A Minimal Function Graph Semantics
for Logic Programs

by

Will Winsborough

Computer Sciences Technical Report #711
August 1987

A Minimal Function Graph Semantics

for Logic Programs

Will Winsborough

August 14, 1987

Abstract

The problem is to devise an abstract interpretation framework for static anal-
ysis of logic programs. We seek a framework in which to couch analyses that
infer stronger assertions than do previous efforts, but that remain plausibly effi-
cient. The framework offered here is designed to efficiently accommodate large
abstract domains that introduce imprecision only as diversity naturally arises in

the inferences.

Our semantics is based on the view of predicates as partial functions from sets
of activation instances to sets of result instances. It is essentially a minimum
Junction graph (mfg) semantics, following [8], though it treats sets of activations
rather than individuals because doing so allows us to use large abstract domains,
and hence infer stronger properties, without sacrificing efficiency.

First we construct a function whose fixpoint defines a total function graph (tfg)
semantics. We then define the mfg semantics as the ffg restricted to the call
instances reachable from some specified query set.

Finally, we consider how to compute the mfg directly, without having to com-
pute the (large) tfg. If reachability is added to the iteration function whose fixpoint
defines the tfg, problems arise because we treat sets of activations. The function
is no longer monotonic, and its (transfinite) Kleene’s sequence doesn’t converge to
the mfg. The Kleene’s sequence does converge, however, and we define our partial
function graph (pfg) semantics as its limit.

For finite abstract domains the pfg semantics is computable and is generally
much smaller and much less expensive to compute than the {fg. In the main tech-
nical result of the paper, we prove the pfg agrees exactly with the mfg, except that
a few activation sets (though, rotindividuals) erroneously appear reachable. The
difference has no meaning for most execution models. So, despite its theoretical

unpleasantness, the pfg is very practical.

1 Introduction

A data flow analysis is an attempt to automatically infer properties of program execu-
tions with a terminating procedure. Termination of the procedure can be guaranteed
for some properties that are weaker than the exact details of the program execution.
The technique of abstract interpretation, based on fixpoint semantics constructions,
provides a framework for constructing data flow analyses so that their correctness can
be easily verified. Two essentially homomorphic interpretations of a programming lan-
guage are formally related, one precise (called the concrete interpretation), the other
approximate (called an abstract interpretation). The concrete interpretation induces a
collecting semantics that agrees precisely with the standard semantics. An abstract in-
terpretation induces an approximate semantics that is a data flow analysis. Given that
the interpretations satisfy some relatively simple properties, powerful fixpoint theorems
can be invoked to establish that the abstract semantics is a (weaker) implication of the
concrete semantics.

We follow [7,8] and others by constructing a core semantics using a collection of
domains and auxiliary functions, called an interpretation, that are assumed to have
certain properties, and that act as formal parameters to the construction. Different
actual interpretations induce different semantics. In this paper we construct a core
semantics for pure Horn Clause logic programs and give an interpretation that induces
a collecting semantics that agrees with SLD-resolution. Abstract interpretations can be
provided to generate various data flow analyses.

To demonstrate that an abstract interpretation generates a safe approximate se-
mantics, there must be an abstraction function that maps concrete domain elements
to abstract domain elements and that is (almost) a homomorphism relative to the it-
eration functions whose least fixpoints define the respective semantics. When a core
semantics is given, the homomorphism requirement is factored into requirements of the
interpretations’ auxiliary functions. The result of the (almost) homomorphism is that
the abstract semantics is implied by the concrete semantics. This fact comes from well
known theorems about fixpoints[3]. Because this concept is well understood and because
of space considerations, we do not include a formal treatment of safeness of abstract

interpretations for our framework.

1.1 Owur Motive

This work is of general interest because it gives an abstract interpretation framework for
a declarative language based on a function domain that takes sets of activation instances
to sets of result instances, but that does not use power domains. Further, it defines a
minimal function graph (mfg) semantics in such a domain and develops a practical way
to compute it for finite, though possibly large, domains.

Our particular interest is to design a framework in which to couch analyses that
improve the strength of the assertions inferred over the analyses that have been proposed
thus far in the literature. We want a framework that will allow such an improvement
while keeping overhead at a plausible level. Thus, the framework presented here is
designed to accommodate large abstract domains that can represent properties with
great precision, but that introduce imprecision as diversity arises in inferences. We
discuss the issues involved in that accommodation in Section 1.4.

Data flow analyses of logic programs include mode inference, which infers variable
instantiation patterns at call activation and result{11,6,4,5], and occur check avoidance,
which finds calls in which there is no threat that unification will introduce cycles into
structures[13,14].

We are primarily interested in mode inference, which is useful in sequential com-
pilers for optimizing unification and storage management[15], and to parallel execution
models, where we may execute concurrently two literals that are known to share no free
variables[2,1].

The best published work on mode inference has been done by Debray. Mellish has
also proposed an analysis for mode inference [11], but unfortunately that work fails
to treat correctly the problem of variable aliases. The method of Debray, developed
in [6,4,5], treats predicates as instantiation state transforms. A result instantiation
description is associated with each activation instantiation description that could arise
while executing the program. Debray’s analysis is an example of the kind of analysis
our framework can be used to verify. However, we have constructed the framework with
larger abstract domains in mind.

