
Now, suppose that {zzﬂ} — z. By Lemma 4.2 we have {p(zzj )} is bounded.
Therefore without loss of generality we can assume { 2, p(zzj )} — (2,p). We

haved = p — Z. Then
A9 4 Add > 0for 0<AS AT

where

N o= krénzré {1,zkj /dkjlzkj +dk7 < 0}.

Ly

Since { 27} is bounded without loss of generality we can assume that NI o= A

Therefore

FG9 4+ ') > FEITY > £ foro <A< X'
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and thus

F(z+Ad) > f(z) for 0SAZA (4.7)

We claim that A # 0. Since each Iic. is a finite set at least one set F occurs

J
infinitely often. Therefore without loss of generality assume Iic. = F for all j.
. J
Now, suppose 3*J — 0. Then
7: .
)
lim ;:* -=0
—00
J d*]
where )
TE% i J J
* = min{-z,/ /di|z; +di <O
dzj ke f'{ k/ k| k k }
*

since {d*} is bounded then 2! — 0 implies that —z — 0 However zJ € F
i -
and therefore z,] > & for all j by (4.2). This contradiction implies that A # 0.

Therefore from (4.7) we have

Vf(z)d>0
Then

0> —Vf(z)d= lim wVf(zzJ' )dzj > lim || p(zzj) — l|2_>_ 0
j—r00 j—00

Therefore || p(2) — 2 |2= 0. By Theorem 4.1 we have z solves the LCP.

We have the following special case of TSOR.

Corollary 4.1. Let M be symmetric positive semidefinite. In addition let K = L
and E = D~ 1 > 0 where L is the strictly lower triangular part of M and D is the

diagonal part of M. Then conditions (4.4) and (4.5) are satisfied for 0 < w < 2.
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4.4 IMPLEMENTATION AND COMPUTATIONAL RESULTS

There are two obvious questions that come to mind when implementing the
TSOR Algorithm. The first is what criterion should be used to switch from Step
1 to Step 2 of the algorithm. The second question is how do we choose k when
computing p%c(zz)

The critez’ion for switching must be such that it provides a good initial guess
of the active set at a solution. The criterion we implemented checks whether the
set Iz-c has changed every [ iterations. When that set has not changed over [
iterations then the algorithm proceeds to Step 2. The size of | is important. If we
wait too long to make the switch we lose the full advantage of moving to Step 2.
If we switch too early we may have failed to identify an appropriate set and may
spend a lot of time switching sets. Since the iterations in Step 1 are much cheaper
than those in Step 2 we would prefer to stay in Step 1 under these conditions. We
found that checking every 10 iterations was appropriate for very sparse problems,
such as less than 1% density. Checking after every 5 iterations seemed to improve
results on the denser problems.

The second question involves deciding on how much work to do to find the
direction in Step 2. Notice, that if M is positive definite and we solve exactly the
system

Mregesze + Mrer, z?zz +age =0 (4.10)
then we are essentially using Bertsekas’ method without explicitly defining D;.

However, this would involve an infinite number of SOR iterates. We could solve
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(4.10) to a stringent tolerance. This would provide a good direction if we have

identified the set correctly. If we have failed to identify the set correctly it may

not be worthwhile to do so much work for one iteration. We suggest the following

scheme

0.

4.

5.

Start with a loose tolerance, ,),i and a stringent tolerance 7. Define final

tolerance €.
Solve until || pho(+) — phg 1(z) 1< 7'

7
Compute ATLIf | (——M: — ¢)4,2(Mz + ¢)) ||< € then go to 5.
Identify Z; 1. 7,1 = I; then q/i'*‘l = 7 else 'yi'H = ozfyi for
0<a<l.

Go to 1.

Stop

In addition, we have included an upper bound on the size of k to avoid too

much time being spent on a given iteration.

The algorithm was tested on randomly generated LCPs. We randomly gen-

erate a matrix A and define

M= AAT

A random solution Z is generated and g is selected such that

z, > 0= ¢ =—M;?Z

7, =0=>¢; > —M;Z
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The performance of TSOR is compared with the standard SOR algorithm,
AL = WE(MZ + g+ KT - 2))4

where

E=D"1K=Lw>0

The convergence criterion used is
| (=M — g)y, 7 (M2 +q) |I< 5x 1077

Tables 4.1, 4.2, 4.3,and 4.4 display the results for varying dimensions of a positive
definite M. Tables 4.5, 4.6, and 4.7 display results for positive semidefinite M.
The problem density indicates the fraction of non-zero elements in the matrix M.
The solution density indicates the fraction of non-zero elements in the generated
solution z. We note that in Step 2 of the algorithm the time to complete one 1it-
eration will increase as the number of non-zero elements in the solution increases.
Therefore we tested various densities of the solution vector. The columns iter and
time indicate the number of iterations and the total time in seconds for conver-
gence using the standard SOR Algorithm. The next four columns describe the
results from the TSOR Algorithm applied to the same problem. The first column
labeled total iter indicates the total number of iterations to reach convergence.
The next column labeled SOR iter indicates the total number of SOR iterations
before switching to Step 2. The column labeled inner iter indicates the cumula-

tive number of SOR iterations needed to calculate the directions in Step 2 on the
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algorithm. The column labeled time indicates the total time in seconds for the
TSOR Algorithm to satisfy the convergence criterion. Finally the column labeled

factor compares the two algorithms by measuring

Time for SOR Algorithm
Time for TSOR Algorithm

We make the following observations about the results for positive definite M shown
in Tables 4.1, 4.2, 4.3 and 4.4.

(1) The most dramatic improvements occur when the solution density is small.

The bulk of the time spent on one iteration in Step 2 is calculating pj]f_c(zz)
?

We note that when the set Iz-c has few elements, determining the direction at

the ith iteration is much faster. Therefore we might expect the most dramatic

improvements to occur in this case.

(2) The largest number of Step 2 iterations needed for convergence was 19,and
often we need less than five extra iterations. However the number of inner SOR
iterations needed to generate these iterations rises as the density of the solution
rises. This can be attributed to the complementarity condition which causes the

system of equations
17t T 2 A

to be of much larger dimension for problems with denser solutions. Therefore the
aumber of SOR. iterations needed to solve the system to a certain tolerance is

Jarger than a smaller size problem.
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(3) SOR is not as effective on very sparse problems as it is on denser problems.
TSOR inherits some of the same difficulties as regular SOR since we are using
the SOR iterate as the basis for generating the direction. However in TSOR we
consider

Mrezgezy +arp + Moz,
The matrix Mycgc may not be as sparse as M and therefore the SOR iterate
171
to generate the direction may be more effective. Note that when we exclude the
dramatic improvements in the first two lines of Table 4.2 and the first line in Table
4.3 the improvement factor tends to be better for sparse problems.

To test for the positive semidefinite case we generated a matrix of rank % X n.
Tables 4.5, 4.6 and 4.7 display results from these tests. In Tables 4.5 and 4.6
we use the same stopping criterion as previously stated with the exception of
problems with solution density .6 and .8 in Table 4.6. These problems were run
to a tolerance of .5 x 10~ and .5 x 102 respectively.

