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Abstract

A distributed scheduling policy for a general-purpose distributed system can be divided into two
components: a local scheduling discipline determines how the CPU resource at a single node is allocated
among its resident processes, while a load distributing strategy distributes the system workload among the
nodes through process migration. Since several choices exist for each of these components, we are confronted
with a wide variety of distributed scheduling policies. In this paper, we address the question: Are some distri-
buted scheduling policies better than others, or do they have different objectives? We find that there is
significant diversity in objective and that the choice of an appropriate policy requires consideration of the per-
formance expectations of the users together with the system workload characteristics.

1. Introduction

Scheduling for distributed systems is significantly more complex than for single-processor systems. A
distributed scheduling policy for a general-purpose system can be divided into two components: a local
scheduling discipline determines how the CPU resource at a single node is allocated among its resident
processes, while a load distributing strategy distributes the system workload among the nodes through process
migration. Eager, Lazowska and Zahorjan [Eager86a] have noted that within the myriad load distributing algo-
rithms proposed in the literature lie two distinct strategies for improving performance. Load balancing algo-
rithms strive to equalize the workload among nodes, while load sharing algorithms simply attempt to assure
that no node is idle while processes at other nodes wait for service. The strategic goal of load balancing is a
superset of that of load sharing, since balancing the workload may require migrations even when no nodes are
idle. In this paper, we address the question: Do these additional process migrations improve performance?
Similar to load distributing, many choices exist for local scheduling disciplines, ranging from simple non-
preemptive disciplines to those that are complex and preemptive. As a result of the diverse choices for each of
its components, we are confronted with a wide variety of distributed scheduling policies. Generalizing our pre-

vious question: Are some of these policies inherently better than others, or do they have different performance



objectives? In addition to identifying, comparing and evaluating the applicability of the objectives of distri-
buted scheduling policies, this paper provides a unique perspective of the interaction between load distributing

strategies and local scheduling disciplines in determining these objectives.

Computer performance is not easily defined. The users of a computer system have certain performance
expectations. The goal of a scheduling policy is to allocate resources n such a way that these expectations are
most nearly met. It is important, then, that the performance objective of the scheduling policy matchs the
expectations of the users as nearly as possible. However, just as there is no universal set of user expectations,

no single performance objective is applicable to every system.

User performance expectations generally center on the quality of service provided to the processes they
initiate. In addition to the average quality of service received, fairness is an important concern. Two users
simultaneously initiating equivalent processes expect to receive about the same quality of service. Similarly, a
user submitting the same job several times, under equivalent workloads, expects each to receive about the same
quality of service. To ensure faimess, the variance in quality of service under a given workload should be

acceptably low.

A second aspect of faimness relates to the way in which quality of service is measured. Both wait time
and wait ratio are accepted measures of the quality of service received by a process. Wait time is the total
axhount of time a process spends waiting for resources, while wait ratio is the wait time per unit of service.
Which measure is used carries an implied assumption about the importance of fairness. The use of wait time
implies that the important factor in assessing quality of service is the absolute amount of time one waits for a
resource, regardless of one’s service demand. A person wanting to check out a book from a library and a per-
son requesting a complete library tour would be considered to have received equal service if each waited the
same amount of time for the attention of the librarian. The use of wait ratio implies that the important factor is
the amount of time one waits for a resource relative to one’s service demand. In providing equal quality of ser-
vice, the person requesting an exhaustive library tour would be expected to wait longer for that service than the
person wanting to borrow a book. The use of wait ratio, in preference to wait time, may be considered to allow

a more fair comparison of quality of service received.




Finally, fairness may imply that scheduling is non-discriminatory: variation in quality of service received
by processes should be strictly random. The correlation between the quality-of-service metric and service

demand can be used to measure an important aspect of discrimination in scheduling.

While previous performance studies have often been limited in scope to mean wait time, we examine a
broad range of performance indices, including the means and standard deviations of process wait times and wait
ratios, and the correlations between wait ratio and service demand and between wait time and service demand.
To identify the performance objectives of distributed scheduling policies, we examine performance in the
absence of scheduling overhead. This idealized framework allows a scheduling policy to achieve its best-case
performance bound, which defines its performance objective. How nearly this objective can be met under more
realistic assumptions is dependent on the efficiency with which primitive scheduling operations, such as context
switching and message handling for migration, are implemented and on system workload characteristics. The

effects of these factors are examined in [Krueg87a)]. In the following pages, we show that:
° Load balancing has a significantly broader performance objective than load sharing.

