NP-COMPLETENESS OF
LINEARLY-CONNECTED
MULTIPROCESSOR SCHEDULING

by
Gilbert Verghese
and
Charles R. Dyer
Computer Sciences Technical Report #709
August 1987

NP-Completeness of Linearly-Connected

Multiprocessor Scheduling

Gilbert Verghese
Charles R. Dyer

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

Abstract

This paper analyzes the computational complexity of scheduling for linearly-connected
multiprocessor architectures. A program to be scheduled is specified by a directed acyclic graph
(DAG), where each vertex of the DAG represents a unit time operation to be performed by one
of a fixed number of processors, and each arc of the DAG represents a precedence constraint.
Each vertex must be assigned a start time and a processor such that all operations are completed
and the constraints imposed by the DAG and the architecture are observed. A scheduling
algorithm is a decision procedure to determine whether a given number of time units is sufficient
for completion of the operations specified by a given DAG. We first show how precedence-
constrained scheduling and linearly-connected multiprocessor scheduling can be expressed as
subgraph isomorphism problems. We then specify another type of linearly-connected
multiprocessor scheduling problem in terms of subgraph isomorphism and prove that it is NP-
complete. Finally, we use similar techniques to prove that scheduling for the Aspex Inc. PIPE
machine is NP-complete. The NP-completeness results support the development of
approximation algorithms and heuristic methods for linearly-connected multiprocessor
scheduling.

The support of the National Science Foundation under Grant No. DCR-8520870 and the Na-
tional Aeronautics and Space Administration under Grant No. NAGW-975 is gratefully ack-
nowledged. We also thank Udi Manber and Chuck Stewart for their helpful comments.

1. Introduction

Recently a number of multiprocessor architectures have been designed in which the
processors are linearly-connected. Parallel processing applications using this kind of restricted-
communication architecture have included computer vision [3] and arithmetic expression
evaluation [4]. Despite the simplicity and regularity of this organization, however, efficient
parallel programming techniques are extremely difficult to determine and analyze. In particular,

we have been developing low-level vision algorithms for the Aspex Inc. PIPE machine [6,8].

In this paper we formally analyze the complexity of scheduling operations on linearly-
connected multiprocessors such as PIPE. A set of n processors is linearly -connected if there is a
directed connection from processor i to processor i -1 and from processor j to processor j+1, for
2<i <nand 1< <n-1. Hence there is no global memory, but a processor can directly access
data from its own local store or receive data from either of its two nearest neighbors. In the same
time unit it may also perform an operation on these data and distribute the result to its two

neighbors and its own local store.

The complexity of scheduling operations on a related model of computation is known. That
model assumes data can be relayed directly from any processor to any other through the use of
shared memory. Consequently, processors act as if they were connected in a complete directed
graph. The scheduling of operations using this model of computation is called Precedence-

Constrained Scheduling.

The Precedence-Constrained Scheduling problem (PCS) consists of a DAG, G, whose
vertices represent unit-time tasks, n processors, and an overall deadline, d. An n—processor
schedule for G is a partitioning of all the tasks into a sequence of sets of up to n elements each,
such that the precedence constraints imposed by the graph are obeyed. The length of the schedule
is the length of this sequence. Given an instance, <G, n, d>, PCS asks whether there is an n-

processor schedule for G that meets the deadline d. Finding an optimal 7 -processor schedule has

the same time and space complexity as PCS (up to a polynomial). PCS is known to be NP-
complete [2,7]. Note that the number of processors, n, is a variable. The major scheduling
question still open is whether the problem remains NP-complete for a fixed number (n = 3) of
processors [1]. A polynomial algorithm exists for finding a 2-processor schedule for a given
DAG. A polynomial algorithm also exists when the precedence graph is a forest and n is

arbitrary. In both cases a greedy approach known as Highest Level First is used [1].

The remainder of this paper is organized as follows: Section 2 gives a formal definition of
the problem of linearly-connected multiprocessor scheduling (L.CS). In Section 3 we prove that
PCS and LCS can be reformulated in terms of the subgraph isomorphism problem. Section 4
defines another linearly-connected scheduling problem in terms of subgraph isomorphism and
proves that it is NP-complete. Finally, in Section 5 we prove that a specific restriction of PIPE
scheduling is NP-complete. This establishes the difficulty of the general PIPE scheduling

problem.

