A TWO-STAGE SUCCESSIVE OVERRELAXATION
ALGORITHM FOR SOLVING THE LINEAR
COMPLEMENTARITY PROBLEM

by

Karen M. Thompson

Computer Sciences Technical Report #706

July 1987

A Two—Stage Successive Overrelaxation Algorithm

for Solving the Linear Complementarity Problem

Karen M. Thompson
Computer Sciences Department

University of Wisconsin, Madison, Wisconsin 53706

Abstract. We propose a two-stage successive overrelaxation (SOR) algorithm
for solving the symmetric linear complementarity problem. After the first SOR
preprocessing stage this algorithm concentrates on updating a certain prescribed
subset of variables which is determined by exploiting the complementarity property.
We demonstrate that this algorithm successfully solves problems with as many as

10,000 variables which cannot be tackled by other current algorithms.

Key Words: SOR, linear complementarity problem, large-scale programming

Abbreviated title: A Two-Stage SOR Algorithm

This material is based on research supported by National Science Foundation Grants
DCR-8420963 and DCR-8521228 and Air Force Office of Scientific Research Grants

AFOSR-86-0172 and AFOSR-86-0255.

1. INTRODUCTION

Successive overrelaxation algorithms are characterized by fast movement into
a neighborhood of the solution followed by slow movement close to the solution.
An active set strategy would therefore be useful after a few initial iterations of the
SOR algorithm. The initial iterates of SOR are designed to identify a good guess
for an initial active set. In large-scale programming this step is crucial. Typically
active set strategies allow at most one constraint to be added to the active set
at each iteration. Lenard, [Lenard79] conducted a computational study of various
active set strategies on small quadratic programming problems. In her study, in
general the number of changes in the active set appeared to fall in the range of
% to %, where n in the number of problem variables. In addition this number
approximately corresponds to the number of active constraints at the solution of
the test problems. Therefore if the initial active set chosen is not close to the solution
active set an enormous number of iterations may be required for large—dimensional
problems. Since each iteration may involve solving a large—scale problem this is
not feasible for large-scale programming. Discussion of active set methods can be
found in numerous sources including [Gill & Murray74],[Goldfarb72],and [Hoyle86].
By contrast our proposed two-stage method provides a good initial guess of the
final active constraint set.

In a related work [Bertsekas82] proposes a projected Newton method. Bertsekas

[Bertsekas82] proposes a superlinearly convergent scheme for solving
min f(z
i £(2

1

using the following iteration,
AT = (2 — XD, V()4

where \! is a stepsize chosen by an Armijo-like rule D, is a positive definite sym-
metric matrix which is partly diagonal and f(z) is strictly convex. The portion of D;
which is not diagonal may be chosen to be the inverse of the Hessian of f(z) with re-
spect to the indices corresponding to a subset of the variables. Although Bertsekas
uses an active set strategy to partition the variables into two sets strictly speaking
this is not an active set method. Active set methods are forced to remain on a
linear manifold until a certain criterion is violated. In contrast Bertsekas’ method
allows the iterates to move off the active constraint set at any given iteration. This
allows for multiple changes in the active set at any given iteration hence avoiding
the inherent limitations of manifold suboptimization methods.

We propose here a two-stage SOR method. The idea is to use the SOR algo-
rithm until a certain tolerance is reached and then use the current approximation
of the solution to identify a set of constrained variables. We use a second SOR
scheme for solving a complementary system of equations which leads to a new fea-
sible point at which the process repeats. The use of the SOR algorithm at the
beginning helps identify a set of active constraints which may be close to the set of
active constraints at a solution. The second step is a Bertsekas—like method which

is sparsity preserving.

Section 2 will specify the algorithm and state optimality conditions. Section 3
will establish convergence results. Finally, in Section 4 we discuss implementation
of the algorithm and computational experience.

