Algorithms for Rational Spline Curves

by

Klaus Hollig

Computer Sciences Technical Report #710
August 1987

UNIVERSITY OF WISCONSIN-MADISON
COMPUTER SCIENCES DEPARTMENT

Algorithms for Rational Spline Curves

Klaus Hollig!

Technical Report # 710
August 1987

ABSTRACT

The theory of univariate splines is well understood. However, applying the standard
techniques for spline functions does not make use of some important features of piecewise
polynomial curves. Since curves are invariant under reparametrization, the smoothness
conditions for splines are less restrictive and standard approximation methods can be
improved. This note discusses rational cubic spline curves and describes in particular
two basic algorithms: the construction of smooth splines from control points and Hermite
interpolation.

AMS (MOS) Subject Classifications: 41A15, 41A25, 53A04

Key Words: spline curves, Bézier form, geometric smoothness, control points, interpolation

! supported by the United States Army under Contract No. DAAG29-80-C-0041 and
sponsored by the National Science Foundation under Grant No. DMS-8351187

Algorithms for Rational Spline Curves

Klaus Hollig!

ABSTRACT. The theory of univariate splines is well understood. However, apply-
ing the standard techniques for spline functions does not make use of some important
features of piecewise polynomial curves. Since curves are invariant under reparametriza-
tion, the smoothness conditions for splines are less restrictive and standard approximation
methods can be improved. This note discusses rational cubic spline curves and describes
in particular two basic algorithms: the construction of smooth splines from control points
and Hermite interpolation.

1. Introduction

We first review briefly two basic algorithms for “standard” cubic spline curves as a
preparation for the generalizations to be discussed in the following sections. These algo-
rithms are best described using the Bézier form for polynomials which allows a particularly
simple characterization of smoothness constraints for splines. The Bézier coefficients b of
a cubic polynomial p are defined by

3
p(t) =Y b, By(t), 0<t<1,
v=0

where B, (t) := (i)t”(l — t)¥ are the Bernstein polynomials. Therefore, as is illustrated
in Figure 1, a piecewise cubic spline curve p can be represented by a sequence of Bézier
coefficients ﬁ

¥, v=0,...,3, j=0,..,J.

It is assumed that bg‘l = bé, i.e. that the curve segments join continuously. Continuity
of the first and second derivatives of the parametrization is equivalent to the conditions

b —bg = b5 — by

(by —by) — (bf —) = (b5 - by) — (b7 — b7)

where b* denote the Bézier coefficients of two adjacent curve segments. The particular form
of these conditions yields a very simple algorithm for constructing the Bézier coefficients

of twice continuously differentiable spline parametrizations from control points (cf. Figure
2).

! supported by the United States Army under Contract No. DAAG29-80-C-0041 and
sponsored by the National Science Foundation under Grant No. DMS-8351187

@®©

b =

Figure 1. Bézier polygon of a cubic spline curve

Algorithm 1. (¢ = b) The Bézier coefficients b corresponding to a sequence of
control points ¢ are given by

b = (20T + 7 F2) 3, by = (2077 4 ¢7) /3
by =)= (b 4 6)) /2.

Combining the steps in Algorithm 1, f7 = bé_l = bg, can be expressed in terms of the

control points, , , _ .
fl=(c +4T + T2 /6 (1)

which yields
Algorithm 2. (f = ¢) The control points ¢ of the natural spline interpolant

(which has zero curvature at the endpoints) corresponding to the data fl,5=0,..,J,
are computed by solving the linear system (1) for y = 1,...,J — 1 with the end conditions

) N
b= O 0 =21 — (2

J+1 _ oJ J+2
¢t =1

Figure 3 shows an example which illustrates a slight disadvantage of the method: possible
oscillations near inflection points.

