ON THE ADEQUACY OF PROGRAM DEPENDENCE
GRAPHS FOR REPRESENTING PROGRAMS

by
Susan Horwitz

Jan Prins
Thomas Reps

Computer Sciences Technical Report #699

June 1987

On the Adequacy of Program Dependence Graphs
for Representing Programs

SUSAN HORWITZ, JAN PRINS, and THOMAS REPS
University of Wisconsin — Madison

Program dependence graphs were introduced by Kuck as an intermediate program representation well suited for per-
forming optimizations, vectorization, and parallelization. There are also additional applications for them as an internal
program representation in program development environments.

In this paper we examine the issue of whether a program dependence graph is an adequate structure for representing
a program’s execution behavior. (This question has apparently never been addressed before in the literature). We
answer the question in the affirmative by showing that if the program dependence graphs of two programs are iso-
morphic then the programs are strongly equivalent.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors — compilers, interpreters, optimiza-
tion; E.1 [Data Structures] graphs

General Terms: Theory

Additional Key Words and Phrases: control dependency, data dependency, data-flow analysis, program dependence
graph, strong equivalence

1. INTRODUCTION

Program dependence graphs were introduced by Kuck as an intermediate program representation well
suited for performing optimizations, vectorization, and parallelization [Kuck et al. 1972, Towle 1976, Kuck
1978, Kuck et al. 1981]. A number of variations have since been discussed [Allen & Kennedy 1982,1984,
Ferrante et al. 1987]. Additional applications for program dependence graphs are as the internal structure
for representing programs in a language-based program development environment [Ottenstein & Ottenstein
1984] as well as for integrating program variants and determining whether enhancements made to different
program versions interfere [Horwitz et al. 1987].

Although there exists an extensive body of work that makes use of program dependence graphs, we were
unable to find any published proof that program dependence graphs were “adequate” as a program
representation. One would like a proof that program dependence graphs distinguish between inequivalent
programs; that is, any two inequivalent programs should have different program dependence graphs. Both
Ken Kennedy and Jeanne Ferrante acknowledged that they did not know where such a proof could be
found [private communication, Jan. 1987].

In this paper, we prove that for a language with assignment statements, conditional statements, and
while-loops, where expressions contain only scalar variables and constants, a program dependence graph
does capture a program’s behavior. The concept of “programs with the same behavior” is formalized as

This work was supported in part by the National Science Foundation under grants DCR-8552602 and DCR-8603356 as well as by
grants from IBM, DEC, Siemens, and Xerox.

Authors’ address: Computer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, WI 53706.

the concept of strong equivalence; two programs are strongly equivalent iff, for any initial state o, either
both programs diverge or both halt with the same final state. We prove a theorem, the Equivalence
Theorem, that states that if the program dependence graphs of two programs are isomorphic then the pro-
grams are strongly equivalent.

Because the language for which we prove the Equivalence Theorem does not include array variables, our
proof does not provide justification for most of the work that uses program dependence representations for
program analysis, program transformation, and code generation. For that, the theorem and proof would
have to be extended to cover languages with arrays.

It is worthwhile to review the value of the Equivalence Theorem as well as to consider what the value of
an extended theorem would be.

In some of the work in which program dependence representations are used for program optimization,
they have been employed in a rather restricted fashion, as an auxiliary data structure for discovering optim-
izing transformations. In PFC [Allen & Kennedy 1982], for example, the internal program representation
consists of a control-flow graph augmented with a program dependence representation; both structures are
updated as a program is transformed. The Equivalence Theorem assures that, by itself, a properly defined
program dependence graph is a suitable structure from which to discover and perform optimizations.

The Equivalence Theorem demonstrates that it would make sense to give a semantics for the feasible
program dependence graphs — those that are the program dependence graph of some program. The
theorem assures that the program dependence graph would be a suitable structure for direct interpretation,
as has been proposed as one of their uses in a programming environment [Ottenstein & Ottenstein 1984].
The theorem also assures that the program dependence graph is a suitable structure from which to generate
machine code.

In [Horwitz et al. 1987], an algorithm is presented for integrating several related, but different variants of
a base program (or determining that the variants incorporate interfering changes). In the algorithm, pro-
gram dependence graphs are used to determine what changes in behavior should be preserved in the
integrated program. The integrated program is created by (1) merging the program dependence graphs for
the base and variant programs, (2) testing the merged dependence graph for certain interference conditions,
and (3) reconstituting a program from the merged dependence graph. The Equivalence Theorem assures
that all programs that could be created from the merged program dependence graph are strongly equivalent.

The assumption of the Equivalence Theorem is that programs P are Q have isomorphic program depen-
dence graphs, and the argument used in the proof involves showing (roughly) that a subtree T of program
P is strongly equivalent to the subtree U of program ¢ whose components are isomorphic to T’s com-
ponents. The theorem is proved by structural induction over the abstract syntax of the programming
language; the induction hypothesis is that each subtree T; of T is strongly equivalent to a corresponding
subtree U; of U.

The crux of the proof is showing the necessary equivalence for statement lists: in this case, T and U are
two sequences of corresponding (but not identical) components, where the two sequences are permutations
of one another. Because the two sequences are permutations of one another, their initial subsequences are
not equivalent, and we were unable to formulate a proof by induction on the length of one sequence.
Instead, we use a kind of reduction step. We first prove a lemma, the Block-Equivalence Lemma, which is
essentially the Equivalence Theorem for straight-line code: it says that if the program dependence graphs
of two straight-line programs are isomorphic then the programs are equivalent. We then introduce an
extended language L , in which only straight-line code is permitted, but for which the Block-Equivalence
Lemma still holds.

The reduction step consists of a “semantic flattening” in which code sequences from the original
language (call it L), are translated into (straight-line) sequences in L. The term “semantic flattening” for
this translation is suggestive because an expression on the right-hand side of an assignment statement in L
may contain an application of one of the meaning functions for language L to a construct of L and to a
state. By this device, an entire subtree of sequence T gets “flattened” by the translation into a collection of
L assignment statements.

The proof proceeds by showing (1) that the translations of non-straight-line sequences 7 and U in L to
straight-line sequences T and U in L preserve meaning, and (2) that T and U have the same program
dependence graph, and hence are equivalent by the Block-Equivalence Lemma. We conclude that T and
U are equivalent, which permits us to push through an inductive argument for the Equivalence Theorem.

It is the “semantic-flattening” operation together with the Block-Equivalence Lemma that allows us to
overcome the difficulty alluded to earlier, namely that the components that make up U are a permutation of
the components that make up T'.