2. Linearly-Connected Multiprocessor Scheduling

An input program is specified by a DAG and is interpreted as a dataflow graph in which
each directed arc (a, b) represents data produced by vertex a and received by vertex b. Vertices
represent tasks to be assigned to processors such that there is a connection (not necessarily direct)
between processors assigned to adjacent vertices. In the PCS model of computation all pairs of
processors are adjacent. In the LCS model of computation two processors can communicate by
relaying data from processor to processor. The data are delayed one time unit for each interim
processor since only one datum can be distributed by a processor per time unit. This also implies
that a given processor may not perform more than one task per time unit. A processor may store

data in local memory and delay the associated task in order to first perform another task or relay

data. The cost of the vertex associated with a given task is the time delay from the moment all
the inputs of a task are available at a single processor to the moment the task is completed. Hence

the cost of a path for a given processor assignment is the total time taken to "traverse” the path.

Let f be a function which assigns to each vertex a a positive cost f.(a) and a processor
number £, (a). The cost of a path is the sum of the costs of all vertices on the path. The level of a
vertex a is the cost of the most costly path ending at a; L (a) is the set of all vertices at the same
level as a. The function f is called an n—processor assignment for Gif (i) f,: L(a) —> {1, ...,
n} is one-to-one, for each vertex a of G, and (ii) If ,(a) — f, ()l < 1 for each arc (a, b) of G.
That is, (i) no two vertices at the same level have the same processor number, and (ii) arcs of G
correspond to direct connections between processors. If all vertex costs are 1, then f is called a
perfect [4] n-processor assignment for G. That is, f is perfect when there is no indirect

communication or delay of any value from source to destination.

Processors may be used to relay data from a to b; the number of processors required is
always less than n. However these processors do not correspond to vertices of G. We call H an
r-extension of G if G is a vertex subset of H and for each arc (a, b) in G there is exactly one
path, of length at most r+1, from a to b in H. We will also refer to the path from a to b in H as
an r -extension of the arc (a, b) in G.

Definition of LCS: Given an instance, <G, n, d>, LCS asks whether there is an n-processor
assignment for an »n -extension of G under which no path cost exceeds d.

Since the processors in the definition of PCS were fully connected, there was no need for an
n-processor assignment function f. This function is required for LCS to satisfy the hardware
restriction that only certain connections exist between processors. PCS is concerned therefore
with only the second and third conditions that no processor be assigned two tasks at one time and
that the deadline be met. The problem of determining the existence of a perfect n-processor

assignment for G is reported to be NP-complete in [4]. We make use of this property in Section 5.

3. PCS and LCS are Equivalent to Restrictions of Subgraph Isomorphism

An instance of the subgraph isomorphism problem [2] consists of two directed graphs, a key
graph and a target graph, P. The problem asks whether the target graph contains a subgraph
isomorphic to the key graph. The question is asked over a domain of instances containing all
pairs of directed graphs. A restriction of the original problem results from the same question

being asked over a subset of the original problem’s domain of instances.

In this section we give a procedure which transforms any instance of PCS to an instance of
subgraph isomorphism such that the two problems ask equivalent questions (i.e. have the same
answer). From an instance <G, n, d> of PCS this procedure first constructs the digraph D, whose

form is shown in Figure 1 and is defined as

D=({1,.,n}x{1,..,d}, (1D, i+]) I 1<x,y<n, 1<i<d-1}).

Note that only the parameters n and d are used to construct D. Let P be the transitive
closure of D. Consider P to be the target graph and G the key graph in a subgraph isomorphism
problem. The procedure to construct P from n and d requires time polynomial in these
parameters. We now prove that the two problems ask equivalent questions.

Lemma 3.1: There is an n -processor schedule for G that meets the deadline d if and only if P has
a subgraph, H, isomorphic to G.

Proof :

If there is such a subgraph H and an isomorphism ¢: H—> G, then an n -processor schedule
for G that meets the deadline d is ({§((x, 1)) | (x,i) € H})*=1:~~4_This is a partitioning of all the
tasks into a sequence of sets of up to n elements each, such that the precedence constraints

imposed by the graph G are obeyed.