. Load balancing is effective under a broader range of workloads than load sharing. Moreover, two
workload characteristics that significantly degrade the performance of load sharing relative to load

balancing may be common in distributed systems.

® The choice of local scheduling discipline may be more important than the choice of load distribut-
ing strategy in determining performance.

. Migrations between nodes with queue lengths differing by one can be productive.

We conclude that the choice of an appropriate distributed scheduling policy requires consideration of the
performance expectations of the users together with the system workload characteristics. No single policy is

best for all systems.

2. Distributed System Model

The models used in this study are an extension of the m*(M/M/1) family of distributed system models
proposed by Livny [Livny82a,Livny83a], augmented to allow the processor queuing discipline, or local

scheduling discipline, 1o be specified as a parameter and to allow hyperexponentially, as well as exponentially,



distributed task service demands. It is important that hyperexponential service demand distributions be con-
sidered, as those that have been observed [Rosin65a, Trive82a, Zhou86a] are poorly approximated by exponen-
tial distributions. We categorize service demand distributions according to Cy (see table 2.1 for notation), with

exponential distributions having Cx = 1 and hyperexponential distributions having Cx > 1.

The resulting m*(M/H/1) system, illustrated in figure 2.1, consists of m nodes, connected by a communi-
cation device. A load distributing algorithm allows processes to migrate between nodes at any time during their
execution. Each of the m processing elements provides identical functional capabilities. Tasks arrive indepen-
dently at each node and join the queue. The distribution of interarrival times is exponential, so the task arrival

process of the system consists of m independent Poisson processes.

In this study, we assume that nodes have equal processing bandwidths and that the service demands of
processes arriving at different nodes are identically distributed. The rates at which processes initially arrive (as
opposed to arriving as the result of migration), however, may be different at different nodes. We refer to such a
workload as having inhomogeneous initiation rates. Studying load distributing under such a workload is impor-
tant, since such workloads may be common for some types of distributed systems, particularly those composed

of workstations. Since we are interested in scheduling for general-purpose computer systems, we assume that

m number of nodes

n total number of resident processes

N mean number of resident processes

P system load

x service demand of a process

X mean process service demand

Ox standard deviation of service demand

Cx coefficient of variation = oy /X

WT mean process wait time

WR mean process wait ratio

Owr standard deviation of wait time

Owr standard deviation of wait ratio

r(wait time,X) correlation between wait time and service demand
r (wait ratio, X) correlation between wait ratio and service demand
E(Y) expected value of random variable Y

Table 2.1 Notation




the scheduler has no deterministic a priori information about process service demands. In addition, we assume

that processes do not leave the system before completing service.

With one final assumption, we arrive at the M/H/m-like system, on which this study is based. We assume
that no work is associated with scheduling; both context switches and process migrations are instantaneous and
without cost. The M/H/m-like system is the distributed-queue analogue of the M/H/m queue, from which it
derives its name. As such, it provides a vantage-point for identifying the performance objectives of distributed
scheduling policies. Within this idealized framework, a scheduling policy is able to achieve its best-case per-
formance bound for a given workload. This best-case bound defines the performance objective of the schedul-
ing policy.

To allow an M/H/m-like system to be work-conserving [Klein76a], its local scheduling discipline must
not allow its server to lie idle while processes wait in the queue. Correspondingly, its load distributing strategy

must guarantee that no node is idle while processes at other nodes wait for service. Such a system assures that

arrival arrival arrival

node 1 node 2 node m

departure departyre departure

| i /——N“\_—/—\_//———Q’Ll

communication device

Figure 2.1 An m*(M/H/1) system



"no work (service requirement) is created or destroyed within the system” [Klein76a]. If scheduling is non-

preemptive and Cx = 1, WT in a work-conserving system is [Laven83a:

WT = XI(N/mp) -1 forp<l Q.1
Simulation results indicate that this equation also holds for all preemptive disciplines studied in this paper.
Kleinrock sums up the lack of discriminatory power inherent in WT asa performance index: "One may there-
fore conclude that the average response time by itself is not a very good indicator of system performance”

( [Klein76a] page 171).