The paper is organized into three sections. Section 2 defines program dependence graphs and introduces
other terminology and notation used in the paper. Section 3 presents the proof of the Equivalence
Theorem. The program dependence representation used in this paper is somewhat non-standard; Section 4
discusses why the theorem applies to program dependence graphs defined by more standard definitions.

2. TERMINOLOGY AND NOTATION

Except where noted, we are concerned with a programming language that has assignment statements, con-
ditional statements, and while-loops, and whose expressions contain only scalar variables and constants.
The abstract syntax of the language is defined as the terms of the types id, exp, stmt, stmt_list, and pro-
gram constructed using the operators Assign, While , IfThenElse , StmtList, and Program. The five opera-
tors of the abstract syntax have the following definitions:

Assign : id X exp —> stmt

While : exp X stmt_list — stmt

IfThenElse : exp X stmt_list X stmt_list — stmt
StmtList : stmt X stmt X ... X stmt — stmt_list
Program : stmt_list — program

Henceforth, we use “program” and “abstract syntax tree” synonymously.

Different definitions of program dependence representations have been given, depending on the intended
application; nevertheless, they are all variations on a theme introduced in [Kuck et al. 1972], and share the
common feature of having explicit representations of both control dependencies and data dependencies.
The definition of program dependence graph presented here is similar, but not identical, to the program
dependence representations used by others, such as the “program dependence graphs” defined in [Ferrante
et al. 1987] and the “dependence graphs™ defined in [Kuck et al. 1981]. (We use “program dependence
graph” or “PDG” 1o refer to the structure defined below, and use “program dependence representation”
when speaking generically about other similar kinds of structures).

The program dependence graph for a program P, denoted by Gp, is a directed graph whose vertices are

connected by several kinds of edges.! The vertices of Gp represent the assignment statements and control
predicates that occur in program P . In addition, Gp includes three other categories of vertices:

'A directed graph G consists of a set of vertices V(G) and a set of edges E(G), where E(G)cV(G)xV(G). Each edge
(b,c)e E(G) is directed from b to ¢; we say that b is the source and ¢ the target of the edge. Throughout the paper, the term “ver-
tex” is used to refer to elements of dependency graphs, whereas the term “node” refers to elements of derivation trees.

a) There is a distinguished vertex called the entry vertex.

b) For each variable x used in P, there is a vertex called the initial definition of x. This vertex represent
an initial assignment to x where the value of x is retrieved from the initial state. The vertex is
labeled “x :=InitialState (x).”

¢) For each variable used in P, there is a second vertex called the final use of x. It represents an access
to the final value of x computed by P.

The edges of Gp represent dependencies among program components. An edge represents either a con-
trol dependency or a data dependency. Control dependency edges are labeled either true or false, and the
source of a control dependency edge is always the entry vertex or a predicate vertex. A control depen-
dency edge from vertex v, to vertex v,, denoted v, —>, v,, means that during execution, whenever the
predicate represented by v, is evaluated and its value matches the label on the edge to v,, then the program
component represented by v, will be executed (although perhaps not immediately). A method for deter-
mining control dependency edges for arbitrary programs is given in [Ferrante et al. 1987]; however,
becaunse we are assuming that programs include only assignment, conditional, and while statements, the
control dependency edges of Gp can be determined in a much simpler fashion. For the language under
consideration here, a program dependence graph contains a control dependency edge from vertex v, to ver-
tex v, of Gp iff one of the following holds:

i) v, is the entry vertex, and v, represents a component of P that is not subordinate to any control
predicate.

i) v, represents a control predicate, and v, represents a component of P immediately subordinate to the
control construct whose predicate is represented by v,. If v, is the predicate of a while-loop, the
edge v, —>, v, is labeled true; if v, is the predicate of a conditional statement, the edge v, —>, v, is
labeled true or false according to whether v, occurs in the then branch or the else branch, respec-
tively.

Note that there are no control dependency edges to initial definitions and final uses of variables.

In other definitions that have been given for control dependency edges, there is an additional edge for
each predicate of a while statemert — each predicate has an edge to itself labeled true. By including the
additional edge, the predicate’s outgoing true edges consist of every program element that is guaranteed to
be executed (eventually) when the predicate evaluates to true. This kind of edge is left out of our
definition because it is not necessary for our purposes.

A data dependency edge from vertex v; to vertex v, means that the program’s computation might be
changed if the relative order of the components represented by v; and v, were reversed. In this paper, pro-
gram dependence graphs contain two kinds of data-dependency edges, representing flow dependencies and
def-order dependencies.

A program dependence graph contains a flow dependency edge from vertex v, to vertex v, iff all of the
following hold:

1) v, is an assignment statement that defines variable x.
il) v, is an assignment statement or predicate that uses x. e

iii) Control can reach v, after v, via an execution path along which there is no intervening definition of
x. That is, there is a path in the standard control-flow graph for the program [Aho et al. 1986] by
which the definition of x at v, reaches the use of x at v,. (Initial definitions of variables are con-
sidered to occur at the beginning of the control-flow graph, and final uses of variables are considered
to occur at its end).

A flow dependency that exists from vertex v, to vertex v, will be denoted by v; —>¢ v,

Flow dependencies can be further classified as loop independent or loop carried. A flow dependency
V1 —>f v, is loop independent, denoted v, -—=>j; v,, if the execution path by which v is reached from v,
includes no backedge of the control-flow graph; otherwise, it is a loop carried dependency. A loop-carried
dependency edge is labeled with the loop that carries the dependence; that is, if the execution path by
which v, is reached from v; includes a backedge to the predicate of loop L (in the control-flow graph),
then the edge from v, to v, is labeled with L. Such a dependency is denoted by v; —> ;. ¢y V2.

A program dependence graph contains a def-order dependency edge from vertex v, to vertex v iff all of
the following hold:

1) v, and v, both define the same variable.

i) v, and v, are in the same branch of any conditional statement that encloses both of them.
iii) There exists a program component vz such that vy —>, vy and vy —>¢ v,

iv) v, occurs to the left of v, in the program’s abstract syntax tree.

A def-order dependency from v, 10 v, is denoted by v — 4, ¢, V2.

Note that a program dependence graph is a multi-graph (i.e. it may have more than one edge of a given
kind between two vertices). When there is more than one loop-carried flow dependency edge between two
vertices, each is labeled by a different loop that carries the dependency. When there is more than one def-
order edge between two vertices, each is labeled by a vertex that is flow-dependent on both the definition
that occurs at the edge’s source and the definition that occurs at the edge’s target.

Example. Figure 1 shows an example program and its program dependence graph. The boldface arrows
represent control dependency edges; dashed arrows represent def-order dependency edges; solid arrows
represent loop-independent flow dependency edges; solid arrows with a hash mark represent loop-carried
flow dependency edges.