Processors time

Figure 1. Structure of the digraph D. Arcs are directed forward in time. In this digraph
there is an arc from each vertex at one level to each vertex at the next level,

The proof of the converse is also straightforward. If there is an n-processor schedule, (L,
L, ..., L,), for G that meets the deadline d (r < d), then processors can be assigned to unique
vertices in L; since IL;| < n. The mutual disjointness of the domains and ranges of these one-to-

one mappings, m; : L; — > {(x,i) 11 £x<n}, 1 £i <r, implies the existence of an isomorphism

between G and a subgraph of P. []

The reduction given above proves the following:

Theorem 3.1: PCS is equivalent to a restriction of subgraph isomorphism.

We now prove the same results for LCS using a different restriction of subgraph
isomorphism, The reduction is more complex, but the proof is similar. Consider the digraph (see

Figure 2):
R=({1,...,n}x{1,..,d}, {((x1]),yi+tHhH:1<x,y<n,Ix-yl<1,1<i<d-1,1<j<d-i}).

For each vertex, a, of R, add a new vertex a’ and new arcs (a, a’) and (a’, a). For each original
arc (a, b) of R add a new vertex v, and extend the arc by the path (a, v, b). Restore the arc (a,
b). Repeat this n—1 times with the arcs (vq, b), then (v,, b), ..., (v,_;, b) (see Figure 3). A total
of 2(n—1) new arcs are added, so extending each arc (a, b) of R adds paths of lengths 2, 3, ...,

n+1, between a and b. This new digraph, P, (Figure 3) has

2nd + —‘Kda:l)— X (Bn-2)(d~1)(n—1) vertices and
2nd + 1%3'—1-)- X (3n—2)(d—1)(2n—1) arcs.

That is, it has O(n2d>) arcs and vertices. P is now the target graph of the subgraph isomorphism

problem.

The key graph, G”, of the subgraph isomorphism problem is obtained from G as follows.
Construct G’ from G by extending each arc (a, b) of G by a new path (a, vy, vy, ..., V.1, b). G
is an n-extension of G. Next, for each original vertex a of G, add a new vertex @’ not in G/, as

well as the new arcs (a, @’) and (d’, a). The resulting digraph (Figure 4) is G”.

Figure 2. Digraph R used in forming an instance of subgraph isomorphism from an instance
<G, 4, 4> of LCS. Arcs are directed forward in time.

Figure 3. Digraph P formed by extending R in two ways: (i) cycles are introduced, and
(ii) all arcs of R are replaced by new arcs and vertices as indicated.

Figure 4. Digraphs G’, G’ obtained from the instance <G, 3, d> of LCS.

We now claim that subgraph isomorphism and LCS ask equivalent questions given these
instances:

Lemma 3.2: P has a subgraph isomorphic to G” if and only if there is an n -processor assignment
for an n -extension of G under which no path cost exceeds d.

Proof :

Assume ¢ is an isomorphism from G” to a subgraph of P. For each vertex a in G there is a
cycle (a, a’) in G”. Each cycle (a, a’) in G” corresponds under ¢ to a cycle ((x, i), (x, 1)) in P.
That is, ¢ maps G into R < P. Let H be the subgraph of G’ induced by the inverse image of R
under ¢. Add edges in H between disconnected vertices which are connected in G’. G’ is an n-
extension of H. Since G is a vertex subset of H, H is an n-extension of G. We will construct an
n-processor assignment f for H under which no path cost exceeds d. For each vertex b in H, let

fp®) =1y, where ¢(b) = (y, j), for some j. Let

fe@)=min{ j-i: (a, b)isanarc of H, ¢(a) = (x, i), and ¢(b) = (v, j);

or b has no predecessors in H, i = 0, and () = (v, j)}.

This guarantees that if ¢(a) = (x, i) then the level of vertex a under the assignment f is i. Since ¢
maps H into R, no two vertices at the same level under this assignment can have the same
processor number. f is thus an n-processor assignment for H. Since ¢ maps H into R and R has
critical path length 4 (i.e. the longest path in R has length d), the cost of the most costly path in

H under the n-processor assignment f cannot exceed d.