Using our framework, we have developed and implemented an abstract interpreta-
tion that handles mode inference and that infers stronger properties than did previous

analyses for mode inference. That will be the subject of a forthcoming paper.

1.2 Possible Frameworks

The original exposition of abstract interpretation by Cousot and Cousot gave a collecting
semantics for a simple imperative language without procedure calls[3]. That semantics
constructs simultaneously a description of the execution states possible at each point
in the program. In their language, a program is represented by a directed graph with a
node for each instruction and a directed arc from each node to the node for each possible
next instruction. The arcs are the “program points” where execution state descriptions
are collected. Cousot and Cousot call an execution state description a context, and a
vector of these descriptions, one for each program point, a context vector.

In the Cousot framework, an iteration function (called an interpretation function in
[3]) simulates one step of program execution simultaneously at all nodes in the graph.
This iteration function takes one context vector and produces another. It simulates

the operation at each node by looking at the possible incoming states according to the
information in the input context vector and generating a description of the possible
outgoing states on that basis. The program’s collecting semantics is the least fixpoint
of this iteration function.

The iteration function for a logic program will also take an input context vector.
To produce an output context vector it will simulate the execution of each clause by
simulating its calls according to the input context vector. The unification of calls with
call results and the composition of call solutions according to the clause are the two basic
operations of logic programs. Both of these are performed to complete one application
of the iteration function. The context vector should represent the results of various
calls. Additionally, we would like to determine which call activations are reachable from
some specified query set. But what form should the context vector take?

C. S. Mellish has constructed an abstract interpretation framework for logic programs
[12]. In it, procedure entry and exit are taken as the program points. Canonical literals,
normalized representatives of their renaming equivalence class, are collected into two
sets, called Input and QOutput. Input (resp. Output) contains call activation (resp.
result) instances that could possibly occur during the execution of one of the programmer
specified queries. In that framework, the two sets constitute the context vector. This
approach does not preserve information about which result instances correspond to
which activation instances. Because the semantic construction must work for either
the concrete or the abstract interpretation, one cannot rely on unification to screen out
inappropriate results. All result instances that have been found to occur for a given
predicate are treated as possible results for every call to that predicate. Irrelevant results
propagate and accumulate.

In search of a more powerful framework, we observe that (pure) logic programs are
referentially transparent; the behavior of a call is entirely determined by the activation
instance. If we consider sefs of activation instances as the program points, it is possible
to get a finite approximation domain, and hence termination, by selecting representative
sets to constitute the approximation domain.

Thus we conclude that the context vector shall be a function from activation sets to
result sets. Frequently we shall say “description” rather than “set” because an abstract
domain may be any homomorphic structure. We understand the term “minimal function

graph”, barrowed from [8], to suggest a convenient representation for the function.

1.3 A Minimal Function Graph Framework

As we shall see, it is a relatively straightforward matter to define TFG[[Pr]], a total
function graph (ifg) semantics for pure Horn Clause programs. It is a function that
takes any set of calls to some predicate and returns the set of result instances and
is defined in Section 2.4. Under the concrete interpretation, the #fg semantics agrees

exactly with a standard operational semantics that evaluates a query by computing all
solutions to the first call, then, for each of those solutions, computing all solutions to the
corresponding substitution instance of the second call, and so on. Such a model could
be made realistic by using eager consumers to avoid problems with infinite solution sets
and other non-terminating calls. That execution model is complete and is the basis
for the parallel execution model of Kalé[9]. However, for our purposes it is clearer to
ignore termination problems and adopt the more declarative view of the model as a
composition of operations on sets. We will refer to this loosely as the all-solutions
model.

The ifg semantics does not include any information about which activation sets are
reachable. A minimal function graph (mfg) semantics is a function that is only defined
on those activation sets that are reachable from a given query set. Obviously, this
mfg semantics can be constructed from the #fg by constructing the set of reachable
call activation sets and restricting the tfy to that. Thus, the mfg contains not only
information about call results, but also about which calls are reachable. The latter
information is represented by the domain over which the function is defined.

Unfortunately, we do not know how to construct the mfy with a single least fixpoint
operation. (Reachability requires a fixpoint operation.) If one incorporates reachabil-
ity of activations into the tfg iteration function, the function becomes non-monotonic.
Which activation instance sets appear reachable at some clause body call depends on the
partial results currently reported for other calls to the left in the clause. For example,

suppose we are trying to analyze the following program in the concrete interpretation.

p(X,Y) - s(X), r(X,Y).
s(a).

s(X) :- t(X).

t(b).

r(a,a).

r(b,b).

2 p(X,Y).

Further suppose we have inferred that {s(X)} ~ {s(a)}, but have not yet inferred that
s(b) is also a solution to s(X). At this stage it appears that {r(a,Y)} is a reachable
activation set. If we repeatedly apply the iteration function, {r(a,Y), r(b,Y)} will even-
tually be inferred to be reachable. But the mfg only includes the larger set, since the
execution model collects all solutions to s(X) before trying r(X,Y).

As we will show, a limit to the Kleene’s sequence! still exists, defining what we call
here the partial function graph (pfg) semantics. But it is not the mfy because some

subsets of genuinely reachable activation sets incorrectly appear reachable.