We briefly describe our notation now. For a vector z in the n—dimensional real
space IR™, z4 will denote the vector in IR™ with components (z4.); = max{z;,)},
2 =1,...,n. The scalar product of two vectors z and y in IR" will be simply denoted
by zy. Forz € R", || z || ;7= (zMz)l/z. IR™X™ will denote the set of all m x n
real matrices. For A € IR™MX™, AT will denote the transpose, A; will denote the ith
row, Az'j the element in row ¢ and column j,and for Z € {1,...,m}, J € {1,...,n},
A7 will denote the submatrix of A with rows A;, ¢ € 7, while A7 7 will denote the

submatrix of A with elements Az‘j, 1eZ,jeJ.

2. TWO-STAGE SOR ALGORITHM

We consider the problem
min f(z) = 1zMz-{— z (2.1)
22077 2 ! '

If M is symmetric positive semi-definite solving 2.1 is equivalent to solving the
symmetric linear complementarity problem.

The idea of Two-Stage SOR (TSOR) is to use the SOR algorithm to approxi-
mate a solution to 2.1 and use this approximate solution to partition the variables

into two sets. Define

I:=1(z) ={jlz; >0} forz a solution of (2.1)

3

Define the set at the ith iterate as follows

I; :={j|z§-§ei} for some eiZO, e >e>0.

From this we can partition M and z as follows

)

F— A
M= Mzc
2

== |z 71¢ |

(2.2)

where Iz? is the complement of Z; in {1,2,...,n}. We guess that Iz.C is the set of

indices of components of z which will be positive in the solution. Therefore we must

solve

Mzez +qze =0
7 2

(2.3)

to satisfy complementarity. We use an SOR algorithm to approximate a solution

to (2.3). Note that if M is positive definite, e = 0, If = Z, then if we solve (2.3)

we solve (2.1) exactly in one step.
We are now ready to specify the TSOR algorithm.

Algorithm 2.1.

Let E be a positive diagonal matrix in IR?*", let 20 > 0. Let w > 0 such

that for some v1,v9 >0

YW(WB) '+ Ky > |yl3 ,vyeR?

— M
y(WE) T+ K-z lyl3 Ve R

4

(2.4)

(2.5)

Step 1

For i <[where [is a positive integer
At = (2 — WB(MZ' + g + K(ZH = 20))

stop if ATl =
Step 2

Direction Generation

where
P%c(zz)
1
p(z"):=| * .
rz.(#")
where

k (.t k=1, 3 k—1, 1 i
Pre(2’) = ple “(2°) — wEreqe (Myerep 2°) 4+ Myer. 27,
7e(=) = ppe () —w P, ze(Mzezs e (7)) Mper g,

taze + Krepe(whe () — 551 (2) (26)
2 2N 7 ?

Py (<) = (¢7, —wEL7,(M1;2" +47,))+ (2.7)

Stop if p(zz) = 2.

Stepsize Generation

ATl = 2 + bt
where
F + Nodb) = min{ F(+ D)2t + AdE > 0} (2.8)
Go to step 2.
We are now ready to state optimality conditions for Algorithm 2.1.

Theorem 2.1. (TSOR optimality conditions) Let M,K ,E € IR**"™ g€ IR",w >0

such that E is a positive diagonal matrix.

(a) If z solves the LCP and (wE }_f)——l + K ¢ is nonsingular, where F is any
subset of {1,2,...,n}, then p(z) = z where p(z) is the solution of (2.6) and
(2.7).

(b) If p(z) solves (2.6) and (2.7) and p(z) = z and if (WE)™! + K — % and

(wE)~! + K are positive definite then z solves the LCP.

Proof :

(a) Suppose z solves the LCP. T = {]]z] < €}. It is easy to verify that

g = (27 —wEr7(Mz2 + 7))+

. Consider P%c (2) = zpe ~wEgege(Mycz+q7c -{—K(plzc (2)~z7c)). By rearranging

terms we get

(wBzege) ™ + Kgege)pye(z) = (wErege) ™t + Kgege)zre.

6

Therefore since ((wEIcIc)_'l + K7cgc is nonsingular p%c(z) = z. This implies
that p_,l%c(z) = z for every k. Therefore p(z) = =.

