A STRUCTURED AND AUTOMATIC APPROACH
TO THE PERFORMANCE MEASUREMENT OF
PARALLEL AND DISTRIBUTED PROGRAMS

by

Cui-Qing Yang

Computer Sciences Technical Report #713

August 1987

A STRUCTURED AND AUTOMATIC APPROACH
| TO
THE PERFORMANCE MEASUREMENT
OF |
PARALLEL AND DISTRIBUTED PROGRAMS

by

CUI-QING YANG

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

atthe
UNIVERSITY OF WISCONSIN — MADISON

1987

Abstract

We address two major issues in building performance measurement systems for
parallel and distributed programs. The first issue is how a measurement system can
provide a complete picture about the execution of a program, and how this
information should be organized so that users can easily and intuitively access all the
data without being inundated with irrelevant details. The second issue is how a
measurement tool can supply more information than just performance statistics, and
how such information can guide the programmer in locating performance problems
and in providing possible ways to make further improvements.

Our approach to the first issue involves unifying performance information into a
single, regular structure that reflects the organization of the program. We have
defined an hierarchical model for the execution of parallel and distributed programs
as a framework for the performance measurement. A complete picture of the
program’s execution can be presented at different levels of detail in the hierarchy.
Users are able to maneuver through the hierarchy, concentrating on the spots where
the most interesting activities have occurred, and can interactively shift their focus.

The approach to the second issue is based upon the development of automatic
guidance techniques that can direct users to the location of performance problems in
the program. Guidance information from such techniques will not only supply facts
about problems in the program, but also provide possible answers to improve its
performance. The construction of guidance techniques is facilitated by the regular
structure of the program and measurement hierarchy.

A performance system, called IPS, has been implemented on the Charlotte
distributed operating system as a test of our models and design. An automatic
guidance technique — critical path analysis for the execution of distributed programs
— is integrated in IPS. Measurement tests on IPS show that the critical path
information in conjunction with hierarchically organized performance metrics
provide a comprehensive picture of program’s execution and help users identify the
cause of performance bottlenecks.

The principles and techniques developed in this thesis are based on loosely-
coupled parallel processing. They are also applicable to a wide range of computer
systems, including the shared-memory multiprocessing systems.

TABLE OF CONTENTS
ADSEFACE ceveeeeeeeeeeeceeereesseesseessesransssessntonsesssessssssassnsssssssnansesssassassnssssst sessasssssensnes
Chapter 13 TUMTOGUCHONvvvucerreseessseresrssses
1.1 Research Goal and AppProach ...,
1.2 TEIMINOIOZY .eoveveersererraisesesssassarsssssssssssssssistsssssssssnesssssssssssssnsssssasssssaseass
1.3 Thesis Organization ...
Chapter 2: Related WOTKccoceininncniccnnstiniiniiiinnsis s sassssssssssssscans
2.1 Issues in Performance Measurement SYStEIMScceiirreereisonenveanassananes

2.2 Performance
2.3 Performance
2.4 Performance

2.5 Discussion ..

Measurement for Sequential Programscccccevenneene
Measurement for Parallel and Distributed Programs
Measurement for Parallel and Distributed Systems

--

Chapter 3: The Program And Measurement Hierarchiesoooceeiiieienicnnnns

3.1 The Program HIierarchyceeccsnseescsciinnisisinininiiessssnsnsinne
3.2 The Measurement HI€Tarchyccccoveimnneniennnnncnninsiennncscinsncensnncnn

Chapter 4: Design And Implementation Of IPS Measurement Tool

4.1 The Charlotte Distributed Operating SyStemccecuiveeeveerreerccsserccsans
4.2 BaSiC SITUCIUTE .evveererrrrirrneceseesssssessssanssnsssssssssssssasesessssssassasssssssssassssssonss
4.3 Data COUECHON ..ccereerreeisrreersressaessnssssssssssssessssrsssssessssossssaesassnanssssssasns
4.3.1 Data Collection MechaniSmscccoceeseesneinsecnsseescsssnsssasssanasns
4.3.2 Costs for Raw Data ColleCHONc.ccoceerviinnicinrenniinnenssnsensssnenns
4.4 Data ANALYSIS ..cccvcerreeneniennninisiiimiesies e st sesss s s sae st s assasnsns
4.4.1 General SITUCIUTE ...cceierreernreemrseisisenssssssssssnsesssssssesssssasasesssssnasasse
4.4.2 Intermediate Results And User Query Processingc.coeeveeecenens
4.4.3 Clock COOTAINAtION ..ouveerveverererserenrasisssussssssssssesessasssssasssssenssssens

Chapter 5: Automatic Guidance TeChIqQUEScccvevrviisiniinismninicniiiniitaninennn,

5.1 Introduction

..

iii

ii

~N N D

10
12

13

13
16

19

19
19
21
21
22
24
24
25
26

28

28

52 Critical Path Analysis for Execution of Distributed Programs
5.3 Program ACtVIty GIADh .ottt
5.3.1 DEfiNItIONS ..ceeveereresersesecssisississessmsasasssssssssssssssssasssssassstssssanssnsncas
53.2 Construction of Program Activity GTaphscceeiiienn
5.4 Algorithms of Critical Path ANalySisccceeusessiusnsnissmssssmsessnsiusinees
5.4.1 Assumptions and Our Testing EnvIronmentccoceeeemssssacss
5.4.2 Diffusing Computation on GIaphscmcsessisccnimnnssssssnnes
5.4.3 Test of Different AIZOTIthIS ...ccciveeiisineninnninisniscisisiesiassninni
B.5 REMATKS .cccevierereeresreesssassessistssisssnssatestossssstestssesassansasssstsssssssassssanascansace

Chapter 6: Measurement Tests With IPS ocicreiienieesreeenstssanssanassnassssssssasssnase

6.1 The Program for Measurement TESLScveumsceueesisesiinsnansnsuearcusass

6.1.1
6.1.2

Basic Serial Algorithm for Simplex Methodcceemesssesescusienns
Columnwise Distribution Algorithm of Simplex Method

6.2 Measurement Session of the Test Programeeciiccsnnsinsisniinaienncens

6.2.1
6.2.2

Interactive Measurement SESSIONieeireccccressanissssnnnssasinssseins
Information from Critical Path Analysiscccesciviiinieniiansenne

Chapter 7: CONCIUSIONS ..vvcorisimirineisiininsisissssscssstssmsinssissstsssisssus st

Appendix A: Centralized Algorithm for Critical Path Analysisccccececcisenas

Appendix B: Distributed Algorithm for Critical Path Analysisceeeeessciscnnns

Appendix C: Process Description of Simplex Method ...vccveeveeceesssiessansensnsanee

Appendix D: A Proof Of The Minimum Critical Path Length ...cooviveeiiiniiinness

References

..

iv

29
30
31
31
32
33
33
34
37

39

39
40
40
41
41
45
47
49

51

54

56

59

61

63

TABLE OF FIGURES

Figure 3.1: Overview of Computation Hierarchyceiscinisnisisscsecnn:
Figure 4.1: Basic Structure of Measurement TOOLcoveiimsirisiesiscisinsinenne
Figure 4.2: General Structure for Measurement Results Analysiscccevvveiennns
Figure 5.1: Example of Critical Path at Process Levelc.niincinicen.
Figure 5.2: Construction of Simple Program Activity Graphccccvvevivennnn
Figure 5.3: Execution Times for the Distributed Algorithmcc.ecvceccisecnne.
Figure 5.4: Speed-up of Distributed Algorithm (I) ...coeveiinciniiniisiniicncencens
Figure 5.5: Efficiency of Distributed Algorithm (I) ccovueiniimmnnintinnisissiecnsennnns
Figure 5.6: Speed-up of Distributed Algorithm (II) wcceueeriiiinniiniisiciscncnneenns
Figure 5.7: Efficiency of Distributed Algorithm (II) .o.cocorivriiniiiniiininenaees
Figure 6.1: Format of a Command Menu ...
Figure 6.2: Metrics at Program Level ...
Figure 6.3: Histogram of CPU Time at Program Levelccooviniisiiniincnnnes
Figure 6.4: Metrics at Maching Level ...t
Figure 6.5: Metrics at Process Level (in Maching 1) ...coeeecceeernrennncecsnssssaesne
Figure 6.6: Metrics at Process Level (in Machine 2)cviniinnieciasisnens
Figure 6.7: Execution Profiling of Controller and CalCulatorcc.coccerueseenne
Figure 6.8: Critical Path Information at Program Levelccocviiiiiensiincnnees
Figure 6.9: Critical Path Information at Process Levelcovcicincncncen.
Figure 6.10: Critical Path Information at Procedure Levelco.oouerieiianinnes
Figure 6.11: Program Elapsed Time in Different Configurationscec.ee.s
Figure 6.12: Components of the Critical Path ...

Figure D.1: Master-Slave Structure

--

14
20
23
30
32
35
36
36
37
37
41
42
42
43
43

45
46
46
47
48
49
61

Chapter 1
Introduction

Writing parallel and distributed programs has become an important part of
computer programming. A steadily increasing number of systems now support
loosely-coupled or tightly-coupled parallel programming and parallel applications.
Structuring a program as a group of cooperating processes distributed across several

machines increases reliability, availability, and performance of the computation.
This dissertation will address the topic of increasing performance.

One method of studying and evaluating the performance behavior of a parallel
and distributed program is to measure its performance during program’s execution.
This differs from other methods of performance studies such as modeling and
simulation in that the entity under measurement is exactly the entity to be studied; no
artifacts are introduced from modeling or simulation (here we distinguish from these
artifacts the interference of a measurement system to the behavior of the entity under
measurement). Performance measurement or performance monitoring is important
to understand the run-time behavior of a program executing on a real system. In
addition, the information gathered from measurements is essential for providing
parameters and validating performance models and simulations.

The inherent concurrency in a distributed program, the lack of total ordering for
events on different machines, and the nondeterministic communication delay
between peer processes in such a program[1,2, 3] adds complexity to the problem of
performance measurement. The conventional methods of performance measurement
for sequential programs are not adequate in the distributed environment because they
address only the performance of individual programs on a single processor.

1.1. Research Goal and Approach

Two gaps exist in the current state of performance measurement tools for
parallel and distributed programs.

The first gap, the semantic gap, is a gap between the semantics of the structures
with which we build parallel or distributed programs and the semantics used by
performance measurement systems to view parallel or distributed programs. On the
one hand, people are using more structured methods to develop parallel and
distributed programs to cope with the increased complexity. Some examples of these
methods are: new constructs in operating systems[4, 5,6], a variety of parallel and
distributed programming languages([7, 8,9,101, and the current trend toward object-
oriented distributed systems[11,12,13,14]. On the other hand, most of the existing
performance measurement systems for parallel and distributed programs are built
without a well-defined model of the environment and of the program structure.

Performance measurements in these systems were treated ad hoc. A few approaches
have defined structures in measurement systems to model the structure of programs
to be measured. Structures of these measurement systems, however, do not match
the structure of the program as seen by the programmer. Lack of well-defined
models for measurement systems and the mismatching of structures for measurement
systems to structures of parallel/distributed programs leads to the semantic gap. This
semantic gap prevents most existing measurement tools from capturing the
infrastructure of programs and from providing a complete picture of program’s
execution. It also leads to the second gap.

This second gap is called the functional gap. Users of performance
measurement tools want not only to know how well their programs execute, but also
to understand why the performance may not be as good as expected and how they
can improve program performance. The performance metrics provided by most
measurement tools are good indications of what happened during a program’s
execution, but are of little use as guides to the improvement of program performance.
A gap exists between what users need and what measurement tools can offer. Users
need more help from a measurement tool to locate the performance problems in the
program and to have guidance for finding possible performance improvements.

Our basic goal is to bridge these two gaps by providing more effective
performance tools for developing parallel and distributed programs. The main areas
of research in this thesis are to design a new performance measurement system for
parallel and distributed programs that supplies extensive information about the
execution of user programs, and to develop algorithms and techniques that will
automatically guide programmers to the location of performance problems. The
basis of our approach is to unify all performance information in a single, regular
structure. This regular structure matches the semantic structure of programs, allows
easy and intuitive access to performance information, supports the construction of
flexible user interfaces, and facilitates automatic reasoning about a program’s
behavior.

We choose a hierarchical model as a framework of our performance
measurement system. The hierarchy is a regular structure that reflects the structure
of a program. All data collected during program measurement and the information
extracted from these data are organized in a hierarchy. The performance behavior of
a program’s execution can be presented at different levels of abstraction.

By defining a hierarchical model as a framewoik, the performance measurement
system is structured in a way that semantically matches program structure. Thus, the
performance information from this measurement system represents the performance
behavior based on programs’ internal structure, and gives a more complete picture of
programs’ execution. An interactive user interface allows users to easily traverse
through the hierarchy, to zoom-in/zoom-out at different levels of abstraction, and to

focus on the places in the program structure that have great impact on the
performance behavior of the program.

To bridge the functional gap between users and measurement systems, a
performance measurement tool needs to provide facilities that aid users in
understanding program behavior, locating trouble spots, and improving the efficiency
of programs. Our research has developed automatic guidance techniques for locating
performance problems in programs. It not only supplies facts about performance
behavior of the program, but also provides possible reasons for the performance
problems in the program.

1.2. Terminology

A distributed system tefers to a computer system in which the computing
capacity of the entire system is distributed over many loosely-coupled machines,
called node machines. The distinguishing properties of a distributed system are that
there is no central controller and no shared memory among node machines. Each
node is autonomous, and parts of a program can run simultaneously on them. Nodes
communicate with each other by messages

The execution of program code on a processor is called a process. A process is
the basic unit of a computation that is scheduled to run on a node machine of a
distributed system. Every process has its own context (code, data, and machine
environment) for its execution. Multiple processes can exist on each node.

A distributed program is built from a collection of cooperating processes
executing simultaneously on various machines of a distributed system. Each process
of a distributed program represents a part of the program. Therefore, the execution
of a distributed program consists of the execution of all of its parts (processes).

The combination of the execution of all processes for a given distributed
program within the same machine as is defined to be a thread of execution of the
program. Processes within a thread compete to run sequentially on the same
machine. Different threads of a program execute concurrently on different machines.
As a result, the execution of a distributed program is the combination of all of its
threads executing as multiple processes in different machines.

1.3. Thesis Organization

We start with an overview of previous work in Chapter 2. This provides a base
line for the discussion of our research. Chapter 3 describes our hierarchical model
for distributed programs and a corresponding model for program measurement.
These models unify many levels of performance data and serve as the framework of
the performance measurement system. To test our ideas, we implemented a
prototype measurement system. The main design considerations and some
implementation details of the measurement system (called IPS) are presented in

Chapter 4. Chapter 5 discusses automatic guidance techniques for performance
analysis of the execution of distributed programs. Chapter 6 describes a
measurement session using IPS to show the functions and features of the new
measurement tool. We conclude our thesis by summarizing the key ideas and
discussing directions for future research in Chapter 7.

Chapter 2
Related Work

This chapter presents an overview of previous work in performance
measurement of parallel and distributed systems and programs. In the following
sections, we first summarize several issues which are important in the design of a
performance measurement system. We then describe the various features of existing
and proposed performance systems using those issues as a guideline. We conclude
with a few comments on the current state of research in this area, and on the general
directions that our research will follow.