The data-dependency edges of a PDG are computed using data-flow analysis. For the restricted
language considered in this paper, the necessary computations can be defined in a syntax-directed manner
[Horwitz et al. 1987].

2.1. Necessity of Data-Dependency Edges

In choosing which dependency edges to include in our definition of program dependence graphs, our goal
has been to partially characterize programs that have the same behavior; in particular, two inequivalent
programs should not have program dependence graphs that are isomorphic. Note, however, that two
equivalent programs may have program dependence graphs that are not isomorphic.

We can illustrate the need for each of the different kinds of edges included in our definition by demon-
strating some sample inequivalent programs that would be indistinguishable if PDG’s were to lack a partic-
ular kind of edge. For example, the distinction between loop-independent and loop-carried flow dependen-
cies is necessary to distinguish between the following two program fragments:

x:=0 x =0

while P do while P do
Yy =X ifQ thenx :=11i
if O thenx =18 Yy =X

od od

The PDG’s for these fragments have identical vertices, control dependency edges, and def-order depen-
dency edges. If we ignore the distinction between loop-independent and loop-carried flow dependencies,

program Sum
sum :=0
x =1
while x < 11 do
sum = Sum+x
x=x+1
od

sum = InitialState (sum) x = InitialState (x)

finaluse(x)

Figure 1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable sum, and its
program dependence graph. The boldface arrows represent control dependency edges, dashed arrows represent def-
order dependency edges, solid arrows represent loop-independent flow dependency edges, and solid arrows with a hash
mark represent loop-carried flow dependency edges.

they have identical flow dependency edges as well; however, in the left-hand fragment, the flow depen-
dency from the assignment statement x =1 to the assignment y :=x is a loop-carried dependency,
whereas the corresponding dependency in the right-hand fragment is a loop-independent one.

Def-order dependencies are needed in PDG’s to be able to distinguish between the program fragments:

if P thenx :=0fi ifQ thenx :=1fi
ifQ thenx :=1f if P thenx :=0fi
yi=x yi=x

Here the PDG’s for these fragments have identical vertices, control dependency edges, and flow depen-
dency edges. If PDG’s did not contain def-order dependency edges, these programs would have identical
PDG’s, although they do not have equivalent behaviors. Including def-order dependences causes them not
to have identical PDG’s; in the left-hand fragment, there is a def-order dependency from the assignment

statement x := 0 to the assignment x = 1, whereas in the right-hand fragment, the def-order dependency
runs in the other direction, fromx :=1tox :=0.

3. PROGRAM DEPENDENCE GRAPHS CHARACTERIZE INEQUIVALENT PROGRAMS

We now address the relationship between a program’s program dependence graph and the program’s exe-
cution behavior. In particular, we show that if the program dependence graphs of two programs are iso-
morphic then the programs have the same behavior. We use the symbol “=" to denote isomorphic pro-
gram dependence graphs. (For brevity, we occasionally speak of “programs with the same PDG’s” and
“PDG’s with identical components.” These should be understood to mean “corresponding under the iso-
morphism™).

The concept of “programs with the same behavior” is formalized as the concept of strong equivalence,
defined as follows:

Definition. Two programs P and Q are strongly equivalent iff for any state &, either P and Q both
diverge when initiated on ¢ or they both halt with the same final values for all variables. If P and Q are
not strongly equivalent, we say they are inequivalent.

The main result of the paper is the following theorem:

THEOREM. (EQUIVALENCE THEOREM). If P and () are programs for which Gp = Gg, then P and Q are
strongly equivalent.

Restated in the contrapositive the theorem reads: Inequivalent programs have non-isomorphic program
dependence graphs.

The proof of the Equivalence Theorem appears in Section 3.5; it relies on three lemmas, stated and pro-
ven below after the introduction of some new terminology.

3.1. Additional Terminology

Corresponding subtrees

The control dependence subgraph of a program dependence graph Gp forms a tree that is closely related to
the abstract syntax tree for program P. The control dependence subtree is rooted at the entry vertex of Gp,
which corresponds to the Program node at the root of P’s abstract syntax tree. The vertices of Gp that
represent initial definitions and final uses have no directly corresponding elements in the abstract syntax
tree, but all the other vertices of Gp do. Each predicate vertex v of Gp corresponds to an interior node of
the abstract syntax tree; the node is a While node or an IfThenElse node depending on whether v is labeled
with while or if, respectively. For a while vertex, the stmt_list of the corresponding While node consists of
the targets of v’s control dependency edges (arranged in some order); the predicate that labels v becomes
the exp constituent of the While node. An if vertex is similar, except that the stms_list for the true-branch
of the IfThenElse node is made up of the targets of control dependency edges labeled true and the
stmt_list for the false-branch is made up of the targets of control dependency edges labeled false.

The control dependence subtree rooted at a vertex v of Gp corresponds to the subtree of the abstract
syntax tree that is rooted at the control construct that corresponds to v. Because of this correspondence, for
brevity we use phrases, such as “the flow edges whose source is in subtree T',” which are, strictly speaking,
not correct when T is a subtree of the abstract syntax tree. What “T” refers to is the subgraph induced by
T in Gp’s control dependence subgraph.

Because a given program dependence graph Gp has a unique control dependence subgraph, all the pro-
grams whose PDG is identical to Gp are a subset of the programs obtained by permuting the statements

subordinate to P’s Stmtlist operators. If P and Q are two programs that have the same program depen-
dence graph, there is natural correspondence between subtrees in P and subtrees in Q, defined as follows:

Definition. Suppose that P and Q are two programs that have the same program dependence graph.
Then for each subtree T of P, the subtree of O that consists of exacily the components that occur in T is
said to correspond to T .

For each subtree T of P, there is always a corresponding subtree of Q. If T corresponds to U, each
subtree of T corresponds to a subtree of U, and vice versa; however, the order in which the subtrees of U
occur may be a permutation of the order of the corresponding subtrees in 7.

Characterizing the state-transformation properties of subtrees

Our goal is to show that for any two programs P and Q for which Gp =Gy, P and Q are strongly
equivalent, that is, that they are equivalent state transformers. The state transforming properties of a sub-
tree are characterized in terms of its imported and exported variables.

Definition. The outgoing flow edges of a subtree T consist of all the loop-independent flow edges whose
source is in T but whose target is not in T, together with all the loop-carried flow edges for which the
source is in T and the edge is carried by a loop that encloses 7. Note that the target of an outgoing loop-
carried flow edge may or may not be in T'. The variables exported from a subtree T are the variables
defined at the source of an outgoing flow edge.