(b) Now suppose p(z) = z. One can easily show that
27 2 0, M2+ q7 2 0,270(M7z+q7) =0
. We now show that
zze 2 0,Mzcz + q7c 2 0,27¢(Mpcz + qzc) = 0 (2.9)

is satisfied. It is easy to show that if p:k[c(z) = zgc and k =1 then (2.5) is satisfies.
We will show that this is true for arbitrary k. Assume that p%c(z) = z for some

k> 2 but plzc(z) # zgc. Then z7¢ is an accumulation point of the iteration
zH’l = zz - wEICIc(MICIcZ?.Z-c + MICIZI + ch + I{ICIC(ZZZ-'{C_-[- z:ZZ'C))
Then si -1 Mrcre . (e o
en since (wWEgcre)” ~ + Kzcge — —=5=— 1is positive definite and by the
argument in Theorem 2.1 of [Mangasarian77],

Mycz +q7¢ =0

. But then by part (a) z = p(z). In particular zzcF' = p:lz-c(z). This contradicts

the assumption. Therefore (2.5) is satisfied. H§

3. CONVERGENCE OF TSOR

In order to prove the convergence result we first need the following two Lemmas.

7

Lemma 3.1. Let f(z) = %—z]\/_fz + gz. Let the sequence {zz} be generated by the

following SOR iteration.
P G wE(Mz 4+ q+ K(zi'*’1 — zz))

Then the sequence {f (zz)} is non-increasing.

Proof:

The proof follows from a simple modification of the proof of Theorem 2.1 in
[Mangasarian77]. N

Suppose the sequence generated by the TSOR algorithm has a convergent sub-
sequence. Lemma 3.2 will establish the boundedness of the directions associated

with that convergent subsequence.

Lemma 3.2. If sz — Z then dzj is bounded.

Proof:

We have d'J = (p(z'7) — 2'7).

Since the sets Z'J are finite without loss of generality assume F = T =
T2 =...=T"J =.... We will show that the components of p(zzj), p.l%c(zzj) and

p%_-(zzj) are bounded. We have

Pr(z7) = (s}~ wEpp(Mpz'T +q5))4

8

Suppose pl is not bounded. Then we get the following contradiction.
7 g

1, 4 . .
0sppe tim LECD o G oeBrp(Mpei ey
J=00 | pl (i) || I | (=) |

Therefore p}:(zzj) is bounded.

Now suppose p‘l%c(zzj) is not bounded. Consider the case when k = 1. Then

we have

y
0#p= lim —?}E@TJL = ~wE rereK re pep
7=00 | Bl o) |
Therefore ((WE re J_-c)'"l + K zcxe)p = 0,p # 0 This contradicts the positive
definiteness of (wE) ™! + K. Therefore { p.lrc(zij)} is bounded. The result follows
for arbitrary k by induction. |

We are now ready to prove the main result of this section.

Theorem 3.1. (TSOR convergence) Let M be symmetric and positive semidefi-
nite. Either the sequence {zz} generated by Algorithm 2.1 terminates at a solution

of the LCP or each accumulation point of { zz} solves the LCP.

Proof:

The sequence {zz} terminates only if for some i, p(zz) = 7%, in which case by
Theorem 2.1, 2 solves the LCP. Suppose now {z’} does not terminate and the 7 is

an accumulation point of { zz} Let

fIZ,C(ZIc) = f(ZIZ,C, ZZIZ)

9

and
f1,(e7) = f(#e, 21,)
7

We have

VS)i = —Vl—zq:f(zz)(p;l‘gic(zz) - #¢)
. 1 . .
= fIZg(ZIc) - f:[zc(p%c(zz)) +) Il pjki'.C(zz) - ZZI? “%WIQI?
3 2 ¢ ()
> fre(ege) = Fre(phe()) + 5 | Phe(eh) — 2 113
= Jzel#ge) = JzePze g 1 P1¢ I¢ "Mycge
7 [t 172
(By Lemma 3.1)
> fre(dhe) = Fre(pre(2")
3 ? 2
(By positive semidefiniteness of M)
== ((p%ic(zz) - zsz,c) +wBrere(Mres* +aze
+ KIZ,CIZ,C(P%Z,c(zZ) - z_?[{))

X (WEIfziC)—l(P%pc(zz) - z_?'[,c))
2 2
2

1))
— || pFe(2’) — 25¢ || _
A I "Myege/2=Kgeqe—(wBrere) !