2.1. Issues in Performance Measurement Systems

Performance measurement of parallel and distributed systems raises problems
due to the complexity and variety of the objects to be measured. Existing
measurement systems show a remarkable degree of diversity in their application and
structure. There is no general consensus as to the best design or organization of such
systems. Our discussion attempts to deal with this diversity by listing several
important issues that create a framework for the study of performance measurement
systems. The framework serves as a basis for comparing current measurement
systems, and facilitates the study of new designs.

This section discusses the following major issues in the design of a performance
measurement system:
e the measurement environment and the application domain,
e the measurement mechanisms,
e the measurement policies, and
e the user interface.

Measurement Environment and Application Domain

The first issue in the design of a performance measurement system concerns the
system’s working environment and its applications. Performance measurement on a
loosely-coupled distributed system is different from that on a tightly-coupled
multiprocessor. The measurement goals for application programs will be different
from those for operating systems. Even within the same application domain,
different measurement systems take different views of what should be measured.

A measurement system may define a model for its measurement objects. This
model reflects how the measurement system views the objects to be measured and
describes the measurement goals of the system. However, most current measurement
systems do not provide well-defined models for their measurements.

Measurement Mechanism

The second issue inherent to a performance measurement System Concerns basic
mechanisms such as for event detection, data filtering and data reporting. These
mechanisms are used to monitor the occurrences of significant events, to collect and
process the raw data, and to organize data for further analysis. Although these basic
functions are found in most measurement systems, their implementation and
structure vary depending upon the working environment and application.

Measurement Policy

The third issue in the design of a measurement system lies in its measurement
policy. This policy describes which data should be measured during a program’s
execution, how this data should be analyzed, and which results should be presented
to the programmer. The main components of a system’s measurement policy include
the performance metrics defined in the system and the techniques for analysis of the
measurement data. The performance metrics provide various measures for the
performance behavior of measurement objects, and the analysis techniques determine
how performance metrics are derived from the raw data. Many measurement
systems have their policies and techniques predefined and built in the system; users
of these systems can select from the various features available. Some systems,
however, do not provide a built-in measurement policy. It is then the user’s
responsibility to decide what performance information is needed and how to derive
this information from the measurements.

User Interface

The last issue to be considered is the interface between a user and the
measurement system. The nature of this interface affects system usability. It
determines how measurement jobs are submitted to the system, how users retrieve
performance information, and how the system presents performance results. A basic
user interface provides only separate commands to start a measurement session and
to fetch the performance information. While some measurement systems have
interactive interfaces so that users can interact with systems through the whole
measurement session. Performance results are presented from measurement systems
with many different forms such as tables, histograms, charts and other graphic
representations.

2.2. Performance Measurement for Sequential Programs

The execution of traditional sequential programs involves only a single thread
of computation in a machine. All the events in such a program’s execution can be
completely ordered. Therefore, by sequentially monitoring these events during the
program’s execution, a profile of the program’s execution can be derived from the
data recorded. This profile contains information about the distribution of total

execution time among different parts of the program, €.g. modules, procedures, and
code segments in the program. The parts in the program that dominate the total
execution time of the program are the possible bottlenecks in the program’s
execution.

Two tools, HP-Sampler/3000[15] and Mesa Spy[16], use the same technique of
program counter (PC) profiling to provide information about CPU time in terms of
code segments, procedures, and modules. Software sampling is used to periodically
sample the PC of currently running programs. Symbolic output at the source
language level is derived from the PC histogram data. Both Sampler and Spy have
interactive user interfaces to provide easy access to performance information. The
major difference between these two systems is that the Spy system exploits
knowledge of the Mesa language and run time environment[17], whereas the
Sampler/3000 takes advantage of the stack architecture of the HP-3000 system[18].

Another program profiling facility, "gprof*[19], runs on the Unix operating
system[20]. Gprof also uses the PC sampling mechanism for CPU time profiles. By
monitoring procedure calls at the run-time, the system provides information about
the procedure-call graph and the distribution of program execution time for each
procedure. In addition, gprof has the ability to account for the execution time of
called procedures in the execution time of the procedures that call them. This feature
allows users to consider the costs of individual routines in the different levels of the
procedure-call graph and aids in the evaluation of modular programs.

The software sampling mechanism used in program profiling may slow down
the system due to the measurement overhead. To minimize such interference, some
measurement tools take a hardware approach in the design of their measurement
mechanisms. One such example is the HP-63410A software-performance
analyzer[21]. A special hardware board is plugged into the system to monitor both
the occurrences and the durations of the references for blocks of memory and
sections of code during a program’s execution. The primary advantage of the
analyzer is that it can characterize software nonintrusively as a program executes in
the system. However, the hardware approach needs special facilities for the
dedicated systems and can only measure events at relatively low levels in the system.

2.3. Performance Measurement for Parallel and Distributed Programs

In contrast to traditional sequential programs, parallel and distributed programs
create new problems for performance measurement systems. New measurement
mechanisms and policies are needed to deal with issues such as monitoring multiple
processors in the system, tracing interactions among different parts of the program,
and characterizing concurrency within parallel and distributed programs. In this
section, we describe several measurement systems that represent the variety of
approaches taken in this area.

The METRIC system[22] is an early effort to develop a basic mechanism for
performance measurement of distributed software. It is implemented on a network of
minicomputers connected by an Ethernet. The system consists of three parts: the
object system probes, the data accountant, and the result analyst. These parts are
relatively independent and connected only by the communication channel. Users
insert calls to the probe procedures into the source program. Trace data are
generated from these probes and sent to the accountants, which record and
selectively filter the data for later analysis. The analysts are user processes that
summarize and tabulate trace data according to the policies of the measurements
being made.

The division of the METRIC into three cooperating parts is an elegant and
effective approach to structuring measurement tools in a distributed environment.
The mechanisms provided by the system allow low overhead in the operating system
and flexibility in selecting and studying the data. However, users need to specify the
appropriate measurement policy for collection of raw data and analysis of
performance information.

Hardware monitors are also used for the performance measurement of parallel
programs. Research on the performance of concurrent programs has been conducted
on the hierarchically organized multiprocessor system, EGPA (Erlangen General
Purpose Array)[23,24]. A hardware monitor (ZAHLMONITOR III) as well as
associated software[25] is used to record process activities of a program at individual
processors during a program’s execution.

The basic structure of EGPA is a pyramid that has one controlling and
administering B-processor for every four working A-processors. Each B-processor
has its own local memory and can access the memories of its A-processors. All A-
processors in a unit share their local memories. The hardware monitor measures the
active and idle states of CPU and I/O channels for each processor, and records the
complete history of processes that have run on the CPU. Histograms of A-processor
activities are derived from the traces of process events.

The measurement goal of the EGPA system is to monitor concurrent execution
of the subtasks of a program in different processors. Only a single event (the process
ID of the current running process in each A-processor) is traced as an indication of
the overall parallel activity in various parts of the program. No other measurement
metrics are defined in the system. Consequently, the measurement results provide
limited information about the performance behavior of running programs.

The execution of a parallel/distributed program is such a complex phenomenon
that single and isolated piece of information about a program’s execution cannot
offer a comprehensive picture of its performance behavior. To better understand the
program behavior, and to provide more coherent performance information, several
measurement systems have defined models for the measurement of

parallel/distributed programs based on the interactions between processes. We will
discuss some of these systems and their models.

In Gertner’s performance monitoring research on RIG (Rochester’s Intelligent
Gateway)[26,27] and in a recent case study of the implementation and performance
measurement of Dining Philosophers algorithms on the ZMOB distributed
system[28, 29], the execution of distributed programs was modeled as a finite state
machine (FSM). In both cases, processes of a program executed on individual
processors were described by a finite state machine. Message events between
processes represented the transition of FSMs and were the basic events monitored in
the system.

To measure the performance behavior of a program, users specify a finite state
machine that represents the all possible states and the transitions between these states
of the program. The FSM of the program is described either in symbolic form in a
special language (defined in Gertner’s research) or in a tabular representation (given
in ZMOB’s experiments). Message communication activities are traced at run-time.
After the execution of the program, the trace analyzing program reads the FSM
representation for the program and the file of message traces, and produces the
information of state transitions as well as statistics on state occupancy times of the
program’s execution.

Finite state machines are general and powerful tools for describing activities
that can be represented as states, and the transitions between those states.
Nevertheless, the execution of a real program involves such a huge number of
possible states that the finite state machine model is not feasible. Also, it is not
wrivial to model a program’s behavior as a finite state machine. Users must specify
their own FSM’s for each program to be monitored in the system, and the way to do
this for any arbitrary program in not clear.

The work by Miller takes another view of distributed programs[30, 31,32]. A
measurement system called DPM, as implemented on 4.2BSD Unix[20]} and
DEMOS/MP[33] operating systems, is based on a model of distributed computations
in which only two actions of a program — computation and communication are
defined. The measurement system monitors program activities at the process level
and communication events among different processes. The research concentrates on
the analysis part of the measurement tool. Various analysis techniques are studied to
extract pertinent information from the data collected. Among them, parallelism is
used as a characterization of the execution of distributed programs.

The DPM system provides a coherent model for the measurement of distributed
programs, and a uniform methodology for building a measurement tool. However,
since the model only reflects program activities at the process level, it is difficult for
users to relate the measurement results to the underlying structure of the program
without further information from the lower levels. Generally, measurement results

10

are useful in performance evaluation, but the information gained from the
measurement is of limited use in finding performance problems within the processes.

One recent, promising approach is the PIE project[34,35]. The major goal of
the PIE system is to support programming for observability in a parallel
programming environment. The goal of programming for observability is to
integrate performance and semantic information at all levels and all stages of
development into a single data representation.

The monitoring mechanism in PIE is based upon the insertion of software
sensors into the run-time support and into user programs. PIE includes performance
data from both the intra- and interprocess levels, and the information about run-time
and development time. This data is stored using a relational data model, as proposed
by Snodgrass[36] (see next section), which integrates various views of the program’s
behavior. The PIE system supports graphic representation for different views of
program’s behavior and provides interactive user interface. Users define their own
queries in order to retrieve performance information from the measurement data.
Four predefined views on the general behavior of parallel programs (e.g., execution
time, memory frame allocation) are provided for the easy access of measurement
results.

The integrated view provided by PIE is important to the programmer’s ease in
using the performance tool[37]. The relational data model integrates data from
" various levels and facilitates the access of information in the system. However, the
relational data model does not match the structure of programs. While PIE provides
intensive information for the observability, it gives little help in integrating this
information into a coherent picture of a program’s execution.

2.4. Performance Measurement for Parallel and Distributed Systems

Performance measurement for parallel and distributed systems is closely related
to the performance measurement for parallel and distributed programs. The working
environments for them are basically the same; therefore, many mechanisms are
applicable to the measurement of both systems and programs. Some measurement
systems are developed without recognizing the distinction between the measurements
for programs and systems. On the other hand, the special interests of performance
measurement for parallel and distributed systems lead to many different approaches
in the research and development of measurement systems,

Marathe investigated performance measurement and analysis of multiprocessing
computer systems[38] in the development of the C.mmp multiprocessor system[39].
In contrast to the measurement systems for application programs, this research
concentrated on the levels of hardware architecture and operating system kernel
design. A hardware monitor was used as the primary measurement mechanism.
Several experiments were performed for the measurements of instruction mix for

11

different application programs, multiprocessor contention for shared data in
C.mmp/Hydra environment[39], and functional tracing of the operating system.
There were no general metrics defined in the system for performance measurement
on these levels. The experiments conducted in the research appear as special case
studies.

Snodgrass took another approach to the monitoring of distributed systems for
performance evaluation[36]. Treating monitoring as an information-processing
activity, he proposed using the relational model as an appropriate formalization of
the information processed by a distributed monitor. His research emphasized on the
issue of data collection and data retrieval for a distributed monitor.

The monitor was implemented on Cm* under both the StarOS and the Medusa
operating systems[40,41]. Event records for program operations are generated by
sensors in the operating system, collected by local monitors, and eventually sent to a
remote monitor for further processing. The information collected by these monitors
is presented to the user as a database of time-varying relations which can be
manipulated by a temporal query language. It is the users’ responsibility to decide
what information to monitor in the system, and how to extract performance results
from the measurement data.

The relational model is a good structure for storing and retrieving measurement
data. However, as mentioned for PIE, the structure of this model does not match the
semantic structure of the system being measured. Snodgrass did not describe what
kind of general information is needed to characterize the performance behavior of a
distributed system and nor did he indicate how easily this information can be
retrieved with queries prepared by users.

Measurement systems are being developed to study special parallel and
distributed architectures and applications for these systems. As an example, the
MIDAS system[42] is a pyramid structure in which processors are organized into
three levels: cluster, secondary and primary processors. Unlike the conventional
computer architectures, MIDAS provides 16 independent switchable memory blocks
for processors in the cluster. The interconnection network permits any switchable
memory block to be dynamically attached to any processor at any time. The system
supports the data flow operations by dynamically switching memory modules from
processor to processor. The performance measurement of data flow operations is
carried out by hardware in secondary processors. The system activity of binding
between processors and switchable memories in clusters is recorded. The
information about this binding and the queue in which memory modules wait for
processors is used to analyze the performance behavior of the system.

The switchable memory modules are the major resource for data flow
operations in the MIDAS system. The measurement of the binding between
processors and switchable memories is an efficient way to monitor interactions

12

between processing units. No other metrics and measurement policies were defined
in this system. Although the measurement goal of the system is quite limited, the
performance information gleaned from the measurement is hardly enough to give a
general picture of the performance behavior of the system.

2.5. Discussion

We have reviewed various research in the performance measurement of parallel
and distributed systems and programs. As a conclusion, we offer some observations
based on our discussion of related work in this area.

In general, we can see that there are many different levels of the detail for the
characterization of the performance behavior of parallel and distributed programs
and systems. Some earlier approaches focus the measurement interests upon
individual levels: such as in the hardware instruction and the kernel activity level
(Marathe’s, MIDAS), or upon the process activity level (Gertner’s, EGPA, DPM).
The PIE project integrates various information at different levels and different stages
of development into a single data representation. However, since the relational
model in PIE does not fit the structure of programs, it is not clear how the mixture of
information from various levels is able to form a coherent picture of a program’s
execution. The structure of a measurement system should match the structure of
programs to be measured. In this way, the so-called semantic gap between
measurement systems and the objects of measurement will be reduced.

The measurement results from most performance systems are presented in some
form of performance metrics, such as the process execution time, message traffic
statistics, and overall parallelism. These metrics are good for the evaluation of the
performance outcome of a program’s execution. The information from such metrics
tells much about how good or bad the program’s execution is but little about why.
Few efforts were directed at the study of integrating performance measurement tools
with techniques to locate performance problems and improve the behavior of parallel
and distributed programs. This leads to the functional gap mentioned above. A
performance measurement tool should not only be a judge of the past, but also be a
prophet of the future. Programmers need more than a tool that provides extensive
lists of performance metrics; they need tools that will direct them to the location of
performance problems and give them guidance for possible solutions to these

problems.

