Nondeterministic Circuits
by

Marty J. Wolf

Computer Sciences Technical Report #698
August 1987

Nondeterministic Circuits

Marty J. Wolf !

Computer Sciences Department
University of Wisconsin

Abstract:

Nondeterministic circuits are introduced and defined. By varying the number of nondeterministic gates in a
circuit, different complexity classes are developed. Specifically, if NC circuits are allowed a polynomial number of
nondeterministic gates, the class is equivalent to NP. If the number of nondeterministic gates is limited to O(log n),
the class is equivalent to NC. A form of the quasigroup isomorphism problem is shown to be in the class obtained
by allowing a polylog number of nondeterministic gates; this last problem is not known to be in either P or NC.

INTRODUCTION

Often in complexity theory different models of computation are used to define an abstract entity such as a
complexity class, with each of them offering a slightly different view of the structure and make up of the entity. In
the same way that partial recursive functions, random access machines, Turing machines, and Markov algorithms
each characterize what is computable and offer insight into the structure and relationship between what is comput-
able and what is not computable, a collection of different models for a complexity class can help us understand the

structure of the class as well as the structure of the sets within the class.

With this in mind, we define a new collection complexity classes using nondeterministic circuits. Here a non-
deterministic circuit is a Boolean circuit with ordinary gates, some nondeterministic gates, and one gate designated
as the output gate. A nondeterministic gate takes no inputs and nondeterministically produces exactly one bit of
output. Nondeterministic gates will also be called guess gates. The nondeterministic class NNC(f(n)) is defined to
be the class of sets accepted by logspace uniform families of nondeterministic circuits with polylog(n) depth and a
polynomial number of gates where at most O(f(n)) of those gates are nondeterministic gates, and »n is the length of
the input. (See Cook [Co] for a complete description of uniform circuit families.) In other words, a set in NNC(f(n))
is accepted by an NC circuit with O(f(n)) guess gates. Thus f(n) can be thought of as a bound on the amount of

nondeterminism allowed or the maximum number of guess bits allowed in the computation on inputs of length n.

!Research supported in part by NSF Grant No. DCR85-04485

‘We will often abuse notation and write NNC(class) where class is a class of functions. For example, NNC(poly) is

defined below.

To understand computation on an NNC circuit we can think of it proceeding in a manner similar to that of a
nondeterministic Turing machine even though the following description is somewhat different than the actual
model. The circuit makes a copy of itself for each of the possible outputs of the nondeterministic gates. In each
copy, the nondeterministic gates are replaced by a particular value. Computation then proceeds as usual. At the end
the output of each of the copies of the circuit are fed into a giant "or" gate, and the circuit accepts if and only if

some combination of the choices made by the guess gates caused some copy of the circuit to accept.

The central problem becomes choosing f(r). We would like to find functions f such that NC o= NNC(®) < NP.

We begin by considering the class NNC(poly) = | NNC (n*). We will show that this class is too powerful, since
k=1

NNC(poly) = NP. This is not too surprising since Fortune and Wyllie {FW] using a PRAM model for NC show a
similar result. Dymond [Dy] using a nondeterministic version of a hardware modification machine also shows NP
and nondeterministic NC are equivalent. By using circuits as the model to study nondeterministic NC, we are given
an intuitive means to quantify the amount of nondeterminism used in computation. Taking advantage of this
feature, we see that if f(n) = log n, then NNC(f(n)) becomes too weak. It is not hard to show that NNC(log n) =
NC. The case that appears to be most interesting is when f(n) is polylog in n. We are able to show a form of quasi-

group isomorphism is in NNC(polylog), but it is not known to be in P. (Here NNC(polylog) =) NNC (log* n)) In
k21

Section 1, we present a proof that NNC(poly) is another characterization of nondeterministic polynomial time. The
proof is similar to Cook’s proof that Satisfiability of Boolean Formulas is NP-complete (see [HU]). A brief proof
that NNC(og n) = NC is also given. Section 2 gives results showing that quasigroup isomorphism is in
NNC(polylog) when the quasigroups are input as multiplication tables. Section 3 presents some open problems.

SECTION 1. NNC(poly) = NP.

This section is concerned with the relationship between NP and NNC(poly). It is not hard to see that

NNC(poly) < NP.
Lemma 1.1: NNC(poly) ¢ NP.