Now assume that there is an n-processor assignment f for an n-extension H of G under
which no path cost exceeds d. We first show that there is an isomorphism from H to a subgraph
of R. The isomorphism from G” to a subgraph of P will then follow. The partition of H given by
{L(a)!a € H} can be ordered to give (L, Lo, ..., L,), where r <d and L; contains all vertices

of Hat level i for 1 <i <r. Then each vertex a of H can be mapped to the vertex (f,(a), i) of

R, where L; contains a. Now since R contains all possible arcs (@, b) for which If , (@) - f, (D)
<1, H is isomorphic to a subgraph of R. Let ¢ be an isomorphism from H to a subgraph of R. G’
is an n-extension of H. ¢ can be extended by mapping vertices in G” - H to vertices in P - R.
Hence P contains a subgraph isomorphic to G’. Furthermore G is mapped into R under this
isomorphism. But for each vertex a of R there is a cycle (a, a’), where @’ is in P - R, Thus P

contains a subgraph isomorphic to G”.[]

The reduction given above proves the following:

Theorem 3.2: LCS is equivalent to a restriction of subgraph isomorphism.

These reductions are computable in time polynomial in » and 4. However, using the
reductions along with a routine for subgraph isomorphism is likely to result in inefficient
algorithms. The instances constructed form a very restricted subset of all instances of subgraph

isomorphism. The reductions do, however, give insight into the nature of PCS and LCS.

4. L3CS

L.CS’s model of computation assumes linearly-connected processors. However it restricts
each processor to sending a single datum to up to three possible destinations: the processor’s own
local store and the local stores of its two nearest neighbors. Hence when the processor is used to
relay data, no other operation can be performed. The model used in this section assumes
linearly-connected processing units called stages and allows each stage to send a different datum
1o each of the three destinations. This requires each stage to have, in addition to the processor, a
routing network to direct data to specific destinations. In general the routing network may change

at each time unit. Thus a processor can send the result of an operation to a given destination while

10

the stage is also used to relay data to other destinations. L3CS is the problem of scheduling DAGs

for this model of computation.

We assume that any datum input to-a stage is stored locally. It may subsequently be sent to
the processor or to one or both of the neighboring stages. Since a locally-stored value is never
sent back to the same stage, up to two destinations are possible for the purpose of relaying data.
The "recursive” destination is used only to save the result of an operation performed by the
processor. Therefore, a stage must implement the use of data for three purposes: for processing or
for communication to two possible destinations. We will define L3CS directly as a restriction of
subgraph isomorphism, using as templates the digraphs formed in the previous section for LCS.
The templates will be extended to properly model the three possible uses of data by a stage, as

well as the communication and delay of data for the scheduling of tasks.

We require two additions to the key and target graphs used in the transformation from LCS
to subgraph isomorphism. The first involves replacing processors by stages in the target graph, P,
and the second involves differentiating execution (EXEC) vertices from communication
(COMM) vertices in the key graph G”. Rather than introducing cycles as shown in Figure 3 for P,
three copies of each original vertex of R are combined to form a stage. Hence rather than cycles
there are stages with three vertices which have parents and children in common. This reflects the
choices in the use of data that we wish to model. Figure 5 illustrates the transformation from R to
P in the case of L3CS. Each vertex within a stage of the target graph, P, can be either an EXEC or
a COMM vertex. To ensure that at most one of the vertices is an EXEC vertex and at most two
are COMM vertices, each vertex within a stage has an arc to a single three-cycle, denoting an
EXEC vertex, and to each of two two-cycles, denoting COMM vertices. The key graph will have

its vertices connected to either two- or three-cycles.

The definition of the ” operation for L3CS differs slightly from the definition of ” for LCS.

In Figure 4 cycles are introduced to differentiate between EXEC and COMM vertices. However a

11

\L« 1 2 3 4
1
2
3
d=4
ach vert
EXEC vertex

Figure 5. Digraph P, the target graph in an instance of subgraph isomorphism
formed from an instance <G, 4, 4> of L3CS.

12

COMM vertex in the key graph could be mapped to an EXEC vertex in the target graph. This is
not necessary for L3CS since there are COMM vertices within each stage of the target graph. For
L3CS each EXEC vertex of G” has an arc to a three-cycle, and each COMM vertex has an arc to
a two-cycle. This is shown in Figure 6.

Definition of L3CS: Given an instance, <G, n, d>, L3CS asks whether P has a subgraph
isomorphic to G”, where the target graph P and the key graph G” are defined as above.