13

Chapter 3
The Program And Measurement Hierarchies

A general approach to problem-solving is to decompose a big problem into a set
of smaller problems and first to solve these smaller problems. This decomposition is
the way that we structure programs: The original problem is divided into pieces such
as modules and processes. Different data structures and individual procedures are
further defined in each process. All of these objects form a hierarchy within the
structure of the program.

Our approach to the performance measurement of parallel and distributed
programs is based on organizing the performance measurement tool as a regular
structure that matches the structure of the program being measured. We choose a
hierarchical model for distributed programs. A hierarchical model provides multiple
levels of abstraction, supports multiple views of the data represented in the hierarchy,
and has a regular structure. The objects in a hierarchical model are organized in
well-defined layers separated by interfaces that insulate the internal details of layers.
Therefore, we can view a complex problem at various levels of abstraction. We can
move vertically in the hierarchy, increasing or decreasing the amount of detail that
we see. We can also move horizontally, viewing different components at the same
level of abstraction.

In this chapter we demonstrate these ideas by presenting a sample hierarchy for
distributed programs that is based on our initial implementation systems — the
Charlotte Distributed Operating System[43] and 4.3BSD Berkeley UNIX[20]. Both
systems consist of processes communicating via messages. These processes execute
on machines connected via high-speed local networks.

The hierarchy presented here serves as a test example of our hierarchical model
and reflects our current implementation[44]. The hierarchy is not fixed and it is easy
to incorporate new features and other programming abstractions. For example, we
can add the light-weight processes (processes in the same address space) from the
LYNX parallel programming language[45] to our hierarchy with little effort. Our
hierarchical structure could be also applied to systems such as HPC[46], which has a
different notion of program structuring, or MIDAS[42], which has a 3-level
programming hierarchy.

3.1. The Program Hierarchy

In our sample hierarchy, a program consists of parallel activities on several
machines. Machines are each running several processes. A process itself consists of
the sequential execution of procedures. An overview of our computation hierarchy is
illustrated in Figure 3.1. This hierarchy can be considered a subset of a larger

14

to include local and remote networks and downward to
microcode, and gates.

hierarchy, extending upwards
include machine instructions,

whole program level

machine level

process level

procedure level

primitive activity level

Overview of Computation Hierarchy

Figure 3.1

15

(A) Program Level

This level is the top level of the hierarchy, and is the level in which the
distributed system accounts for all the activities of the program on behalf of the user.
At this level, we can view a distributed program as a black box to which a user feeds
inputs and gets back outputs. The general behavior of the whole program, such as
the total execution time is visible at this level; the underlying details of the program
are hidden.

(B) Machine Level

At the machine level, the program consists of multiple threads that run
simultaneously on the individual machines of the system. We can record summary
information for each machine, and the interactions (communications) between the
different machines. All events from a single machine can be totally ordered since
they reference the same physical clock. The machine level provides no details about
the structure of activities within each machine.

The machine level is not strictly part of the programmer designed hierarchy (as
are the process and procedure levels). The structure at the machine level can change
from one execution to the next, or even in a single execution as is the case in process
migration [33, 47].

We include the machine level in our hierarchy for two reasons. First, in the
systems that we commonly use, we can either directly specify or have explicitly
visible the allocation of processes to machines. Second, the performance of a
distributed program can change dramatically depending on this allocation. It is
important to be able to make the distinction between local and remote interactions.

(C) Process Level

The process level represents a distributed program as a collection of
communicating processes. At this level, we can view groups of processes that reside
on the same machine, or we can ignore machine boundaries and view the
computation as a single group of communicating processes.

If we view a group of processes that reside on the same machine, we can study
the effects of the processes competing for shared local resources (such as CPU and
communication channels). We can compare intra- and intermachine communication
levels. We can also view the entire process population and abstract the process’s
behavior away from a particular machine assignment.

(D) Procedure Level

At the procedure level, a distributed program is represented as a sequentially
executed procedure-call chain for each process. Since the procedure is the basic unit
supported by most high-level programming languages, this level can give us detailed
information about the execution of the program. The procedure level activities
within a process are totally ordered.

16

The step from the process to the procedure level represents a large increase in
the rate of component interactions, and a corresponding increase in the amount of
information needed to record these interactions. Procedure calls typically occur at a
higher frequency than message transmissions.

(E) Primitive Activity Level

The lowest level of the hierarchy is the collection of primitive activities that are
detected to support our measurements. Our primitive activities include process
blocking and unblocking by the scheduler, message send and receive, process
creation and destruction, procedure entry and exit. Each event is associated with a
probe in the operating system or programming language run-time that records the
type of the event, machine, process, and procedure in which it occurred, a local time
stamp, and event type dependent parameters. The events are listed in Table 3.1.

All events are monitored at the primitive activity level. These events can be
associated with metrics at higher levels of the hierarchy. For example, a message
send event could be mapped to the program level as part of the total message traffic
in the program, to the machine level as part of the message traffic between machines,
or to the process level as part of the message traffic between individual processes.
More complex mappings are used for computing metrics such as parallelism or
utilizations.

Laart: Process creation tond: Process termination
tblock—cpu® PTOCESS block for CPU | tynplock--cpu: Process un-block for CPU

tplock—syc: PrOCESS block fo synch. | tuupipck—syc: ~ Process un-block for synch.
Lonter - Procedure entry Lois : Procedure exit

teend—canl: ~ Message send call tev—calls Message receive call

Loond - Message send Loyt Message receive

Table 3.1; IPS Primitive Events

3.2. The Measurement Hierarchy

The program hierarchy provides a uniform framework for viewing the various
levels of abstraction in a distributed program. If we wish to understand the
performance of a distributed computation, we can observe its behavior at different
levels of detail. We chose a measurement hierarchy whose levels correspond to the
levels in our hierarchy of distributed programs. At each level of the hierarchy, we
define performance metrics to describe the program’s execution. For example, we
may be interested in parallelism at the program level, or in message frequencies at
the process level. We can look at message frequencies between processes or between

17

groups of processes on the same machine. This selective observation permits a user
to focus on areas of interests without being overwhelmed by all of the details of other
unrelated activities. The hierarchical structure matches the organization of a
distributed computation and its associated performance data.

N,: Number of processes. N,,: Number of machines.

T: Total execution time. Tepu: Total CPU time.

T, Total waiting time. Typait cpu: Total CPU wait time (scheduler waits)
R: Responseratio, T/Tg,. |L: Load factor, (Tgpy + Toait cpu) / Tepu
P: Parallelism, T, /T. p: Utilization, P /N,

M,: Message traffic (bytes/sec) |C': Procedure call counter

M,,: Message traffic (msgs/sec) |PR: Progress ratio, Tepy / Toait

T,Np, Np» Tepy Tyaie> Twait_cpu> R L,p, My, M, and C are metrics which will
be applied to different levels of the measurement hierarchy (see Table 3.3).

Table 3.2: Performance Metrics

Table 3.2 lists several of the performance metrics that can be calculated by IPS.
Some of these metrics are appropriate for more than one level in the hierarchy,
reflecting different levels of detail. Table 3.3 summarizes the use of these metrics at
each level. The list in Table 3.2 is provided as an example of the type of metrics that
can be calculated. A different model of parallel computation can define a different
program hierarchy with its own set of metrics.

(A") Program Level

All of the metrics listed in Table 3.2 are valid at the program level. At this
level, these metrics provide a summary of the total program behavior.

Most of the metrics are simple to compute. A few of the other metrics are more
complex and can be computed in several ways. For example, utilization, p, can be
computed as the sum of the p’s for each machine. Alternatively, it can be derived
from the parallelism (speed-up) metric, p = P /N, [31].

(B") Machine Level

The machine level provides more detail about program’s behavior than at the
program level. For example, the metrics for message rates (and quantities) are
computed for each pair of machines. This forms a matrix whose marginal values are
the total traffic into or out of an individual machine. Metrics at the machine level are
computed in a similar manner as those at the program level.

Program | Machine | Process | Procedure
Level Level Level Level
N, X
N, X X
T X X X
Tepu X X X X
Tyoair X X X
Tyait_cpu X X X
L X X X
M, X X X X
M, X X X X
P X
1] X X X
C X X X X

Table 3.3: Performance Metrics for Different Hierarchy Levels

(C") Process Level

18

At the process level, the metrics reflect the load generated by individual

processes. Message traffic at this level is computed for each pair of processes.

(D") Procedure Level

The procedure level provides information to examine the performance effect of

parts of a process.

19

Chapter 4
Design And Implementation Of IPS Measurement Tool

IPS is a pilot implementation of a performance measurement system for
distributed programs, based on our hierarchical measurement model. There are two
phases in the operation of IPS — data collection and data analysis. During the first
phase, the program is executed and trace data is collected. All necessary data are
collected automatically during the execution of the program. There is no mechanism
provided (or needed) for the user to specify the data to be collected. During the
second phase, programmers can interactively access the measurement results.

This chapter describes the design and implementation of IPS on the Charlotte
distributed operating system. After a brief discussion of the basic structure of IPS,
we will concentrate on details of the data collection and data analysis.

4.1. The Charlotte Distributed Operating System

The Charlotte operating system was used for the initial implementation of IPS.
Charlotte is a message-based distributed operating system designed for the Crystal
multicomputer network[48]. Crystal consists of 18 VAX-1 1/750 node computers and
several host computers connected with an 80MB/sec Pronet token ring[49]. The
Charlotte kernel supports the basic interprocess communication mechanisms and
process management services. Other services such as memory management, file
server, name server, connection server, and command shell are provided by utility
processes[43].

4.2. Basic Structure

IPS consists of three major parts: agent, data pool, and analyst (see Figure 4.1)
Each of the three parts is distributed among the individual machines in the system.
The basic structure of our measurement tool is similar to the structure of
METRIC[22] and DPM[32].

The Agent is the collection of probes in the operating system kernel and the
language run-time routines for collecting trace data when a predefined event
happens.

The data pool is a memory area in every machine for the storage of trace data
and for caching intermediate results from the analyst.

The analyst is a set of processes for analyzing the measurement results. There
is one master analyst that provides an interface to the user and acts as a central
coordinator to synthesize the data sent from the different slave analysts. The slave
analysts reside on the individual machines for local analysis of the measurement
data.

20

Node Machine Node Machine Node Machine

<> A <> A A
Data & Data 8 Data &
N I It J e
Pool n Pool n Pool n
t — t — t

Slave Analyst ’ Slave Analyst Slave Analyst

Master Analyst
USER

Figure 4.1: Basic Structure of Measurement Tool

There are some major differences between our structure and the structures of
METRIC and DPM. In our scheme, the raw data is kept in the data pool on the same
machine where the data was generated. Slave analysts exist on each machine,
instead of a single global analyst.

For some data analyses, the master analyst will make a request to a single slave
analyst. This is the case, for example, when we request the message traffic between
two processes that are on the same machine. Other analyses require the master
analyst to coordinate multiple slaves to produce a result. This occurs for metrics
computed at the program level of the hierarchy.

The local data collection and (partial) analysis has several advantages. Trace
data are collected on the machine where they were generated. Local storage of trace
data should incur less measurement overhead than transmitting the traces to another
machine. Sending a message between machines is a relatively expensive operation.
Local data collection in IPS will use no network bandwidth and little CPU time.

21

A second advantage to local data collection is that we can distribute the data
analysis task among several slave analysts. Low level results can be processed in
parallel at the individual machines and sent to the master analyst where the higher
level results can be extracted. It is also possible to have the slaves cooperating in
more complex ways to reduce intermachine message traffic during analyses (see
Chapter 5).

4.3. Data Collection

4.3.1. Data Collection Mechanisms

Local data collection requires that each machine maintain sufficient buffer
space for the trace data. The question arises whether we can store enough data for a
reasonable analysis. To study this, we measured the message and procedure call
frequencies on several programs. These programs were run on the Charlotte or

4.2BSIA? 1UNIX operating system. The measurement results are summarized in
Table 4.1.

Program Name , Description Messages | Procedure Call| System
Checkers (Master) 0.60/sec 0.67/sec Charlotte
Checkers (Mid) |Checkers game, using o/P search 0.22/sec 18.5/sec VAX/750
Checkers (Slave) 0.15/sec 1230/sec
Pconnector (run 1) | Initially connects system processes during] 9.1/sec 190/sec Charlotte
Pconnector (run 2) [Charlotte OS bootstrap 1.2/sec 30/sec VAX/750
%g gg z::;:g Traveling Salesman solver. éggg;sszcc v AX- ! ﬂD ‘5: 0
gll:nnggggg gﬁﬁ 2 Resource/deadlock simulation ﬁgﬁ: v AXﬂ: ND {50
vv$2 Eﬁnn ‘,1,3 Wisconsin Modula Compiler ?ég%g VAX/T50
make (run 1) . 4918/sec UNIX
make (un2) | DX make facility 4658/sec | VAX/T50

Table 4.1: Message and Procedure Call Frequencies

Procedure call events happen at a much higher frequency than interprocess
(message) events. Event tracing for procedure calls could produce an overwhelming
amount of data. We see this in Table 4.1, with procedure call rates of over
6000/second -—— almost three orders of magnitude greater than interprocess events.
Due to this high frequency, we use a sampling mechanism combined with modifying
the procedure entry and exit code. Because we are using sampling at the procedure
level, results at this level will be approximate. Sampling techniques have been used
successfully in several measurement tools for sequential programs, such as the
XEROX Spy[16] and HP Sampler/3000[15].

22

We set a rate, ranging from 5-100 ms, to sample and record the current
program counter (therefore the current running procedure). We also keep a call
counter for each of procedure in the program[19]. Each time the program enters a
procedure, the counter of that procedure is incremented. At the sampling time, a
record which includes a time stamp, the current procedure PC, and the procedure call
counter is saved in the trace data. The sampling frequency can be varied for each
program execution. A higher sampling rate will give better precision to the sample
results. However, the sampling overhead also increases with the sampling frequency
(see next section).

Data gathering for interprocess events is done by agents in the Charlotte kernel.
Each time that an activity occurs (most appear as system calls), the agent in the
kernel will gather related data in an event record and store it in the data pool buffer.

4.3.2. Costs for Raw Data Collection

A series of tests were conducted to measure the costs of our raw data collection
facilities on Charlotte. Overhead from event tracing and overhead of data sampling
were treated separately to identify the cost of each component. The overhead for
event tracing comes from the extra checking and storing of the event records by
various probes in the kernel. The sampling overhead is the amount of CPU time used
by the sampling routine to collect the status of the interrupted program and to store
the event records. The cost for a single sample includes factors such as the machine
speed, the interrupt cost in kernel and the hash table-searching in the sample routine.

Test programs with different process organizations (such as master-slave and
client-server) were chosen to run on the unmodified Charlotte and Charlotte with
measurement facilities. Various combinations of sampling frequencies and event
tracing were used to test the measurement costs in different cases. The costs of the
raw data collection as compared with the unmodified Charlotte kernel are
summarized in Table 4.2. The overall performance penalty for a program running on
modified Charlotte kernel and not using the measurement facilities is less than one
percent (0.32%). Programs that are using only the event tracing cost an additional
1%. The cost of sampling varies from around 1% to 15% depending on the sampling
frequencies chosen. As a result, the total costs for a program under measurement are
dominated by the sampling overhead and depend mainly on the sampling precision
required by the programmer.