1The Kleene's sequence of the function f : A — A is defined to be the transfinite sequence {f7(L)},
where f0(z) =gf T Foti(z) =gf F(f8(x)); and Fo(z) =qf U {f0(=){6 = }, for & a limit ordinal.

Of course, most applications are for execution models in which only the reachable
individual activations matter. On which individuals these are the mfg and the pfg agree.
Furthermore, in Section 3.2 we prove that on the reachable activation descriptions the
mfg, the pfg, and the {fy are all equal.

The other difference between pfg and mfyg is that the iteration function for the pfy is
not continuous, so the sequence whose limit defines the pfg will not in general converge
by stage w. However, termination is ensured when a finite approximation domain is
used. And this restriction turns out to be essentially necessary if the mfyg is to consist

of finitely many pairs.

1.4 Recent Related Work

‘We have recently become aware of closely related work by N. Jones and H. Sgndergaard,
reported in [7]. Roughly speaking, that framework is based on functions from substitu-
tions to sets of substitutions. We believe that the choice of substitutions versus canonical
term-tuples is not significant.

The Jones-Sgndergaard formulation is very elegant. The domains for activations
and results are distinct in the core semantics and the former is a subset of the latter.
In the concrete interpretation, the activations are singletons of substitutions and the
results are arbitrary sets of substitutions. However, the two domains may be the same
actual domain in an abstract interpretation.

Suppose By,...,By, is a clause body. The Jones-Sgndergaard core semantics specifies
that, when simulating B;, the call must be evaluated under each activation domain el-
ement less than the result domain element describing the set of substitutions resulting
from By,...,B;_1. So, in the concrete interpretation, each member of the set of substi-
tutions resulting from By,...,B;—1 is applied to B; in turn. If the abstract interpretation
makes the activation domain and the result domain the same, then there is only one
instance of B; to evaluate. But we are interested in accommodating large abstract do-
mains where it is possible to preserve precision until diversity arises in the inference.
Such domains are relatively tall. Using such a domain, it may be necessary in the
Jones-Sgndergaard semantics to cycle through a large number of call activations. Our
framework allays this threat to efficiency by letting the granularity of activation de-
scription for which results are collected be determined by the amount of diversity in
each activation set inferred to be reachable. Rather than require the abstract interpre-
tation to fix the granularity of activation description for which results are collected, our
method allows that collecting granularity to be determined by the granularity of the
activation descriptions reachable from the query in our all-solutions model.

Another feature of the Jones-Sgndergaard framework that differs significantly from
ours is how reachability inferences are collected. We require that a query set be provided.
It provides the basis for reachability, and, for the most part, results are only collected for

reachable activation descriptions. The Jones-Sgndergaard method collects a result for
every activation, and in the process, collects a log of activations that may be reachable
from each of those activations.

From a theoretical standpoint, we admire the Jones-Sgndergaard construction very
much. From a practical standpoint, our method appears preferable, particularly for use

with large abstract domains.

1.5 Organization

The rest of this paper is organized as follows. In Section 2, we construct the mfg seman-
tics and give the concrete interpretation for the formal parameters to the construction.
Then, in Section 3, we present the pfg construction, show that it is well defined and
prove that it agrees with the mfg wherever the latter is defined.

Because of space considerations we do not present a proof that the concrete semantics
agrees with the SLD-resolution semantics.

We assume the reader is familiar with the basic ideas of abstract interpretation[3]
and of logic programming[10]. Familiarity with [8] would help.

2 The MFG Construction

This section gives the core semantics construction and presents the concrete interpre-
tation. The core semantics construction defines the #fg, the set of reachable activation

descriptions, and the mfy.

2.1 Syntactic Domains

Let Func denote the set of £-placed function symbols, £ > 0. Let Var denote a countably
infinite set of variables. Let Term denote the set of logical terms over Func and Var.
Let Pred denote the set of k-placed predicate symbols. We assume for simplicity of
presentation that one fixed k holds for all predicates in any given program. Let Literal
denote the set of logical literals over Pred and Term.

Let Clause be the set of Horn clauses. Henceforth, all clauses mentioned are im-
plicitly Horn. We write clauses H :- By,...,B,, m > 0. As usual, the -’ is omitted when
n = 0. H is called the clause head; together, Bs,...,B, make up the clause body. Let
Prog =g45 {Pr|Pr C Clause and Pr is finite} be the program domain. Pr € Prog is a
collection of Horn clauses constituting a given program. We assume that the number of
(non-primative) predicates occurring in Pr is n and we refer to them as p1, pa, ..., pn. A
clause for predicate 7 is one that has p; in its head. Queries € p(Literal) will denote
the set of possible queries associated with Pr. Without loss of generality, we make the

simplifying assumption that elements of Queries are single negative literals.

2.2 Interpretations

The construction of our semantics is parameterized by two domains and several auxiliary
functions. These parameters, taken together, constitute an interpretation[8]. Basic
assumptions are required of an interpretation for the construction to be well defined.

Definition. An interpretation consists of the following;:
Two Lattices:

Arg, Targs Larg Uarg Earg
CArg, TCArg: -LCArga LcArg: ECArg
Env, Teny, LEnvs UEnvs EEnv

Monotone Functions:

Apply : [0..m] x Env x CArg x Clause — Env
Apply must be bottom-preserving and continuous
in its second and third arguments.