We note that although Table 4.5 seems to mirror the positive definite results,
a comparison of Tables 4.6 and 4.2 reveals that the i)ositive semidefinite case
requires more second stage iterations. This can be explained by the fact that in
the positive semidefinite case the LCP has infinitely many solutions and as a result
there may be more changes in the active sets. In addition the resulting system
of equations may not be of full rank and in fact is not even guaranteed to be

consistent.
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Finally, we note that the principal advantage of this method over a direct
implementation of Bertsekas method is the ability to solve huge problems without
storage difficulties and in a reasonable amount of time. The largest problem we
have tested is a positive semidefinite LCP of dimension 10,000. Table 4.7 displays
the results of that run and provides a comparison with the SOR algorithm. Bert-
sekas has solved special positive definite problems with 10,000 variables using his
algorithm. The special nature of his problems allows him to use Riccati equations
to efficiently compute the Newton direction. However, we know of no method
other than TSOR, that can handle general positive semidefinite problems of this

size.




Table 4.1
COMPARISON OF SOR AND TSOR

M POSITIVE DEFINITE: DIMENSION 1500

problem solution

density density

.03131
.03131
.03131
.03131

.00427
.00427
.00427

.25
.5
7
8

.25

SOR TSOR

time total SOR wnner time
iter seconds iter  iter iter seconds

34 91.76 19 15 28 67.36
50 138.68 29 25 19 108.86
90 250.13 45 40 38 198.68
150  419.81 60 55 86  358.46

317 167.76 34 30 200 34.85
1000* 516.50 55 40 750 179.96
1499  783.40 79 60 907 348.05

Table 4.2

COMPARISON OF SOR AND TSOR

M POSITIVE DEFINITE: DIMENSION 2000

problem solution

density
.02443
.02443
.02443
.02443
.02443

.00799
.00799
.00799
.00799

* failed to converge after maximum iterations is reached

density
.25

[ IS TS NN

o

SOR TSOR

time total SOR inner time
iter seconds  iter  iter iter seconds
1000* 3877.65 31 30 4 124.30
1000* 3884.70 41 40 5 168.92
75 297.75 43 40 22  216.43
143  565.20 74 70 62  442.02
300 1202.33 95 90 100 671.87

50 70.53 22 20 20 36.95
300 424.95 54 50 169 133.80
1000* 1426.93 59 50 401 338.10
1000* 1436.06 81 70 550 624.46

72

speedup
factor
1.3622
1.2738
1.2589
1.1711

4.8139
2.8699
2.2508

speedup
factor
31.1958
22.9977
1.3757
1.2786
1.7895

1.9088
3.1760
4.2204
2.2996
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Table 4.3
COMPARISON OF SOR AND TSOR
M POSITIVE DEFINITE: DIMENSION 2500

SOR TSOR
problem solution time total SOR inner time speedup
density density iter seconds  iter iter iter seconds factor

.01429 .25 1000* 3711.53 31 30 3 119.63 31.0251

.01429 4 50 188.40 32 30 32 145.83 1.2919
.01429 .6 100 379.86 44 40 37 237.56 1.5989
.01429 7 150 570.90 51 40 124 488.05 1.1697
.01429 8 250 955.08 77 70 174 743.12 1.2852
.00477 .25 100 142.48 22 20 49 42.65 3.3407
.00477 .5 1000 1415.73 73 70 150 175.97 8.0454
.00477 T 1000 1437.76 98 80 807  793.97 1.8108
Table 4.4
COMPARISON OF SOR AND TSOR
M POSITIVE DEFINITE: DIMENSION 5000
SOR TSOR
problem solution time total SOR inner  time speedup
density density  iter seconds  iter  iter iter seconds factor
.00376 .25 50  213.70 31 30 4 138.00 1.5485
.00376 4 650 2743.88 47 40 350 501.98 5.4661
.00376 .6 450 1938.53 65 50 750  1548.47 1.2519
.00376 .8 400 1749.70 94 80 648 2210.8 .7914
.00191 .25 150 361.83 32 30 100 111.30 3.2509
.00191 4 150 364.95 52 50 77 173.53 2.1031
.00191 .6 550 1343.76 100 80 920 1219.266 1.1021

* failed to converge after maximum iterations is reached
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Table 4.5
COMPARISON OF SOR AND TSOR
M POSITIVE SEMIDEFINITE: DIMENSION 1000

SOR TSOR
problem solution time total SOR inner  time speeup
density density iter seconds  iter iter iter  seconds factor
.07106 .25 50 133.55 31 30 4 85.52 1.5616
.07106 4 1000 2655.43 32 30 15 97.98 27.1009
.07106 .6 100 272.91 57 50 39 224.26 1.2169
.07106 .8 2000* 5509.71 121 110 453 1190.95 4.6263
.03162 .25 50 62.33 22 20 16 31.38 1.9861
.03162 4 50 63.11 41 40 6 54.10 1.1665
.03162 .6 150 190.66 44 40 87 105.3833 1.8092
.03162 .8 1000* 1282.88 100 90 454 524.083 2.4478
Table 4.6

COMPARISON OF SOR AND TSOR
M POSITIVE SEMIDEFINITE: DIMENSION 2000

SOR TSOR
problem solution time total SOR inner time speedup
density density iter seconds  iter  iter iter seconds factor
.01023 .25 300 522.08 51 50 42 98.21 5.3156
.01023 4 350 611.50 65 60 214  189.78 3.2221
.01023 .6 1550 2751.82 106 90 751  725.35 3.7938
.01023 .8 4000* 7172.35 237 180 2801 3677.75 1.9502
.00393 .25 550 434.45 28 20 289 66.6166 6.5216
.00393 4 1950 1558.08 89 50 1950 511.97 3.0433
.00393 .6 2000* 1611.56 112 80 1680 673.13 2.3941
.00393 .8 2000 1629.33 259 210 2439 1584.98 1.0279

* failed to converge after maximum iterations is reached
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Table 4.7
COMPARISON OF SOR AND TSOR
M POSITIVE SEMIDEFINITE: DIMENSION 10000

SOR TSOR
problem solution time total SOR inner time speedup
density density iter seconds  iter iter iter seconds factor
.00038 .25 4000* 10480.83 111 40 3533 2024.30 5.1770
.00038 .25 1900  4969.20 78 40 1900 1132.95 4.3860
.00038 4 2000 5205.53 107 60 2350 2215.06 2.3500

.00129 .25 10000* 61560.50 73 40 1650 1716.06 35.8731
.00129 .40 7400 45667.65 164 120 2200 3994.11 11.4337

* failed to converge after maximum iterations is reached
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Chapter 5
A HYBRID ALGORITHM FOR SOLVING

THE LINEAR COMPLEMENTARITY PROBLEM

5.1 INTRODUCTION

In this chapter we propose an efficient hybrid algorithm to find the exact
solution of

1
min —zMz + gz
2>0 2 !

when M is symmetric and positive definite. This algorithm is very fast for medium-
sized problems where the dimension n is of the order of 100.