23

Sampling Frequency Charlotte Kernel w/ Measurement Facilities
No Event Tracing w/ Event Tracing
No Sampling 0.32% 1.25%
2/sec 1.07% 1.55%
10/sec 2.00% 2.59%
100/sec 14.6% 15.2%

Table 4.2: Average Measurement Costs on Charlotte
(Relative to Program Running on Unmodified Charlotte)

USER INTERFACE

SLAVE ANALYST

PROCESS PROCEDURE
LEVEL LEVEL

IRT RT

RAW DATA POOL

NODE MACHINE

SLAVE ANALYST

PROCESS
LEVEL

IRT

PROCEDURE
LEVEL

IRT

RAW DATA POOL

Figure 4.2: General Structure for Measurement Results Analysis

24

4.4. Data Analysis

4.4.1. General Structure

Figure 4.2 shows the general structure for data analysis in our measurement
tool. Analysis programs in the master and slave analysts cooperate to summarize the
raw data in response to user queries. The master analyst can reside on any machine
as long as communication channels between master and slave analysts can be
established. In our implementation, the master analyst is a process running on a host
Unix system. An independent user interface is separated from the implementation of
the master analyst, so that different interfaces between the user and the master
analyst can be adopted for different environments.

Since the amount of the trace data is usually quite big, it is too expensive to
process all user queries directly from those data. We create a set of Intermediate
Result Tables (IRT) in master and slave analysts to store information pre-processed
from the trace data.

There are three different query processing categories. The first category
contains queries that only need the information in the IRT at master analyst. The
master analyst can easily handle these queries by accessing appropriate entries in the
IRT. The second category contains queries that require intermediate results stored in
the IRT’s at slave analysts. The master analyst has to communicate with
corresponding slave analysts to retrieve information in the IRT’s of slave analysts.
The last category of user queries needs direct access to the raw data of the slave
analysts, e.g. a query for a list of the event traces in certain time interval. User
queries in this category will cause the trace data to be scanned at the time of the
query processing.

The processing costs for queries in various categories differ significantly.
Queries in first and second categories involve only table searching in master or slave
analysts. whereas, queries in the third category are much more expensive due to
processing of the large amount of raw data. The choice of data stored in IRT’s can
have a large affect on the costs of user query processing.

Most user queries fall into the first two categories; however, users may
occasionaly need direct access to the trace data. One such example is when the
needed information is not provided by the metrics, e.g., the communication patterns
among different processes. Another example is when a user needs to scrutinize the
details about program’s execution, e.g., to check why a process is blocked during a
given time period. These queries will fall into the third category and involve extra
costs for processing the raw data.

25

4.4.2. Intermediate Results And User Query Processing

The interactive nature of our performance tool allows users to investigate the
performance behavior of the program with a variety of user queries. If every user
query required processing the entire pool of raw data, the costs for user query
processing would be prohibitive. As a result, we separate the data analysis phase into
two stages: intermediate result processing and interactive user query processing. In
the first stage, various intermediate results are pre-processed from the raw data and
saved in IRT’s at master and slave analysts. In the second stage, user queries fetch
information from either the intermediate result tables or from the raw data pools.

The basic results from our measurement tool are the performance metrics that
are described in Chapter 3. Among these metrics are Tepy s Twair cpu> Twait_sync» Mn
and M, , which are used for calculating other metrics. Most of user queries retrieve
information derived from these metrics. Therefore the task of pre-processing is to
calculate and store intermediate results for these metrics.

In our implementation, a metric function is represented as an array. Each entry
in the array is a triple: M [i] = (;, #;., t,,). The y; is the accumulated value of the
function up to the time #;. The low range, 7;, and the high range, #,, define a time
interval within which dM /dt = 1, whereas the function value is constant during the
time interval from #, to#; . The following algorithm computes the value of M () at
time £:

repeat
Search the array for element i ;
until 7, <t <1 ;
if th,— St < tl,-ﬂ then
{t is in the time interval where the function value does not change}
M(t) =Yy; + th,- - tl.-;
else
{t is in the time interval where the function value is changing}
M@)=y; +t-1;

Since the array is sorted by time, we can use binary search to find element i for
an arbitrary time ¢. This is more efficient than searching the raw data pool. Only one
pass through the raw data records is needed for pre-processing all array
representation of various metric functions. This overhead of IRT pre-processing is
worthwhile in view of the gain of efficiency in user query processing.

The metric information about the process and procedure levels is preprocessed
by slave analysts and kept in local IRT’s. The metric information about the program
and machine levels is preprocessed by the master analyst based on low-level
information sent from all slave analysts and saved in IRT’s at the master analyst.

26

The master analyst gets queries from the user and decides how to distribute a query
among slave analysts. The query processing here is similar to the query processing
in a distributed database system. However, the major differences of our query
processing from a relational database system are:

(a) Many operations in the data analyses require random access to individual event
records in the trace data. This type of access is typically not efficient in a
relational database.

(b) All trace data for a measurement session are read-only. This simplifies the
problem of concurrency control for the data consistency.

(c) There are no replicated data in our system. Data on each node machine is
unique and local to the slave analyst on that machine. Consequently the general
strategy for processing raw data is relatively simple — most raw data is
processed locally by the slave analyst.

4.4.3. Clock Coordination

The calculation of performance metrics in the IPS system depends upon the
ordering of different events in the system. For most metrics, this ordering only
involves events occurring in the same machine (e.g., metrics for the individual
machine and process). For other analyses (such as the critical path analysis in
Chapter 5), we need information about partial ordering among events in different
machines. Only a few metrics depend upon the information of total ordering among
events across machines. One such example arises when calculating the elapsed time
of the whole program.

Maintaining total ordering among events in a distributed environment requires
synchronizing clocks on different machines, which involves extra overhead at run-
time and is not trivial[50]. Clock synchronization can be only approximated, the
accuracy of which depends upon the technology and the environment. In our
implementation on Charlotte, clocks on node machines are reset every time a new
measurement session is started. The coordination of clock time on different
machines is of concern only during the execution of a measured program. This time
is relatively short (most likely within several hours) compared to the lifetime of a
system. With current quartz technology, we can assume that the drift of the clock
frequency rate within such a short period of time is very small[50]. Therefore, we
adopted a simple approximation method based on the TEMPO algorithm[50], which
keeps the clocks in a local network synchronized with an accuracy comparable to the
resolution of each individual clock.

The basic idea for clock coordination lies in calculating the fixed clock offsets
among different machines, using the timing information collected from monitoring
message communications between these machines. For each inter-machine message,
we record the local time when the message leaves a machine and the local time when

27

the message packet arrives at another machine. This information is sent to the
master analyst, where the clock offsets are computed.

The method used for our clock coordination provides accuracy in the same
order of magnitude as the resolution of the clocks in individual machines (clock
resolution is 1ms in our tests). The approximation in this small range (a few ticks of
the clock) has little effect on calculations of metrics that take hundreds or thousands
of clock ticks (e.g., the elapsed time of the whole program). In addition, calculations
for most metrics only depend on the information of local clocks. Hence, the
approximation of clock coordination has no influence on the accuracy of the results
for most metrics.

A basic assumption of the TEMPO algorithm is that the distribution of
transmission times can be considered the same in both directions. This condition can
also hold true for a ring network (as in the case of Charlotte), since the differences in
the distribution of time delays due to asymmetry in the length of the wire are
negligible with respect to the other components, such as the software overhead and
the buffer delays in message transmission.

28

Chapter 5

Automatic Guidance Techniques

5.1. Introduction

We base our performance system on the idea that it should provide answers, not
just numbers. A performance system should be able to guide the programmer in
locating performance problems and should help users improve program efficiency.
In this chapter, we shall discuss some analysis techniques that support our approach.

The previous chapters describe a system for measuring the performance of the
parts of a distributed program at different levels of detail. A programmer can use this
information to manually evaluate the behavior of the program. In the simplest form
of this system, the programmer starts at the top (program) level of the hierarchy.
Using available metrics, the programmer derives a general picture of the execution of
the program and decides where to look in the next (machine) level of the hierarchy.
This decision may be affected by the choice of the machine with the smallest
utilization or highest procedure call rate. Next, at the process level, the programmer
can examine the performance metrics of each process on the machine and choose that
which appears to have the largest performance effect. This procedure can be
continued down the hierarchy to the procedure level. In this way, users can obtain a
picture of the program’s execution and focus their attention on the points of greatest
interest. However, to obtain all the information, users must proceed through various
details of searching in the hierarchy. This process is time-consuming, and it is
sometimes very difficult to pinpoint problems by referring only to the performance
metrics of individual components in the program. A good measurement system
should provide further facilities for aiding users to understand a program’s behavior,
to locate trouble spots, and to improve program efficiency.

The execution of a parallel or distributed program can be quite complex. Often
individual performance metrics do not reveal the cause of poor performance, because
a sequence of activities, spanning several machines or processes, may be responsible
for slow execution. Consider an example from traditional procedure profiling. We
might discover a procedure in our program that is responsible for 90% of the
execution time. We could hide this problem by splitting the procedure into 10
subprocedures, each responsible for 9% of execution time. For this reason, it is
necessary to detect a situation in which cost is dispersed among several procedures,
and across process and machine boundaries.

There are other problems that are difficult to detect using simple performance
metrics. It may be important to determine the effect of contention for resources. For
example, the scheduling or planning of activities[51] on different machines can have
a great effect on the performance of the entire program.

29

Another example is the problem caused by the execution pattern of a program
changing over time. A parallel program may go through a period of intense
interaction with little computation, then switch to a period of intense computation
with little interaction among its concurrent components. In such a case it will be
difficult to understand the detailed behavior of the program by analyzing the
program’s execution as a whole.

Our strategy in designing a measurement system is to integrate automatic
guidance techniques into such a system. Therefore, information from these
techniques, such as that which concerns critical resource utilization, interaction and
scheduling effects, and program time-phase behavior should be available to help
users analyze a program’s execution. In our research, we have developed one of the
techniques — critical path analysis for the execution of distributed programs. This
chapter presents the implementation of this technique in IPS. Section 5.2 addresses
the basic concept of critical path analysis in the execution of distributed programs.
Section 5.3 provides a definition of the critical path as shown in the program activity
graph and describes the construction of these graphs based on data collected from the
measurement. Different algorithms for critical path analysis and the testing of these
algorithms are presented in Section 5.4.

5.2. Critical Path Analysis for Execution of Distributed Programs

Turnaround or completion time is an important performance measure for
parallel programs. When turnaround time is used as the measure, speed is the major
concern. One way to determine the cause of a program’s turnaround time is to find
the event path in the execution history of the program that has the longest duration.
This critical path [52] identifies where in the hierarchy we should focus our
attention. As an example, Figure 5.1 gives the execution history of a distributed
program with three processes. This figure displays the program history at the process
level, and the critical path (identified by the bold line) readily shows us the parts of
the program with the greatest effect on performance.

We can view a distributed program as having the following characteristics:
(@) It can be broken down into a number of separate activities.
(b) The time required for each activity can be measured.

(c) Some activities must be executed serially, while others may be carried out in
parallel.

(d) Each activity requires a combination of resources, e.g., CPU’s, memory spaces,
and 1/O devices. There may be more than one feasible combination of
resources for different activities, and each combination is likely to result in a
different duration of execution.

30

Process 1 Process 2 Process 3
(o] (o]
5 10 5
: Send :
&,._ ””””” Ii\ , Legend
Rev 6 Send .-.\.."> >g ——— Process running
20 Rev __ _ Message delay
...... Process blocking
7 10 . Critical path
5

-~
e
-
e

Figure 5.1: Example of Critical Path at Process Level

Based on these properties of a distributed program, we can use the critical path
method (CPM)[52, 53] to analyze a program’s execution. The method is commonly
used in operational research for planning and scheduling, and has also been used to
evaluate concurrency in distributed simulations[54].

In contrast to CPM, the technique used in our critical path analysis is based on
the execution history of a program. We can find the path in the program’s execution
history that took the longest time to execute. Along this path, we can identify the
place(s) where the execution of the program took the longest time. The knowledge of
this path and of the bottleneck(s) along it will help us focus on the performance
problem.

Turnaround time is not the only critical measure of the performance of parallel
programs. Often the throughput is more important, e.g., in high-speed transaction
systems[55]. Our discussion in this chapter concentrates on the issue of critical path
analysis, but we also address techniques for deriving the throughput information
from the trace data.

5.3. Program Activity Graph

To calculate critical paths for the execution of distributed programs, we first
need to build graphs that represent program activities during the program’s

31

execution. We call these graphs program activity graphs (PAGs). The longest path
in a program activity graph represents the critical path in the program’s execution. In
this section, we define the program activity graph and related ideas. We then
describe how various communication primitives of distributed programs are
represented in program activity graphs and how these graphs are built on the basis of
information obtained from program measurement.

5.3.1. Definitions

The definition of program activity graph is similar to that of an activity network
in project planning[56]. The execution of distributed programs can be divided into
many nonoverlapping individual jobs, called activities. Each activity requires some
amount of time, called the duration. A precedence relationship exists among the
activities, such that some activities must be finished before others can start.
Therefore, a PAG is defined as a weighted, and directed multigraph. that represents
program activities and their precedence relationship during a program’s execution.
Each edge represents an activity, and its weight represents the duration of the
activity. The vertices represent beginnings and endings of activities and are the
events in the program (e.g., send/receive and process creation/termination events). A
dummy activity in a PAG is an edge with zero weight that represents only a
precedence relationship and not any real work in the program. More than one edge
can exist between the same two vertices in a PAG.

The critical path for the execution of a distributed program is defined as the
longest weighted path in the program activity graph. The length of a critical path is
the sum of the weights of edges on that path.

5.3.2. Construction of Program Activity Graphs

A program activity graph is constructed from the data collected during a
program’s execution. There are two requirements for the construction of program
activity graphs: first, the activities and events represented in a PAG should be
measurable in the execution of programs; second, the activities in a PAG should obey
the same precedence relationship as do program activities during the execution.

Two classes of activity considered in our model of distributed computation are
computation and communication. For computation activity, two basic PAG events
are starting and terminating events. The communication events are based on the
semantics of our target system. In Charlotte, the basic communication primitives are
message Send/Rcv and message Wait system calls[43]. A Send/Rcv call issues a
user communication request to the system and returns to the user process without
blocking. A Wait call blocks the user process and waits for the completion of
previously issued Send/Rcv activity. Corresponding to these system calls are four
communication events defined in the PAG: send_call, rcv_call, wait_send, and
wait_tcv. These primitive events allow us to model communication activities in a

32

program. We show, in Figure 5.2, a simple PAG for message send and receive
activities in a program. Two extra events of transmit_start and transmit_end are
included in Figure 5.2a to depict the underlying relationship among various
communication events. They represent the actual data transmission inside the
operating system. Since these extra events occur below the application program
level, we do not consider them in our PAG. Therefore, we transform the graph in
Figure 5.2a into that in Figure 5.2b and still preserve the precedence relationship
among the basic communication events.