Project : [0..m] x Env X Clause — Arg
Project must be bottom-preserving and continuous
in its second argument.

GetArg : p(Literal) — Arg”

GetEnv : Clause — Env

Canon : Arg — CArg

Freelnst : CArg — Arg

z € Arg represents a set of literal instances. z does not indicate which predicate
symbol occurs in the literals, just which k-tuple of terms appear as arguments. In the
sequel, elements of Arg will simply be said to represent sets of instances.

The elements of CArg represent sets of instances that are canonical representatives
of their variable renaming equivalence class. So, z € Arg can contain two instances that
are the same up to variable renaming, but, y € CArg cannot.

The context vector, which our iteration function operates on, will be a vector of
functions from CArg to CArg. Recall that the iteration function takes an input contert
vector and produces an ouiput contezt vector by simulating each clause execution based
on the call results given by the input context vector. Each component of the vector will
correspond to a different predicate p;, and in the fixpoint will represent the behavior of
sets of calls to p;.

An element of Env represents a local clause context. The local clause context is
local in the sense that it’s lifetime is the duration of the simulation of a single clause
execution. It is used by the iteration function for recording intermediate results. But
the output context vector only records what the local clause context has to say about
the state of the clause head after clause execution simulation.

Initially, a clause’s local context represents only one instance of the clause: the
one that appears in the program text. But when the clause is activated with a set
of call instances for the head predicate, the local context may then represent many
clause instances. Each call in the clause is then simulated based on the function values
in the appropriate component of the input context vector, updating the local context
accordingly. This phase may also change the number of clause instances represented
by the local context, as some call instances fail and others produce multiple results.
When all the calls have been simulated, the head of each clause instance represented
by the local context is one possible result of the set of activation instances. An element
of CArg, representing a set of result instances, is specified by the head under the local
clause context.

For a given # € CArg representing a set of instances, and for a given predicate symbol
pi, the ’th component of the output context vector will be a function whose value at z
is y € CArg where y is the meet (Ucarg) of the results found using each clause for p; as
described in the last paragraph. In the concrete interpretation, the meet is set union.
In abstract an interpretation the meet may represent a larger set than the union.

Members of Env are not required to specify the predicate symbols for the literals
that make up the clause. It only must represent the possible substitutions or clause
instances that are in force.

Apply simulates the effect on the local context of unifying one literal in the clause
with a set of instances. The integer parameter indicates which clause literal is being
unified. Apply is used both to activate the clause and to simulate call execution. In the
former case, Apply simulates unification of the clause head with the set of activation
instances, an element of Arg, whose execution the iteration function is simulating. In
the latter, Apply is used by the iteration function to simulate the execution of each call
in turn. For a call to p;, the iteration function evaluates the i-th component of the
input context vector on the set of activation instances specified in the local context.
The result is a set of instances that is supplied to Apply. Apply simulates unification
of each activation instance (from the local context) with each result instance (from the
input context vector), composing appropriately the successful unifiers in the local clause
context that is Apply’s result.

In the abstract interpretation Apply will not in general consider each pair of instances
separately. The role of the abstract interpretation is to lump many instances together
so they can be regarded collectively.

Project is used to get the set of instances for a particular clause literal specified by
the local clause environment. That is needed to be able to evaluate the components of
the input context vector, and to get the the head instances from the local clause context
when all the calls have been simulated.

GetArg generates, as a description of a set of queries, a tuple of representations of
sets of instances, one for each predicate in the program. Each component represents, for

the corresponding predicate, the set of activation instances in the set of queries. Recall
that we make the simplifying assumption that each query contains only one literal.

GetEnv generates a local context for the given clause.

Canon and Freelnst go back and forth from Arg to the equivalent CArg. We remark
on them further in Section 2.5.

Now we begin constructing our semantics.

2.3 The Semantic Domain

The collecting semantics of PreProg is an n-placed vector of transforms, TFG[[Pz]],
where n is the number of predicates defined in Pr. The ¢’th predicate’s semantics is
given by TFGJ[Pr]];.2

TEFG[[Pr]] will be constructed in the next section. We now construct and name the

transform space.

Trans =qf CArg — CArg is the domain of predicate denotations.
Trans” is the domain of predicate environments or context vectors.3

Trans is a complete lattice with?

Trrrans =df Az:CArg . TCArg

LTrans =af Az:CArg . -LCArg

f Corrans g ifas Yz € CArg . f(z) Ecarg 9(2)
fUTrans 9 =df Az:CArg . f(:lt) LlCArg g(:c)

So Trans” is also a complete lattice with join and order defined pointwise.

2.4 The Total Function Graph Construction

Now we construct the iteration function, Iteraterpg, whose fixpoint defines the pro-
gram tfg semantics. In the definitions we use the functions vector, fiz and indez. vector
takes a function with domain [1..n] and returns the n-placed vector whose #’th compo-
nent is the value of the function applied to i. fiz is the least fixpoint operator. indez
takes a literal and gives back the integer in [1..n] that identifies its predicate symbol. It
is used to select the appropriate component of the context vector.