The proposed algorithm is based on a projected Newton method presented by
Bertsekas, [Bertsekas82]. Bertsekas presents a superlinearly convergent algorithm
for solving

glzil(l) f(2)
when f(z) is a strictly convex twice differentiable function.

The basis for Bertsekas’ method is to find a feasible descent direction and to

take a step along that direction. In order to find his descent direction Bertsekas

partitions ' into two sets. We define

e = il =0, 2E) 5 o)
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To generate a feasible descent direction he takes a gradient step projected on the
nonnegative orthant for those variables with indices in F +(zi ). For the remaining
variables he takes a Newton step projected on the same orthant.

A very important aspect of our proposed approach is the identification of
active constraints which we will carry out by a preprocessing procedure which will
greatly speed up the original algorithm proposed by Bertsekas. In particular we
make the following changes in Bertsekas’ algorithm. First we redefine the division

of the variables as follows.
TH(e") = {jl} = 0}

This new partition saves checking the gradient at each iteration. It also provides
a conservative estimate of the positive variables at the solution. Since the bulk
of the work at each iteration is done calculating the Newton direction we try to
make this set as small as possible.

Secondly, we note that the Newton step involves taking the inverse of a portion
of the Hessian. This step is O(m?) where m; is the cardinality of the complement
of I+(zi) in {1,2,...,n}. In the quadratic case we see that if I+(z0) = I%(3)
where 7 is the solution then we identify the solution in one step. However, if we
have a poor estimate of I+(zi) then a number of expensive iterations may be
taken before identifying the solution. Therefore, we propose an SOR algorithm
as a preprocessing step. The SOR iteration is cheap and moves quickly into a

neighborhood of the solution. Therefore after a finite number of SOR iterations
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we might expect a good estimate of ZF (%), thereby insuring few Newton steps.
This preprocessing step makes a very significant contribution to the speedup of
the algorithm.

The final modification involves determining the step size. Bertsekas uses an
Armijo-like stepsize. Because of the quadratic nature of the LCP a line search step
is very cheap. Therefore we use a line search instead of the proposed Armijo-like
stepsize.

In Section 5.2 we will formally state the proposed hybrid algorithm. In Section
5.3 we'll discuss convergence properties. Finally in Section 5.4 we’ll present some

computational results.

5.2 THE HYBRID ALGORITHM

The set I+(zi) as previously defined has an undesirable property. That is
given a sequence { zz} of interior points that converge to a boundary point z the
set ZT(z;) may be strictly smaller than the set Z71(2). Therefore, as suggested

by Bertsekas we redefine the set as follows. Let
w? =|| 2 (zZ - (.MzZ +a)4) I, e = min{e,wi} for some € > 0
T = {310 < 25 < 1)
If={jl1<j<nJi ¢ L;}

We are now ready to state the algorithm.
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Let E be a positive diagonal matrix in IR?*" let 20 > 0. Let w > 0 such

that y(wB) "t + K — My > 7| y [|? for v > 0.
Step 1
For i < [ where [ is a positive integer

Preprocess
ATl = (- WB(MZ + g+ KT~ )

Stop if A+l = 4t
Step 2

Direction Generation

d = (p(z}) - 2)
where |
: p7.(2%)
P(ZZ) = L;—:c(zz)}
P;rz-(zi) = (zZIZ - wEg,7.(M, 2+ 97,)) +
sz(zi) = “’(szlf)_l(qlf +Mrer, ziIZ,)

stop if 4 =0.
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Stepsize Generation

zi+1 — + A

where
F( + Ny = min{f(zF + Ad)|2 + Ad > 0}
A>0 '
and
1
f(z) == —2—zMz + gz
Go to step 2.

We state the following optimality conditions.

Theorem 5.1. (Hybrid optimality conditions) Let M, K, E € R"*", g € IR,
w > 0 such that E is a positive diagonal matrix.
(a) If 2t solves the LCP and M has nonsingular principal minors then p(zz) s

(b) If p(2t) = 2 then 2% solves the LCP.

Proof:

(a) Suppose 2t solves the LCP. Then
W =] £ - (2 (M2 + @)y |=0=>¢ =0

Therefore

T; = {jl2% = 0}
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Then clearly, 0 = z; = p](zl) for j € Z;,. Now j € Iic = szi +4¢; =0. Since

M has nonsingular principal minors zZIc is the unique solution of

7

M+e cziv 4+ M+ye _Zi'_+q c = M~ cZi +q c =0
zeze%e + Mrer, 7, +azg = Mzezerze 4

Therefore pzic(zi) = zch
?
(b) Now suppose p(z*) = 2*. We have z; = (z; - ijj(szZ + ¢j)) for
j € Z;. It is easy to show that if z; > 0 then szi +4qj = 0 and if zz =0
then M]-zi +q; > 0. We also have Mycyczye + Mfl'-cI;in +qc =0 and
171 7 ?

ng(zi) = z7¢ > 0. Therefore 2% solves the LCP. 1
v 7

5.3 CONVERGENCE OF THE HYBRID ALGORITHM

In this section we will show that the algorithm terminates in a finite number
of steps when M is positive definite. We first show that every accumulation point

solves the LCP.

Theorem 5.2. Let E be a positive diagonal matrix in IR"X"™ and w > 0. If M
is symmetric and positive definite then every accumulation point solves the LCP.
Proof :

The sequence {zz} terminates only if for some i, p(zi) = zi, in which case by
Theorem 5.1, 2% solves the LCP. Suppose now {zz} does not terminate and that

% is an accumulation point of {zz} Let

T = {j] 0< 2 < €}
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We partition
z = [zzi’inc]
Also let

f(z) = %-zMz + gz

For ease of notation we shall write

2, = 2T,
and similarly
)
ZI-C «-— ZIC
12 ?

We will first demonstrate that in Step 2 we derive a feasible descent direction.

Now

N 7 3
v f( ), = - g ) - )
= —(Mr,2* + QIi)(PIZ-(ZZ) - 2T.)
= —_(pIZ'(zi) - zIZ + WEI,I:IZ' (MIZ zi + QI,I: ))
~1 i
x (wBT. 1) (pz,(=") 2T.)
I\ 2
>| pz.(") - 21, |2 1
¢ ? (wEIiIi)
(By Lemma 2.1 in [MangasarianT7]

> 11 |l p7. (7)) = 27, 12
A A
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where 1 is the smallest diagonal element of (wE)’l.

Now consider the direction corresponding to Z'z-c. We have

—~VIZ_cf(ZZ)dZI_c = —Vzicf(zz)(PIé:(zz) - Zzzg:)
A

= —(Mpc2" + gre)(pre(z') — 27¢)
1 2 2 A

= —(Mypcz" + gre)(pre(z') — 27¢)
1 A 2 2
+ (Mgegepre(z") + Myeg. 21, + aze)(pre(z') — 27¢)

e gL Tt 7 7 7
L pre(s) — e I2
| PIZ,C( ) 218 ”Mffff

2%ﬂhqdf)~%qﬂz
VA

where 79 is the smallest eigenvalue of Mzcrec.
17

Therefore

=V f(z")d" 2 | pz; (") - 21, 12 +72 | pzz,c(zz) 2 12> |l p(z*) — * |12

where v = min{vy{,¥2}.