Figure 2. Control polygon, Bézier coefficients and corresponding spline
curve

While straightforward, the above algorithms do not make use of the additional flex-
ibility due to the weaker smoothness constraints for curves. This observation has led to
the development of §-splines and interesting new approximation and design techniques (cf.
[BBB80], [B685]). So far, the new geometric ideas have been primarily applied to polyno-
mial splines. We discuss in this note the generalization of the basic algorithms to rational
cubic splines. First, we describe the rational Bézier form in Section 2. Then, in Section 3
we discuss the analogues of Algorithms 1 and 2. Section 4 lists MACSYMA computations
which establish the main result of this note.

2. Rational Bézier form

We review the definition and some basic facts about the Bézier form and refer to
[FP79] for details. The Bézier form of a rational cubic parametrization r is defined as

3
Jb, B(t
()= £ = Zvzo Wbe Bull) gy 2)

q S o wy Bu(t)

where the coefficients b, are vectors in IR® and the weights w, are positive numbers. The
homogeneous form, i.e. multiplication with the weights in the numerator, simplifies the
algebra and geometric interpretation. As in the polynomial case, the control polygon is
tangent to the curve at the end points. The weights control the influence of the corre-
sponding coeflicients, i.e. increasing w, “pulls” the curve towards the coefficient b, as is
illustrated in Figure 4.

£0 @——-e-n-eemsd)

Figure 3. Natural spline interpolant

A piecewise rational curve is represented by a sequence of coefficients and weights,
(b, wl), v=0,...,3, j=0,...,J,

where, for continuity, b?;l = bé. To characterize higher order smoothness, we recall the
definition of

Smoothness for Curves. Smoothness of a curve, t — f(t) € R2, is characterized

in terms of differentiability with respect to arclength s := ft |f']. Since dt/ds = 1/|f’]
where | | denotes the length of a vector, the first and second derivatives of f with respect
to arclength are given by

d ’ /]
1=
d2 - 1z pn ! 1y ! 74
Tzl =P = M Nsee

Taking the cross product of the second equation with f'/|f’|, this means that C?-continuity
is equivalent to continuity of the vectors

Ere=1" 111" () g =1 x FUIITR

The vector £ is the unit tangent vector, x is the curvature and 7 is the binormal vector
which is a unit vector orthogonal to the osculating plane.

Figure 4. Rational Bézier form

Computing the vectors £ and n for the parametrization (2) at the endpoints gives

6 (0) = g Gon) (0) = 5 22 (e 00
* 1
(3)
— bs — by . g wiws (b3 — 62) X (bl _— b2)
57‘(1) lbg _ bzla (K/n)r(l) - 3 w%]bB — b213

Therefore, two adjacent curve segments with Bézier coefficients b* and weights w® join
twice continuously differentiable at b; = b7 if the following two conditions are satisfied:

(C1) by, by = by, b] are collinear;
C2) b7, by, by = b, b, b lie in a half plane and the parallelograms R. in Figure 5
1 2 3] 1 2
satisfy
wyw; area(R_) wjw; area(R;) (4)
(wy)? fbz —b51° (wi)? b7 —bg[*

3. Control points and interpolation

The geometric description of the smoothness conditions easily yields the analogue of
Algorithm 1 which is a variant of the corresponding method in the polynomial case [B5685].
Denote by 4 and 64 the relative length of adjacent line segments as is indicated in Figure
5. For example,

by — b | 165 — by | =64 6.

5

Figure 5. Geometric smoothness constraints

Then, since area(R.) : area(R_) = (6+6-) : (6-8+), condition (4) becomes

wiwyl (wy)?
6% = (64/6-)* = (B-/B4+) (O+ Cliwes

wi)? wiwg’

(5)

This means, one can select the points b;, bg, b'1+, b;r and the weights w¥ essentially
arbitrarily and it is then possible to select 6, and hence b; = bg, so that the smoothness
conditions (C) are satisfied. This yields the following algorithm.