The ifg semantics of Pr € Prog are given by

TFG: Prog — Trans”

2Subscripting denotes component selection.

3The superscript denotes standard cross product.
4Tn these typed lambda expressions the colon separates the formal parameter from its domain. As

usual, the dot separates the parameter list from the expression body. In the universally quantified
sentence (third line) the dot is used to separate the quantification of the variable from the rest of the
formaula.

10

TEFG[[Pr]] =4 fir A¢p:Trans". Iteraterra[[Pr]](¢)

where Iterate is defined by

Iterate: Prog — Trans” — Trans™
Iterate[[Pr]}(¢) =45 vector(/\i:[l..n] . Az:CArg .
Lcarg { UseClause[[H :- By,...,Bp]|(z,¢) |
H :- By,...,B; is a clause for the #’th predicate in Pr})

and where UseClause and Trace are defined by®

UseClause: Prog — CArg X Trans™ — CArg
UseClause[[H - By,...,By]|(z, ¢) =af
Canon{Project(0,Trace(
Apply(0, GetEnv[[H :- By,...,By]], z, <H :- By,...,Bn>),
<H :- By,....Bp>, 1, @), <H :- By,...,B;,>))

Trace: Env x Clause x Z* x Trans™ — Env
Trace(E, <H :- By,...Bpn>, j,) =a5
ifj>m then E
else Trace(Apply(j, E,

Freelnst(tﬁindez(Bj)(Canon(Project(j, E, <H :- By,...,.B»n>)))),

<H:- By,...,Bp>), <H :- By,....Bp>, j+ 1, @)

UseClause is continuous in ¢, since it looks at a finite number of ¢ values and is a

finite composition of continuous functions. So, being pointwise continuous, Iteraterpg

is also continuous.

2.5 The Concrete Interpretation

We construct the concrete interpretation. It will induce a semantics that agrees with

the standard semantics.

The concrete interpretation is based on functions from sets of term-tuples to sets of

term-tuples. If £ € Arg. ncrete then t € z is a k-tuple of terms.
Let p(S) denote the powerset of S. Then

Argeoncrete = df @(Termk)

1s a complete lattice under

=47 C (the subset relation), with

gA"gconcrel:e
TArgconcrete =df Temk’
LArgeoncrete =df {} (the empty set), and

5Z* represents the positive integers.

1

UArgeonerete —df U (set union).

As we have discussed, the set Term is partitioned into variable renaming equivalence
classes. Because the results of two calls in the same equivalence class are also in the
same equivalence class, we select a representative of each class and only define semantics
on the representatives.

Let Normalize : Term* — Term® return a canonical representative of its argument’s
equivalence class under variable renaming.® For example, Normalize may rename the
variables using a prefix of some enumeration of Var, ordered by first occurrence in the
argument. However, to avoid variable name conflicts, we make the requirement that
the result of Normalize does not contain any variables used in the program text. This
could be formalized by dividing the variable space into two infinite sets, one to be used
in programs, the other to be used in normalized terms.

By Normalize(Term®) we denote the function’s range. Thus

CArgconcrete =daf Normalize(Term*)

is a complete lattice under

;CArgconcrete =df L:-Argconcrete’ with

UCA'gconcrete =df l’jArgconcrel:e’
T CArgeonerete =df P(Normalize(Term*)), and

'LCArgconcrete =df J‘A"gconcrei:e'

Recall E € Enveoncrete represents a set of clause instances. For E € Enveonerete, and
e € E, e; € Argoncrete denotes the term-tuple that is the i’th component of e, where
7 € [1..m+ 1], and m is the number of body literals in the clause.

EnVeoncrete =df UmGN 89((Termk)m+1)

EE"“’cox‘tcret:e =df <
UEnVconcrete =df U
— k
Enveoncrete — 9f (Term)m

"LEnVconcrete =df {}

Next we define the functions in the interpretation.

Apply : [0..m] x Env x CArg x Clause — Env
AprplYeoncrete(ds £, 2, <H - By,...,Bpn>) =gf {0’(8) leekE, ez, and o =
mfg(e;, f) is not fail}

Project : [0..m] x Env x Clause — Arg
Project.gnerete(? B, <H - B1,...,Bp>) =gf {t—'| e€ Fandi= e,-}

GetArg : p(Literal) — Arg

8The scope of variables is, of course, the whole term-tuple.

12

GetArg, ncrete(Queries) =gy vecior()\z':[l..n] .
{ﬂ there is a literal p;({) € Queries.})

GetEnv : Clause — Env
GetEnveoncrete[[H - B1,...,Bm]] =ar {e},
where ¢ is the tuple of arguments to H

and e; is the tuple of arguments to B;_q, for ¢ € [2.m + 1].

Canon : Arg — CArg
Canongoncrete(£) =ar {y | ez andy= Normalize(f)}

Freelnst : CArg — Arg
Freelnsteoncrete(Y) =af {fl yeY,y= Normalz'ze(t»), and
the variables in y have not been used yet in the computation.}

Although Apply.oncrete does not use its fourth argument, abstract interpretations
may need to. The same is true of Project ;. ere. In general, E € Env represents a set of
substitutions.