3. Performance Objectives

Our approach to identifying the objectives of distributed scheduling policies is to separately identify the
objectives of load distributing strategies and those of local scheduling disciplines. We then examine the perfor-
mance of scheduling policies using combinations of these components. To simplify analysis, Round Robin
scheduling is approximated by Processor Sharing (PS) [Klein67a]. For a description of the remaining local

scheduling disciplines studied, the reader is referred to [Klein76a].

To begin, we note that in an M/H/m-like system, both the LB and LS strategies are work-conserving.
None of the work potential of the system is wasted by leaving nodes idle while processes wait. However,
unlike LS, LB goes beyond conservation of work. By balancing the workload among nodes, each process
residing in the system perceives approximately the same level of contention. If the local scheduling discipline
is PS, each resident process receives service at approximately the same rate. Thus, LB in an M/H/m-like sys-
tem emulates PS in an M/H/m queue, with the goal of achieving similar performance. Essentially, LB is the
distributed analogue of PS. LS, on the other hand, is the distributed analogue of any work-conserving M/H/m
scheduling discipline.

This perspective of load distributing strategies allows us to predict the differences in performance
between the LB and LS strategies in M/H/m-like systems through a less complicated study of performance in
M/H/m queues, where many analytical results are available. In effect, the search for the performance objec-
tives of these strategies is greatly simplified. These performance objectives are then validated through a study

of performance in M/H/m-like systems. A second benefit of this perspective is that it allows us to identify a




new load distributing strategy, which we discuss in section 3.2.3.

Unfortunately, our second goal, identifying the objectives of local scheduling disciplines, is more compli-
cated than identifying those of load distributing strategies. Even when the system arrival process is Poisson,
load distributing causes the arrival processes at individual queues to be non-Poisson. Additionally, load distri-
buting modifies the service demand distribution observed by individual servers. Local scheduling disciplines,
then, operate on G/G/1 queues. Since some of our results for M/H/m queues also apply to G/G/1, we are able to
identify some local scheduling objectives. The remaining predictions are validated through a study of perfor-
mance in M/H/m-like systems. Performance is studied both analytically and through simulation, with simula-
tion results having less than 3% error at the 95% confidence level.! Unless otherwise noted, results are from

simulation.

3.1. Performance of Single-Queue Scheduling Disciplines

Since both LB and LS are concerned with conservation of work, with this being the sole goal of LS, we
begin by considering work-conserving M/H/m scheduling disciplines. As analogues for LS, we consider non-
preemptive M/H/m scheduling disciplines, since preemption gives no advantage in conserving work. When
necessary, we specifically consider First-Come-First-Served (FCFS), since it is perhaps the simplest M/H/m
scheduling discipline and has few goals beyond conservation of work. Simulation results displayed in figure
3.1 show that WT for FCFS increases with Cy ,2 as does owr. In this plot, as well as all other plots of these
indices, WT and Oy are normalized by X . In their favor, work-conserving non-preemptive scheduling discip-
lines are non-discriminatory with respect to wait time; process wait times are independent of their service
demands. However, non-preemptive scheduling has disastrous consequences for WR and Owg. In appendix A,
it is proven that all such disciplines result in infinite WR and oy in G/H/m or G/H/m-like systems. These per-
formance indices become finite only when the processes having the highest wait ratios, those having the shor-

test service demands, are ignored.

1. This low error-level was achieved by repeating simulations, using independent streams of random numbers. Error bounds were
calculated under an assumption of normally distributed errors. This assumption was validated at several data points and found to be a good
approximation.

2. When Cyx > 1, we assume a 2-phase hyperexponential distribution, with 70% of service demands drawn from the phase having the
smaller mean.



PS is the single-queue analogue of LB, Similar to FCFS, PS is a non-discriminatory scheduling discip-
line, but with respect to wait ratio, rather than wait time. This property allows WR for PS to be easily derived

from eq. 2.1:!