Algorithm I. (¢, w, 8 == b) The Bézier coefficients b/, of a piecewise rational spline
curve corresponding to the sequence of control points ¢/, weights w!, and parameters gL >0
are given by , _ _ '

by = (144275 + B2 /(14 LT 4 427
b7 = (1 + BL)e? T+ BTN /(1 + AT+ L)
byt =00 = (87T b)) /(1 + 67T

where 67%! is defined in terms of w’~!, w’, L according to (5).

Algorithm 1 is a special case corresponding to w), =), = 1. The weights w and the
parameters § permit local control of the “shape” of the curve while keeping the control
points fixed. This is illustrated in Figure 6. Decreasing § increases the curvature at
the knots and the curve approaches the “control polygon” which connects the points ¢/.
Increasing a particular weight stresses the influence of the corresponding Bézier coefficient.
If this additional flexibility is not needed, the parameters can be set according to suitable
optimality criteria.

Figure 6. Control points and corresponding rational spline curve for f =
1/4,1, 4 ‘

Algorithm 2 for interpolation requires the solution of a linear system, i.e. changes in
the data have a global influence. Using the additional degrees of freedom due to the weaker
smoothness constraints, it is possible to construct smooth interpolants by a local method.
This method is suggested by the expressions (3) for ¢ and 7. Setting 6; := |byy2; — bayl,
fri=r(2), € := &.(2), (kn)* := (kn),(:) for i = 0,1 and substituting

by — by = (f' = fY) — 60€° — 6:¢7,

the equations for k7 in (3) can be rewritten as

(K’n)l = (-‘)igié.z X (fl - fO) + oigl X an 1= 0,1, (E)
where .)
WiW24q
1= 3, 0= 0ib1-i. 6
e 3 w%+i 612 o £:01 ()

Since both sides of the i-th equation are orthogonal to £*, the equations (E) are equivalent
to a 4 X 4 linear system for p and o. This system has a solution with p,o > 0 if

(A) n* lies in the interior of the cone spanned by
(=)ier x (f1 = 9 and €' x ¢, ¢=0,1.

Choosing wy := wsy := 1, the remaining weights wg,ws and the parameters é can be
expressed in terms of ¢ and o,

b1-: = 0if0i, w3 = (3/2)6}0.. (7)

The corresponding method described in Algorithm II is a generalization of Hermite inter-
polation.

Figure 7. Rational spline interpolant of a helix

Algorithm II. (f, €, kn = b, w) The Bézier coeflicients b, and weights wo, w3 of
the j-th segment of a piecewise cubic rational spline r; which matches the unit tangent
vectors £/ and the vectors (kn)’ at the points f’ can be determined by solving the system
(E) with

fro=frt, =1 pti= it

provided that condition (A) holds.

The following Theorem shows that, for data corresponding to a smooth curve, con-
dition (A) is satisfied if the interpolation points f? are sufficiently close. Moreover, the
interpolant is of high order accuracy and has good shape preserving properties for smooth
data. This is illustrated in Figure 7. If condition (A) is not valid for a particular curve
segment, then the given curvatures and binormals cannot be interpolated and have to be
modified or possibly chosen differently for adjacent segments. An interesting [open] prob-
lem is whether for given points f the vectors ¢ and k7 can be chosen so that (A) is valid
and the resulting scheme remains accurate and shape preserving.

Theorem. Assume that the data f7, €7, n? in Algorithm II correspond to a smooth
curve f with nonvanishing curvature « and torsion 7 (cf. [FP79, p. 102| for definitions).
If the distance h := max|[f’ — f/~!| between adjacent points is sufficiently small, then
for each pair of adjacent points, condition (A) is satisfied and hence the system (E) has a
unique solution with p,o > 0. Moreover, the corresponding piecewise rational interpolant
7y is 6-th order accurate, i.e.

dist(f,75) = O(h®).

For planar curves, a similar result was obtained in [BHS87] for interpolation with
piecewise cubic polynomials. For the rational case, the proof is somewhat simpler, since
the weights w and the parameters 6 can be expressed explicitly in terms of the data.