Freelnsteconcrete 18 not really a function, since it returns different members of the
renaming equivalence class each time it’s called. But we decline to make the tedious
avoidance of variable name conflict more formal. In all our constructions, any result
from Freelnstconcrete 1 put through Canonconcrete in such a way as to make the final

results well defined.

2.6 The Minimal Function Graph Construction

This section constructs the mfg, which is a partial function, so we must add partial func-
tions to our semantic domain. This is accomplished by following Jones and Mycroft[8].
We augment the activation description domain with a new bottom element that is less
than all other elements and that represents unreachable calls, that is, calls on which the
mfg is not defined.

As an intermediate step toward constructing the mfyg, we construct the set of reach-
able activation descriptions from the ify and a user specified set of queries.

CArgyo. =45 CArg U {bot}

¢ CcArgpy ¥ ifas (z = bot) or (z,y € CArg and = Ccarg ¥)
T UCArgpg ¥ =df if © = bot then bot else z Licag ¥
LcArgpy =daf bot

Tcargpy =d5 CArg

With this new domain we can construct a partial function space in which bot represents

the undefined function value.

13

PTrans =45 CArg — CArgy.,

As usual, Order, meet, bottom and top are defined pointwise for PTrans and for
PTrans™. In particular,

Lprvanst =45 vector(/\i:[l..n]. Az:CArg . bot).

As in [8], ¢;(z) = bot indicates that the ¢’th predicate has not been called on z.
¢;(z) = L indicates that the i’th predicate has been called on z, but hasn’t succeeded.

MFG : Prog X p(Literal) — PTrans”

MF G{[Pr, Queries]] =g4f vector(A:[l..n] . Az:CArg .
ifre (Reachable[[Pr, Queries]])z
then (TFG[[P]])i(x)
else bot

Reachable generates the domain on which MFG/[Pr, Queries]] is defined (not
bot). For each of the n predicates, this is a subset of CArg. Recall that, for simplicity,
we assume that each query is a single literal.

Reachable: Prog x p(Literal) — {(p(CArg))"
Reachable[[Pr, Queries]] =4 fixt AR:(p(CArg))™ .

IterateReachable[[Prr Queries]}(R)

Iteratercachable : Prog x p(Literal) — (p(CArg))” — (p(CArg))"
Iteratereachable[[PT, Queries]](R) =g vector(/\i:[l..n] .
{x:CArg[dy € Ry,
z € (CallsMade[[H - By,....Bn]l(y, TFG[[Pz]])),
H :- By,...,By, is a clause in Pr for the j’th predicate. }

U{ (GetArg [[Queries]]) })

CallsMade: Clause — CArg x Trans” — (p(Arg))"
CallsMade[[H :- By,....Bn]](z, @) =uf vector()\z':[l..n] .
{y : CArg| y = Canon(Project(£,Trace(
Apply(0,GetEnv([[H :- By,...,By,]],2,<H :- By,...,Bp>),
<H :- By,...,Be=1>,1,0))),
vy# L,
£ € [1..m], and

index(B;) = ¢ })

Tteraterecachable 15 continuous in R because it looks at each member of R in isolation.

14

3 The Partial Function Graph Semantics

We now present the partial function graph (pfy) semantics. It is the limit of an iteration
function that is not monotonic, but that is sufficiently well behaved that the limit exists.
In Section 3.2 we will show that this semantics essentially agrees with the mfg semantics.
The reason for considering this semantics is that it is almost as informative as the mfy
semantics and, for finite abstract domains, can be computed directly, obviating the
necessity of computing the tfg, which for large abstract domains, would be impractical.

(TFG][Pz]]); is defined on all of CArg, which may be very large. Granted, if we are
to guarantee termination of our analysis, we expect to have to require that CArgapprox
be finite, since otherwise it is not clear how to guarantee that Reachable[[Pr, Queries]]
is finite. For example, if we have the clause

trouble(X) :~ trouble(f(X,X)).
and pose the query
?- trouble(X)

then {trouble(X)}, {trouble(f(X,X))}, {trouble(f(f(X,X),f{(X,X)))}, ... would all be reach-
able activation sets.

Since it appears that CArgapprox must be finite, we can expect TFG[[Pz]] to be com-
putable in the approximate interpretation. But we can also expect it to be impractical
for large approximation domains, which would afford greater accuracy.

3.1 Construction of the PFG

The pfy is defined as the limit of an iteration function that is almost identical to the #fg
iteration function, except that it incorporates reachability. As the pfy iteration function
is applied repeatedly, the domain on which the result is defined grows to reflect new
reachable activations.

The pfg iteration function is not monotonic. But this section proves that it is suffi-
ciently well behaved that the limit exists.

Before we can use them in the construction of Iteratepyrg we must extend the
types over which several functions are defined. UseClause, Trace, and CallsMade
all have one argument of type Trans. Each of these arguments will now be treated as
having type PTrans. The change in these core-semantic functions can be handled by
making one small additional requirement of one of the interpretation’s basic functions,
Freelnst, since this is the function that may now be applied to bot. We require that
Freelnst(bot) = L. With these changes in place, we can pass ¢€ PTrans to CallsMade
and to UseClause with impunity.