WT = E((wait time [ x)(x)] = E[(wait ratio)(x)] = WR

WR = WI'/X = (N/mp)-1 forp<1 3.1

An important property of PS is that WR and owg are finite for stable (p < 1) M/H/m and G/G/1 queues (see
appendix A). Another advantage of PS over non-preemptive disciplines is that WT is independent of
Cx (Laven83a]. Regardless of Cy, WT for PS is given by eq. 2.1. Thus, as shown in figure 3.1, PS results in
lower WT than FCFS when Cy > 1, as well as lower owr for high Cyx. Since WT is independent of Cy, eq. 3.1
shows that WR is also independent of Cx. Simulation results displayed in figure 3.2 validate this claim, as well

as showing that oy is also independent of Cy.
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Figure 3.1 WT/X and ogp/X vs. Cx (m=10,p=0.8) Figure 3.2 WR and oy vs. Cx (m=10, p=0.8)

1. When random variables Y and Z are independent, E[g(Y)h(Z)] = E[g(Y)] E(h(Z)].




Unlike FCFS and PS, simulations show Last-Come-First-Served-Preemptive-Resume (LCFSPR) to be a
discriminatory scheduling policy, giving better quality of service, both in terms of wait time and wait ratio, to
processes having short service demands. Figure 3.2 shows that WR and Owg decrease with increasing Cy,
though oy increases (figure 3.1). Based on these results, we can predict that load distributing algorithms in
M/H/m-like systems that discriminate by providing better service to processes having short service demands
will reduce WR with respect to those that are non-discriminatory. However, this reduction may come at the

cost of increased Oy .

To summarize, conservation of work is not sufficient to provide finite WR or owg. Even when the 1% of
processes having the highest wait ratios are trimmed from the sample, simulations show that FCFS results in
considerably higher WR and owg than PS or LCFSPR. For example, when Cy = 1, the trimmed WR for FCFS
is over 400% that for PS, while ow;y is over 1300%. These values increase rapidly with Cy, to over 12000%
for WR and 40000% for owg at Cy =2.24. Additionally, conservation of work is not sufficient to minimize
WT when Cyx > 1. Figure 3.1 shows that both PS and LCFSPR result in lower WT than FCFS under such a
workload. In addition, PS results in lower oy than FCFS for high Cx. Applying these results to distributed
scheduling policies, the use of PS as a local scheduling discipline will result in finite WR and Owg, while the
use of FCFS or any other non-preemptive discipline will result in infinite WR and Owg - We can predict that the
use of PS will result in lower WT than any non-preemptive discipline when Cy > 1 and lower owy for high Cx.
Using the perspective of LB as the distributed analogue of PS and LS as the analogue of FCFS, we can predict
that LB will result in lower WT than LS when Cx > 1, lower awr for high Cy and, when PS is used as a local

scheduling discipline, lower WR and Owg than LS under all conditions.
3.2. Performance of Distributed-Queue Scheduling Policies

3.2.1. Load Sharing (LS)

Under LS, simulations show that WR, Owr, r(wait ratio, X)) and r (wait time , X)) are dependent on the
level of inhomogeneity in the rates at which processes initiate at individual nodes. Performance in terms of
these indices is generally best when initiation rates are homogeneous, and worst when all processes initiate at a

single node. An additional complication of LS is that all the performance indices studied are dependent on the
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criteria used to select a process to migrate. We will consider the two bounding criteria: First-Come-First-
Migrate (FCFM) selects the process that has least recently arrived at the node, either through initiation or
migration, while Last-Come-First-Migrate (LCFM) selects the most recent arrival. By giving an advantage to
processes having short service demands, we will see that LCFM captures some of the properties of LCFSPR,
reducing WR with respect to that of FCFM but increasing owr, while FCFM retains the properties of FCFS.

These differences are accentuated when process initiation rates are inhomogeneous.

Since LS is concerned solely with conserving work, it is naturally allied with a local scheduling discipline
that shares this narrow perspective, such as FCFS. This partnership, which we refer to as LS_FCFS, results in a
simple distributed scheduling policy that, in an M/H/m-like system, minimizes WT for workloads having
Cy = 1. In addition, when Cy = 1, LS_FCFS generally results in slightly lower Gwr than policies using PS for
small numbers of nodes (n < 6) or high system loads (p > 0.8). However, as predicted in the previous section,

WT increases with increasing Cy (figure 3.3) as does owy. Also as predicted, the single-minded concern of
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Figure 3.3 WT /X vs. Cx assuming homogeneous initiation rates (left) or all process initiations at a single
node (right) (m =10, p =0.8)
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LS_FCFS with conserving work is an insufficient perspective from which to improve WR and Owg . As shown
in appendix A, these statistics are infinite, becoming finite only if the processes having the highest wait ratios,
which are those having the shortest service demands, are ignored. Simulations show that, even when the shor-
test processes are removed from the sample, WR and Owg are considerably higher for LS_FCFS than for distri-

buted scheduling policies using PS as a local scheduling discipline.