Proof. Consider a typical curve segment of the interpolant, e.g. corresponding to
the end points fY f!. Without loss we assume that f is parametrized with respect to
arclength s and that

ff =0 o o], ¢=]1 0 0], n°=[0 0 1], (8)
and f!:= f(s). Denote by r(t,s) = p(t,s)/q(t,s), 0 < t < 1, the rational interpolant. We
will show that

(i) for sufficiently small s, the system (E) has a unique solution with g, > 0;
(i) ¢(¢,0) = 1;
(iii) <8trl(t,s)/s> =1;
|s=0
(iv) 8ip(t,s), q(t,s)] = O(s"), ¢=1,2,3.

Assertions (i) and (ii) guarantee that r is well defined for small s, i.e. as the distance of
the points f and f! becomes small. Assertion (iii) implies that the derivative of the first
coordinate z = r of r satisfies

cos < 9yry(t,s) < eps (9)

for some constants ¢, and s sufficiently small. In particular, the function r; is monotone
increasing in . With 7, denoting its inverse, i.e. z = r(¥(z,s), s), the rational interpolant
has the equivalent parametrization

z— R(z,s):=[z ry(fi(z,s),s) ra(Fi(z,s),s)].
Similarly, f can be parametrized with respect to the first coordinate,
z — F(z).

Since the interpolation conditions are invariant under reparametrization, the unit tangent,
curvature and binormal of R and F match at zo := 0 and z; := r{(1,8) = fi(s). Using
that Ry(z) = Fi(z) = z, this implies that the derivatives of R and F match at these
points up to second order. From the standard error estimate for interpolation of functions
it follows that

R(z,s) = F(z)| = O((z1 - 20)°) = O(s°)

provided that the derivatives of R with respect to z up to order 6 are bounded, uniformly
in s. This follows from (iv). To see this we note that

R,(r(t,s),s) =r,(t,s), z=ri(t,s),

9

and compute the derivatives of R, inductively using the chain rule. This shows that
0lR,(z,s) is a sum of terms of the form
k Z ern 1 k 2 + em
R R ()

where superscripts denote differentiation with respect to ¢t and all functions are evaluated
at (t,s) with t = #1(z,s). Since () is a sum of terms of the form

pFlgla) _q(ém)/qm+1’ j=k+li+- -+ Ly,
the boundedness of R, is a consequence of (ii), (iv) and (9).

It remains to verify assertions (i)-(iv). This requires elaborate Taylor expansions
which are done via MACSYMA as is described in the final section.

4. MACSYMA computations

Below we list a MACSYMA program for proving (i)-(iv) of the previous section. The
computation is divided into four main steps: Taylor expansion of the data; solution of
equations (E); Bézier form of r; verification of (i)-(iv). To speed up the computations,
we use Taylor expansion to simplify intermediate results. The order of truncation will be
justified at the end of this section.

Auxiliary functions. The following auxiliary functions will be used in the program:
(c1) is de Casteljau’s algorithm for evaluating a polynomial at ¢ from its Bézier coefficients
b; (c2) is the vector product; (c3) generates the first n+ 1 terms of a power series with co-
efficients a;; (c4) computes the Taylor expansion of the solution of the differential equation

z'(t) = f(z(t)), z(0) = z0.