Definition. The incoming flow edges of a subtree T consist of all the loop-independent flow edges whose
target is in T but whose source is not in T, together with ail the loop-carried flow edges for which the tar-
get is in T and the edge is carried by a loop that encloses T. Note that the source of an incoming loop-
carried flow edge may or may not be in T. The incoming def-order edges of a subtree T consist of all the
def-order edges whose target is in T but whose source is not in 7. The variables imported by a subtree T
are the variables defined at the source of an incoming flow edge or at the source of an incoming def-order
edge.

Note that there are loop-independent flow edges to all final-use vertices of a program dependence graph;
thus, the exported variables of a program P consist of all variables that occur in P. There may be loop-
independent flow edges from some of the initial-definition vertices of a program dependence graph to uses
of variables that may not be initialized by the program; thus, the imported variables of a program P consist
of those variables that may get their values from the initial state.

Relativized strong equivalence

To handle equivalence of subtrees properly we must generalize the concept of “strongly equivalent pro-
grams” to that of “subtrees that are strongly equivalent relative to an input set of variables and an output set
of variables.”

Definition. Two subtrees, T and U, are strongly equivalent relative to an input set of variables In and
an output set of variables Out iff for all states ¢ and ¢’ that agree on /n, either P and Q both diverge when
initiated on ¢ and ¢, respectively, or they both halt with the same final values for all variables in Qu:.

Our ultimate goal is to show that programs P and Q that have the same PDG are strongly equivalent;
however, for any two subtrees T of P and U of Q that correspond, we only require that they be strongly
equivalent relative to their imported and exported variables. (Because T and U correspond they have the
same set of incoming flow edges, outgoing flow edges, and outgoing def-order edges and thus have the
same imported and exported variables).

Note that for programs, as opposed to subtrees of programs, strong equivalence is the same as strong
equivalence relative to the programs’ imported and exported variables. (From the definition of relativized
strong equivalence, it is apparent that if two subtrees are strongly equivalent relative to input set In and
output set Qut, they are also strongly equivalent relative to input set In’ oJn and output set Qut’ < Out. If
P and Q are strongly equivalent relative to their imported and exported variables, we know that for an
arbitrary initial state &, either P and Q both diverge or they produce final states 6, and oy, respectively,
that agree on their exported variables. However, the exported variables of P and Q consist of all variables
that are assigned to in the two programs, so for all variables that are not in the exported set 6 and 6, must
agree with ¢, and hence with each other. Consequently, P and Q are strongly equivalent).

3.2. The Self-Equivalence LLemma

Our first lemma, the Self-Equivalence Lemma, shows that the definitions of imported and exported vari-
ables are a consistent with each other and can be used to characterize the state transforming properties of a
subtree.

LEMMA. (SELF-EQUIVALENCE LEMMA). Let T be a subtree of program P. Then T is strongly
equivalent to T relative to T’ s imported and exported variables (as defined in the context given by P).

PROOE. The proof is by structural induction on the abstract syntax of the programming language. The
proof splits into five cases based on the abstract-syntax operator that appears at the root of T'.

Throughout the proof, we use o; and ¢;" to denote states that agree on T’s imported variables, Impy.
We use o; to denote a sequence of states in the execution of T initiated on &, and we use ¢;’ to denote the
corresponding sequence of states in the execution of T initiated on 64",

Case 1. The operator at the root of T is the Assign operator. Because T is a single assignment state-
ment, 7 terminates on both o; and ¢,”. Suppose T assigns to variable x as a function of variables {y; };
Impy is either {y;} or {y;}v {x} Umpr is {y;} v {x} when T is the target of a def-order edge). Expr is
either @ or {x}. For any combination of these possibilities, 6, and 6, agree on x, and hence they agree on
Expy.

Case 2. The operator at the root of T' is the While operator. We use Impr and Expr, Imp ., and Exp 5,
and Imp i ise and ExPyyy iise 10 denote the imported and exported variables of T', T’s exp component, and
T’s stmt_list component, respectively. We use o; and ;" to denote the execution state before executing
the i iteration of the loop starting from two states that agree on Impy, o, and o', respectively.

We need to show that either T diverges on both 6; and o, or else both executions halt after the j* itera-
tion in states ¢;,, and ©;,,’, respectively, where ¢;,; and ©;,;" agree on Expr. Because for a loop
Expr cImpy,? it suffices to show that if 6; and o; agree on Jmpr then either T terminates in the states o;
and o, or the i iteration computes o;,; and G;,,” that agree on Impy..

First, we show that Impr = Imp oxp W IMp g 1is - 1t is clear that we could have written this with <, noting
that Impg,,, 1 can include a variable x that is used at the target ¢ of a loop-carried flow dependency edge
where the aependence is carried by T. However, there then has to exist an incoming loop-independent
flow edge to ¢, which implies that v € Impy.

Let ¢; and o;” be states that agree on Impr. Evaloating T’s condition (the exp component of T) in o;
and ;" yields the same value. If the condition evaluates to false, then both executions terminate in the

’If x € Expr, then T contains an assignment a to x with an outgoing flow edge a —> b. Because the loop may execute zero times,
the assignment to x must be the target of a def-orderedge . .. —> 4,(5ya, hence x € Impy.

-10-

states ¢; and ©;’, which agree on Expyp.

Now suppose the condition evaluates to true. By the induction hypothesis the stmt list is strongly
equivalent to itself relative 10 Impgy 1ise and Expgy, jis;. Because o; and ;" agree on IMPgims tis: » €ither
both executions of the simt_list diverge or both terminate in states 0;,; and 0;,;” that agree on Exp i -
If 6;4; and o;,," do not also agree on Impr, then let x € Impy be a variable on which they disagree (so
X & ExPgp 1is1). Now, by assumption, ¢; and G;” agree on Impy; therefore, at least one of the two execu-
tions of strﬁt_list executed an assignment statement a that assigned a value to x and reached the end of the
stmt_list. There are two cases to consider:

(1) One possibility is that x € Impy because x is used in a statement b that is the target of an incoming
flow edge . .. —>; b. If this were the case, then there must be a loop-carried flow edge a —> .y b.
This implies that x € Expgp; s » Which contradicts our previous assumption.

(2) The other possibility is that x € Impy because the stm¢ list has an incoming def-order edge
.+ .~ 4o ()@ . However, this implies that there is an outgoing flow edge a —>; ¢ from the stmt_list.
This implies that x € Expyp: st » which contradicts our previous assumption.

We conclude that o;,; and o;,,” agree on Impy, and hence T is strongly equivalent to itself relative to
Imps and Expy.

Case 3. The operator at the root of T is the IfThenElse operator. Evaluating T’s condition (the exp
component of T') in &; and &, yields the same value; without loss of generality, assume that the condition
evaluates to true.