Pairing LS with PS appears inconsistent, since LS is solely concerned with conservation of work, while
PS has broader goals. However, studying this hybrid distributed scheduling policy provides insight into the
relative effects on performance of the local scheduling discipline and the load distributing strategy. LS_PS
corrects many of the weaknesses of LS_FCFS. One of the most important consequences of merging LS with
PS is that WR and owg are finite (see appendix A). In addition, LS_PS reduces the degrading effect of increas-
ing Cx on WT (figure 3.3) and on owr. However, inhomogeneity in initiation rates continues to have a degrad-
ing effect on performance, as can be seen in figures 3.3 through 3.9. Figure 3.10 shows that this degradation in
performance is continuous with increasing inhomogeneity, rather than occurring suddenly at high levels of
inhomogeneity. Like LS_FCFS, performance under LS_PS is also dependent on the migration selection cri-

terion, with LCFM providing lower WR and owg , while FCFM results in lower owr.
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3.2.2. Load Balancing (LB)

True PS scheduling in a multiple-queue system, such as an M/H/m-like system, is not feasible, since it
requires an infinite migration rate.! The goal of the LB strategy is to approximate PS scheduling, achieving

similar performance, but with a finite migration rate.

LB is naturally allied with PS as a local scheduling discipline. In appendix B, WR and a close approxi-
mation of oy are derived for LB_PS. In contrast to LS, neither of these performance indices is dependent on
the homogeneity of process initiation rates or the criteria used to select a process to migrate. Through simula-
tion, we have validated these results and have shown that the remaining performance indices are independent of
these factors, as well. How closely LB_PS achieves its goal of emulating PS scheduling can be seen in figure
3.11. In terms of WT and owr, LB_PS is identical to PS scheduling under all conditions. For other perfor-

mance indices, LB_PS best approximates PS at high system loads, for small numbers of nodes or for low Cx.

As shown in figures 3.4 through 3.9, LB_PS achieves lower WR and owg , under all conditions, than any
other distributed scheduling policy examined. When all processes initiate at a single node, figure 3.12 shows
that LB_PS results in considerable improvement in these indices over its nearest competitor, LS_PS(LCFM).
These improvements become increasingly pronounced with increasing numbers of nodes, system load and
coefficient of variation in service demands. However, when process initiation rates are homogeneous, improve-
ment is large only for owg. In addition, as predicted, LB_PS results in lower WT than any other policy when
Cy > 1 (figure 3.3) and lower oy when Cy is high. These advantages of LB_PS over L.S_PS(LCFM) are
become very large in environments having both inhomogeneous initiation rates and Cy > 1. For a system hav-
ing 16 nodes, a system load of 0.8, Cx=2.24 and all processes initiating at a single node, the difference in per-
formance between LB_PS and LS_PS(LCFM) is 280% for WR, 575% for Owg » 30% for WT and 90% for Gwr.
Improvement under such conditions is important, since, as noted in chapter 2, inhomogeneous initiation rates
and hyperexponentially distributed service demands may be common in many general-purpose distributed sys-

tems.

1. When the number of processes in service is greater than the number of nodes, but not a multiple of the number of nodes, some
nodes serve one more process than other nodes. Since, under PS, the number of units of service each process must receive during any time
period is not an integer in these cases, processes must migrate from high nodes to low nodes after a time period of infinitesimal duration.
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Like LS_PS, pairing LB with FCFS as a local scheduling discipline results in a distributed scheduling
policy with inconsistent goals. However, since FCFS is simple to implement and can be expected to result in
less overhead than most local scheduling disciplines, it is interesting to examine how nearly the performance of
LB_FCFS approaches that of LB_PS. In addition, studying such a hybrid policy allows us to gauge the relative
effects on performance of its two components. Unfortunately, the influence of FCFS on WR and oy is greater
than that of LB. As shown in appendix A, both WR and Owg are infinite under LB_FCFS. Even when the
shortest processes are ignored, simulations show that, while not as high as for LS_FCFS, WR and oy are
much higher than for LB_PS. Also showing similarity to LS_FCFS rather than LB_PS, performance is depen-
dent on Cy, the level of inhomogeneity in initiation rates and the process selection criterion. Using FCFM as
the selection criterion generally results in better performance than LCFM, since LCFM causes the same
processes to be repeatedly migrated. Showing the influence of the LB strategy LB_FCFS(FCFM) results in
lower WT than LS_FCFS for Cyx >1 (figure 3.3). When all processes initiate at a single node, WT for
LB_FCFS(FCFM) is also generally lower than LS_PS for Cy > 1. LB_FCFS(FCFM) exhibits another charac-
teristic trait of LB: it is discriminatory with respect to wait time. This trait arises because LB_FCFS(FCFM) is
a preemptive discipline; processes that have begun service may not continue to receive service immediately

after migrating.
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3.2.3. Load Shuffling (L.Sh)