Now, suppose that {sz} — z. We claim that p(zzk) is bounded. If it were

not either prc (zz) or p, (zz) is unbounded. Suppose P, (zz) is unbounded.
'k k k

Since there are a finite number of indices we can assume without loss of generality

that F :=1; % is the same for all k. We have

pr(2'k) — lim (z}”WEFf(MFZ}]'C +97))+ _

k—oo || pr(s'k) || ko0 Ip£(="F) |

PF
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But this is a contradiction since p must lie on the unit ball. Now suppose
that p}—c(zzk) is unbounded. We have

?

Mpepeppe(sh) + Mpcgsf +aF _
I p£(2"*) |

Therefore, by taking the limit as k tends to infinity we have M e repre =

0

0= prc =0, since M is positive definite. But this contradicts the fact that pre
lies on the unit ball. Therefore p(zzk) is bounded. Then without loss of generality

we assume {zzkm(zzk)} — (2,p). This gives us d=p-—Z.

Then
Ak 1 Adbk > 0 for 0< A< Xk
where _
e
Xk = min {1, ! [z;k +d;’c < 0}.
leFc dzk

Since Mk is bounded without loss of generality we can assume that Xk — X We

have

F(k 4 Adik) > f(RTY) 2 f(RH1) for 0 <A< X

Therefore

FE+M) > f(Z) for 0<AZA

Suppose A = 0. Then for k large enough we have

ik

3k = :
d.f
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where
ik —atk
“*  — min {

|2 % + ol”C < 0}
dzk leF¢ 2
* l

Now since d'k is bounded we have zik — 0. But zik > € - Therefore without

loss of generality we have ¢; 7 0. But this implies that

lim wk= lim | 2k — (2 — (M2 +g)3) =] 2= (2= (MZ+9)4) I= 0
k—o0

k—o00

Then Z solves the LCP.

If X > 0 then

Vf(z)d >
. Then

0> ‘“Vf(?)(i: lim —Vf(zzk)dzk > khm v ” p(zzk) Zk ”22 0

J—00

Therefore || p(2) — 2 |2= 0. By Theorem 5.1 we have Z solves the LCP. |

We can show the entire sequence converges using results developed in [Man-

gasarian77].

Theorem 5.3. Suppose M is symmetric and positive definite then the sequence

{22} generated by Algorithm 5.1 converges to the unique solution of the LCP.
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Proof :
‘We have

fE) < )y =c Vi
A>0 Vi

By Lemma 2.3 in [Mangasarian77] and the positive definiteness of M we have the
sequence {zz} is bounded. Therefore { zz} has an accumulation point which by
Theorem 5.2 solves the LCP. Since Z is the unique solution of the LCP and the
sequence { zz} is bounded every subsequence has a unique accumulation point Z
which implies that the sequence converges to Z. |

To show that the algorithm converges after a finite number of iterations we

need a nondegeneracy assumption at the solution. We assume

7+ Mz+qg>0 (5.1)

With this assumption we state the following result.

Theorem 5.4. Assume M is positive definite and (5.1) is satisfied at Z the unique
solution of the LCP. Then the algorithm identifies I and I at the solution in a

finite number of steps.
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Proof:
From theorem 5.3 we have convergence of the algorithm therefore #* — z and
M2z 4+q— Mz-+gq. Let

I={jlz; =0}

We have

wi =|| 2 — (¢ — (M2 + 9) |

For1 large enough ¢; = w; and ¢; becomes arbitrarily small. Now, since M] zi—}—q —

Mj:?—l-q > 0 for § € Z then we have
(z;. —(M;z" + )4 =0

for large enough i. Therefore

Therefore Z; 2 T for ¢ large enough. Likewise, for j € I¢ for large enough ¢ we
have

;
%

> €;
Therefore for i > K, for some K > 0 we have identified the sets ITand Z¢. &
From this we see that after identifying the appropriate set we can set those

variables in the set Z to zero and it reduces to taking a Newton step in a subspace.

Since the function is quadratic this will identify the solution in one step.
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5.4 COMPUTATIONAL RESULTS

We tested the hybrid SOR on randomly generated problems. We first generate

a random n X n matrix A, where n is the dimension of the problem. Then we define

M= AaT

We then generate a random solution of a prescribed density and choose ¢ such
that the random solution solves the resulting LCP.
Table 5.1

NUMBER. OF ITERATIONS: HYBRID VERSUS PIVOTAL

Hybrid Pivotal

solution

density Step 1 Step 2 iter
.25 20 1 60
.50 30 1 206
.80 30 4 38
.25 20 1 99
.50 20 1 113
.80 30 1 26

Table 5.1 displays the results from a test designed to determine the importance
of Step 1 of the hybrid SOR algorithm, the SOR preprocessing step. We tested
problems of dimension 100 using Algorithm 5.1 as stated and using just Step 2 of
Algorithm 5.1. We label this latter algorithm as a pivotal algorithm in Table 5.1.
The column labeled solution density displays the fraction of non-zero elements in

the solution vector. Under the label Hybrid there are two columns labeled Step
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1 and Step 2 which give the total number of SOR iterations and total number of
pivotal iterations, respectively, to solve the problem using the hybrid algorithm.
Under the label Pivotal we see the total number of pivotal iterations when we skip
the SOR preprocessing step 1.

We note that in all but one case we needed only one pivotal iteration to find
the exact solution when we used SOR preprocessing. In addition, in all but the
final case the total number of iterations, SOR iterations plus pivotal iterations, is
less than the total number of iterations when we skip the preprocessing step. We
note that the SOR iterations are significantly cheaper than the pivotal iteration
so that even in the final case it is advantageous to use the preprocessing step.

Table 5.2 displays the results from testing problems ranging from dimension
100 to dimension 800. The same problems were also solved using the SOR algo-
rithm, that is Step 1 of Algorithm 5.1, for comparison purposes. The last two
columns display time in seconds to solve the problems using the Hybrid and SOR
algorithms. We terminate the SOR algorithm when the following condition is
satisfied

| (=M — )y, 2 (M +q) floo< 5 x 107

We make the following observations.
1) The hybrid SOR algorithm performs best when the solution density is
small. This is because the pivotal iteration is comparatively cheaper than one

in which the solution is of high density. Therefore if we know a priori that the
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solution is likely to have many zeroes this algorithm is a fast effective method for
determining the exact solution.

2) In only five problems, numbers 5, 6, 12, 14 and 15, are the times to solve
the problem using the hybrid algorithm versus using the SOR algorithm different
by a factor greater than two. Of those problems 5,6 and 14 are solved much
faster by the hybrid algorithm. The SOR algorithm was significantly better in
only problems 12 and 15. In both cases the solution density was high. In most
cases the times were comparable. Since the hybrid algorithm provides an exact
solution, this algorithm proves to be better than the SOR algorithm for medium
size problems.