By the induction hypothesis, the true-branch of T is strongly equivalent to itself relative to its imported
variables, Imp,,,,., and its exported variables, Exp,,,. Thus, when initiated in states o, and ¢, either the
true-branch of T diverges on both or terminates in o, and o, respectively.

Note that Expr = Expy,. Y Expp,. . By the induction hypothesis, 6, and o’ agree on Exp,,,,.. If they do
not also agree on Expg,,, , then let x € Expp,, be a variable on which they disagree (so x € Exp,,.).
Because x € Exppus, , there is an assignment statement ¢ in the false branch of T' that assigns to x and is
the source of an outgoing flow edge from that branch (say a —>; b).

We must consider whether it is possible that x € Impy. By assumption, x & Exp,,,, ; however, there is an
execution path from the initial definition of x to & that does not pass through the false branch of T. Letc
represent the last definition to x along this path, so ¢ ——> b, which implies that ¢ — 4,ya. Therefore, it
maust be that x € Impy.

Because x € Impr, 6; and 6;" agree on x. Because ¢, and ¢, disagree on x, at least one of the two exe-
cutions of the true branch of T executed an assignment statement ¢ that assigned a value to x and reached
the end of the true branch of T. But this implies the existence of a flow edge d —>; b, s0 x € Exp,,,,
which contradicts a previous assumption. We conclude that 6, and G,” agree on Expp,,. . This, together
with the fact that o, and G,” agree on Exp,,,, , means that T is strongly equivalent to T relative to Imp; and
Expy.

Case 4. The operator at the root of T is the StmtList operator. Let Ty,T,, - - -, T, denote the immediate
subtrees of T. We use o; and ;" to denote the execution state before executing T;; we use Imp; and Exp;
to denote the imported and exported variables, respectively, of T;; and we use Imp, ; and Exp, ; to
denote the imported and exported variables, respectively, of the initial subsequence T¢,T,, - -,T;.
(Although the imported and exported variables for subsequences were not part of the definition in Section
3.1, we intend the obvious extension: the imported variables of a subsequence is defined in terms of incom-
ing edges whose targets are inside the subsequence; the exported variables of a subsequence is defined in

11—

terms of outgoing edges whose sources are inside the subsequence).

The proof of this case is by induction over the initial subsequences of . We want to show that for all
1<i<n,T,T,y, ---,T; is strongly equivalent to itself relative to Imp; ; and Exp, ;.

Base case. n = 1. The proposition follows immediately from the induction hypothesis of the structural
induction.

Induction step. The induction hypothesis is: If 6, and o,” agree on Imp;_; then o;,, and &,,," agree on
Expy ;. Thus, if 6; and 6, are arbitrary states that agree on /mp_;,,, we need to show that 6;,, and 6,5
agree on Expy ;4.

Note that Imp, ; cImp;_;.1, which means that 6‘1 and G,” agree on Imp, ;,and thus, by the induction
hypothesis, 6;,; and ¢;.;" agree on Exp, ;.

First, we must show that 6., and G,y agree on Imp;,;. Any variable x € Imp;,; on which &,,, and
6,4, disagree must be in Imp, ;,; (if not, x would be in Exp; ; on which G;,; and G, agree). By
assumption, 61 and &1’ agree on Imp, _;41; consequently, at least one of the two executions performed an
assignment, a , that assigned to x and reached the end of T;. There are now two cases to consider:

(1) One possibility is that x € Imp;; because x is used in a statement b that is the target of one of T;,4’s
incoming flow edges. In this case, there is a flow edge: a —> b. This implies that x € Exp; ;, so
ém and o;.,,” must agree on x, which contradicts our assumption that they disagree on x.

(2) The other possibility is that x € Imp;,, because there is an incoming def-order edge, . .. —> 4,)¢, t0
T;4,. However, this implies that there is an outgoing flow edge of Exp; ;:a —>¢ d. Asin the pre-
vious case, this implies that x € Exp;_;, so G4 and ;41 must agree on x, which contradicts our
assumption that they disagree on x.

Because G;.; and G;,;” must agree on Imp; .1, the induction hypothesis of the structural induction implies
that the executions of T;,; on ¢;,; and o;,," either both diverge or both terminate in states &M, and G,,,’
that agree on Exp; 4.

The final step is to show that &,-+2 and c}m’ agree on Exp ;1. Note that Exp; ;4 D Exp; ;. Now sup-
pose there is a variable x € Exp; ;,; on which c}i+2 and c}iﬂ' disagree (in particular, x € Exp;,;). By the
induction hypothesis, C}m and 8‘,-+1' agree on Expy, ;, so at least one of the two executions of T;,; per-
formed an assignment, @, that assigned to x and reached the end of T;,;. Because x € Exp,_;.1, there
must also be an outgoing flow edge a —>f . . . from T;,4. This implies that a € Exp; ., so G;4p and Civo
must agree on x, which contradicts our assumption that they disagree on x.

This completes the induction, so we conclude that T is strongly equivalent to itself relative to Impy and
Expr.

Case 5. The operator at the root of T is the Program operator. Because Impy = Impgm s and
Expr = EXPgm st » the strong equivalence of T with itself relative to Impr and Expr follows directly from
the induction hypothesis. [

3.3. The Equivalence Lemma and the Block-Equivalence Lemma
We now state the main lemma needed to prove the Equivalence Theorem.

LEMMA. (EQUIVALENCE LEMMA). Suppose that P and Q are programs for which Gp = Gg. Then for
any subtrees T in P and U in Q that correspond, T and U are strongly equivalent relative to their
imported and exported variables.

—12-

An important special case of the Equivalence Lemma concerns program fragments that contain only
assignment statements. Because this case is used in a special way in the proof of the rest of the
Equivalence Lemma, we state it below as a separate lemma, the Block-Equivalence Lemma.

A program fragment taken in the context of the rest of the program has a certain set of exported vari-
ables. When the same fragment is considered as a complete program on its own, the fragment’s program
dependence graph has loop-independent flow edges to all final-use vertices. Thus, the exported variables
of a fragment treated as a program consist of all the variables that occur in the fragment, which is a larger
set than the fragment has in its original context.

LEMMA. (BLOCK-EQUIVALENCE LEMMA). Suppose that programs P and Q contain only assignment
statements, that each statement in P occurs in Q and vice versa, and that, except for the set of flow edges
whose targets are final-use vertices, Gp =Gg. Let § be the subset of the source vertices of flow edges that
occur in both P and Q whose targets are final-use vertices. Then P and Q are strongly equivalent relative
to their imported variables (as the In set) and to the variables defined by the members of S (as the Qut
set).