(By Taylor Series Expansion)

2
(wEgeze) M+ Kpepe~Myeze/2
t 1 7 1 T 1

(By (2.6))

=l P%_c(zz) - z%;,c |
2 i

> 7 || phe(2) - 2 |12
(2 2

(By (2.5))

Now, we find a similar result for the second case.

10

Vg,V = =V 7Yz, () - 27,)
= —(Mz,# +a7)(p () - =4
== ((P%z (z'l) - Z,IZ') + (WEIZ'IZ')(MIZ zi + qIZ'))

PRI N 1,6\ i
x (B " (o} () = 25)) + 1l ok, () — 2L [
2
(wE7T.7.)
(By Lemma 2.2. of [Mangasarian77])

1.0 2
2| 9, (=) = %) | 1
>4 || o, () ~ 2 1P

(Since E is a positive diagonal)
Therefore we have

~Vf(z")d" = —VIZ_Cf(ZZ)dIZ.C - V. f(z")dr,
~ 1 /2 T2 A 1 /.2 2
> Pl'ic(z) ZIZ‘-: 1=+ pIZ-(z)~ *T; I

>y || p(z4) - 2 |2

where v = min{7, ¥}.

Now, suppose that {zZJ} — Z. By Lemma 3.2 we have {p(zzf)} is bounded.
Therefore without loss of generality we can assume {zij , p(zij)} — (z,p). We have
d=p—z. Then

zij “F)\dij >0for 0<AKL ;\ij

11

where

7.
J

Since {5\2.7' } is bounded without loss of generality we can assume that XJ = X

Therefore
FI A > T > £GUH) foro< A <3
Therefore
f(Z+ M) > f(z) for 0<ALZX (3.1)
We claim that X # 0. Since each Iz-c' is a finite set at least one set F occurs infinitely
J
often. Therefore without loss of generality assume IZ-C‘ = F for all j. Now, suppose
. J
X — 0. Then .
‘j
lim ~z* =0
j—oo
where)
.
— *7

1 159
= min{-z; /dplz; +dp <0}

i keF

d;
since {dzl} is bounded then X'J — 0 implies that —z,] — 0 However 2,/ € F

i <
and therefore z,] > € for all j by (2.2). This contradiction implies that X # 0.

Therefore from (3.1) we have

Vf(z)d >0

. Then
N T . RN . 15 t5 2
0> —Vi(E)d= lim ~V()dT > tim v p(z7)— 27 |22 0
j—o0 j—o0

12

Therefore || p(2) — z ||2= 0. By Theorem 2.1 we have 7 solves the LCP. |l

We have the following special case of TSOR.

Corollary 3.1. Let M be symmetric positive semidefinite. In addition let K = L
and E = D~ > 0 where L is the strictly lower triangular part of M and D is the

diagonal part of M. Then conditions (2.4) and (2.5) are satisfied for 0 < w < 2.

4. IMPLEMENTATION AND COMPUTATIONAL RESULTS

There are two obvious questions that come to mind when implementing the
TSOR Algorithm. The first is what criterion should be used to switch from Step
1 to Step 2 of the algorithm. The second question is how do we choose k when
computing pjlf.c(zz)

The criteiion for switching must be such that it provides a good initial guess of
the active set at a solution. The criterion we implemented checks whether the set
IZ-C has changed every [iterations. When that set has not changed over [iterations
then the algorithm proceeds to Step 2. The size of | is important. If we wait too
long to make the switch we lose the full advantage of moving to Step 2. If we switch
too early we may have failed to identify an appropriate set and may spend a lot of
time switching sets. Since the iterations in Step 1 are much cheaper than those in
Step 2 we would prefer to stay in Step 1 under these conditions. We found that
checking every 10 iterations was appropriate for very sparse problems, such as less
than 1% density. Checking after every 5 iterations seemed to improve results on
the denser problems.