PFG : Prog X Queries — PTrans”

15

PFG[[Pr, Queries]] =4 lim, Iterateprg[[Pr, Queries]]”(_LpTyrans®)
where fO(X) =4 X,
fUX) =4 fo f(X), and
FY =ar LU{S%|6 < v} for limit ordinals, .

Iterateprg: Prog X p(Literal) -+ PTrans — PTrans
Iterateprg[[Pr, Queries]j(¢) =af vector()\z’:[l..n] . Az:CArg .
if ¢(z) # bot
then UArg { UseClause[[H :- By,...,By]](z,9) |
H :- By,...,By i8 a clause for the ’th predicate in Pr}
else if((ﬂy € CArg) and (3j € [1..n]) and
(3 <H :- By,...,Bn> € Pr) such that
¢;(y) # bot,
H :- By,...,B,, is a clause for the j’th predicate and
z € (CallsMade[[H :- By,....Bx]|(y,¢))i) or
(.’L‘ EQueries)
then L
else bot

The then part of Iterateprg is identical to Iteraterrg. On the reachable calls
PFG[[Pr, Queries]] will give the same results as will TFG|[Pr]] (see Section 3.2).

The else part closely resembles Iteratepoachable, though Iteratercachable uses the
fixpoint, TF G[[Pr]], where Iterateprg uses the partial solution (in a Kleene’s sequence
calculation), which is not complete. So, for example, in the precise interpretation, if the
result instance set for By is incomplete vis-d-vis the fixpoint, an incomplete activation
set for B, may be reported by CallsMade. This is how it can happen that

C
MFGI[Pr, Queries]] #pryanss PF G[[Pr, Queries]].

As has been mentioned already, this difference is insignificant for applications that
require information about the reachability of individual activations, rather than the
sets of activations that arise in our particular model.

Unfortunately, Iterateppg is not continuous. The sequence whose limit defines
PFGI[Px, Queries]] may not converge by step w. However, as long as the approximation
domain is finite, the limit is certain to be reached at a finite stage.

To ensure that PFG[[Pr,Queries]] is well defined, we demonstrate in Lemma 1 that
repeated application of Iterateppg|[[Pr,Queries]] to Lpryanst generates an increasing
sequence. Then the sequence must converge before the index reaches the successor
cardinal to the cardinality of PTrans. This proves that the limit exists and that PFG
is well defined.

16

We use the notation f|s to denote restriction of the function f to the set S. We also
use this notation with equal sized vectors of functions and sets to denote the pointwise
restriction.

For convenience, let us define

¥y =4 Iterateprg[[Pr, Queries]]”(LpTrans:), and
RS, =45 vector(/\i € [1.n] . {=:CArg|(y)i(z) # bot}).

At this point we begin to omit the subscripts from Upmyans® and Cpryanst, and the
syntactic arguments from Iterateprg[[Pr, Queries]] and Iterateryg[[Pr, Queries]],
etc.

Lemma 1. V6§ < v . ¥5 Cprrans ¥y.

We show this by induction on 5. The basis is vacuous, and the result is obvious for v a
limit ordinal. Let us verify that it holds for successor ordinals, v -+ 1. For this it suffices
to show that ¥, T ¥ 41.

We have, V6 < v . 95 C 1 by the induction hypothesis. Let us assume that § < 7.
Iteraterra(¥s) C Tteraterra(y), by monotonicity of Iteraterrg.
Since Iteratetra(¥p)|rs, = Iteratepra(¥s)|rs,»
it follows that Iterateprg(¥s)|rs; C Iteratepra(v¥y)|rs;, since RS; C RS,.
On the other hand, z ¢ (RSs); = Iteratepra(¥s)i(z) C L,
and by inspection of the definition of Iterateppg we see that
Iteratepra(?s)i(z) = L = L C Tteratepra(vy)i(z)
So, Iteratepra(¥s)|gs- C Iterateng(z/).,)lm follows.”
Putting these together, we have that Iterateprg(¥s) C Iteratepra(y) = Py41.
Now, if v = § 4+ 1 for some 6, we are done.
On the other hand, if v is a limit ordinal, then ., = Lls<,Iteratepra(¢s).
But, since V6 < v . Iterateprg(¥s) C Iteratepra(y) = ¥yt1,
it follows that 1y C 441, |

3.2 The PFG is Safe

Now we argue that PFG is a safe approximation to MFG. It will be shown that over
the calls specified by Reachable, all three of MFG, PFG, and TFG agree exactly.
This is sufficient, since elsewhere MF @, is bot.

First, let us define RS € (p(CArg))™ to represent the reachable activations according
to PFG:

RS =y vector(Az' € [1..n] . {2:CArg|PFGJ[Pr, Queries]]i(z) # bot}).

So, RS = limy RS,.

TRSs denotes the pointwise compliment of RSs.

17

Now we state the theorem that ensures the safeness of the pfg semantics as an ap-
proximation to the mfg semantics. We again elide the operator subscripts and syntactic

arguments.

Theorem. MFG|R¢achable = PFGlReachable = TFG|Reachable:
We show that PFG|rs = TFG|gs. Since it is obvious that Reachable C RS, the

Theorem will follow from this and the definition of MFG.