(c1) bezier_form(b,n,t) :=
if n=0 then row(b,1)
else t+bezier form(submatrix(1,b),n—1,t)
+ (1—t)*bezier form(submatrix(n+1,b),n—1,t)$

(c2) cross_product(a,b) := |

[a{z]*b[:ﬂ—a[& }*b[Z], a{3}>&:b[l}—~a[1}>|:b{3]’ a{lJ*bD]—a[Z}*b[lHﬁB
(c3) power series(a,n,t) :=

if n=0 then a0

else power series(a,n-1,t) + aln]#t® /factorial(n)$

10

(c4) solve_ode(f,x0,n,t) :=
if n=0 then x0
else (x1: solve_ode(f,x0,n—1,t),
x1 + subst(0,t,diff(f(x1),t,n—1))*t* /factorial(n))$

Taylor expansion of the data. The data at the left endpoint are given by (8). To
obtain Taylor expansions for f! = f(s), £! = £(s) and (kn)! = k(s)n(s), (c10) approxi-
mately solves the Frenet differential equations [FP79, p.103],

fl=¢

¢ = kg
"= — k€
n' = -,

where ¢ with ¢(0) := [0 1 1] is the normal vector. This yields Taylor expansions for the
data in terms of the Taylor coefficients u; and v; of curvature and torsion (cf. (c6), (c7)).

(c5) (kappa(s) := power series(u,5,s), tau(s) := power_series(v,5,5))$

(c6) kappa(s);
(de) u5s®/120 + ugs?/24 + uzs®/6 + ugs?/2 + uys + ug

(c7) tau(s);
(d7) v55°/120 + v451/24 + v35% /6 + v95% /2 + vys + vg

(c8) (f[0]: [0,0,0], xi[0]: [1,0,0], zeta[O]: [0,1,0], eta0]: [0,0,1])$

(c9) g(a) := [a[2], kappa(s)+a[3], tau(s)+al4]—kappa(s)+a[2], ~tau(s)+a[3]]$
(c10) fis: solve_ode(g,[f[0], xi[0], zeta|0], etal0]],6,5)$

(c11) (F1]: fs[1], xi[1): fis|2], zetal1]: fis[3], etaf1]: fs|4])$

(c12) (kappal0]: kappa(0), kappa[l]: kappaf(s))$

Solution of equations (E). All vectors in the 7-th equation in (E) are orthogonal
to £ and therefore the i-th equation is equivalent to the 2 x 2 system

€qn,, 1 = €qn,, 5 0; + eqn, 50y, v = 0,1, (10)

obtained in (c13) by forming the dot product of the i-th equation with the vectors n* and
¢17t. (c14) solves the system (10) by backward substitution, using that eqny 3 = 0. The
parameters 6 and weights w are computed in (c15) and (c18) according to (7).

11

(c13) for i:0 thru 1 do
eqnli]: (matrix1: matrix(etali],xi[1-i]),
matrix2: matrix(kappali]*etali,
(-1)+cross_product(xii],f[1]-f]0]),
cross_product(xi[1],xi[0])),
ratsimp(taylor(matrix1.transpose(matrix2),s,0,6)))$

(c14) for i:0 thru 1 do
(rholi]: eqn(i][2,1]/eqnli][2,2],
sigmali]: (eqn[i][1,1]—eqnli][1,2]*rholi])/eqn]i][1,3])$

(c15) for i:0 thru 1 do
delta[1—i]: taylor(ratsimp(sigmali]/rholi]),s,0,3)$

(c16) deltalo];

(d16) 5/3 + (uovy + 2vou;)s?/(36ugve) + (9ulvgv,
+12u0v8uz — lOugvf + 2uguouqvy
~10v3u? + 6udvd + 6uivd)s®/(540ulv?)

(c17) delta|l]—delta0];
(d17) —(uov1 + 2vou1)s?/(18ugvg) — (udvous + 2uguiu,
—udv? — 20v2u?)s®/(36ukv?)

(c18) for i:0 thru 1 do
wli]: taylor(ratsimp((3/2)*rholi|xdeltali]?),s,0,2)$

(c19) w(0];

(d19) 1 + (24ulvovs + 12upvius — 35u2v? — Sugvou v,
—20viu? + 36ulvd + 36uiv?)s?/(T20uvd)

(c20) w[1]—w][0];

(d20) ©

Bézier form of r. Statements (c21) and (c22) define the polynomials p(-,s) and
g(-,s) using de Casteljau’s Algorithms in terms of the Bézier coefficients.