13

The second question involves deciding on how much work to do to find the
direction in Step 2. Notice, that if M is positive definite and we solve exactly the
system

MI.CI.CZI.C + MI-CI- ZZI +4q7c =0 (4.1)
171 T AL ?

then we are essentially using Bertsekas’ method without explicitly defining D,.
However, this would involve an infinite number of SOR iterates. We could solve
(4.1) to a stringent tolerance. This would provide a good direction if we have
identified the set correctly. If we have failed to identify the set correctly it may
not be worthwhile to do so much work for one iteration. We suggest the following
scheme

0. Start with a loose tolerance, 7i and a stringent tolerance 7. Define final

tolerance e.

1. Solve until || pé.c(zz) - p%c_l(zi) < AL

2. Compute zi+1.ZIf I (——Mzz: — q)4,2(Mz + q)) ||< € then go to 5.

3. Identify Z; 1. fZ; 1 =T, then 7i'+'1 = ¥ else 7”’1 = cvfyi for0<a< 1.

4. Go to 1.

5. Stop

In addition, we have included an upper bound on the size of k to avoid to much
time being spent on a given iteration.

The algorithm was tested on randomly generated LCPs. We randomly generate
a matrix A and define

M = AAT

14

A random solution Z is generated and ¢ is selected such that

Z;>0=>q; =Mz

Z,=0=g¢q, >—-M,Zz

The performance of TSOR is compared with the standard SOR algorithm,
At = (2 —wB(MZ + g+ K21 - 2))4

where

E=DYK=Lw>0

The convergence criteria used is
| (~M2* = g)4, 24 (M2" +q) < 5 x 1074

Tables 4.1, 4.2, 4.3,and 4.4 display the results for varying dimensions of a positive
definite M. Tables 4.5, 4.6, and 4.7 display results for positive semidefinite M. The
problem density indicates the fraction of non-zero elements in the matrix M. The
solution density indicates the fraction of non-zero elements in the generated solution
Z. We note that in Step 2 of the algorithm the time to complete one iteration will
increase as the number of non-zero elements in the solution increases. Therefore we
tested various densities of the solution vector. The columns iter and #ime indicate
the number of iterations and the total time in seconds for convergence using the
standard SOR Algorithm. The next four columns describe the results from the

15

TSOR Algorithm applied to the same problem. The first column labeled total iter
indicates the total number of iterations to reach convergence. The next column
labeled SOR iter indicates the total number of SOR iterations before switching to
Step 2. The column labeled inner iter indicates the cumulative number of SOR
iterations needed to calculate the directions in Step 2 on the algorithm. The col-
umn labeled time indicates the total time in seconds for the TSOR Algorithm to
satisfy the convergence criteria. Finally the column labeled factor compares the two

algorithms by measuring

Time for SOR Algorithm
Time for TSOR Algorithm

We malke the following observations about the results for positive definite M shown
in Tables 4.1, 4.2, 4.3 and 4.4.

(1) The most dramatic improvements occur when the solution density is small.
The bulk of the time spent on one iteration in Step 2 is calculating p-l%c(zz) We note

i

that when the set IZ? has few elements, determining the direction at the ith iteration
is much faster. Therefore we might expect the most dramatic improvements to occur
in this case.

(2) The largest number of Step 2 iterations needed for convergence was 19,and
often we need less than five extra iterations. However the number of inner SOR

iterations needed to generate these iterations rises as the density of the solution

16

rises. This can be attributed to the complementarity condition which causes the

system of equations
Mzegezge +aze + Mzeg. 27, =0
At A 2 (At

to be of much larger dimension for problems with denser solutions. Therefore the
number of SOR iterations needed to solve the system to a certain tolerance is larger
than a smaller size problem.

(3) SOR is not as effective on very sparse problems. TSOR carries some of the
same difficulties as regular SOR since we are using the SOR iterate as the basis for

generating the direction. However in TSOR we consider

Mzegezge +age + Mer 7
171 "1 1 17t

The matrix Mgcrc may not be as sparse as M and therefore the SOR iterate
e

to generate the direction may be more effective. Note that when we exclude the

dramatic improvements in the first two lines of Table 4.2 and the first line in Table

4.3 the improvement factor tends to be better for sparse problems.