We need the Block-Equivalence Lemma in the form stated above in order to apply it to fragments from a
given context; when P and O are actually program fragments taken from some context, their exported
variables are subsets of S

Example. Consider the following pair that could occur in a context where the exported variables are a
and b:

x =1 x =2
a:==x b=x
x =2 x =1
b =x a =x

The two fragments are strongly equivalent relative to the Out set (a,b}, but are not strongly equivalent
relative to the Qut set {a,b,x]}.

PROOF OF THE BLOCK-EQUIVALENCE LEMMA. The variables imported by P and Q consist of all vari-
ables for which there is a flow edge in Gp and Gy from an initial-definition vertex to an assignment vertex.
Let o7 and 6, be two states that agree on all the variables imported by P and Q.

Because P and @ contain only assignment statements, there is only a single execution path through each
of them. It is clear that both programs terminate when initiated on ¢ and ¢’, respectively. During the exe-
cution of each program, we could gather a “trace” of the execution — a sequence of entries that consist of
the value assigned at a program statement together with the values of all arguments used to compute that
value.

Suppose that P and Q are not strongly equivalent relative to their imported variables (the In set) and S
(the Qut set). Then there is a variable x € S that has a different value in the final state for P and the final
state for Q. Now consider the vertex v that is the source of the flow edge whose target is the final-use ver-
tex for x. Variable x received its final value at v; therefore, there must be at least one variable y used at v
that has a different value in the entry for v in the two traces. This line of reasoning can now be applied to
the trace entry for the vertex u for the definition of y that reaches v, and so on. Because each such
definition appears at least one entry earlier in the traces, this can continue for no more steps than the length
of the trace (i.e. the length of programs P and Q). By then we must encounter a vertex where the differing
argument variable w has no flow predecessor (i.e. the vertex is an initial-definition vertex labeled
“w = InitialState (w)”). The value of such a variable is retrieved from the initial states (o and ¢’). But
this leads to a contradiction because w would be one of the imported variables for P and Q and, by

—13 -

assumption, ¢ and ¢’ agree on such variables.

We conclude that P and @ are strongly equivalent relative to their imported variables and §. [

3.4. “‘Semantic Flattening’’> and the Proof of the Equivalence Lemma

At this point, we introduce a second programming language that is used in the proof of the Equivalence
Lemma. We will use L to denote the programming language that has been considered so far; the second
language is referred to as .. One feature of L is that only straight-line code is permitted.

The Block-Equivalence Lemma applies only to straight-line code and thus does not apply to arbitrary
programs of L. However, the device used in the proof of the Equivalence Lemma is a kind of “semantic
flattening;” it is done by translating L programs to L programs. We will argue that the Block-Equivalence
Lemma applies to the programs of L .

The translation from programs in L to programs in L makes use of a formal semantic definition of L.
Although we do not give it here, a definition of L would be presented by defining meaning functions for
each of the syntactic classes of L. For instance, the meaning functions for statements, statement lists, and
programs would have the following types:

M : stmt — state —» state
Mgy : stmt_list —> state —> state
M,: program — state — state

Assuming appropriate definitions for M, My, and M, , the language L is defined as follows:

Definition. Programs in L consist only of assignment statements. In addition to the type integer, L
incorporates the type state (the same type state used in the semantic description of L), which associates
integer variables with integer values. We use "S = @" to denote the initialization of a state variable § with
the null state — the state that associates all variables with the value undefined; we use “S[[v1]” to denote
the value associated with variable v in state S (“the v component of §”); and we use “S[[v]]:=w" t0
denote the updating of the v component of state § with w. In L, an expression on the right-hand side of an
assignment statement may contain an application of one of the meaning functions for language . (i.e. M,
Mg , or M},) to an appropriate construct of L and to a state.

Example. The following program is a legal program in L :
S =0
Sy =5
z :=Mg[[x =0;whilex <1lldox :==x +y od]]S)[[x 1]
Because the x component of M;[[x :=0; whilex <11 dox :=x +y 0d]]S is assigned to variable z, when
the program terminates z has the value 15; however, the values of variables x and y are undefined.

We now show (by a non-constructive argument) that the Block-Equivalence Lemma holds for programs
in I,. The first matter concerns the definition of flow dependencies for L. Because states are indexed by
constants, namely variable names, and not by expressions, components indexed by different names
represent different objects; thus, there is no flow dependency from the first statement to the second state-
ment in the following fragment, even though § appears in both statements:

S[yIl=5
z :=85{[[x1]

Howeyver, the situation is different for a fragment such as:

SMyIl:=5
z :=Myllx =0;whilex <11 dox :=x +y od]]S)[[x]I]

In the second statement, S is used as the initial state in the application of a meaning function. Because any

14—

of §’s components may be used in evaluating the right-hand side expression of the second statement, there
is a flow dependency from the first statement, which initializes the y component of §, to the second state-
ment. (There would still be such an edge even if the L construct that occurs in the second statement made
no use of y).

The argument used in the proof of the Block-Equivalence Lemma for L carries over to L except for one
detail: the expressions permitted on the right-hand sides of L assignments are rich enough to define state-
ments that do not terminate (e.g. z == (M, [[x == 0; whilex 20dox :=x + 1 odlS)[[xT)).

Consequently, we must show that it is impossible for one of the two programs, say P, to terminate while
the other program, @, does not. However, the line of reasoning used in the previous proof can be
resurrected simply by starting at the vertex v at which Q diverges, using one of the variables that has a dif-
ferent value in the entry for v in the two (partial) traces. (The argument is non-constructive because it is
impossible to know which vertex causes divergence).

PROOF OF THE EQUIVALENCE LEMMA. The proof is by structural induction on the abstract syntax of the
programming language. The proof splits into five cases based on the abstract-syntax operator that appears
atthe root of T and U. However, four of the five cases, when the operator at the root of T and U is either
an Assign, While, IfThenElse, or Program operator, are demonstrated by (essentially) the argument given
in the corresponding case of the Self-Equivalence Lemma. In the proof of the Self-Equivalence Lemma,
the convention is that the states ¢; and o;” represent sequences of states for two different executions of T,
one starting in ¢, the other in ¢;". To transfer the argument to the Equivalence Lemma one considers the
o;” sequence to be the sequence for U. Because subtrees T and U correspond, any argument that implies
the existence of an edge in T also applies to U, and vice versa.

The one case that does not transfer is Case 4 — when the root operator is the StmtList operator. The
argument in Case 4 is an induction over the initial subsequences of 7'; thus, it is the one case of the Self-
Equivalence L.emma where it is assumed that the primed and unprimed sequences of states are generated
by two executions of the same object, namely T'; What is different about the corresponding case of the
Equivalence Lemma is that the components that make up U are a permutation of the components that
makeup 7.