LB_PS differs from PS scheduling in that not all processes receive service at the same rate when there are
more processes than nodes and n mod m # 0. However, LB. PS can be extended to approximate PS scheduling
arbitrarily closely by periodically varying the set of processes that receive service at a faster rate. We refer to
these migrations between nodes differing by one in queue length as shuffling and to the resultant load distribut-
ing strategy as Load Shuffling (LSh). As the length of the inter-shuffle time approaches zero, the performance
of LSh_PS more closely approximates that of PS. LCFM is not a suitable process selection criterion for LSh,
since it results in the same process being repeatedly migrated. This property undermines the goal of LSh,
which is to give equal service to all resident processes. The difference in performance between LB_PS in an
M/H/m-like system and PS in in M/H/m queue is the potential improvement in performance that can result from
LSh_PS. Figure 3.13 plots the percentage of this potential improvement that is achieved by LSh_PS against
inter-shuffle time. Surprisingly, migrations between n.odes that differ in load by one can significantly reduce
WR, owg and r(wait ratio, X). This improvement may be large under conditions in which LB_PS poorly

approximates PS scheduling: low system load, high Cy or a large number of nodes.
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Figure 3.13 Percentage of potential improvement achieved through shuffling (100 (LB_PS - PS)/ (LSh - PS))
vs. normalized intershuffle time (intershuffle time /X)(m =10,p=08,C, =1)
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3.3. Conclusions: Distributed Scheduling Objectives

From our study, we can identify the performance objectives of each of the components of a distributed

scheduling policy in terms of a broad range of performance indices.

Among local scheduling disciplines, any work-conserving discipline, such as FCFS, minimizes WT when
Cx = 1. However, conservation of work does not minimize WT when Cy > 1, nor does it address the wait ratio
perspective of quality-of-service. When Cy > 1, PS provides lower WT than any non-preemptive discipline,
and lower owr than FCFS when Cy is high. Additionally, while many work-conserving disciplines, particu-
larly non-preemptive disciplines, result in infinite WR and Owg, PS provides finite WR and owg, as well as

minimizing r (wait ratio ,X).

Among load distributing strategies, the objective of LS is similar to that of non-preemptive local schedul-
ing disciplines: reduce WT with respect to no load distributing, minimizing it when Cy = 1. However, like
non-preemptive local scheduling disciplines, LS does not minimize WT when Cx > 1, nor does it address the
wait ratio perspective of quality-of-service. The broader objective of LB is to reduce WT relative to LS when
Cx > 1, and to reduce WR and owy relative to LS under all conditions. Finally, the performance objective of

LSh is to further reduce WR and owg with respect to LB, and to minimize r (wait ratio , X).

Local Scheduling Disciplines
FCFs! minimize WT when Cy = 1.
PS reduce WT relative to FCFS when Cy > 1

finite WR and owp
minimize r (wait ratio ,X)

Load Distributing Strategies

LS reduce WT

LB reduce W—i relative to LS when Cy > 1
reduce WR and oy relative to LS

LSh reduce WR and Owg relative to LB

minimize r (wait ratio ,X)

Table 3.1 Performance Objectives

1. This performance objective is shared by all work-conserving non-preemptive local scheduling disciplines.
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When a load distributing strategy and local scheduling discipline are chosen to have matching perfor-
mance characteristics, the resultant distributed scheduling policy mirrors those characteristics. However, when
a distributed scheduling policy has components with inconsistent objectives, its performance is a hybrid of the
objective of each component. For such distributed scheduling policies, while the load distributing strategy has a
significant effect on WR and owg, the effect of the local scheduling discipline on these indices is more funda-
mental, since it determines whether they are finite. In contrast, figure 3.3 shows that the relative effect of the
load distributing strategy and local scheduling discipline on WT is dependent on the workload. The local
scheduling discipline has greater effect when process initiation rates are homogeneous, while the load distribut-

ing strategy is more influential when all processes initiate at a single node.