To test for the positive semidefinite case we generated a matrix of rank %— X n.
Tables 4.5, 4.6 and 4.7 display results from these tests. In tables 4.5 and 4.6 we
use the same stopping criterion as previously stated with the exception of problems
with solution density .6 and .8 in table 4.6. These problems were run to a tolerance
of .5 x 10™3 and .5 x 102 respectively.

17

We note that although table 4.5 seems to mirror the positive definite results, a
comparison of tables 4.6 and 4.2 finds the positive semidefinite case requites more
second stage iterations. This can be explained by the fact that in the positive
semidefinite case the LCP has infinitely many solutions and as a result there may
be more changes in the active sets. In addition the resulting system of equations
may not be of full rank and in fact is not even guaranteed to be consistent.

Finally, we note that the principle advantage of this method over a direct im-
plementation of Bertsekas method is the ability to solve huge problems without
storage difficulties and in a reasonable amount of time. The largest problem we
have tested is a positive semi—definite LCP of dimension 10,000. Table 4.7 displays
the results of that run and provides a comparison with the SOR algorithm. Bert-
sekas has solved special positive definite problems with 10,000 variables using his
algorithm. The special nature of his problems allows him to use Riccati equations
to efficiently compute the Newton direction. However, we know of no method other

than TSOR, that can handle general positive semi-definite problems of this size.

18

Table 4.1
COMPARISON OF SOR AND TSOR
M POSITIVE DEFINITE, DIMENSION 1500

SOR TSOR
problem solution time total SOR nner time speedup
density density iter seconds iter iter iter seconds factor
.03131 .25 34 91.76 19 15 28 67.36 1.3622
.03131 5 50 138.68 29 25 19 108.86 1.2738
.03131 7 90 250.13 45 40 38 198.68 1.2589
.03131 .8 150 419.81 60 55 86 358.46 1.1711
.00427 .25 317 167.76 34 30 200 34.85 4.8139
.00427 .5 1000* 516.50 55 40 750 179.96 2.8699
.00427 7 1499 783.40 79 60 907 348.05 2.2508
Table 4.2

COMPARISON OF SOR AND TSOR
M POSITIVE DEFINITE, DIMENSION 2000

SOR TSOR

problem solution time total SOR inner time speedup
density density iter seconds iter iter iter seconds factor
.02443 25 1000* 3877.65 31 30 4 124.30 31.1958
.02443 4 1000* 3884.70 41 40 5 168.92 22.9977
.02443 .6 75 297.75 43 40 22 216.43 1.3757
.02443 7 143 565.20 74 70 62 442.02 1.2786
02443 .8 300 1202.33 95 90 100 671.87 1.7895
.00799 25 50 70.53 22 20 20 36.95 1.9088
.00799 4 300 424.95 54 50 169 133.80 3.1760
.00799 .6 1000* 1426.93 59 50 401 338.10 4.2204
.00799 .8 1000* 1436.06 81 70 550 624.46 2.2996

* failed to converge after maximum iterations is reached

19

Table 4.3
COMPARISON OF SOR AND TSOR
M POSITIVE DEFINITE, DIMENSION 2500

SOR TSOR
problem solution time total SOR inner time speedup
density density iter seconds iter ater iter seconds factor
.01429 .25 1000* 3711.53 31 30 3 119.63 31.0251
.01429 4 50 188.40 32 30 32 14583 1.2919
.01429 .6 100 379.86 44 40 37 237.56 1.5989
.01429 7 150 570.90 51 40 124 488.05 1.1697
.01429 .8 250 955.08 77 70 174 743.12 1.2852
.00477 .25 100 142.48 22 20 49 42.65 3.3407
.00477 5 1000 1415.73 73 70 150 17597 8.0454
.00477 7 1000 1437.76 98 &0 807 793.97 1.8108
Table 4.4
COMPARISON OF SOR AND TSOR
M POSITIVE DEFINITE. DIMENSION 5000
SOR TSOR
problem solution time total SOR inner time speedup
density density iter seconds iter ter iter seconds factor
.00376 .25 50 213.70 31 30 4 138.00 1.5485
.00376 4 650 2743.88 47 40 350 501.98 5.4661
.00376 .6 450 1938.53 65 50 750 1548.47 1.2519
.00376 8 400 1749.70 94 80 648 2210.8 7914
.00191 .25 150 361.83 32 30 100 111.30 3.2509
.00191 4 150 364.95 52 50 7 173.53 2.1031
.00191 .6 550 1343.76 100 80 920 1219.266 1.1021