Case 4. The operator at the root of T and U is the StmtList operator. Let T{,T,, --+,T, and
Uy, Uy -+ ,U, denote the immediate subtrees of T and U, respectively. Each T; corresponds to some
subtree U r;y that is an immediate subtree of U, and vice versa, where the mapping n(i) is a permutation
over the interval 1..»n.

We use Imp and Exp to denote the imported and exported variables, respectively, of T and U. We use
Imp; and Exp; to denote the imported and exported variables, respectively, of T; and U . By the induc-
tion hypothesis, T; is strongly equivalent to U, relative to Imp; and Exp;.

We need to show that the statement sequences 14,75, ---,T, and U,,U,, ---,U, are strongly
equivalent relative to Imp and Exp. To show this, we will translate the two sequences T;,T5, - - -, T, and
U, Uy, -+, U, into (straight-line) programs in the language L ; call the translated sequences T and U,
respectively. We will show that the translation preserves meaning; we will also show that T and U meet
the conditions under which one can apply the Block-Equivalence Lemma. The use of the Block-
Equivalence Lemma allows us to overcome the difficulty alluded to earlier, namely that the components
that make up U are a permutation of the components that make up T'.

The translation to L is performed as follows: There is a single variable, S, of type state. For each com-
ponent, T; of T, we generate three kinds of statements in the order listed below:

—15 -

(1) The first statement is an assignment statement: § = &,
(2) Then, for each variable v € Imp;, there is an assignment statement: S[[[v]] :=v.
(3) Finally, for each variable w € Exp;,, there is an assignment statement: w = (M [T; IS)[[Iw 1.
By the same method, the sequence Uy, U, * -+, U, is translated to U .
The aptness of the translation stems from three properties that we now demonstrate.

Property 1. T is strongly equivalent to T relative to Imp and Exp. (U is strongly equivalent to U rela-
tive to /mp and Exp).

Less formally, property 1 can be stated as: The translations of 7 to T and U to U preserve the meaning of
TandU.

Proof of Property 1. In the translation of each component T; of T, the state variable S is initialized with
the current value of every member of Imp;. Then, assignments are made to the members of Exp; according
to the value they have in the state computed by M [T;]]S. By the definition of M, this is the state that T;
computes on S, which, by the Self-Equivalence Lemma agrees on Exp; with the state computed by T; from
any initial state that agrees with § on Imp;. We conclude that T; and the translation of 7; are strongly
equivalent relative to Jmp; and Exp;. Consequently, T is a sequence of fragments of straight-line code
where each fragment is strongly equivalent to a component T; of T and the fragments are arranged in the
same orderin T asthe T; arein T

The rest of the proof of Property 1 carries over from an argument given in Case 4 of the proof of the
Self-Equivalence Lemma; what is necessary to adapt the argument given there is to consider ¢;” to be the
state of T immediately before the sequence of statements that represent the translation of T;. (Property 1)
O

Property 2. For each variable x in Exp, if an assignment x := (M [T; 1S)[[[xT}] (from the translation of
T;) reaches the end of T, then the assignment x = (M [[U ;) 1S){[x 1] (from the translation of U,;,)
reaches the end of U .

Proof of Property 2. If, on the contrary, there is an assignment x := (M [[U ;»,]1S)[[x] (from the trans-
lation of U y;y) that reaches the end of U, then there would exist a def-order edge, e, in U where the
source of e is in Uy and the target of e is in Uy;y. Because subtrees T and U correspond, e also occurs
in T with the source of e in T; and the target of e in 7;. However, then the assignment
x = MIIT;1S)[x1] would occur after the assignment x := (M [T;1IS)[[x]], which contradicts the
assumption that the latter reaches the end of T'. (Property 2) [

For every statement of the form
w =M [T;1S)[Iw 1]
generated by case (3) in the translation of T; there is a statement
w = (M LUz,]1S)Iw 1]

generated in the translation of U), where in both cases w € Exp;. In the translations of both T; and Uy,
the assignments to the state § generated by cases (1) and (2) initialize S by the same collection of assign-
ments. (As defined, the initialization statements generated by case (2) may be permuted in the two transla-
tions; however, order makes no difference because each initialization statement assigns to the component
of § for a different imported variable). By the induction hypothesis, T; and U 5 are strongly equivalent
relative to Imp; and Exp;. Consequently, in T we may uniformly substitute M (U r IS for MT;]S
without altering the meaning of T or any of its flow dependence edges. Call the result of this substitution

— 16—

The programs T~ and U consist of the identical set of statements, although they may be arranged in dif-
ferent orders in the two programs. In order to apply the Block-Equivalence Lemma to T~ and U, what
remains to be shown is that they have the same set of (loop-independent) flow edges.

Property 3. T' and U have the same set of flow edges.

Proof of Property 3. To show that T” and U have the same set of flow edges it is only necessary to show
that the flow edges of U are a subset of the flow edges of 7; by demonstrating containment in one direc-
tion, the converse holds by symmetry.

Each flow edge in U can be classified as one of three kinds:

(1) An edge that runs from the first statement in the translation of Uy, § =, to an assignment of the
form x = (M [[U ;]IS)[[Ix 1] that is also in the translation of U y,

(2) An edge that runs from a statement of the form S[[[v]l] :=v, where v € Imp;, in the translation of
U ng), to an assignment of the form x := (M [[U n;]IS)[[x 1] that is also in the translation of U .

(3) An edge that runs from a statement of the form x := (M [U 4 [IS)[[x 1] in the translation of U,
(where x € Exp;), to an assignment of the form S [[x]I] := x that is in the translation of U (;y (where
x € Imp;).

The edges of types (1) and (2) arise because of the way the translation to L is defined, and thus each
edge in U of types (1) and (2) also occurs in T

An edge of type (3) occurs when the following conditions hold: (a) x € Exp;, (b) x € Imp ;» and (c) for
all k, such that n(i) < (k) <m(j), x ¢ Exp, (because translation order follows subtree order, ®(i) < n(j)).

The translation of Uy includes the statement §[[[x]]] := x because x € Imp;; this can occur because
Uy includes a use of x that is the target of an incoming loop-independent flow edge, or because U ()
includes an assignment to x that is the target of an incoming def-order edge. (The two cases are handled in
nearly the same fashion). In either case, because there is no £ such that (i) <n(k)<n(j) for which
x € Expy, the source of the incoming edge must be in U z;y.