In certain situations, these hybrid policies may be useful. If WR is considered important, but Gy is not,
and if Cx =1 and process initiation rates are generally homogeneous, LS_PS may be a suitable replacement for
LB_PS. Alternatively, if only WT is considered important, but Cy > 1 or process initiation rates are often inho-
mogeneous, LB_FCFS may provide significantly lower WT than LS_FCFS, though not as low as results from

LB_PS.

4. Summary

Much insight can be gained into the performance objectives of distributed scheduling policies by examin-
ing performance from a broader perspective than mean wait time. By considering a relatively large set of per-
formance indices, we have shown that different scheduling policies have considerably different objectives and
result in significantly different performance. However, since each index has significance only in terms of the
performance expectations of the users, no single policy can be identified as being best for all systems. To
choose the components of a policy suitable to a particular system, the performance expectations of the users

together with the system workload characteristics must be considered.

We have shown that migrations beyond those necessary to conserve work (LS) can have a significant
effect on performance. The .dditional migrations necessary for LB reduce WR and owg, as well as reducing
WT when Cy > 1. The still more extensive set of LSh migrations further reduces WR and oy and minimizes

r(wait ratio , X).
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As a load distributing strategy, LS is suitable only for those systems having narrow performance objec-
tives and tightly constrained workloads: Cy = 1 and generally homogeneous process initiation rates. More typ-
ical workloads or broader performance objectives necessitate the use of LB. Among local scheduling discip-
lines, a non-preemptive discipline, such as FCFS, may be used when WR and Owg can be ignored. When the
performance objective of the system includes WR and Owg, a preemptive discipline that gives immediate ser-

vice to newly arriving processes, such as PS, is necessary.

With consideration for the humanistic appeal of a performance metric that includes WR and OwR »
together with the likelihood of workloads having inhomogeneous initiation rates and Cy > 1, we believe that
LB_PS has broad applicability to general-purpose distributed systems. However, this observation is incomplete
without considering the relative resource overheads of LB and LS. In [I(rueg87a], we compare these overheads
and their effects on the performance resulting from each of these strategies. We find that the distinction
between the LB and LS strategies is obscured. The best strategy to meet a given objective is dependent on the
overheads of individual load distributing operations, as well as on dynamic characteristics of the workload and
resource availability. To be effective at meeting either the LB or the LS objective over the wide range of condi-

tions occurring within a distributed system, a load distributing algorithm must be adaptive.

5. Appendix A: Measuring Wait Ratio Statistics

While the service demand of a process can not be less than the time required to execute an instruction,
analysis and simulation of computer systems are simplified if service demands are modeled to follow a continu-
ous distribution, such as exponential or hyperexponential, which allows infinitesimal values. Measurement of
wait ratio statistics under such synthetic workloads is somewhat complicated if processes are scheduled in such
a way that they may not receive service immediately upon initiating. Examples of such scheduling policies
include all non-preemptive scheduling disciplines, such as FCFS, LB_FCFS and LS_FCFS, as well as preemp-
tive priority scheduling disciplines, such as preemptive HOL.! For preemptive scheduling disciplines, it is use-

ful to distinguish the wait time experienced by a process before it has received initial service (wtp) from that

1. See [Klein76a] and chapter 3 for descriptions of these scheduling disciplines.
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experienced after it has begun execution (wt,). The expected wait ratio is then:

WR = E(wait time [x) = E(wty+wit)/x) = E(wt, [ x) + E(wt, | x)
Since we assume, as in the remainder of this paper, that scheduling makes no use of deterministic a priori infor-

mation about process service demands, w, for a process is independent of its service demand. So:!

= E(wty) E(1/x) + E(wt, [ x) AD

For non-preemptive scheduling disciplines, wt, = 0, so this simplifies to:

= E(wait time) E(1/x)

Similarly, for preemptive disciplines:

WRZ = E(wait time¥x? = E((wtp+wt)4xD) = Ewip¥x?) + 2E(wiywia/x?) + E(wi %%

1

Ewt,2) E(1x?) + 2E(wiywty [ x2) + E(wt,2 ] x?)

which, for non-preemptive disciplines simplifies to:

= E (wait time?) E (1/x*)
When service demands are exponentially distributed, with probability density function f, (x) = (1/}? Ye™* X , the

distribution? of 1/x is X2 (x) = (1/X)x2e™! X The expected value of this random variable is:

E(ix) = U)fre=Fdx) = WX T /xydx = WX[E™1u)du =
0 0 0
where u =x / X. Substituting the above into eq. A.1, we see that whenever E (w1,) > 0, WR is infinite. Simi-

larly:
EQx) = UD[e=Tdxd) = WD)[e*'F 1xhde = UX)[E™/ud)du =
0 0 0
When E (wi,) > 0, WRZ is also infinite. From this result, it can be shown that:
a2
Owr = [WRZ—— WRZ] = 00

Similar arguments show that the service demand distribution can be generalized to a hyperexponential or a 2 or

3.phase Erlang distribution with the same results. In addition, these results are independent of the arrival

1. When random variables Y and Z are independent, E[g(Y)h(Z)] = Elg(Y)] E[b(Z)].

2. Sewingy=1/x: f, () = frx@)ldx/dy| = f.x)/y* = £fuix).
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process, and are therefore valid for G/H/m and G/H/m-like systems.

It is only due to the processes having infinitesimal service demands that E(1/x) and E (1/x?) are infinite,
resulting in infinite WR and owg. For C >0, the conditional expectations E(1/x | x >C) and
E(1/x? | x > C) are finite, resulting in finite conditional WR and owg. Thus, for synthetic workloads in which
service demands strictly follow an exponential, hyperexponential or 2 or 3-phase Erlang distribution and
processes are scheduled such that they do not necessarily receive service immediately upon initiating, WR and
Owg are stable and can be meaningfully measured only over the portion of the population remaining after those
processes having service demands less than C>0 are removed. The value chosen for C has an effect on the
quantity of data that must be collected to achieve a given level of accuracy in measurements of conditional WR
and owg. Because the conditional moments of wait ratio increase with decreasing C, achieving the same level

of accuracy requires more wait ratio samples (i.e. longer runs) for smaller values of C.

In contrast, PS scheduling results in finite WR and owr for G/G/m queues. This result follows from the
definition of PS scheduling. When n processes reside in the system, each process receives service at the rate
r =1/n, resulting in a partial wait ratio, the wait ratio over that period, for each process of r — 1. Since n
remains finite under our assumptions [Laven83a], processes receive service at a finite rate, and each partial wait
ratio is finite. Since the overall wait ratio of a process is the weighted sum of its partial wait ratios, the wait
ratio of each process is finite, as are WR and owg. This result generalizes to G/G/m-like systems using PS as a
local scheduling discipline and having a work-conserving load distributing strategy. Since every process con-

tinuously receives service at a finite rate, all wait ratios are finite, as are WR and Owx.

6. Appendix B: The Mean and Standard Deviation of Wait Ratio for LB_PS

For an M/G/m-like system using the LB_PS distributed scheduling policy (without shuffling):

WR = (1/p)XE (wait ratio | n) p, ®.1)
n=0
where p, is the probability that the system contains n processes. This probability has been derived for work-

conserving systems having workloads with exponentially distributed service demands [Klein76a].

For load balancing, when the number of processes in the system is n, the number of nodes having greater

than the mean number of processes is k = n mod m, and the number of processes residing on each of these
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nodes is ny = (n div m)+1. The wait ratio of each of these processes during the period that there are n
processes in the system is n,—1. Similarly, m—k nodes each have n,—1 processes, each of which has a wait

ratio of n,—2 during this period. Thus the expected wait ratio when there are n processes in the system is:

E(wait ratio | n) = %[kn,. (ny~1) + (m—k)(n,.—l)(nh—Z)]

= n,.[(k/n)+l] -2 (B.2)
Substituting the results of eq. B.2 into eq. B.1 we see that WR for LB_PS is solely dependent on the system

load and number of nodes. Similarly, an upper bound for owg can be found:

- 172
Upper bound for owp = l:(l/p)ZE(wait ratio? | n) pa - WR{I
n=0

where:

E (wait ratio® | n) = -rll—[kn,. (ny—1)2 + (m—k )(n,,-l)(n,,-2)2]

This equation represents an upper bound because it depends on the assumption that each job receives the same
wait ratio throughout its execution (this assumption does not affect the result of eq. B.1). If some process
experiences more than one wait ratio over the course of its execution, owy is reduced. However, simulation

results show that, for exponentially distributed service demands, this upper bound closely approximates Gwyg .
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