* failed to converge after maximum iterations is reached

20

Table 4.5
COMPARISON OF SOR AND TSOR
M POSITIVE SEMIDEFINITE, DIMENSION 1000

SOR TSOR
problem solution time total SOR inner time speeup
density density iter seconds iter iter iter seconds factor
.07106 .25 50 133.55 31 30 4 85.52 1.5616
.07106 4 1000 2655.43 32 30 15 97.98 27.1009
.07106 .6 100 272.91 57 50 39 224.26 1.2169
.07106 .8 2000* 5509.71 121 110 453 1190.95 4.6263
.03162 .25 50 62.33 22 20 16 31.38 1.9861
.03162 4 50 63.11 41 40 6 54.10 1.1665
03162 .6 150 190.66 44 40 87 105.3833 1.8092
.03162 8 1000* 1282.88 100 90 454 524.083 2.4478
Table 4.6
COMPARISON OF SOR AND TSOR
M POSITIVE SEMIDEFINITE, DIMENSION 2000
_SOR TSOR
problem solution time total SOR inner time speedup
density density iter seconds iter iter iter seconds factor
.01023 .25 300 522.08 51 50 42 98.21 5.3156
.01023 4 350 611.50 65 60 214 189.78 3.2221
.01023 .6 1550 2751.82 106 90 751 725.35 3.7938
.01023 .8 4000* 7172.35 237 180 2801 3677.75 1.9502
.00393 .25 550 434.45 28 20 289 66.6166 6.5216
.00393 4 1950 1558.08 89 50 1950 511.97 3.0433
.00393 .6 2000* 1611.56 112 80 1680 673.13 2.3941
.00393 .8 2000 1629.33 259 210 2439 1584.98 1.0279

* failed to converge after maximum iterations is reached

21

Table 4.7

COMPARISON OF SOR AND TSOR

M POSITIVE SEMIDEFINITE, DIMENSION 10000

SOR TSOR
problem solution time total SOR inner time
density density iter seconds iter iter iter seconds
.00038 .25 4000* 10480.83 111 40 3533 2024.30
.00038 .25 1900 4969.20 78 40 1900 1132.95
.00038 4 2000 5205.53 107 60 2350 2215.06
.00129 .25 10000* 61560.50 73 40 1650 1716.06
.00129 .40 7400 45667.65 164 120 2200 3994.11

* failed to converge after maximum iterations is reached

22

speedup
factor
5.1770
4.3860
2.3500

35.8731
11.4337

References

Bertsekas, D. P. (1982) Projected Newton Methods for Optimization Problems with
Simple Constraints, STAM J. Control and Optimization, 20, 221-2486.

Gill, P. E. and Murray, W. (1974) Methods for Large-scale Linearly Constrained
Problems. In “Numerical Methods for Constrained Optimization” (Gill, Mur-
ray, eds.), 93-148. Academic Press, London and New York.

Goldfarb, D. (1972) Extensions of Newton’s Method and Simplex Methods for Solv-
ing Quadratic Programs, In “Numerical Methods for Non-Linear Optimiza-
tion” (F. A. Lootsma, ed.), 239-254. Academic Press, London and New York.

Hoyle, S. C. (1986) A Single-Phase Method for Quadratic Programming, Systems
Optimization Laboratory Technical Report #86-9, Stanford University.

Lenard, M. L. (1979) A Computational Study of Active Set Strategies in Nonlinear
Programming with Linear Constraints, Math. Prog. 16, 81-97.

Mangasarian, O. L. (1977) Solution of Symmetric Linear Complementarity Prob-
lems by Iterative Methods, Journal of Optimization Theory and Applications,
22,465-484.

Mangasarian, O. L. and De Leone, R. (1986) Parallel Gradient Projection Suc-
cessive Overrelaxation for Symmetric Linear Complementarity Problems and
Linear Programs, Computer Sciences Technical Report #659, University of

Wisconsin—-Madison.

23