4.1. L3CS is NP-Complete

Since L3CS is a restriction of subgraph isomorphism, it is NP-hard. In this section we give
a polynomial time many-one reduction to L3CS from PCS, which is known to be NP-complete

[2,7]. This reduction establishes the NP-completeness of L3CS.

Recall that given an instance, <G, n, d>, PCS asks whether there is a partitioning of G’s
tasks into a sequence of d sets of up to n elements each, such that the precedence constraints
imposed by G are obeyed. The partitioning is called an n—processor schedule. The reduction
requires specification of instance and target graphs for L3CS from <G, n, d>, such that the
question asked by PCS is correctly answered by L3CS. The target graph depends only on n and
d, while the key graph depends on G as well as n and d. A target graph, P, similar to that used in
the proof of Lemma 3.2, is used here. The number of stages, n, and the time limit, (n+1)d,
determine the target graph, P. The time limit in the proof of Lemma 3.2 was d. Here P has n+1
times as many arcs and (EXEC) vertices. The proof of Lemma 3.2 used G” as the key graph. We
define the graph 1” in terms of n and d. It will have the properties of being (1) isomorphic to
exactly two subgraphs of P and (2) dense in P, in the sense of having nd fewer EXEC vertices. In
particular nd EXEC vertices of P will not be members of the image of I” under the isomorphism.

The key graph will consist of G” LU I”. Hence only nd vertices can be used for scheduling G, as

13

o

G”

Figure 6. Digraphs G’, G*’ obtained from the instance <G,3,d> of L3CS.

14

in PCS. I” is the result of performing the " operation on the DAG I(r, d).
Definition of I(n, d):

Ve=1{1,...,n}x{kn+1, ..., n+kn+1}
Ep={((x1),&i+)I1<x<n, kn+l<isnt+kn U
(%1, x+1,i+1) 11 €x<i-kn,kn+1 <ign+kn U
{((n+1-x,1), (n-x, i+ 1 1 < x <i-kn,kn+1<i<n+kn } U
{ (x,n+kn), (x+2, n+kn+1)) 11 £x<n-2 v
{ (n+1-x, n+kn), (n-x-1, n+kn+1)) 1 1 <x<n-2 }

In,d)=(U{V, 10<k <d-1},U {E, 10k <d-1}).

Hence I(n, d) is formed by connecting d copies of I(n, 1) end to end as shown in Figure 7. For &
=1, .., d, the levels kn and kn+1 of the DAG I(n, d) are connected by arcs from vertices to all
neighbors up to distance 2 away. Three examples of I(n, d) are given in Figure 7.

Lemma 4.1: There is an n -processor schedule for G that meets the deadline d if and only if there
is an isomorphism from G” LU I” to a subgraph of P.

Proof .

I” is dense in P in the sense that there are n?d EXEC vertices in I and n(n+1)d EXEC
vertices in P. However the EXEC vertices of P at levels k(n+1), for k = 1, ..., d, cannot be
isomorphically mapped to vertices of I” due to communication delays. Hence the critical path
length of any subgraph of P isomorphic to I”(n, d) is the same as the critical path length of P.
There are only two isomorphisms from I” to a subgraph of P. They are essentially the same by
symmetry. The allocation of P’s EXEC vertices and arcs to the isomorphic image of I” is shown
in Figure 8 Only the remaining EXEC vertices and paths in P can be used for the image of G”.
Since there are sufficiently many arcs remaining in P to represent communication from all stages
to all other stages, the existence of an n -processor schedule for G meeting the deadline d implies

the existence of an isomorphism from G” U I” to a subgraph of P.

15

1(5,3)

1(4.4)

1(3,5)

DDDDDDDDDDDDD

G - - B X 0 e > R = T AV . T o W »)

AR AR P AKX
o o 2SREs o LXEEs o LK
X - et

ot

2

> NN

: '\' SRS
Ko 0 XK

Figure 7. Digraphs 1(3,5), 1(4,4), and 1(5,3). Arcs are directed downward.
16

paths for G’ G’ allocation 1(5,3) allocation

/

il

W

o

/

A
,Nm\\ N e
\ ' \ \"4 \ ’;\’.‘

il
\

NN
o

S
S
%%
D%
<N

P
PR

>

N

1
i

\
O
it

' ‘.)