Proof. Assume the set A is in NNC(poly). Then given x, an input of length r, and the NNC circuit to accept

words in A of length n, it is easy to construct an NP-machine to correctly simulate the NNC circuit. First the NP

machine guesses the outputs of the guess gates, and then since there are only a polynomial number of gates in the
circuit, the NP-machine can easily compute the output of each of the gates including the output gate in polynomial
time. [

The next goal is to show NP < NNC(poly), which implies NNC(poly) = NP. The idea of the proof is this.
Let M be a nondeterministic one-tape Turing machine that accepts a set A in NP. On input x of length n, the
NNC(poly) circuit "guesses” an instantaneous descriptor (ID) for each move of an accepting computation of M on
input x. An ID is a string of bits representing the contents of the tape, the position of the tape head on the tape
(written in binary), and the current state of machine M. Then for each pair of adjacent ID’s, ID;_; and ID;, there is
a small circuit that verifies that ID; follows from ID;_; by a legal move of machine M, based on the head position
and the state of M. If every local checking circuit says everything is acceptable, the entire circuit accepts. The

diagram on the following page illustrates the circuit.
Theorem 1.2; NP = NNC(poly)

Proof. Lemma 1.1 shows one direction of the theorem. We now give more details of the proof that NP ¢

NNC(poly).

Let M be a nondeterministic polynomial time bounded Turing Machine accepting a language L in NP.
Without loss of generality it can be assumed M has only one tape. Let q(n) be the polynomial that bounds the com-
putation time of M on inputs of length n, and it can also be assumed that every computation on inputs of length n

takes q(n) steps.

Now consider the computation of M on input x of length n to be a sequence of instantaneous descriptors of
the form o# B#7y, where o is a binary representation of the string currently on the work tape, B is the position of the
read/write head on the tape written in binary, and v is the state of the machine (also in binary). Thus the computa-
tion of M on input x can be viewed as a table of ID’s, where the first ID is of the form x#07™)#<q (>, assuming g,
is the start state of M. (<q¢> is the binary encoding of g,.) Also for the table, ID; must follow from ID;_, via a

transition rule of M, and if ID) is y#i#<q;>, q; is a final state of M ifand only ifx € L.

The behavior of the circuit to simulate the computation of M on x is to first guess every ID of M’s computa-
tion. There are are only O(q(n)?) bits to guess since the length of each ID is O(q(n)), and the number of ID’s is

q(r). Then for each pair of ID’s there is a small circuit for testing whether ID; follows from ID;_; via a legal move

GUESS
IDy

TEST
1D,

€
1l

W/

GUESS

D,

GUESS

T DCB(n)

W4

TEST TEST TEST TEST
LDy ID5 ID%M
one
= more :b\r\o.r\
one bit

NNC(poly) circuit for M

of M. Most of the work is done by the test subcircuits. If the first ID is correct, each tester is satisfied, and the state
of the last ID is a final state the circuit accepts, otherwise it rejects. Since the final AND-circuit has q(n) inputs, it is

easy to build an NC circuit to do this computation.

The test circuit is also an NC circuit. In parallel, the circuit verifies that all the bits have remained the same
from ID; to ID;,; except those in the area of the read/write head. The bit under the read/write head is extracted by
having a small circuit for each bit that tests whether the read/write head is at that position. This can easily be done
in NC since the position of the bit can be wired into the small circuit. Each of these small circuits sends a bit to an
OR-circuit; it sends its bit if the read/write head is at that position and a ’0" otherwise. Verifying that the move that

took place between ID; and ID;,, is a legal move of M can be done in constant depth with a table look up.

There are two last concerns. The first ID tester must verify that ID , represents the input and the last ID tester
must verify that the state of ID,, is a final state. The first of these tasks can be done easily in NC, and since the
number of the states is a constant with respect to M, the second can be tested with a constant number of gates. The

detailed construction of these circuits is left to the reader.

Thus for each set in NP there is a NNC(poly) family of uniform circuits that accepts it. [

Theorem 1.3: NNC(log n) = NC

Sketch of proof. The proof of this theorem is not difficult. It is obvious that NC ¢ NNC(log n). To show the
other direction is not much more difficult. Since there are only 2°(%¢) (which is at most a polynomial in ») possi-
ble different guesses that can be made by the guessing gates, enumerating all of them would not greatly increase the

size or the the depth of the circuit. The details of this proof are left to the reader. [

SECTION 2. Quasigroup isomorphism is in NNC(polylog).