Finally we note that the hybrid method provides an efficient way to identify
the exact solution for large LCPs when it’s known that the density of the solution
is likely to be small. Table 5.3 displays results of testing large problems with
this property. Storage considerations alone make it impossible to apply Lemke’s
algorithm, [Lemke65]. The hybrid algorithm can find the solution in a matter of

seconds.
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COMPARISON OF THE HYBRID METHOD WITH SOR

Hybrid SOR
problem problem solution total SOR pivotal time time
number dimension density density iter ater iter  seconds seconds

1 100 .2959 .25 21 20 1 2.40 4.08
2 100 .2959 .50 31 30 1 3.45 4.08
3 100 .2959 .80 34 30 4 17.61 16.96
4 200 .0182 .25 21 20 1 1.36 2.28
5 200 .0182 .50 21 20 1 2.51 11.55
6 200 .0182 .80 31 30 1 5.76 46.70%*
7 300 .1519 .25 31 30 1 19.25 24.73
8 300 1519 .50 31 30 1 31.91 25.15
9 300 1519 .80 41 40 1 79.08 76.83
10 500 .0585 .25 21 20 1 17.05 29.86
11 500 .0585 .50 31 30 1 60.62 30.36
12 500 .0585 .80 81 80 1 273.25 122,93
13 800 .0086 .25 21 20 1 10.90 11.06
14 800 .0086 .50 31 30 1 46.15  209.95
15 800 .0086 .70 75 70 5 704.56  225.03

* failed to converge after maximum iterations is reached




Table 5.3
HYBRID ALGORITHM ON LARGE-SCALE LCPs

Hybrid Method

problem problem  solution total SOR pivotal Hybrid
number dimension  density  density  ster  aler iter time
16 1000 .0094 .10 21 20 1 11.68
17 1000 .0094 .25 21 20 1 23.82
18 5000 .0008 01 21 20 1 34.07
19 5000 .0008 .05 21 20 1 44.87
20 5000 .0008 .07 21 20 1 52.15
21 10000 .0006 .01 21 20 1 85.45
22 10000 .0006 .02 21 20 1 90.55

23 10000 .0006 .03 21 20 1 99.17
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Chapter 6
A HYBRID METHOD FOR SOLVING

POSITIVE SEMIDEFINITE LCPs

6.1 INTRODUCTION

In this chapter we consider the problem

1
min —zMz
=% 22 4+ qz

for symmetric positive semidefinite M. In Chapter 5 we described an effective
hybrid algorithm for solving the problem for positive definite M. This method
involved partitioning the matrix M into two subsets, MIi and MIZC and then
solving
Myegezge + MzeT. Z&’ +q7e =0 (6.1)
A (A 1
When M is positive definite (6.1) is guaranteed to have a unique solution. However,
if M is positive semidefinite the solution may not be unique and in fact may have
no solution. Therefore, in order to apply a hybrid method to the important class
of positive semidefinite matrices a new approach is necessary.
One approach is to perturb the matrix M to make it positive definite using
the Tihonov regularization. This approach was suggested by [Subra,ma,nianSS].
The disadvantage of this approach is that the perturbation parameter must be

driven to zero which may lead to computational instability.
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Another approach is to use the proximal point algorithm [Rockafellar76a] and
[Rockafellar76b]. In this method we also perturb the matrix M to make it positive
definite. In addition we perturb the vector ¢ by a term depending on the previous
iterate. This method also involves solving a sequence of quadratic programming
problems.
We propose an iterative procedure based on the algorithm presented in Chap-
ter 5 which does not involve solving a sequence of quadratic programming prob-
lems. At each iteration we solve

(MIZ'C‘IZ'C + 5ZI)ZIic + MIZ‘CIi 2, + q‘Iz_c - 5zzzI¢ =0 (6.2)

A

where 6 > 0. This problem is guaranteed to have a solution and provides us
with a descent direction for the original problem. We note that (6.2) is simply
a proximal point iteration on the system of equations (6.1). However, we need
only take one step to determine a descent direction. In addition, there will be no
restriction on §t other than being a positive number.

In Section 6.2 we discuss the proximal point algorithm. In Section 6.3 we will
present the proposed modified proximal point algorithm. In Section 6.4 we will
provide convergence results. Finally, in Section 6.5 we will present computational

results.
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6.2 PROXIMAL POINT ALGORIHTM

The proximal point algorithm was developed for solving general variational
inequalities with a monotone operator [Rockafellar76a]. We will restrict our dis-
cussion here to the problem of solving the linear complementarity problem. For
various applications of the proximal point algorithm see [Ha80],[Cheng81], and [De
Leone85].

We consider the problem

1
in —zM 6.3
min 52 z+qz (6.3)

In Chapter 5 we discussed a method that finds an exact solution when M is
symmetric and positive definite. However, when M is positive semidefinite algo-
rjthm 5.1 is not guaranteed to converge. We propose applying the proximal point
algorithm to overcome this difficulty. Having the point zi, the proximal point

algorithm finds a new point 24+1 which solves the following problem
. 5 .
min f(22") = R R Lt (6.4)

where {62} is a sequence of real numbers bounded away from zero. We note that
since f(z, zz) is strongly convex then problem (6.4) has a unique solution.

The equivalent LCP is as follows. Find z € IR™ such that
220

(M 46z +q-872 20




96

A(M 480Dz +q— 62 =0

Since M + 6T is positive definite we propose using Algorithm 5.1 to find each
successive iterate in the proximal point algorithm. We now formally state the

proposed proximal point algorithm.

Algorithm 6.1.
1. Let 29 =0
2. Let z'11 be the unique optimal solution of problem 6.4
3. Stop if A+l = 2 else go to 2

From [Rockafellar76] we have the following convergence theorem.

Theorem 6.1. Assume (6.3) has a solution, then the sequence { zz} generated by

Algorithm 6.1 converges to a solution of (6.3).

6.3 THE MODIFIED HYBRID ALGORITHM

In this section we state a variation of Algorithm 5.1, as described in Chapter

5, for positive semidefinite LCPs. As in Chapter 5 we define the sets as follows.
w =|| 2t — (zZ - (Mzi +a)+ I, e = min{e,wi} for some € > 0
I; == {jl0 < z; < €'}
I¢ = {jl1<j<nj ¢ L}

We are now ready to state the algorithm.
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Let E be a positive diagonal matrix in IR™X™ let 20 > 0. Let w > 0 such

that y((wE)™1 + K — —AQ/‘L)y >y |2 for v > 0 and Vy.
Step 1

For 1 < | where | is a positive integer
A1 = (zi - wE(Mzi +q+ K(zi+1 - zz)))+

Stop if A+ = 2t
Step 2
Direction Generation
Let ' >8>0

U CORED
i ACH
p(z") = \:pl'zc(zz):\

pr, () = (og; — wBL7,(Mz, =" +a7,)+

where

pre(') = —(Mzeze + 6 1) gge — 8'oze + Mzer.71;)
? 2 1 ? 2 ?