) ¥ transmit_start R Al
Send_cal cv_e Send_call Y Y Rev_call
twait__se twait_rcv
\/\\v \ /
Wait_send + - 3 Wait_rcv Wait_send - T Wait_rcv
4 transmitend v v
(a) Detailed Version (b) Simplified Version

Figure 5.2: Construction of Simple Program Activity Graph

The weights of message communication edges in Figure 5.2b (tsends trev s wait send>
and f,q v), Tepresent the message delivery time for different activities. Message
delivery time is different for local and remote messages, and is also affected by
message length. A general formula for calculating message delivery times is:
¢=T+T;xL, where L is the message length, and T, and T, are parameters of the
operating system and the network. We have conducted a series of tests to measure
values of these parameters for Charlotte. We calculated average T, and T, for
different message activities (intra- and inter-machine sends and receives) by
measuring the round trip times of intra- and inter-machine messages for 10000
messages, with message lengths from 0 to the Charlotte maximum packet size.
These parameters are used to calculate the weight of edges when we construct PAGs
for application programs.

5.4. Algorithms of Critical Path Analysis

An important side issue is how to compute the critical path information
efficiently. After a PAG is created, the critical path is the longest path in the graph.

33

Algorithms for finding such paths are well studied in graph theory. We have
implemented a distributed algorithm for finding the one-to-all longest paths from a
designated source vertex to all other vertices. A centralized algorithm was also
tested as a standard for comparison with distributed algorithms. In this section, we
describe some details of the implementation and testing of these algorithms, and
provide comparisons of test results and some remarks on the algorithms.

5.4.1. Assumptions and Our Testing Environment

Since all edges in a PAG represent a forward progression of time, no cycles can
exist in the graph. To find the longest path in such graphs is a much simpler problem
than in graphs with cycles. Also, most shortest path algorithms that we studied can
be easily modified to find longest paths, because of the acyclic property of our
graphs. Therefore, in the following discussion, we consider those shortest-path
algorithms to be applicable to our longest-path problem.

A program activity graph consists of several subgraphs that are stored in
different host machines. The data to build these subgraphs are collected during the
execution of application programs. We can copy subgraphs between node machines;
the copying time is included in the execution time of algorithms. However, our
measurements indicate that this copying time is much less than one percent of the
total execution time. All subgraphs were sent to one machine to test the centralized
algorithm. In testing the distributed algorithm, subgraphs were either locally
processed or sent to some collection of machines to be regrouped into bigger
subgraphs.

We used two application programs to generate PAGs for testing the longest path
algorithms. Application 1 is a master-slave structure, and Application 2 is a pipeline
structure. Both programs have adjustable parameters. By varying these parameters,
we vary the size of the problem and the size of generated PAG’s. In graphs
generated from Application 1, more than 50% of the total vertices were in one
subgraph, while the remaining ones were evenly distributed among the other
subgraphs. The vertices in the graphs from Application 2 were evenly distributed
among all subgraphs.

All of our tests were run on VAX-11/750 machines. The centralized algorithms

ran under 4.3BSD UNIX, and the distributed algorithms ran on the Charlotte
distributed operating system[43].

5.4.2. Diffusing Computation on Graphs

Diffusing computation on a graph, proposed by Dijkstra and Scholten[57], is a
general method for solving many graph problems. All of our algorithms for the
longest path problem are variations of this method. Therefore, we will first give a
brief description of the general structure of diffusing computation before we discuss

34

the details of our algorithms.

We define a root vertex of a directed graph as a vertex in the graph that has only
out-going edges, and a leaf vertex of a directed graph as a vertex in the graph that has
only in-coming edges. A diffusing computation on a graph can be described as
follows:

From all root vertices in the graph, a computation (e.g., a labeling message)
diffuses to all of its descendant vertices and continues diffusing until it reaches
all leaf vertices in the graph. :

We distinguish two variations of the diffusing computation: synchronous
execution and asynchronous execution. In synchronous execution, a nonroot,
nonleaf vertex will diffuse the computation to its descendant vertices only after it
receives all computations diffused from all in-coming edges. In asynchronous
execution, a nonroot, nonleaf vertex will diffuse the computation to its descendant
vertices as soon as it receives a new computation from any one in-coming edge.
Synchronous execution can deadlock in a graph with cycles. However, the
computational complexity of synchronous execution is linear in the number of edges
and vertices. On the other hand, asynchronous execution does not need explicit
synchronization spots in its execution. Potentially, this will provide more
concurrency for the computation in a distributed environment.

5.4.3. Test of Different Algorithms

We chose the PDM shortest-path algorithm as the basis for our implementation
of centralized algorithm[58]. The experiments of Denardo and Fox[59], Dial et
al[60], Pape[61], and Vliet[62] show that, on the average, the PDM algorithm is
fagter than other shortest-path algorithms if the input graph has a low edges-to-
vertices ratio (in our graphs, the ratio is about 2). An outline of the PDM algorithm
and a brief proof for the correctness of the algorithm are given in Appendix A. More
detailed discussion of the algorithm can be found in [58].

Our implementation of the distributed longest path algorithm is based on
Chandy and Misra’s distributed shortest path algorithm[63]. Every process
represents a vertex in the graph in their algorithm. However, we chose to represent a
sub-graph instead of a single vertex in each process because the number of total
processes in the Charlotte system is limited and we were testing with graphs having
thousands of vertices. The algorithm is implemented in such a way that there is a
process for each sub-graph, and each process has a job queue for the diffusing
computation (labeling the current longest length of the vertex). Messages are sent
between processes for diffusing computations across sub-graphs (processes). Each
process keeps individual message queues to its neighbor processes. An outline of the
two versions of the distributed algorithm and a proof of the correctness of the
algorithm appear in Appendix B. A detailed discussion of the algorithm is given by
Chandy and Misra[63].

35

We tested our algorithms with graphs derived from the measurement of
Applications 1 and 2. The total number of vertices in the graphs varies from a few
thousand to more than 10,000. Figure 5.3 shows the test results for the distributed
algorithm. For asynchronous execution, we show only one time result in the figure
for comparison with the time for synchronous execution. The execution times for
asynchronous and synchronous execution differ dramatically.

Time (sec)
5000+
Asynch. Execution
(Application 1)
4000+
9 Machines
30001 Synch. Execution
(Application 1)
~ b
3 Machines/ ,-*

2000 ¢ A

)(,»*" 9 Machines

/,r;*’
7
1000 2{’
P 3 Machin ch. Execution
{Application 2)
= o — = *9 Machines
0 Frr o= # Vertices
0 3000 6000 9000 12000

Figure 5.3: Execution Times for the Distributed Algorithm

Speed-up () and efficiency (E) are used to compare the performance of the
distributed and centralized algorithms. Speed-up is defined as the ratio between the
execution time of the centralized algorithm (7,) to the execution time of the
distributed algorithm (T,): § = T, / T,. Efficiency is defined as the ratio of the
speed-up to the number of machines used in the algorithm: E = § / N.

We used input graphs with different sizes and ran the centralized and distributed
algorithms on up to 9 machines. Speed-up and efficiency were plotted against the
number of machines. The results are shown in Figures 5.4, 5.5, 5.6, and 5.7. We can
see from these measurements that the distributed algorithm with larger input graphs
and more machines resulted in greater speed-up but less efficiency.

The complexity of the synchronous version of the diffusing algorithms is linear
with respect to the number of vertices and edges in the graph, because the diffusing
computations go through each edge and vertex exactly once. In asynchronous

36

execution, at the worst case, the computation will be proportion to the total number
of all possible paths from the source to each vertex in the graph. Asynchronous
execution can increase concurrency in a distributed computation by generating more
diffused computations in the job queue and releasing the synchronization
requirements among executions. However, in this case we sacrifice economy of
work because the asynchronous algorithm does less careful bookkeeping. Our test
results indicate that the work in the asynchronous execution grows so fast that even a
parallel algorithm is not viable.

We have observed a speed-up of almost 4 with 9 machines in synchronous
execution of the distributed algorithm. Speed-up increases with the size of the input
graph and the number of machines participating in the algorithm. On the other hand,
the efficiency of the algorithm decreases as more machines are involved in the
algorithm. The sequential nature of synchronous execution of diffusing
computations determines that the computations in an individual machine have to wait
for synchronization at each step of the diffusion. As a result, the overall concurrency

in the algorithm is restricted, and the communication overhead with more machines
offsets the gain of the speed-up.

Speed-up Efficiency
4 APPLICATION 1 LN Y APPLICATION 1

IVi=10284
e - /4-
— —
AT IVI=5814
1 S
¥ T~ IVI=10284
T =y IVI=5814
Wisso T = IVI=4414
IVi=3014
1 2 3 4 5 6 17 8 9 10
1oz 3 4 # g/[achi?les T8 o 10 # Machines

Fig. 5.4: Speed-up of Distributed Algorithm Fig. 5.5: Efficiency of Distributed Algorithm

Speed-up
iy .

APPLICATION 2

APPLICATION 2

37

1Vi=8600
+

e
7 IVI=5800
e

~~¢ IVI=8600
N 1VI=5800
Vi=1600 N ~t |VI=4400
14 e
"""" ~+IVI=1600
1 2 3 4 5 6 7 8 9 10
to? 3 4 #g'iadﬁges 78 9 10 # Machines

Fig. 5.6: Speed-up of Distributed Algorithm Fig. 5.7: Efficiency of Distributed Algorithm

5.5. Remarks

The technique of critical path analysis is one method that we developed to
provide guidance for locating performance problems in the program. A PAG is
created from the data collected during program’s execution. The longest path in this
graph represents the critical path in the execution of the program. Knowledge about
this path helps programmers identify the possible bottlenecks in the program. We
have implemented different algorithms to calculate the critical path in a PAG. Due
to the acyclic nature of PAG’s, these algorithms are simple and efficient. The
distributed algorithm for critical path analysis attains a limited speed-up and is well
fit to the structure of master-slave analysts in IPS.

Presentation of results of critical path analysis offers some interesting problems.
A PAG may contain more than 100,000 nodes; the critical path may contain a
nontrivial percentage of these nodes. We use statistical presentation techniques to
display the (time weighted) most commonly occurring nodes, and the most
commonly occurring sequences in the path. We then use high-level language
debugging techniques to relate these events directly to the source program.
Observing the most commonly occurring sequences allows us to detect performance
bottlenecks that span procedure, process, or machine boundaries. Performance
problems that are divided among several procedures, or even among processes or
machines, will be readily apparent.

38

In next chapter, we will give a sample measurement session for a real
application program to show how an automatic guidance technique can be integrated
into a performance measurement system, and how the guidance information can help
users find performance problems in the program.

39

Chapter 6
Measurement Tests With IPS

The IPS measurement system provides a wide range of performance
information about a program’s execution. This information includes performance
metrics at different levels of detail, histograms of the basic metrics, and guidance
information for the critical path in a program’s execution. This chapter describes a
sample performance measurement session of a distributed application to show the
effectiveness of the information provided by the IPS, and to show how this
information helps us to better understand the performance behavior of a program.
Note that all of the tables and histograms presented in this Chapter come directly
from output of the IPS system.

In evaluating the usefulness of our system, we have been able to obtain some
interesting results in the studies we have performed. More time is needed, however,
to fully evaluate the models, methods and tools presented in this thesis.

This chapter is divided into three sections. The first section describes the
sample program we have chosen to test the IPS measurement system. The second
section describes the measurement session and analyses of the program’s behavior.
The last section is a brief summary of IPS features that are important in the
performance measurement of distributed programs.

6.1. The Program for Measurement Tests

The program we have chosen for measurement tests on the IPS system is an
implementation of the Simplex method for linear programming[64]. There are two
reasons why we use this program as a sample program for measurement tests in our
system. First, the Simplex method is popular as an application program in various
areas of science and engineering. Second, a test program for the Simplex method has
already been implemented on the Charlotte distributed system by Bhide[65]. It is
more interesting to measure a real program rather than one written especially for our
own measurement. The selection of a sample program for our measurement is
relatively arbitrary, but our major concern is to show the use of the IPS system on a
real program.

The Simplex method is an important linear programming tool{64, 53]. It is used
to obtain an optimal solution for a system that has linear constraints and an objective
function. This objective function is a linear combination of constrained variables.
The aim of the method is to solve the system so that the objective function is
maximized.

We can represent the system in the matrix form as follows:

Constraint equations: Ax = d.
Objective function: cxX.

40

Where
A is an mxn matrix
X is a column of n elements
d is a column of m elements
¢ is a row of n elements

Let the matrix B be constructed as follows:

o[t

The variable z denotes the value of the objective function. At the initial step,
the value of z, which is a linear combination of the constrained variables, is zero,
since the value for all constrained variables is assumed to be zero. In the following
discussion we assume that the system has an unique solution for all constrained
variables. The absence of such a solution would be easily detected.

6.1.1. Basic Serial Algorithm for Simplex Method

The basic algorithm for the Simplex method consists of repeated iterations of
the following steps:

(1) Select column j such thate; > 0.
(2) Select row i with the smallest positive ratio d;/A; ;.

(3) Perform row operations on matrix B to achieve
B,-,,-=1,andBm,j=0, 0 <row Sm+l, row #i

Failure to find a positive ¢; in the first step implies that the objective function
cannot be improved, and that the optimal solution has been found. In step 2, if no i
can be found that satisfies the criterion mentioned, another column j needs to be
selected in step 1. Inability to find such an i for all columns with ¢; > 0 means that
the optimal solution for the system has been found.

6.1.2. Columnwise Distribution Algorithm of Simplex Method

One way to distribute the work of the serial algorithm for the Simplex method is
to divide columns of the B matrix into several groups, and to have individual
processes conduct calculations within each group. We call this the columnwise
distribution algorithm.

Assume that the job is distributed among ¢ calculator processes such that ¢
divides n. Each calculator process is allocated n/q columns of matrix B, such that
process 1 has columns 1 through /g, process 2 has columns n/g+1 through 2n/q, and
so on. Each process also has a copy of column vector d, and there is a controller
process that coordinates all calculator processes.

The columnwise distribution algorithm allows several iterations to be
completed before any communication is needed. We call the intervals between
communications rounds to distinguish them from iterations. Two parameters in the

41

algorithm, k and s, are used to select the number of columns commonly distributed
among calculator processes within each round. At the start of each round, every
calculator process chooses k columns from its set of columns that have a positive ¢
value (the last row in matrix B), and sends these k& columns to the controller process.
The controller selects s columns from the total k¢ columns sent by all calculator .
processes, and broadcasts them to all calculators. Each calculator then has its own
individual n/g columns, plus the globally-known s columns, at most k¢ of which are
duplicates of its individual ones.

For each iteration of the round, all calculators choose the same globally-known
column (ie. the one with the highest ¢ value), determine the appropriate row on
which to base a row operation, and then perform the row operations on the columns
they possess. All calculators make the same choices, since they share globally-
known columns, and they modify those columns identically without need of further
communication. A round continues either until a fixed limit on the number of
iterations has been reached, or until no globally-known column can be used (i.e., all
¢ values are nonpositive). This calculation is shown in Appendix C in greater detail.

6.2. Measurement Session of the Test Program

In the following discussion, we describe an IPS measurement session of the
Simplex program. The configuration for our test is set as follows: the input matrix
size is 36x36, the program has a controller process and 8 calculator processes, and
these processes run on 3 node machines.