Claim: PFG|ps C TFG|gs.
Since PFG =4y lim, ,, it suffices to show that ¢, T TFG for all 4. This is done by
transfinite induction on 7.
1. Basis: g CTFG. Trivial.
ii. Successor Ordinals: ¥s CTFG = o541 CTFG,
Y541 = Iterateprg(vs) by definition of v,.
Iteratepra(¢s) C Iteraterra(vs)
because they are equal on {z|¥s(x) # bot} by inspection,
and elsewhere it is trivially true.
Itel‘ateTpg('l,bg) E IterateTpg(TFG)
by the induction hypothesis and monotonicity of Iteraterrq.
But, Iteraterrg(TFG) = TFG by definition.
iii. Limit Ordinals: (V6 < v . ¥5s CTFG) — (¢4 C TFG).
This follows immediately.

Claim: TFG|rs C PFG|gs

If z € RS; then for all clauses, CallsMade[[H :- Bi,...,Bx]](z, PFG); C RS;, for all
j€[l.n].

Let PFG be PFG except values of bot are replaced by ..

Observe that (IterateTpg(P’]‘?\G))le = P?Glns = PFG|gs.

Since TFG is the least fixpoint of Iteratetrg, we have the desired result.

Of course, MFG could be constructed from PFG by performing reachability anal-

ysis.

This section has shown that PFG is a safe approximation to MFG. That is impor-
tant because MFG would be rather expensive to compute for large abstract domains
because it entails computing TFG. PFG is less expensive to compute because results
do not have to be collected on all z € CArg, just on those that appear to be reachable.

Not only is PFG safe, but it is a strong approximation. Where it is defined, it
agrees exactly with TFG. It is just defined on some ¢ € CArg that MFG is not
defined on. However, such x always represent subsets of sets on which MFG is defined.
Experiments that will be reported elsewhere seem to suggest that results are collected
by the pfy method on relatively few z € Arg that are not reachable.

18

4 Conclusion

This paper has constructed an abstract interpretation framework for logic programs
based on a minimal function graph (mfg) semantics. Our framework has been designed
to accommodate large abstract domains efficiently, making stronger automatic infer-
ences practical. This is the primary basis of our argument that our framework is more
practical than the elegant framework of Jones and Sgndergaard[7).

We have used our framework to construct and implement a data flow analysis for
mode inference that gives stronger inferences than any published analysis. That result
will be reported in a forthcoming paper.

Our mfg cannot be computed directly. But we have shown that the partial function
graph (pfg), which is defined here and can be computed directly for finite approximation
domains, is virtually indistinguishable from the mfy.

References

[1] Jung-Herng Chang, Alvin M. Despain, Doug DeGroot, “AND-Parallelism of Logic
Programs Based On a Static Data Dependency Analysis,” IEEE 1985 Spring Com-
pCon.

[2] John S. Conery, “The AND/OR Process Model for Parallel Interpretation of Logic
Programs,” Ph.D. Dissertation, Department of Information and Computer Science,
University of California-Irvine, TR 204, 1983.

[3] Patrick Cousot and Radhia Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points,” Conference Record of the Fourth Annual ACM Symposium on Principles
of Programming Languages, 1977.

[4] Saumya K. Debray, “Synthesizing Control Strategies for AND-Parallel Logic Pro-
grams,” Department of Computer Science technical report, TR 87-12, University
of Arizona, 1987.

[5] Saumya K. Debray, “Approximation Domains for Efficient Flow Analysis of Logic
Programs,” Department of Computer Science technical report, TR 87-9, University
of Arizona, 1987.

(6] Saumya K. Debray, David S. Warren, “Automatic Mode Inference for Prolog Pro-
grams,” Proceedings of the 1986 Symposium on Logic Programming.

[7] Neil D. Jones, Harald Sgndergaard, “A Semantics-Based Framework for the Ab-
stract Interpretation of Prolog,” To appear in S. Abramsky and C. Hankin (eds.),
Abstract Interpretation of Declarative Languages, Ellis Horwood.

19

[8] Neil D. Jones, Alan Mycroft, “Data Flow Analysis of Applicative Programs Using
Minimal Function Graphs: Abridged Version,” Conference Record of the Thirteenth
Annual ACM Symposium on Principles of Programming Languages, 1986.

[9] Laxmikant Vasudeo Kalé, “Parallel Architectures for Problem Solving,” Ph.D. Dis-
sertation, University of New York at Stony Brook, 1985.

[10] J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1984,

[11] C. S. Mellish, “The Automatic Generation of Mode Declarations for Prolog Pro-
grams,” Research Report 163, Department of Artificial Intelligence, University of
Edinburgh, 1981.

[12] C. S. Mellish, “Abstract Interpretation of Prolog Programs,” Third International
Conference on Logic Programming, LNCS 225, Springer-Verlag, 1986.

[13] David A. Plaisted, “The Occur-Check Problem in Prolog,” 1984 International Sym-
postum on Logic Programming, 1984.

[14] H. Sgndergaard, “An Application of Abstract Interpretation of Logic Programs:
Occur Check Reduction,” ESOP 86, LNCS 213, Springer-Verlag, 1986.

[15] D.H.D. Warren, “Implementing Prolog - Compiling Predicate Logic Programs,”
Research Reports 39 and 40, Department of Artificial Intelligence, University of
Edinburgh, 1977.

20