Moot NN
2N 3’!"0“

<
£

A DN DN DD VANIVANRVANEVANEVAN

S
X
NS

Figure 8. EXEC vertex and arc allocation for a subgraph of P isomorphic to G** U I(3,3)

Since there is a unique isomorphism from I” to a subgraph of P (up to symmetry), the
existence of an isomorphism from G” U I” to a subgraph of P implies that all EXEC vertices of
G” are mapped to at most d distinct levels of P. These levels form the partitioning of G required
in an n-processor schedule for G. Thus there is an n-processor schedule for G that meets the

deadline d if and only if there is an isomorphism from G” U 1” to a subgraph of P.[_|

Finally, the many-one reduction given in the proof of Lemma 4.1 is computable in time
polynomial in nd. Hence L3CS is not shown here to be NP-complete in the strong sense [2].
However since n, the number of processors, is bounded from above in practice, d is the

dominating factor. No schedule with deadline d exists for a DAG having critical path length

17

greater than d or more than nd vertices. Preprocessing can be added to the reduction to detect
these cases. Hence in practice the reduction is computable in time polynomial in the number of
vertices in the DAG. This supports the development of heuristic methods and approximation

algorithms for scheduling DAGs on architectures similar to L3CS [5].

5. PIPE Scheduling

LCS’s model of computation allows three different inputs to be saved in the local store of a
processor at each time unit. In this section we consider a related model of computation which
corresponds to a physically existing hardware architecture, Aspex Inc.’s PIPE [3]. It possesses the
same interconnection scheme as LCS and L3CS (with several additional buses, which we ignore
here). However, a PIPE stage allows only one value to be saved in the local store (image buffers)
at each time unit. That is, two binary operations are used to initially combine the three input
values into one; this value is then stored in a buffer and can be used subsequently for performing
various operations in the stage. Consequently, unlike LCS and L3CS only one of the three input
values to a stage can be stored at any time unit. Hence storing the result of a stage’s operation

requires that the destination stage have no other inputs in the time unit following the operation.

Program DAGs consist of vertices labeled with basic lookup table, arithmetic, and Boolean
operations that can be executed by various functional units within a stage of PIPE. Because of the
hardware available in each stage, in general several vertices may be assigned to the same stage at
one time. This will not complicate the proofs, however. Other details of a PIPE stage are
discussed in [3]. The only additional details needed here are that there is one two-variable lookup
table operation (TVF-LUT) on each stage and there are two binary arithmetic (ALU) operations
which combine the stage’s three inputs into one. Given a labeled DAG G, n PIPE stages, and an

overall deadline, d, PIPE scheduling asks whether there is an assignment function mapping each

18

labeled vertex of G to a PIPE operation, stage number, and time unit, such that the label
corresponds to the operation, every arc in G corresponds to a direct or indirect connection in

PIPE, and the overall deadline d is met.

In the next section we prove that a restriction of PIPE scheduling is NP-complete (a
sufficient condition for general PIPE scheduling to be NP-complete). This restriction simplifies
the presentation because it does not require the detailed specification of a stage. We will treat
stages like single processors by defining DAG components which map onto single stages. For the
purposes of scheduling, components will necessarily map to entire stages. Components can then
be treated as single vertices. A component consists of a DAG isomorphic to the DAG ({a, b},
{(a, b), (a, b)}), where a is labeled ALU, b is labeled TVF-LUT, a has two incoming arcs and
two outgoing arcs, and b has two incoming arcs and one outgoing arc. Every component then has
two incoming arcs and one outgoing arc, as does every vertex in a reverse binary tree (precise

definition below).

5.1. PIPE Scheduling is NP-Complete

We stated in Section 2 that in the LCS model of computation the problem of determining
the existence of a perfect n-processor assignment for a given DAG G and a given number of
processors n, is NP-complete. The restriction of this problem to the domain R = {(V, E) | (V,
{(a,b) 1 (b,a) € E}) is a directed binary tree}, is also known to be NP-complete [4]. The

elements of R are called reverse binary trees.