6.2.1. Interactive Measurement Session

IPS provides an interactive user interface for the measurement of programs.
The interface supports a command menu from which users can choose appropriate
actions. Figure 6.1 shows the general format of a command menu. The menu
contains two groups of commands. One group includes the commands for
maneuvering through different levels of the hierarchy — for example, going up one
level, going down one level, and selecting other items in the same level. Another
group consists of the commands for selecting different measurement actions, such as
presenting metrics and displaying histograms and critical path information.

[Metrics | Histogram | EventPath | Select Member | Down Level | UpLevel | Quit |

Figure 6.1: Format of a Command Menu

42

Metrics for Program Level
of Machines: 3
of Processes: 9
Elapsed Time(ms): 27670
Cpu Time(ms): 31870
Block_sync Time(ms): 203794
Block_cpu Time(ms): 9679
Message Traffic(#): 687
Message Traffic(bytes): 2220080
of Procedure: 58
of Procedure Calls: 938
Parallelism: 1.15
Load Factor: 1.30

Figure 6.2: Metrics at Program Level

The measurement session starts at the program level. We can select a command
from the menu to display performance information at this level. Figure 6.2 shows the
metrics at the program level. These metrics are defined in Section 3.2, and reflect
various aspects of the performance behavior of the program. The information found
in various histograms can help users investigate a program’s behavior during a
stretch of time. Figure 6.3 shows a histogram of CPU time at the program level.

100 1
90 -
80 -
70

Percent of 60

5 -
CPU Usage 40 -
30 -
20 A
10 - |
25

1
o9 5 10 15 20
Elapsed Time (seconds)

Figure 6.3: Histogram of CPU Time at Program Level

The performance information at the program level gives us a general
characterization of the program’s execution. For example, we note in Figure 6.3 that
there is a quiet period at the beginning of the program’s execution. We would be
interested in finding which part of the program causes this idle period. As we can see
from Figure 6.2, the total message waiting time (Block_sync Time) for the entire
program is large, and the overall parallelism (speed-up) under this configuration is
only 1.15. These results raise questions about why the speed-up of the program’s
execution is so limited and where the bottlenecks in the program might be.

43

Metrics Machinel Machine2 Machine 3
of Process: 3 3 3
Elapsed Time(ms): 27636 27541 27500
Cpu Time(ms): 16233 7911 7726
Block_sync Time(ms): 58507 72911 72376
Block_cpu Time(ms): 7273 1034 1372
Message Traffic(#): 429 129 129
Message Traffic(bytes): 1383104 418488 418488
of Procedures: 22 18 18
of Procedure Calls: 626 156 156
Utilization: 0.59 0.28 0.28
Load Factor: 1.45 1.13 1.17

Figure 6.4: Metrics at Machine Level

For more detailed information, we continue our study at the machine and
process levels. Figure 6.4 shows the metrics at the machine level. Each machine has
3 processes. However, Machine 1 has performance results different from those of
Machines 2 and 3. This is because Machine 1 runs with the controller process and 2
calculator processes, whereas Machines 2 and 3 run with three calculator processes
each. The process level information of machine 1 is shown in Figure 6.5. Two
calculator processes (processes 4 and 5) in machine 1 have similar performance
behavior. We show only one set of process data for machine 2 (see Figure 6.6), since
all other processes in machines 2 and 3 are calculator processes and have similar
performance results. We can also check histograms of the different metrics at
machine and process levels. By comparing histograms in different machines and
processes, we find that the quiet period in Figure 6.3 corresponds to the time period
when only the controller process is busy, generating the initial problem (the matrix
A, and elements ¢, d); all the calculator processes wait idly.

Metrics Process3 Process4 Process 5§
Process Name: controlf1] calcs[3] calcs[6]
Elapsed Time(ms): 27240 27352 27421
Cpu Time(ms): 9988 3187 3058
Block_sync Time(ms): 12230 22911 23366
Block_cpu Time(ms): 5022 1254 997
Message Traffic(#): 343 43 43
Message Traffic(bytes): 1104112 139496 139496
of Procedures: 10 6 6
of Procedure Calls: 522 52 52
Response Ratio: 2.60 8.55 8.55
Load Factor: 1.50 1.39 1.32

Figure 6.5: Metrics at Process Level (in Machine 1)

44

Machine and process level information helps us identify the performance
behavior of individual items in the program. We find only a slight difference
between the performance of calculator processes running in Machine 1 and those in
Machine 2 or 3. On the other hand, the controller process spends 34% of its time in
computing, 47% of its time in waiting for messages, and 19% of its time in waiting
for the CPU, while the calculator processes spend 11% of their time in computing,
85% of their time in waiting for messages, and 4% of their time in waiting for the
CPU. These facts demonstrate that there is no major contention for computing
resources among processes since each process spends little time in waiting for the
CPU. However, interactions (appearing as messages) between controller process and
all calculator processes are heavy, and waiting for communication dominates the
execution of each calculator process.

Metrics Process 3
Process Name: calcs{2]
Elapsed Time(ms): 27167
Cpu Time(ms): 2589
Block_sync Time(ms): 23996
Block_cpu Time(ms): 611
Message Traffic(#): 43
Message Traffic(bytes): 139496
of Procedures: 6
of Procedure Calls: 52
Response Ratio: 8.94
Load Factor: 1.32

Figure 6.6: Metrics at Process Level (in Machine 2)

We can go further, to the procedure level, to investigate the behavior within
each process. Figure 6.7 shows this information for the controller and one of the
calculator processes. The profiling information here is presented in the same format
as in conventional profiling tools[16, 15]. The information about the distribution of
CPU time in different procedures can help users determine which part of the program
code dominates the execution. As discussed above, the procedure Init in the
controller process, which is in charge of generating the initial problem, takes 23% of
the controller’s CPU time and creates the quiet period in Figure 6.3.

45

Procedure Name Counter Time(%)

MainLoop 1 44
Init 1 23
SendChild 96 20
readl 6 7
CheckWaiting 96 4
Tecv 96 2
main 1 *
Getarg 3 *
SetUp 1 *
ConvertNum 3 *
Total 304 100
(a) Controller
Procedure Name Counter Time(%)
dorowop 15 56
MainLoop 1 33
selecttherow 15 10
Initial 1 1
SetUp 1 *
main 1 *
Total 34 100
(b) Calculator
(* denotes less than 1%)

Figure 6.7: Execution Profiling of Controller and Calculator

6.2.2. Information from Critical Path Analysis

The information from various metrics and histograms gives us a general picture
of the program’s execution. We have learned about many aspects of the program’s
behavior from this information; for instance, that parallelism of the program is not
high, that there is considerable communication between the controller and calculator
processes, and that each calculator process has light work load and spends most of
the time in waiting for messages. However, all this information is mainly applicable
to individual items in the program. It tells us little about the interactions among
different parts of a program, and about how these interactions affect the overall
behavior of a program’s execution. Therefore, it is still difficult to discover why the
parallelism is low, how much communications affect the program’s execution, and
which process (controller or calculator) has a bigger impact on the program’s
behavior. More sophisticated analysis techniques are needed for a measurement
system that will help users in analyzing performance results.

The critical path analysis technique in IPS provides guidance for finding
possible bottlenecks in a program’s execution. The critical path information is
represented by the percentages of communication and CPU time of the various parts
of the program along the total length of the path. Figure 6.8 gives the critical path

46

information at the program level. We can see that the communication cost (including
inter-machine and intra-machine messages) is more than one third of the total length
of the critical path. This reflects the fact that the communication overhead in
Charlotte is relatively high compared to other systems[43].

Entry Name Time(ms) %
CPU 10347 62
Inter-machine Msg 4960 30
Intra-machine Msg 1360 8
Total 16667 100

Figure 6.8: Critical Path Information at Program Level

Entry Name Time(ms) %
P(1,3) CPU 9740 58
P(1,3)->P(3,5) Msg 840 5
P(3,5)->P(1,3) Msg 840 5
P(1,3)->P(2,5) Msg 480 3
P(2,5)->P(1,3) Msg 480 3
P(3,4)->P(1,3) Msg 480 3
P(1,3)->P(3,4) Msg 480 3
P(1,3)->P(2,4) Msg 440 3
P(2,4)->P(1,3) Msg 440 3
P(1,3)->P(1,5) Msg 408 2
P(1,5)->P(1,3) Msg 408 2
P(1,3)->P(14) Msg 272 2
P(1,4)->P(1,3) Msg 272 2
P(1,3)->P(3,3) Msg 240 1
P(3,3)->P(1,3) Msg 240 1
P(3,5) CPU 159 1
P(1,5) CPU 108 1
P(2,5) CPU 88 1
P(3.4) CPU 79 *
P(2,4) CPU 67 *
P(1,4) CPU 64 *
P(3,3) CPU 42 *
Total 16667 100

(P(i,j) denotes process j in machine i, * denotes less than 1%)

Figure 6.9: Critical Path Information at Process Level

The critical path information at the process level (see Figure 6.9) gives us more
details about the program’s execution. The execution of the controller process takes
58% of the whole length of the critical path, while the execution of all calculator
processes take less that 5% of the whole length. The domination of the controller
process in the critical path restricts the overall concurrency of the program. This

47

explains why the parallelism for the current configuration is so low. From the length
of the critical path, we can calculate the maximum parallelism of the
program{32, 66], which equals the ratio between the total CPU time and the length of
the critical path. This maximum parallelism depends upon the structure and the
interactions among the different parts of the program. The maximum parallelism for
the program under our tests (with 8 calculators running on 3 machines) is only 1.91.
The communication costs and the CPU load effects in different machines lower the
real parallelism to 1.15.

Procedure Name Mach. Process ID Time(%)
MainLoop (Mach 1, Proc 3) 21
SendChild (Mach 1, Proc 3) 17
Init (Mach 1, Proc 3) 11
readl (Machl, Proc 3) 4
CheckWaiting (Mach 1, Proc 3) 4
MainL.oop (Mach 3, Proc 4) 1
recv (Mach 1, Proc 3) 1
MainLoop (Mach 3, Proc 5) 1
MainLoop (Mach 1, Proc 5) 1
MainLoop (Mach 2, Proc 4) 1
MainLoop (Mach 1, Proc 4) *
MainLoop (Mach 2, Proc 5) *
Total CPU 62

(* denotes less than 1%)

Figure 6.10: Critical Path Information at Procedure Level

Finally, we display critical path information at the procedure level in Figure
6.10. This information can be useful in locating performance problems across
machine and process boundaries. The top three procedures, that take 49% of the
entire length of the critical path, are in the controller process (again, we see the
procedure Inif). Procedure MainLoop in the calculator processes, which is in charge
of communications between calculators and the controller, takes 33% of the entire
execution time of each calculator process (see Figute 6.7). However, they are much
less noticeable in the critical path because of the dominance of the controller process.

6.2.3. Discussion

Previous sections demonstrate how a measurement session proceeds
interactively in the IPS system and how the critical path information is useful in
discovering performance problems in the program.

We have seen that the execution of the controller process dominates the
performance behavior. This is because, in our test configuration, the controller

48

process serves too many (8) calculator processes, but each calculator process is
lightly loaded. One way to cope with the problem is to reduce the number of
calculator processes in the program. We have conducted a set of measurement tests
with programs having 2 to 8 calculator processes for the same 36x36 input matrix,
running on 3 machines. The test results are shown in Figure 6.11. We can observe
that, to a certain extent, for this fixed initial problem, having fewer calculator
processes gives a better result. The execution time has its minimum when the
program runs with 3 calculators. However, if the number of calculator processes gets
too small (2 in this case), each calculator has to do too much work and creates a
bottleneck. Note that the test using 2 calculator processes is best with respect to the
assignment of processes to machines (only one process per machine). While in the 3
calculator case the controller process is running on the same machine as a calculator
process. Therefore, the contention for CPU time among processes is not the major
factor that affects the overall execution time of the program.

Time (msec)
33000'}"“"-""':'""]""c"""x""""n'""'n""'a"""'u
]] 1 1] 1 1 1]
i]] , ! |) : ;
1 1]) 1 L} 1 1 1
i : ' i ; i g i |
]) 1 ¥) ¥ i 1]
ey o
) i H i i i i
H ; 1) H : '
i ! '] : :)
230004 1o b -
. i : |) i ;
] 1) 1) 1])
|) H i ; H i
] i 4 1 4) t
] 1 1 1 1 t
] 1]] i
180001+ - T et
1 1 1] 1]]
I/ A R
P .
7/ A S s S s
H i i : i H i ;)
)) : i H 1 H i
: : i : : : ' H :
8000 At
1 2 3 4 5 6 7 8 9 10

Calculator Processes

Figure 6.11: Program Elapsed Time in Different Configurations

The critical path information for these tests (shown in Figure 6.12) supports our
observation. For the configuration of 3 calculator processes, the controller and
calculator processes have the best balanced processing loads, and the lowest message
overhead. This coincides with the shortest execution time in Figure 6.11. The
Simplex program has a master-slave structure. The ratio between computation times
for the controller and calculator processes on the critical path reflects the balancing
of the processing loads between the master and slaves in the program. We have
observed that when the master and slave processes have evenly distributed

49

processing loads (dynamically, not statically), the program shows the best turnaround
time. Otherwise, if the master process dominates the processing, the performance
suffers due to the serial execution of the master process. On the other hand, if the
slave processes dominated, it would be possible to add more slaves. Appendix D
contains a proof that supports our claim that for programs with the master-slave
structure, the length of the critical path in the program’s execution is at its minimum
when the path length is evenly distributed between master and slave processes.

Fraction of Critical Path Length _ Fraction of Critical Path Length
o D A R o e A
R A A I T T T A S A
A A A N R T T A
e B e e A e S
A A T A A A
BEES <2 EEEEEEEE
o T 1 o SN IS LA SO et St
S UC S A A A A
R S5 DR A A
s e e T S e O
AN A N N R A R S
(N T T T o Medes] A
b/ N b S R 76 B
I K S Bt S s E e BN 1 12 B e e B e e R
§ 1 haems | VR EERE
N SR
e R TN N T NS S N M
1 2 3 45 6 7 8 910 f 7 3 &5 6 18 9 10
Calculator Processes # Calculator Processes
(a) Process Components (b) Message Components

Figure 6.12: Components of the Critical Path

6.3. Summary

The measurements presented in this chapter show a wide variety of uses for the
IPS measurement system. Performance information in the IPS is well-organized and
easy to use. A complete and clear picture of the performance behavior can be
obtained from various metrics and histograms at different levels of the hierarchy.
The layered abstraction of the hierarchical structure helps users to focus their
interests. We have also demonstrated the power of guidance techniques in a
measurement system. The critical path information guides users in locating
performance problems in the program. In addition, it allows us to predict the
behavior a computation will show under different configurations. It is possible to
accommodate other guidance techniques in IPS; this is an area of current research.

50

The total processing time for a measurement session depends on the range of the
execution time for the program under measurement. It is within several minutes for

most of our test programs.

51

Chapter 7
Conclusions

Our research in performance measurement tools for parallel and distributed
programs focuses on two major issues:

(1) How a performance measurement system can provide a complete picture of
the execution of a program, and how this information should be organized so
that users can easily and intuitively access all the data without being
inundated with irrelevant details.