(c21) p: (wb: matrix(w]|0]+f[0], f]0]+delta|0]«xi]0],
fl1]—delta[1]+xi[1], w[1]*f]1]),
ratsimp(taylor(bezier form(wb,3,t)[1],5,0,2)))$

(c22) q: (w: matrix([w[0]], [1], [1], [w[1]]), _
ratsimp(taylor(bezier form(w,3,t)[1,1},5,0,2)))$

12

Verification of (i)-(iv). As is shown by (c23)—(c26), the dominant part of the
system (10), as s — 0 is given by

ug _ ups? /2 —ugs | | o; (11)
udvos?/2 ufvos?/12 0 o

which proves (i). Clearly, (c27) proves (ii). (c28) computes the numerator of d;r1(t, s)/s,
where 7; = p1/q, and evaluates it at s = 0. In conjunction with (ii) this establishes (iii).
Assertion (iv) is equivalent to the statement that

3:3[p,q)(t,s) =0, j<i<3.
This is checked by (c29) which displays (9%[p(t, s), g(t,s)])/s*~! evaluated at s = 0.
(c23) taylor(eqn|0][1],s,0,2);
(d23) o, uos?/2, —ugs — uys?/2]

(c24) taylor(eqn[l][1}—eqn[0}[1],s,0,2));
(d24) [u1s + ups?/2, 0, 0]

(c25) taylor(eqn|0]]2],5,0,4);
(d25) wouds?/2 + (viud + 2uivoug)s®/6 — (vould + (vi — vo)ul
—(3ugvo + Bviuy)ug)s?/24, vouls?/12, 0]

(c26) taylor(eqn|1][2]—eqn[0]|2],5,0,4);
(d26) [(udvy + 2upuouy)s®/6 + (udvg + 2upvousy
+4uquivy + 2vou?)s?/12, 0, 0]

(c27) subst(0,s,q);
d27) 1

_——

(c28) subst(0,s,ratsimp((diff(p{1],t)*q—p|1]xdiff(q,t))/s));

(d28) 1

(c29) for i:1 thru 3 do
disp(subst(0,s,ratsimp(diff(|p,q],t,i) /s~ 1)));

[l0, 0, 0], O]
1o, 0, 0], 0]
[0, 0, 0], 0]

(d29) done

It remains to justify the various orders of truncation in the intermediate Taylor ex-
pansions. Since multiplication never decreases the order of validity of truncated Taylor

13

expansions, we must only consider (c15) and (c18). To indicate the range of significant
terms in an expansion

p(s) = gojsj + st
we use the notation
© ~ [5,J]
if the coefficients up to index J agree with the exact expansion of . By (11), and since

the data are computed exact up to order 6 by (c10), the coefficients in the system (10)
satisfy

i [0.6] [2,6] [1,6]
"7 12,6] [4,6] 0

This shows that
e~ [2,6]/[4,6] ~ [~2,0]
o ~ ([0,6] — [2,6] [-2,0])/[1,6] ~ [-1,1]
6~ {_1’1]/["2’0] ~ [1,3]
w ~[-2,0] % [1,3]% ~ |0, 2]

and hence all subsequent expansions are exact at least up to order 2 which is what is
needed for the proof of (iv).

References

[BBB85, B. Barsky, R.H. Bartels and J.C. Beatty, An introduction to the use of spline functions
in computer graphics, ACM Siggraph, San Francisco, 1985.

[B685; W. Bohm, Curvature splines, Computer-Aided Geometric Design 2 (1985), 313-324.

{BHS87! C. de Boor, K. Hbllig and M. Sabin, High accuracy geometric Hermite interpolation,
Proc. Conf. on CAD, G. Farin ed., Oberwolfach 1987.

[FP79; 1.D. Faux and M.J. Pratt, Computational Geometry for Design and Manufacture,
Ellis Horwood, 1979.

14