T and U have the same edges, so there is a loop-independent flow edge (respectively, def-order edge)
from T; to T;. All loop-independent flow edges (def-order edges) run left to right, so i <j. The only way
T’ could lack the flow edge (def-order edge) from T’ to T"j’ is if there were an intervening assignment to x
at T,’, for some k, i <k <j. In this case, x € Exp,., and there would be a def-order edge from T; to T, and
a loop-independent flow edge (def-order edge) from Tj to T;. However, there would be corresponding
edges in U from U gy 10 Ungey and from Uy to Uy, which contradicts condition (). We conclude that
each edge of type (3) in U occurs in T'. (Property 3) 1

Because 77 and U have the identical set of assignment statements, the identical set of flow edges, and,
for all variables in Exp, the same set of assignments that reach the end of 7* and U, T* and U meet the
conditions needed to apply the Block-Equivalence Lemma. The Block-Equivalence Lemma implies that T~
and U are strongly equivalent relative to Jmp and Exp .

We have now shown (1) that T and T are strongly equivalent relative to /mp and Exp , (2) that U and U
are strongly equivalent relative to Imp and Exp, and finally (3) that T (really T”) and U are strongly
equivalent relative to Imp and Exp. Thus, we conclude that T and U are strongly equivalent relative to
Imp and Exp. [

17—

3.5. Proof of the Equivalence Theorem
The Equivalence Theorem follows as a corollary of the Equivalence Lemma.

THEOREM. (EQUIVALENCE THEOREM). If P and Q are programs for which Gp =Gg, then P and Q are
strongly equivalent.

PROOF. By the Equivalence Lemma, P and Q are strongly equivalent to their imported variables (as the
In set) and their exported variables (as the Our set). By the relativized strong equivalence of P and Q , we
know that for an arbitrary initial state ¢, either P and Q both diverge or they produce final states 6p and
Op , respectively, that agree on their exported variables. However, the exported variables of P and Q con-
sist of all variables that are assigned to in the two programs, so for all variables that are not in the exported
set op and Oy must agree with ¢, and hence with each other. Consequently, P and Q are strongly
equivalent. [

4. RELATION TO PREVIOUS WORK

The data dependencies used in this paper are somewhat non-standard. Ordinarily, def-order dependencies
are not included, but two other kinds of data dependencies, called anti-dependencies and output dependen-

cies are used instead.’> Def-order dependencies were first introduced in [Horwitz et al. 1987].

For flow dependencies, anti-dependencies, and output dependencies, a program component v, has a
dependency on component v, due to variable x only if execution can reach v, after v, and there is no inter-
vening definition of x along the execution path by which v, is reached from v;. There is a flow depen-
dency if v, defines x and v, uses x; there is an anti-dependency if v, uses x and v, defines x; there is an
output dependency if vy and v, both define x.

Although def-order dependencies resemble output dependencies in that they both relate two assignments
to the same variable, they are two different concepts. An output dependency v, —>, v, between two
definitions of x can hold only if there is no intervening definition of x along some execution path from v,
to v,; however, there can be a def-order dependency v, —>,, v, between two definitions even if there is an
intervening definition of x along all execution paths from v, to v,. This situation is illustrated by the fol-
lowing example program fragment, which demonstrates that it is possible to have a program in which there
isadependency v, —>4, v, but not v, —>, v,, and vice versa:

[1) x =10

[2] if P then

[3] x =11
[4] x =12
[5] fi

(6] y =X

The one def-order dependency, [1]— 4 (¢ [4], exists because the assignments to x in lines [1] and [4]
both reach the use of x in line [6]. In contrast, the output dependencies are [1] —>, [3] and [3] —>, [4],
but there is no output dependency [1] —>, [4].

The Equivalence Theorem still holds if the program dependence graph is defined to have output depen-
dency edges rather than def-order dependency edges. Because a program’s def-order dependency edges
can be determined given the flow dependency edges and loop-independent output dependency edges, if the
program dependence graphs (of the modified kind) of two programs are isomorphic, then their program

*As with flow dependencies, anti-dependencies and output dependencies may be further characterized as loop independent or loop car-
ried.

~18 —

dependence graphs (of the kind used in this paper) are isomorphic; consequently, by the Equivalence
Theorem, they are strongly equivalent.
REFERENCES

[Aho et al. 1986]
Aho, A., Sethi, R., and Uliman, I. Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading, Mass., 1986.

[Allen & Kennedy 1982]
Allen, J.R. and Kennedy, K. PFC: A program to convert FORTRAN to parallel form. TR 82-6, Dept. of Math. Sciences, Rice
Univ., Houston, Tex., Mar. 1982.

[Allen & Kennedy 1984]
Allen, J.R. and Kennedy, K. Automatic loop interchange. In Proceedings of the SIGPLAN 84 Symposium on Compiler Construc-
tion Montreal, Can., June 20-22, 1984, pp. 233-246.

[Ferrante et al. 1987]
Ferrante, J., Ottenstein, K., and Warren, J. The program dependence graph and its use in optimization. To appear in ACM Trans. on

Prog. Lang. and Syst. Preliminary version appeared in Lecture Notes in Computer Science, Vol. 167: 6th Int. Symp. on Program-
ming (Toulouse, France, Apr. 1984), Springer-Verlag, New York, 1984, pp. 125-132.

[Horwitz et al. 1987]
Horwitz, S., Prins, J., and Reps, T. Integrating non-interfering versions of programs. TR-690, Computer Sciences Dept., Univ. of
Wisconsin — Madison, Madison, WI, Mar. 1987.

[Kuck 1978}
Kuck, D.J. The Structure of Computers and Computations, Vol. 1. John Wiley and Sons, New York, 1978.

[Kuck et al. 1972]
Kuck, D.J., Muraoka, Y., and Chen, S.C. On the number of operations simultaneously executable in FORTR AN-like programs and
their resulting speed-up. IEEE Trans. on Computers C-21 (Dec. 1972), 1293-1310.

[Kuck et al. 1981]
Kuck, D.J., Kuhn, R.J., Leasure, B., Padua, D.A., and Wolfe, M. Dependence graphs and compiler optimizations. In Conference
Record of the Eighth ACM Symposium on Principles of Programming Languages, Williamsburg, Va., Jan. 26-28, 1981, pp. 207-
218.

[OQttenstein & Ottenstein 1984]
Ottenstein, K. and Ottenstein, L. The program dependence graph in a software development environment. In Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments, Piusburgh,
Penn., Apr. 23-25, 1984. Appeared as joint issue: SIGPLAN Notices (ACM) 19, 5 (May 1984), and Soft. Eng. Notes (ACM) 9, 3
(May 1984), 177-184.

[Towle 1976}
Towle, R. Control and data dependence for program transformations. Ph. D. dissertation and Tech. Report 76-788, Dept. of Com-
puter Science, Univ. of Illinois, Urbana-Champaign, Illinois, Mar. 1976.