Stop if 4 =0.
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Stepsize Generation

ATl — n AL
where
£+ Ad) = min{f(z* + Ad))|2 + Ad = 0}
A>0
where
f(z) = %zMz + qz

Go to Step 2.

We state the following optimality conditions.

Theorem 6.2. (Modified Hybrid Optimality Conditions) Let M, K, E € IRTXT,
g € IR™, w > 0 such that E is a positive diagonal matrix.
(a) If 2% solves the LCP and M is positive semidefinite, then p(zz) =zt

(b) If p(zz) = zi, then #* solves the LCP.

Proof :

(a) Suppose 2% solves the LCP. Then
! =|| 2t - (zi - (MzZ + @)+ |[=0= € =0

Therefore

I, = {z[z; = 0}
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Then clearly, 0 = Zj = pj(zz) fOI‘j c IZ NOW] € IZC = M]zz -+ q] = 0,
Therefore
Myczie +a7c = MI.CI.C%.C tage =0
2 g 7 7t T ?

Now by Algorithm 6.2 direction generation
(Mzeze + 8 Dpge(2') + age = 8" 27c = 0
() @ ? ?
and hence pIg(zi) is unique. But we also have
1
0= MIcZZIC -+ qu_: = (MICZC -+ 521)Z%c + qI_c - 5Zz1-c
¢ i 17t i 1 2

Therefore pl—g(zi) = z7c.
7 ?
(b) Now suppose p(z*) = z*. We have z; = (z; - ijj(szi +¢;))4 for
j € I;. It is easy to show that if z; > 0 then szi +q; = 0 and if z; = 0 then

M; 2+ qj 2 0. We also have from p(zi) = 2% that
0= (Mzcpc + 5iI)ZI_c + g7c — 5izl-_c = Mycqe + Mgcg.27. +47¢
e [ 1 ? 17 g7 Tt 2
and pIg(zi) = zg¢ 2 0. Therefore 2% solves the LCP. 1§
7 7

6.4 CONVERGENCE OF THE MODIFIED HYBRID ALGORITHM

The following theorem will show that every accumulation point of Algorithm
6.2 solves the LCP. In addition the proof of this theorem demonstrates that every
Step 2 iteration of Algorithm 6.2 provides a descent direction for the original

problem. This is in contrast to the approach suggested in Section 6.2. In this
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algorithm the Step 2 iterations of Algorithm 5.1 are inner iterations. Each of
these iterations provide a descent direction for the current perturbed quadratic
program which may not be a descent direction for the original problem. We are

now ready to state the convergence theorem for Algorithm 6.2.

Theorem 6.3. (Convergence) Let E be a positive diagonal matrix in IR™*X™ and
w > 0. If M is symmetric and positive semidefinite then every accumulation point
of Algorithm 6.2 solves the LCP.

Proof:

The sequence {zz} terminates only if for some 2, p(zz) — 2%, in which case by
Theorem 6.2, #t solves the LCP. Suppose now {22} does not terminate and that

7 is an accumulation point of {zz} Let
T = {il0< 2 <)
We partition
z 1= 2., 27c]
b

We will first demonstrate that in Step 2 we derive a feasible descent direction. For

convenience of notation we write

and similarly
_ 1
ZI'C —_— ZZ-C
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Now
7 G =~V f e, o)
= —(Mg. 2" +q7,)(p; (") — 71;)
- i _ i ,
= (pl"i(z) 27, +wEIiIi(MIiZ +qu))
=1 i i 2
< @ELz) M eg, ) — o) I pg ) = o g
. it
>\ pr.(24) = 2, I? _
Il pz,( T, ”(WEIZ-Ii) 1
(By Lemma 2.1 in [Mangasarian77])
> 1y _ 2
> 117, () = 71, |

for ~ the smallest diagonal element of (wE)‘"l.

Now consider the direction corresponding to Iic. We have
"szg:f(zz)df'[i = "'VIz(:f(zz)(PIiC(zz) - ZZIZC)
= —(Mgegedye + Myer, 27, + 4ze)(pre(s") — 27¢)
] A 2 1 ?
+ (Mgege + 6 I)pre(z") + Myer. 27, + age = 8'21¢)
171 1 2 7 7
x (pre(2*) = z7¢)
7 7
=l pze(=") ~ #z¢ I3 -
5 . MI¢I¢+6ZI
17t
= 8" | pge(z) = #ze I”
1 1
Now suppose that {zzlb} — Z. We claim that p(zzk) is bounded. If not then

either p7c (zzk) or pIik (zzk) is unbounded. Since there are a finite number of
'k

indices we can assume without loss of generality that F = Z; P for all k.
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We have
pr= lm _prER) oy (f _wEfj:(MfIsz taED+ _ 0
k—oo || pp(2'k) || k-0 | pr(z*k) ||

But this contradicts the fact that pz lies on the unit ball. Now suppose that
pj:c(zik) is unbounded. We have
. . 2: . i
(Mpoge+ 8k Dppe(k) + Mpepzf +ape — 6% “Fe _,
| prc(z*k) |

Taking limits we have (M zcrc + 6I)prc = 0 = prc = 0, since M is positive

semidefinite. But this contradicts the fact that p = lies on the unit ball. Therefore
p(zzk) is bounded.

Without loss of generality we assume { Ak, p(zzk)} — (2,p). This gives us

d=p—2
Then
Ak 4+ Ad'k > 0for 0< A< Xk
where
1 . —z'k i ik
Ak = min {1, — lzl +dl < 0}.
leFe¢ 'k

Since Mk is bounded, without loss of generality we can assume that Xk — X We

have

F(k 420k 2 fERTY) 2 fERHL) for0 <A< X

Therefore

FE+ M) > f(2) for 0<SALZA
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Suppose that X = 0. Then for k large enough we have

7
;‘\ik — —Z*k
ik
where '
——zilC Zk ?
= m{ | ko dl <0}
d*k leF¢

But zik > ¢tk . Therefore without loss of generality we have &k — 0. But this

implies that

fim wik = lim |k = (- (e a)p) |l F (- () =0

k-—o00

Then Z solves the LCP.

If X > 0 then

Vi(z)d =
We let
o'k = min{éik,fy}
Then since o’k is bounded we can assume without loss of generality that o'k —

& > 0. Then

oz~VﬂaJ2ﬁg;Jkume~¢%n=anma—fnzo

Thus p(Z) = 2, and by Theorem 6.2 2 solves the LCP. 1
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6.5 COMPUTATIONAL RESULTS

We tested Algorithm 6.1, the proximal point algorithm, and Algorithm 6.2,
the modified hybrid algorithm, on random positive semidefinite LCPs. The prob-
lems were generated to have rank % x n, where n is the dimension of the problem.
For the proximal point algorithm we used a constant parameter of § = .001, which
experimentally proved to be a good choice. We used Algorithm 5.1 of Chapter 5
to solve for each iterate.