In this section we prove the same result for the problem of determining the existence of a
perfect n-processor assignment for a given DAG on PIPE. To do so we will restrict this problem
to the domain of DAGs R’ = { ({C, | x € V and C, is a component} , {(C,, Cy) | (a,b) e E})|

(V, E) € R }. Informally, the components form reverse binary trees. For each reverse binary tree

19

in R there is a "reverse binary tree of components" in R’. We have treated components as vertices
for simplicity of specifying connections among components. This also suggests a natural
bijection between R and R”. We now make the following claim:

Lemma 5.1: In the PIPE model of computation the problem of determining the existence of a

perfect n-processor assignment for a given DAG T' € R’ and a given number of processors n, is
NP-complete.

Proof :

This problem is equivalent to the NP-complete problem of determining the existence of a
perfect n-processor assignment for a given DAG T e R and a given number of processors # in
the LCS model of computation. The equivalence of the two problems is given by the bijection

between their domains, R and R”.[]

To prove that PIPE scheduling is NP-complete we first note that it is NP-hard since we can
verify in linear time whether a given assignment function meets a deadline d and is an n-
processor assignment function for a given DAG G and a given number of processors n. We now
give a polynomial time many-one reduction from the NP-complete problem in Lemma 5.1 to

PIPE scheduling.

Let <T”, n> be an instance of the problem in Lemma 5.1. We will construct an instance <G,
n, d> of PIPE scheduling. Let d be the critical path length of the DAG T in R which corresponds
to T'inR’". LetI=uU { C; | i <nd -ITl and C; is a component }. Hence I is a DAG containing nd
- IT! components. The ALU operations in these disconnected components produce constant

results and require no input. Finally, let G=T U T".

20

Lemma 5.2: There is a perfect n -processor assignment for T’ in the PIPE model of computation
if and only if G can be scheduled on PIPE with n stages and deadline d.

Proof :

If there is a perfect n-processor assignment for T on PIPE, then G can be scheduled on
PIPE with n stages and deadline d since vertices of T” < G can be assigned to stages according to
the perfect n-processor assignment. All the vertices of I < G can be assigned to the remaining

stages at any of the d time units since the components of I are all independent.

If G can be scheduled on PIPE with n stages and deadline d, then exactly ITl stages are
assigned to components of T’ since all other stages are assigned to components of I. Furthermore,
no stages can be used for relaying or delaying of values since only one value can be stored in a
given stage’s buffers per time unit. This value must be the output of the ALU operation
corresponding to the ALU vertex of the component which was assigned to the given stage. Since
there is no relaying or delaying of values, the assignment of PIPE stages to T’ given by the

schedule of G is a perfect n -processor assignment for T". D

Finally, the many-one reduction is computable in time polynomial in nd. Thus the

comments made in Section 4 concerning L3CS also apply here.

21

6. Concluding Remarks

The NP-completeness proof given for PIPE scheduling is simpler than that given for the
NP-completeness of L3CS. The former does not apply to the latter since the former relied on the
restricted capabilities of PIPE with respect to its inability to store data for both communication

and delay, thus forcing a perfect assignment.

The results of this paper make precise the difficulty of scheduling programs for linearly-
connected multiprocessors such as PIPE. Because of this inherent complexity, we have
simultaneously been developing heuristic methods for scheduling which, in practice, produce

neatly optimal schedules [5].

22

References

D. Dolev and M. Warmuth, Scheduling flat graphs, SIAM J. Comput. 14, 1985, 638-657.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, New York, 1979.

E. W. Kent, M. O. Shneier, and R. Lumia, PIPE — Pipelined image-processing engine, J.
Parallel and Distributed Computing 2, 1985, 50-78.

C. E. McDowell and W. F. Appelbe, Processor scheduling for linearly connected parallel
processors, IEEE Trans. Computers 35, 1986, 632-638.

C. V. Stewart and C. R. Dyer, A scheduling algorithm for the Pipelined Image-Processing
Engine, to appear in J. Parallel and Distributed Computing.

C. V. Stewart and C. R. Dyer, Convolution Algorithms on the Pipelined Image-Processing
Engine, Technical Report 643, Computer Science Department, University of Wisconsin —
Madison, May 1986.

J. D. Ullman, NP-complete scheduling problems, J. Comput. Systems Sci. 10, 1975, 384-
393.

G. Verghese, S. Mehta, and C. R. Dyer, Image Processing Algorithms on the Pipelined
Image-Processing Engine, Technical Report 668, Computer Science Department,
University of Wisconsin — Madison, September 1986.

23