(2) How a performance measurement tool can supply more information than just
performance statistics, and how such a tool can guide the programmer in
locating performance problems and in indicating possible ways to make
further improvements.

Our approach to the first issue starts with a hierarchical model of distributed
programs. The hierarchical model is a natural way to describe distributed programs
and their performance. It provides a single, regular structure to describe a program,
from the statement level up to the entire program. This regular structure provides
views from many levels of abstraction, allows easy and intuitive access to
performance information, and simplifies the construction of tools that reason about a
program’s behavior.

The approach to the second issue is based on the development of automatic
guidance techniques that can direct users to the location of performance problems in
the program. The construction of guidance techniques is facilitated by the regular
structure of the program and measurement hierarchy. The guidance techniques,
combined with a user interface that directly relates performance results to the
program source code, allow the programmer to concentrate on fixing problems rather
than on finding them.

A prototype, the IPS system, has been built on the Charlotte distributed
operating system. Experiments in measuring real application programs on IPS
demonstrate that our measurement hierarchy intuitively maps performance
information to the program’s structure, and gives a multi-level view of the behavior
of a program’s execution. The abstraction of the hierarchy helps users easily focus
on places of interest, while the technique of critical path analysis provides extra
information for performance debugging and directs users to possible bottlenecks in
the program.

Our research in the area of performance measurement and evaluation is
necessary to keep up with the growing universe of parallel applications. Although
the principles and techniques developed in our research are based on loosely-coupled
parallel processing, they are also applicable to a wide range of programming systems,
including shared-memory multiprocessing systems.

52

Future Research

Our research as described in this thesis suggests several directions for future

work. Some of these directions are outlined below:

Different hierarchies: The hierarchical model is a flexible model that can be
targeted to many different application domains. The hierarchy implemented in
our IPS system is based on the specific requirements of our application
environment. The hierarchy is chosen to match the structure of objects being
measured. For example, to measure the performance behavior of
communication protocols in a long-haul network, we could choose a
measurement hierarchy that matches with the hierarchy of ISO 7-level
model[68]; whereas, for a database system, we might choose levels
corresponding to queries, transactions, atomic operations, and physical device
access[69].

Other automatic guiding techniques: A performance system should be able
automatically to guide the programmer in locating performance problems and in
helping users improve program efficiency. Developing automatic guiding
techniques in performance measurement systems opens a new research area. It
requires a combined knowledge of disciplines such as performance
measurement, program semantics, and algorithm design. One example of such
guiding techniques involves detecting time phase behavior during a program’s
execution. With this information, users can identify different phases in a
program’s execution and concentrate on those phases that hold the most
interest. The use of knowledge-based debugging and diagnostic
systems[70, 71,72] suggests another way to extract guiding information from
the measurement data. The predefined analysis techniques of a measurement
system can be stored as rules in the knowledge bases. Acting as an expert
system, the measurement tool might be able to incorporate more complex
guidance strategies.

Measurement systems for a shared memory environment: The basic ideas in our
research are also applicable to measurement in shared memory environments.
However, new questions are raised for the performance measurement of shared
memory systems. In these systems, the granularity of concurrency in a program
is smaller. Instead of using messages, the basic synchronization mechanisms
will be based on access to shared memory spaces (such as semaphores and
monitors). Therefore, the primitive events that such a measurement system
needs to monitor will occur with much higher frequency.

User interface: The user interface is an important aspect in the design of a
performance measurement system. The current technology of human-machine
interfaces (such as window systems, mouse input, color and graphic displays)
provides many options for the design of better user interfaces in performance
measurement systems. Design issues include how graphic representation of
program structures can be adopted for displaying a program’s behavior, and
how different representations of multidimensional, statistical information, such

53

as Chemoff’s face representation[73,74,75,76], can be used for the
presentation of time-varying performance data in measurement systems.

54

Appendix A

Centralized Algorithm for Critical Path Analysis

Following is a sketch of the centralized algorithm for critical path analysis (see

Chapter 5).

for all ¥ in G do
D[u] :=0;
end
initialize @ to contain SOURCE only;
while @ is not empty do
delete Q’s head vertex u;
for each edge (u,v) starting at u do
if D[v] < D[u] + w,, then
Plv]i=u;
D[v] :=Dlu] +w,;
if v was never in 0 then
insert v at the tail of Q;
else
insert v at the head of Q;
end
end
end
end

(a): Asynchronous Version

for allu in G do
Count[u] := # of in-coming edges;
D[u] :=0;
end
initialize Q to contain SOURCE only;
while Q is not empty do
delete Qs head vertex u;
for each edge (u,v) starting at u do
dec(Count[v]);
if D[v] <D[u] + w,, then

Plv] i=u;
Div] :=Dlu] + wy;
end

if Count[v] =0 then
insert v at the tail of Q;
end
end
end

(b): Synchronous Version

55

Based on the discussion in Deo’s paper[58], we now give an informal proof of
the correctness of our algorithm. We only prove the correctness of the asynchronous
version of our algorithm, since the synchronous version of the algorithm is a special
case of the asynchronous version in which the diffusion of the length information in
the graph follows a special pattern — the information about the longest path to a
vertex arrives first at each vertex. '

During the execution of the algorithm, the label D[u] is always updated to be
the currently known longest length from SOURCE to #, and P [x] is always updated
to be the predecessor vertex of u on the currently known longest path from SOURCE
to u. Since each insertion of a vertex u into Q is preceded by an increment of D [u],
and for a finite graph without cycles this D [x] bounds to be finite, this algorithm is
guaranteed to terminate.

To see that the D [u]’s do indeed converge to the longest length, we first note
that at termination D[v] = D[x] + I(u,v) holds for every edge (u.v). Suppose the
vertex sequent (SOURCE = ug, uy, ...,y =u)is a path from SOURCE to u, then its
path length is given by ‘

[(ugtty) + oo + 1 (Upogotty) < (-Dlugl +Dul) + ... + (D [ug_1] + D) =-D {SOURCE] +
Dul=Dlul
Thus, D[] is the longest length from SOURCE to u, and the vertex sequence,

SOURCE = P[..P[ul..], ... , P[[#1], P[u], u is the longest path from SOURCE to u as
obtained from our algorithm.

56

Appendix B

Distributed Algorithm for Critical Path Analysis

Following is a sketch of the distributed algorithm for critical path analysis (see Chapter 5):

for all u in sub-graph G do
Counterf{u] :=0;
Dlu]:=0;
end
initialize Q@ to include SOURCE or empty;
while not termination do
while O is not empty and
msg queues not full do
delete @ ’s head element;
if element = (Length, Pred) then
if D[u] < Length then
if Counter{u] > O then
put Ack[P[x]] in Q or msg queue;
end
P{u] := Pred;
D[u) :=Length;
for each edge (u,v) that starts at u do
put length msg: (D[u J+w,,, Pred=u)
in Q or msg queue for v;
end
Counter[u] +=# of out-going edges;
if Counter[u] = 0 then
put Ack[P[z]] in Q or msg queue;
end
else
put Ack[Pred] in @ or msg queue;
end
else
dec(Counter[u1);
if Counter[u] = 0 then
put Ack[P[r]] in @ or msg queue;
end
end
end
Send all msg queues that are not empty;
Receive from all neighbor processes;
if get any msg from other processes then
processing msg and put length msg
and acksin Q;
end
end

(a). Asynchronous Version

for all u in sub-graph G do
Counter[u] := # of in-coming edges;
Dlu] :=0;
end
initialize Q to include SOURCE or empty;
while not local_termination do
while Q is not empty and
msg queues not full do
delete Q ’s head: (Length,Pred);
dec(Counter[u 1);
if D{u] < Length then
Plu] := Pred;
D[u] := Length;
end
if Counter[u] = 0 then
for each edge (u,v) that starts at u do
put length msg: (D{u}+w,,, Pred=u)
in Q or msg queue fov;
end
end
end
Send all msg queues that are not empty;
Receive from all neighbor processes;
if get any msg from other processes then
processing msg and put length msgin @ ;
end
end
exchange msg with neighbors to get consensus
of global_termination

(b): Synchronous Version

57

In our implementation, each process has a job queue, @, and a set of queues for
messages to neighbor processes. There are two kinds of messages used in the
algorithm. One is the Length message, which contains the length of the longest path
currently known from SOURCE to a vertex and the predecessor on that path.
Another one is Ack message, which is used to send a response to the predecessor
denoting that the length sent by the predecessor has been (or will be) taken into
consideration by all vertices reachable from the vertex. A length message or an Ack
generated during the diffusion is either put into Q or into the corresponding message
queue depending on whether the destination is local or remote. Length messages and
Acks received from other processes will be unpacked and put into the local job

queue.

Three local variables are maintained for each vertex u: D [u] is the length of the
path, P [u] is the predecessor vertex of u on the longest path currently known from
SOURCE to u, and Counter[u] is the aumber of unacknowledged messages, that is,
the number of messages sent from this vertex for which no Ack has been received so
far. Note, if Counter[u] > O at any time, then a vertex has exactly one message to
which it has not sent an Ack, and this Ack should go to P [u]. At initialization, Q in
each process is either empty or includes only the SOURCE, depending on which
sub-graph the SOURCE belongs to. Also Counter[SOURCE] is set to the value of
the number of out-going edges from SOURCE. The termination condition for the
process including the SOURCE vertex is when Counter[SOURCE] equals to zero,
and other processes will then receive special termination messages from this process.

We now give an informal proof of the correctness of our algorithm based on the
discussion in Chandy-Misra’s paper[63]. We only prove the correctness of the
asynchronous version of our algorithm, since the synchronous version of the
algorithm is a special case of the asynchronous version in which the diffusion of the
length information in the graph follows a special pattern — the information about the
longest path to a vertex arrives first at each vertex. .

We assume our graphs are finite and connected, and there are no cycles in the
graph. Therefore, the longest path from SOURCE to any vertex u, L [u], must also be
finite.

Lemma 1. For any u,L{u]l 2D [u].

Proof. We observe that every D [u] is the length of some path from SOURCE to
u.

Lemma 2. If there is a path of length D [u] to u, then from some point
onward in the computation D [u] 2 D [u], if the algorithm does not terminate.

Proof. Proof is by induction on the number of edges on the path. Lemma 2 is
trivial when the number of edges in the path is zero. Now assume Lemma 2 holds
for all paths with & or few edges. Consider a path with k+1 edges from SOURCE to
4 in which v is the penultimate vertex and the path length tov is D Iv] =D Tu] - Wy-

58

From the induction hypothesis, eventually D[v] 2 D [v] = D Tu] - w,,; therefore u
will eventually receive the length message of D [v] + w,, which guarantees that D [u]
=D[v] + w,, =D Tu]. It follows from the algorithm that D [«] can never decrease.
Therefore, D [¢]12 D “[u] from that point onward in the computation.

Lemma 3. If the algorithm does not terminate, then from some point onward
in the computation, all vertices in the graph eventually form a rooted directed tree
where P [ul is the parent of u, and SOURCE is the root.

Proof. From Lemmas 1 and 2, if the algorithm does not terminate then
eventually every vertex « will have D [u] = L[u] and P [«] will be the prefinal vertex
on this path. Therefore, all vertices form a rooted directed tree where P[u] is the
parent of u, and SOURCE is the root.

Theorem 1. The algorithm terminates.

Proof. Assume the algorithm never terminates. Then D[«] = L[] for every
vertex u from some point in computation and hence no vertex sends a length
message from then on. Since all vertices form a rooted directed tree (Lemma 3), a
leaf vertex w in this tree cannot be the predecessor of any vertex. Therefore,
eventually Counter(w) = 0 and w will send an Ack to P[w]. Induct on the height of
the tree to show that every vertex will eventually have Counter = 0. When
Counter[SOURCE] = 0, the algorithm will then terminate.

Theorem 2. At the termination of the algorithm, for any vertex u, D[u] = L[u]
and Counter[u] = 0.

Proof. For a vertex u, we define E[u] to be the number of edges on a longest
path from SOURCE to u. The result follows by induction on all vertices » with E [1]
<k,fork=0,1,2,..

59

Appendix C
Process Description of Simplex Method

Following are skeleton process structures for the columnwise distributed
algorithm of Simplex Method (see Chapter 6 for details):

procedure RowOperations;

begin
loop -- each time through is one Simplex iteration
pick a globally known column with ¢>0; if none exit;
select row such that ratio (d[row]/A[row,col]) is the least positive;
if none then select another column;
perform row operations;
for row := 1 to m+1 do
ratio := B[row,j}/B[i,jl;
for col ;=1 ton+1 do
if row <> i then
B[row,col] := B[row,col] - ratio X BJi,col]
else
B[row,col] := B[row,col] / B[i,col]
end;
end;
end;
end
end RowOperations;

process Calculator;
begin
receive n/q columnns and the d vector;
loop -- each iteration is one round
select k positive elements of vector C;
send the k corresponding columns to the controller;
receive s global columns from controller;
if nothing received then exit;
RowOperations; -- perform all iterations of this round
end
end Calculator;

(a) Description of Calculator Process

60

process Controller;

begin
send n/q columns and the d vector to each calculator;
loop
receive columns from each calculator;
if no columns received exit;
pick up s columns from columns received;
send s columns to each calculator;
end

end Controller;

(b) Description of Controller Process

61

Appendix D
A Proof Of The Minimum Critical Path Length

In the following discussion, we give a simple proof to support our claim that for
programs with the master-slave structure, the length of the critical path in the
program’s execution reaches the minimum when the whole path length is evenly
distributed between master and slave processes. Our proof applies the related study
in Mohan’s thesis[67] to the aspect of critical path length.

Figure D.1: Master-Slave Structure

Assume that a general master-slave structure is represented as N slave processes
working synchronously under the control of a master process (see Figure D.1). Leta
computation have a total computing time of C, consisting of the time for master, Cy,,
and the time for slaves, C, (for simplicity, all times are deterministic). The
computation time in the master process includes one part for a fixed processing time
(e.g., initialization, result reporting time), F,, and another part of per slave service
time (e.g., job allocating, partial results collecting, and communication times with
slaves in the program of the Simplex method), c,,. Therefore,

C,=Ncy +Fy,.
Assume F,, is negligible compared to Nc,,, i.€., F >>Nc,; We have:
C.=Nc,.

The nature of the synchronization pattern in the master-slave structure
determines that the execution of the master process is serialized with the concurrent

62

execution of N slave processes. Hence, the length of the critical path in the
program’s execution, L, (N), is:

C C
L,(N)=Cpy + — =Ncp + —.

N N
To find the minimum of L,(N), we have:
d(L.(N)) G 0
dN =Cm Nz =\
and
C,
N=1\—.
Cm

. dML.WN C, .
Since —-—%}‘T](-i——)-)- >0 when N = '\/ -Ci, L.(N) has its minimum value at the point.
Therefore, the minimum length of the critical path is:
C
min(L,(N)) = Nc,, + 71‘-'— =Vc, Cs + Ven Cy -

In this equation, both master and slaves have the same amount of share (Ve,,C,) in the
length of the critical path. This result indicates that the length of the critical path
reaches to the minimum when the entire length is evenly distributed in master and
slave processes.