In the modified hybrid algorithm we start with a parameter § = 1075, We

then update & as follows.
If T4 1=1; then s+l = max(.léi,lo_lo)
Our stopping criterion for both methods was
| (~M2 — g), (M5 + q) lloo< 5 x 1074

Table 6.1 displays the results of tests on twenty problems runon a VAXstation
II. Tests were done for varying problem dimension, density and solution density.
Under the heading Proximal Point we have two columns labeled outer ster and
inner iter. The former is the number of proximal point iterations. The latter is
the number of Algorithm 5.1 iterations. The last column under this heading gives
the total time in seconds to reach the stopping criterion. The results for Algorithm

6.2 are displayed under the heading Modified Hybrid. The column labeled SOR



105
iter displays the number of SOR preprocessing iterations. The second column
labeled piv iter displays the number of Step 2 iterations. Finally, the last column
gives time in seconds.

We see from Table 6.1 that the modified hybrid algorithm is consistently
faster than the proximal point algorithm. We also note in half of the problems
run only a single costly step 2 pivotal iteration is needed when using the modified
hybrid algorithm. This seems to indicate that the direction obtained by solving
the perturbed system of equations provides us with a good descent direction for

the original problem.
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Table 6.1
PROXIMAL POINT ALGORITHM VERSUS
THE MODIFIED HYBRID ALGORITHM

Proximal Point Modified Hybrid

prob prob  prob sol outer inner time SOR pw time
#  dim density density iter  dter  seconds ler iter seconds
1 100  .3875 .25 2 41 10.06 20 1 2.93
2 100  .3875 .50 2 50 10.61 30 1 4.76
3 100  .3875 75 6 132 78.86 20 10 38.21
100 .0729 .25 3 71 7.00 20 2 1.56

5 100 .0729 .50 24 292 37.43 30 1 1.58
6 100 .0729 .75 5 162 51.93 40 11 22.06
7 200 .3792 .25 2 41 43.10 20 1 14.25
8 200  .3792 .50 2 61 66.76 40 1 30.00
9 200 .3792 .75 3 111 199.23 70 4 114.15
10 200 .0393 .25 4 61 15.63 20 1 2.16

11 200 .0393 .50 30 372 205.68 50 3 13.50
12 200 .0393 15 500* 5142 7382.43 40 10 77.15

13 300  .3577 .25 2 50 107.93 40 1 59.73
14 300  .3577 .50 2 61 172.73 40 1 75.21
15 300  .3577 .75 4 121 936.03 50 6 427.43
16 300 .0427 .25 2 51 32.03 30 1 5.35

17 300 .0427 .50 10 191 406.53 50 8 101.26
18 300  .0427 75 14 232 831.15 60 6 154.78

19 400  .0347 .25 4 61 64.26 20 1 7.58
20 400  .0347 .50 17 221 632.23 50 3 83.20

* failed to converge after maximum iterations is reached
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Chapter 7

COMPARATIVE COMPUTATIONAL RESULTS

7.1 INTRODUCTION

In this chapter we will compare computational experience by using the vari-
ous algorithms proposed in this thesis. These tests will be performed on positive
semidefinite symmetric LCPs of medium-—sized dimension. We recall that in Chap-
ter 2 a parallel version of an SOR algorithm for solving LCPs was presented. Here
we use the serial version of the algorithm, where the substitution operator K is
chosen to be the strictly lower triangular part of M

In Chapter 3 we presented a parallel version of an algorithm due to Lemke.
This algorithm is currently widely used for solving LCPs. We use a serial imple-
mentation of the Algorithm coded in Fortran 77 .

In Chapter 4 we proposed a two-stage SOR algorithm (TSOR) designed to
solve large sparse symmetric positive semidefinite LCPs. In Chapter 5 we pro-
posed a finite algorithm to solve positive definite symmetric LCPs. Although this
algorithm is not guaranteed to converge for positive semidefinite LCPs we will test
the algorithm to see how often it converges. This algorithm is actually a hybrid
SOR./Newton algorithm. Here we will call the algorithm Hybrid. Finally, in Chap-
ter 6 we modified the hybrid algorithm to solve positive semidefinite symmetric

LCPs. We will denote this algorithm Modhyb.
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In Section 7.2 we will describe the specifics of the tests we ran. In Section 7.3
we will present our results. Finally, in Section 7.4 we will suggest some further

topics of research.

7.2 TESTING SPECIFICATIONS

We tested the algorithms on random positive semidefinite symmetric LCPs.
The matrix M was generated so that it had rank % x n where n is the dimension
of the matrix M. A random vector was generated and g was chosen so that a
prescribed random vector solves the LCP.

We identified several factors that might affect the relative performance of the
algorithm. Those included

1) problem dimension n

2) problem density (fraction of nonzeros in M)

3) prescribed solution density (fraction of nonzeros in the solution)
Thus, our tests involved varying these factors one at a time while holding the other
factors fixed.

All algorithms were coded using Fortran 77 and were run on the VAXworksta-
tion IL. All floating point operations were done in double precision which provides
about 16 figure decimal accuracy. We note that Lemke’s algorithm provides an
exact solution. The rest of the algorithms were run until the following criterion

was reached

| (=M — g)4, 2" (M + q) [loo< 5 x 107 *
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In all the algorithms presented in this thesis we use the same parameter specifica-

tions as well as any heuristics presented in the previous chapters.

7.3 PERFORMANCE RESULTS

Table 7.1 displays results when we held problem dimension and problem den-
sity fixed at 100 and .07 respectively. We then allowed the generated solution

density to vary between .25 and .75. We display CPU time in seconds.

Table 7.1
EFFECT OF SOLUTION DENSITY ON ALGORITHM TIME

solution Hyb Modhyb SOR TSOR Lemke
density time time time time time
.25 1.45* 1.56 7.00 2.01 14.43*
.25 .93* 1.03 1.40 .70 12.43*
.25 92% 1.02 8.43 1.72 12.82*
.50 1.55% 1.58 19.53 4.48 20.38%*
.50 2.63* 1.88 4.18 5.98 25.07*
.50 1.23* 1.35 1.48 .95 19.56*
75 f 22.06 52.56 87.98 34.03*
.75 11.45 5.15 265.68 176.63 32.78%*
75 7.30 11.90 365.88 115.55 33.95%

* obtained an exact solution

£- failed because tried to solve an inconsistent system of equations

We make the following observations.
1) In all methods the time to solve the problem increases as the solution

density increases.
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2) When the solution density is small relative to the rank of the matrix the
hybrid algorithm tends to identify the exact solution quickly. However, as the
solution density increases the modified hybrid algorithm is more reliable.

3) The SOR and TSOR algorithms performance degenerates significantly
when the solution density increases.

4) Excluding the case when the hybrid algorithm failed we see that the hybrid
and modified hybrid algorithm consistently find the solution faster than Lemke’s
algorithm. However, we note that the gap between the times for Lemke and hybrid
and modified hybrid narrows as the solution density rises.

Table 7.2 displays results when we held problem dimension and generated
solution density fixed at 100 and .5 respectively. We then allowed the problem
density to vary between .03 and .70. We display the times to reach the convergence

criterion in seconds.

Table 7.2
EFFECT OF PROBLEM DENSITY ON ALGORITHM TIME
problem Hyb Modhyb SOR TSOR Lemke
density time time time time time
.03 1.16% 1.20 .87 .70 19.82*
.03 1.00%* 1.15 .90 .50 18.88%*
.03 1.02* 1.70 F 2.45 20.00%*
.38 6.55%* 6.48 12.27 10.00 27.55%
.38 3.82% 3.86 6.10 5.18 23.25%
.38 4.73* 4.68 5.83 4.56 22.37*
.70 8.13* 8.03 23.38 14.05 29.10%*
.70 9.96 9.80 12.22 11.66 26.67*
.70 7.93 7.78 12.08 10.05 25.05%

* obtained an exact solution
F- failed to converge after reaching maximum iterations
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The Lemke algorithm implementation uses no sparsity—preserving techniques.
Therefore as the problem density rises the time to solve does not change appre-
ciably. However, the time for the remaining algorithms rises significantly as the
density increases. The SOR algorithm times rise most rapidly while the hybrid
and modified hybrid algorithm times rise most slowly. This can be attributed to
the fact that the SOR algorithm only uses non—zero elements in its floating point
calculations. Therefore at each iteration there are approximately d X n? arith-
metic operations where d is the density of M. The hybrid and modified hybrid
algorithms follow this pattern in the preprocessing step but then require O(m?)
steps, where m, is the cardinality of Iz-c, regardless of the density of M.

We also point out that although the gap between the time to solve the prob-
lems using the hybrid algorithm and the time to solve using Lemke’s algorithm
narrows as the density grows the hybrid algorithm outperforms Lemke’s algorithm
at all densities tested. We add that even if sparsity preserving techniques were em-
ployed in Lemke’s algorithm unless the original matrix had some special structure
one would expect the pivoted matrix to fill up after several pivots.

Table 7.3 displays results when we held problem density and generated solu-
tion density fixed at .07 and .5 respectively. We then allowed the problem dimen-
sion to vary between 100 and 400. We display the times to reach the convergence

criterion in seconds.
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Table 7.3
EFFECT OF PROBLEM DIMENSION ON ALGORITHM TIME

problem Hyb Modhyb SOR TSOR Lemke
dimension time time time time time
100 4.77* 2.95 7.06 3.33 23.02*
100 3.85% 5.56 55.50 23.90 20.98*
100 1.71% 2.66 23.33 5.90 22.93*
250 11.48%* 26.36 F 98.05 364.16%*
250 10.58%* 29.60 F 38.11 340.10*
250 14.92%* 15.15 15.93 9.77 387.57*
400 35.45% 56.80 46.55 22.90 1377.00*
400 35.36 66.36 65.20 38.25 1654.38*
400 46.98 80.78 130.75 38.66 1608.58%*

* obtained an exact solution

F-— failed to converge after reaching maximum iterations

We make the following observations.

1) TSOR seems to be more robust than SOR. We note that in two cases
SOR failed to reach the desired tolerance before reaching the prescribed maximum
iteration. However, TSOR. was able to solve these problems in a reasonable amount
of time.

2) We note that although the modified hybrid algorithm is very close to the
hybrid algorithm in the smaller dimensional problems, as we reach the larger
dimensional problems the hybrid algorithm is more effective. We expect this is
because more Newton iterations are required in the modified hybrid algorithm

because of the perturbation term in this algorithm. As the dimension rises this

may add significant computing time.
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3) Lemke’s algorithm on average tends to be of O(n3 ). The Newton step in

the hybrid algorithm is of order mg’ where m; is the cardinality of Iz-c. Thus for
n >> m; we would expect a much better performance of the hybrid algorithm.
The preprocessing step in the hybrid algorithm, consisting of a relatively small
number of SOR sweeps, is of order n2. The overhead due to the preprocessing
step is proportionately larger when the dimension is smaller. This may explain
the relatively better performance of the hybrid algorithm compared with Lemke’s

algorithm when n is larger.

7.4 FURTHER RESEARCH

In this section we describe some directions of further research based on the
results of this thesis.

1) In Chapter 2 we described an asynchronous parallel successive overrelax-
ation algorithm for solving symmetric positive semidefinite LCPs. We obtained
some success in speeding up the GPSOR algorithm, [Mangasarian & De Leone86],
by using a combination of multiple sweeps and single sweeps. However, we have
not identified the best combination, if one exists. A research topic might be to
develop a more sophisticated criterion for determining the number of sweeps at a
given iteration. We suggest this criterion rﬁight be based on the relative rate of
improvements of the objective function at a given iteration.

2) In Chapter 3 we described an effective parallel distribution of Lemke’s

algorithm. Bhide, [Finkel etal86] began some work using this idea to parallelize
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the simplex algorithm. We note that in Lemke’s algorithm at each iteration there
is a unique choice of the pivot column. However, in the simplex algorithm there
may be multiple choices for the pivot column. In serial codes various strategies
have been developed in choosing the pivot column. These strategies can greatly
enhance the algorithm. It would be interesting to develop parallel counterparts
of these strategies. These strategies must balance the algorithmic improvements
due to a good pivot column choice with the extra communication costs which are
likely to occur.

3) In Chapters 4, 5 and 6 we presented three related algorithms. The idea
of these algorithms is to partition the current estimate of the solution into two
sets, z&—z and zzl.zc where the set Z; is the set of indices in which 2T, is near
zero and the set IZ-C is the remaining indices. The idea of these algorithms is to
concentrate the work on updating zzc, while taking a very simple step to update

!
2T, In Algorithms 5.1 and 6.2 the update of zl—zg involves solving a system of
equations. In Algorithm 4.1 we make multiple SOR iterations to determine an
appropriate direction. Therefore extra work is done to determine a good direction
over a certain set of variables. We note that if the set of positive variables is
small this can result in an extremely fast algorithm. In fact we demonstrated in
Chapter 5 that a certain class of very large problems, (10,000 variables) could be
solved exactly in a matter of seconds. Because of the complementary nature of

the problem we know that if the solution density is large then the dual variables
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have a small solution density. Therefore, it would be interesting to develop a dual
version of these algorithms which would then take advantage of cases where the
solution density is high.

4) In Chapter 6 we avoided the difficulties of the hybrid algorithm applied
to a positive semidefinite problem by using a proximal point perturbation on the
system of equations that we solved at each iteration. We found that one step of
the proximal point iteration gave us a descent direction for the original problem.
An interesting question is whether a proximal point perturbation applied to TSOR
may help stabilize the algorithm when applied to a positive semidefinite LCP. In
other words, in the TSOR algorithm we identify a certain set of variables and
perform multiple SOR iterations without the projection on this set of variables.
We are actually solving a system of equations inexactly using the SOR iteration.
However, as in Chapter 6 when M is positive semidefinite this system is not
guaranteed to have a solution. The SOR iteration will not be stable in this case.
Therefore it may take a long time to solve to a given tolerance and yet fail to
provide a good descent direction to justify this extra work. If we perturb the
system we are guaranteed a solution to the system of equations. Therefore it
would be interesting to determine if we can perform multiple SOR iterations on
the perturbed set of equations and still obtain a descent direction for the original

problem.
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