63

REFERENCES

(1]

[2]

[3]

(4]

(5]

[6]

[7

[8]

(9]

[10]

[11]

[12]

Leslie Lamport, ‘“Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM 21(7) pp. 558-565 (July 1978).

U. Herzog and W. Hoffmann, ‘‘Synchronization Problems in Hierarchically
Organized multiprocessor Computer Systems,”” Performance of Computer
Installations, pp. 29-48 North-Holland Publishing Company, (1979).

U. Herzog and W. Kleinorder, *‘Einfuhrung in die Methodik der
Verkehrstheorie und ihre Anwendung bei Multiprozessor-Rechenanlagen,’
Computing, Suppl. 3, pp. 41-64 Springer-Verlag, (1981).

B. Liskov, ‘‘Primitives for Distributed Computing,” Proceedings of the
Seventh ACM Symposium on Operating Systems Principles, pp. 33-42
(December 1979).

B. J. Nelson, “‘Remote Procedure Call,”’ Ph. D. Thesis, Technical Report
CMU-CS-81-119, Carnegie-Mellon University (1981).

B. Liskov and R. Scheifler, ‘‘Guardians and Actions: Linguistic Support for
Robust, Distributed Programs,”” ACM TOPLAS 5(3) pp. 381-404 (July 1983).

United States Department of Defense, ‘‘Reference Manual for the Ada
Programming Language,”” (ANSI/MIL-STD-1815A-1983) (17 Feb. 1983).

R. E. Strom and S. Yemini, ““NIL: An Integrated Language and System for
Distributed Programming,’’ Proceedings of the SIGPLAN 83 Symposium on
Programming Language Issues in Sofiware Systems, pp. 73-82 (27-29 June
1983). ACM SIGPLAN Notices 18:6 (June 1983)

D. Gelern, ‘‘Generative Communication in Linda,”” ACM TOPLAS 7(1) pp.
80-112 (January 1985).

Michael Scott, “LYNX: A Dynamic Distributed Programming Language,”
Ph.D. Thesis, Computer Sciences Dept. University of Wisconsin-Madison
(May 1985).

G.T. Almes, A.P. Black, E.D. Lazowska, and J.D. Noe, ‘“The Eden System:
A Technical Review,”” IEEE Trans. on Software Eng. SE-11(1) pp. 43-59
(January 1985).

P. Dasgupta, R. LeBlanc, and E. Spafford, ‘“The Clouds Project: Design and
Implementation of a Fault-Tolerant Distributed Operating System,”’
Technical Report Git-Ics-85/29, School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA (1985).

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

64

Mike Dean and Rick Schantz, ““The Cronous Distributed Operating System,”’
IEEE Workshop on Design Principles for Experimental Distributed
Systems, (October 16-17, 1986).

Anand Tripathi, ‘‘An Overview of the Nexus Distributed Operating System
Design (Extended Abstract),” IEEE Workshop on Design Principles for
Experimental Distributed Systems, (October 16-17, 1986).

Abbas Rafii, ‘‘Structure and Application of a Measurement Tool -
SAMPLER/3000,” Proceedings of 1981 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp. 110-120 (September
1981).

Gene McDaniel, “The Mesa Spy: An Interactive Tool for Performance
Debugging,” Proc. of 1982 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp. 68-76 (1982).

J. Wick and R. Johnsson, ‘‘An Overview of the Mesa Processor
Architecture,”” Proc. of the Symposium on Architectural Support for
Programming Languages and Operating Systems, (1982).

R. P. Blake, ‘‘Exploring Stack Architecture,”” IEEE Computer 10(5)(May
1977).

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick, ‘‘gprof: a
Call Graph Execution Profiler,” Proceedings of SIGPLAN ’82 Symposium
on Compiler Construction, pp. 120-126 (1982).

S.J. Leffler, W.N. Joy, and M.K. McKusick, UNIX programmer’s Manual,
4.2 Berkeley Software Distribution, Computer Science Dept. University of
California at Berkeley (August 1983).

Gail Hamilton, ‘‘Logic Analyzer Gives Programmers Real-Time View of
Software Performance,’’ Electronics, pp. 117-122 (May 5, 1983).

Gene McDaniel, ‘“METRIC: a Kernel Instrumentation System for Distributed
Environments,”’ Proc. of th Sixth ACM Symposium on Operating System
Principles, pp. 93-99 (November 1977).

R. Klar, “‘Hardware Measurements and Their Application on Performance
Evaluation in a Processor-Array,”” Computing, Suppl. 3, pPp. 65-88
Springer-Verlag, (1981).

Hansjorg Fromm, Uwe Hercksen, Ulrith Herzog, Karl-Heinz John, Rainer
Klar, and Wolfgang Kleinoder, ‘‘Experiences with Performance
Measurement and Modeling of a Processor Array,”” IEEE Transactions on

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

65

Computers C-32(1) pp. 15-31 (Jan. 1983).

Uwe Hercksen, Rainer Klar, Wolfgang Kleinoder, and Franz Kneissl,
“‘Measuring Simultaneous Events in a Multiprocessor System,’’ Proceedings
of 1982 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pp. 77-88 (August 1982).

Ilya Gertner, ‘‘Performance Evaluation of Communicating Processes,”” Ph.D.
Thesis, Computer Science Department, University of Rochester (May 1980).

Keith A. Lantz, Klaus D. Gradischnig, Jerome A. Feldman, and Richard F.
Rashid, “‘Rochester’s Intelligent Gateway,” IEEE Computer, pp. 54-68
(1982).

Neal Vanderlipp, John Callahan, Marc Abrams, and Ashok Agrawala,
“‘Implementation and Measurement of a Distributed Dining Philosophers
Algorithms on ZMOB,”” Tech. Report TR-1530, Computer Science Dept.
University of Maryland (August 1985).

Marc Abrams and Ashok K. Agrawala, ‘Performance Study of Distributed
Resource Sharing Algorithms,”” Tech. Report TR-1521, Computer Science
Dept. University of Maryland (July 1985).

B. P. Miller, S. Sechrest, and C. Macrander, ‘A Distributed Program Monitor
for Berkeley Unix,” Software — Practice & Experience 16(2)(February
1986). Also appears in short form in the 5th Int’l Conf. on Distributed
Computing Systems, Denver (May 1985)

B. P. Miller, ‘‘Parallelism in Distributed Programs: Measurement and
Prediction,”’ Technical Report 574, Computer Sciences Dept., University of
Wisconsin—Madison (1985).

B.P. Miller, ““DPM: A Measurement System for Distributed Programs,”’
IEEE Transactions on Computers, (to appear 1987).

M. L. Powell and B. P. Miller, ‘‘Process Migration in DEMOS/MP,”” Proc.
9th Symposium on Operating Systems Principles, pp. 110-119 (December
1983).

Francesco Gregoretti and Zary Segall, ‘‘Programming for Observability
Support in a Parallel Programming Environment,”’ Tech. Report CMU-CS-
85-176, Dept. of Computer Science, Carnegie Mellon University (November
1985).

Zary Segall and Larry Rudolph, “‘PIE: a Programming and Instrumentation
Environment for Parallel Processing,”” IEEE Software 2(6) pp. 22-37

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

66

(November 19835).

Richard Snodgrass, ‘‘Monitoring Distributed Systems: A Relational
Approach,” Ph.D. Thesis, Computer Sciences Department CMU (1982).

Zary Segall, Ajay Singh, Richard T. Snodgrass, Anita K. Jones, and Daneil P.
Siewiorek, ‘‘An Integrated Instrumentation Environment for
Multiprocessors,” IEEE Transactions on Computers C-32(1) pp. 4-14
(January 1983).

M. V. Marathe, *‘Performance Evaluation at the Hardware Architecture Level
and the Operating System Kernel Design Level,” Ph.D. Thesis, Computer
Sciences Department CMU (December 1977).

William A. Wulf, Roy Levin, and Samuel P. Harbison, HYDRA/C.mmp: An
Experimental Computer System, McGraw-Hill Book Company, New York
(1981).

Anita K. Jones, Robert J. Chansler, Jr., Ivor Durham, Peter Feiler, and
Karsten Schwans, ‘“‘STAROS -- A Multiprocessor Operating System for
Implementing Task Forces,”” Proc. of the 7th Symposium on Operating
System Principles, ACM-SIGOPS, (1979).

J. K. Ousterhout, Donald A. Scelza, and Pradeep S. Sindhu, ‘“Medusa: an
Experiment in Distributed Operating System Structure,”’ Proceedings of the
7th Annual Symposium on Operating System Principles, (November 1979).

C. Maples, ‘‘Analyzing Software Performance in a Multiprocessor
Environment,”’ IEEE Software, pp. 50-63 (July 1985).

Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel, ‘‘Interprocess
Communication in Charlotte,’* IEEE Software 4(1) pp. 22-28 (January 1987).

Barton P. Miller and Cui-qing Yang, ‘IPS: An Interactive and Automatic
Performance Measurement Tool for Parallel and Distributed Programs,”” To
appear in Proc. of the 7th International Conference on Distributed Computing
Systems, IEEE Computer Society, Berlin, FRG (September 21-25, 1987).

M. L. Scott and R. A. Finkel, “LYNX: A Dynamic Distributed Programming
Language,” Proc. of the 1984 Int’l Conf. on Parallel Processing, pp. 395-
401 (August 1984).

Thomas J. LeBlanc and Stuart A Friedberg, °‘Hierarchical Process
Composition in Distributed Operating Systems,”’ Proc. of the 5th Int’'l Conf.
on Distributed Computing Sys., pp. 26-34 (May 1985).

[47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

67

M. M. Theimer, K. A. Lantz, and D. R. Cheriton, ‘‘Preemptable Remote
Execution Facilities for the V-System,” Proc. of 10th ACM Symp. on
Operating Systems Principles, pp. 2-12 (December 1985).

David J. DeWitt, Raphael Finkel, and Marvin Solomon, ‘“The CRYSTAL
Multicomputer: Design and Implementation Experience,”” IEEE Trans. on
Software Engineering SE-13(8) pp. 953-956 (August 1987).

Proteon Associates, Operation and Maintenance Manual for the ProNet
Model p1000 Unibus. 1982.

Riccardo Gusella and Stefano Zatti, ‘‘TEMPO: Time Services for the
Berkeley Local Network,”” PROGRES Report, EECS University of
California Berkeley (December 1983).

Bernard Lint and Tilak Agerwala, ‘‘Communication Issues in the Design and
Analysis of Parallel Algorithms,”” IEEE Transactions on Software
Engineering SE-7(2) pp. 174-188 (March 1981).

K. G. Lockyer, An Introduction to Critical Path Analysis, Pitman Publishing
Company (1967).

W. E. Duckworth, A. E. Gear, and A. G. Lockett, A Guide to Operational
Research, John Wiley & Sons, New York (1977).

O. Berry and D. Jefferson, ‘‘Critical Path Analysis of Distributed
Simulation,”> Proc. of Conf. on Distributed Simulation 1985, (January
1985).

L.F. Mackert and G. M. Lohman, ¢‘R* Optimizer Validation and Performance
Evaluation for Distributed Queries,”” Research Report, IBM Almaden
Research Center (January 1986).

Narsingh Deo, Graph Theory with Applications to Engineering and
Computer Science, Prentice-Hall, Inc., Englewood Cliffs, N. J. (1974).

E. W. Dijkstra and C. S. Scholten, ‘‘Termination Detection for Diffusing
Computations,’” Inf. Process. Lett 11(1) pp. 1-4 (August 1980).

Narsingh Deo, C. Y. Pang, and R. E. Lord, ‘“Two Parallel Algorithms for
Shortest Path Problems,’’ Proc. of the 1980 International Conference on
Parallel Processing, pp. 244-253 (August 1980).

E.V. Denardo and B.L. Fox, ‘‘Shortest-Route Methods: 1. Reaching, Pruning,
and Buckets,”” Operations Research 27(1) pp. 161-186 (Jan.- Feb. 1979).

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

68

R.B. Dial, F. Glover, D Karney, and D. Klingman, ‘‘A Computational
Analysis of Alternative Algorithms and Labeling Techniques for Finding
Shortest Path Trees,”” Networks 9(3) pp. 215-248 (Fall 1979).

U. Pape, “‘Implementation and Efficiency of Moore-Algorithms for the
Shortest Route Problems -- a Review,”” Math. Programming 7(2) pp. 212-
222 (October 1974).

D. Van Vliet, ‘‘Improved Shortest Path Algorithm for Transportation
Networks,”’ Transportation Research 12(1) pp. 7-20 (February 1978).

K. M. Chandy and J. Misra, ‘‘Distributed Computation on Graphs: Shortest
Path Algorithms,”” Communications of the ACM 25(11) pp. 833-837
(November 1982).

G. B. Dantzig, Linear Programming and Extensions, Princeton University
Press, Princeton, NJ (1963).

Raphael Finkel, Bahman Barzideh, Chandreshekhar W. Bhide, Man-On Lam,
Donald Nelson, Ramesh Polisetty, Sriram Rajaraman, Igor Steinberg, and G.
A. Venkatesh, ‘‘Experience with Crystal, Charlotte and Lynx (Second
Report),”” Tech. Report #649, Computer Sciences Dept., University of
Wisconsin-Madison (July 1986).

Derek L. Eager, John Zahorjan, and Edward D. Lazowska, ‘“Speedup Versus
Efficiency in Parallel Systems,”” Tech. Report 86-08-01, Dept. of Computer
Science, University of Washington (August 1986).

J. Mohan, ¢‘Performance of parallel programs: model and analyses.,”” CMU-
CS-84-141, Ph.D. Thesis, Carnegie Mellon U. Computer Science Dept.
(1984.).

A. S. Tanenbaum, Computer Networks, Prentice-Hall (1981).

James Gary, ‘‘Notes On Data Base Operating System,”” Computer Science
Research Report, RJ2188(30001), IBM Research Laboratory, San Jose,
California (February, 1978).

Mark A. Linton, ‘‘Knowledge-Based Debugging (Session Summary),”
Proceedings of ACM SIGSOFTISIGPLAN Software Engineering Symposium
on High Level Debugger, pp. 23-24 (March, 1983).

Robert L. Sedlmeyer, William B. Thompson, and Paul E. Johnson,
“‘Knowledge-Based Fault Localization in Debugging,”” Proceedings of ACM
SIGSOFTISIGPLAN Software Engineering Symposium on High Level
Debugger, pp. 25-31 (March, 1983).

[72]

(73]

[74]

[75]

[76]

69

David S. Snowden, ‘‘A Knowledge-Based Diagnostic System for Ada
Semantic Errors (Position Statement),”” Proceedings of ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on High Level
Debugger, (March, 1983).

H. Chernoff, *“The Use of Faces to Represent Points in n-Dimensional Space
Graphically,”” Tech. Report No. 71, Dept. of Statistics, Stanford University
(1971).

Peter C. C. Wang, Information Linkage Between Applied Mathematics and
Industry, Academic Press (1979).

Edward R. Tufte, The Visual Display of Quantitative Information, Graphics
Press, Cheshire, Connecticut (1983).

Philip Stein, David Coleman, and Bert Gunter, ‘‘Graphics for Display of
Statistical Data,”’ Supplement to RCA Engineer 30(3)(May/June 1985).