A third attempt at finding an interesting nondeterministic analog for NC can be made by allowing a polylog
number of guess gates. This class seems nontrivial and potentially of considerable interest. Since Miller [Mi] has
shown the quasigroup isomorphism problem has an O(n'*#") sequential algorithm and since n'8" = 28 thig

problem is a natural candidate for being in NNC(polylog).

Quasigroups here are thought of as Cayley tables. That is, if G is a quasigroup of order n, we view itas a

binary function on the integers {1,...,n}, which is specified by a multiplication table. For review, definitions of

group and quasigroup are given.

Definition: A Group is a binary operation * on a set G satisfying the following properties:
1. There is a unique x such that a*b = x.

2. There is a unique x such thata*x =b.

3. There is a unique x such that x*a =b.

4.1fa b c € G, then (a*b)*c = a*(b*c).
A quasigroup is more general than a group since a quasigroup is a binary relation satisfying 1, 2, and 3. A
Latin square is the multiplication table of a quasigroup. Miller [Mi] shows that quasigroups of order n are gen-
erated by at most log n elements. We take advantage of this fact to develop the circuit for quasigroup isomorphism

testing. Since quasigroups are more general than groups, the following construction also shows Cayley table group

isomorphism is in NNC(polylog).

Theorem 2.1: Given two multiplication tables M, and M ,, representing the quasigroups H; and H,, respectively,

the set {(H1,H) : H; and H , are isomorphic} is in NNC(log? n), where n is the order of the two quasigroups.

Proof. The circuit to test isomorphism begins by guessing two sets of generators Gy, for H; and Gy, for H,
in parallel. Then, in parallel it verifies that Gy, generates H, Gy, generates H 5, and that G and G, are isomorphic.

The circuits that perform these tasks are similar.

Consider the following family of uniform NNC circuits. There are 2log? n guessing gates. Since each genera-
tor is log n bits long and there are log n generators, half of the guessing gates are used to guess Gy, the set of gen-

erators for H ;, and the rest are used to guess Gy,, the set of generators for H,.

To verify that Gy, does generate H,, we use the following subcircuit. Imagine 2log n copies of the multipli-
cation table of H, stacked on top of each other with each copy having n sentinels, one for each element of H ;. Each
sentinel heads its respective row and column. In the first copy of the multiplication table the i sentinel determines
whether one of the guess gates chose #;. If an element has been chosen, the sentinel for the element tells each ele-
ment in its row and column that the sentinel is in the quasigroup. Each element in the interior of the table waits for
information from its row sentinel and its column sentinel. If both are in the quasigroup, then the element knows it is
in the quasigroup. In the mean time, each sentinel passes the information it has onto the corresponding sentinel in
the next copy of the multiplication table. Each element in the interior that now knows it is in the quasigroup informs
the sentinels at the next copy of the multiplication table. The sentinels that currently do not know if they are in the

quasigroup check this new information. The sentinels that were in the quasigroup at the previous level as well as

the ones added at the current level pass their information along to the interior of the table, and the process repeats
until the bottom of the stack of tables is reached. After the information is passed to the sentinels for the last time,
each sentinel that has been generated sends a 1 to a final AND-circuit. If the output of the final AND is 1, then Gy,

generates H,. An identical circuit verifies Gy, generates H ,.

The first level of the circuit to test if Gy, generates H | looks like the figure on the next page, where s¥ is the
subcircuit for the i sentinel on the k* level multiplication table, m,f,- is the subcircuit needed look up the i,j ele-
ment of the first level multiplication table, although each s¥ and m,~1, ; also requires wires from the input. The same
general construction is repeated 2log » times, with the outputs from each 5,78 " being fed into a final AND-circuit.

The construction of each s¥ and m}; and the rest of the levels is left to the reader.

The subcircuit to verify H, and H, are isomorphic is similar in structure to the one described above. When
Gy, and Gy, are guessed, a mapping between the generators is also guessed, i.e. the generators are guessed in pairs,
with the first one belonging to Gy, and the second belonging to Gy,. Again, there are 2log n levels of multiplication
tables. Each level takes input from the previous level as above, except this time the input comes as pairs of ele-
ments, the first element is from H; and the second from H,. Again there is a group of n sentinels, one for each
member of H,. Each sentinel looks to see if its name is the first element of one of the pairs. If it is, it remembers its
image in H,. If it already knows its image in H 4, it verifies that the two images are the same. Now the sentinel tells
each element in the row and column it heads what the sentinel’s image is. If an element in the interior of the table
hears from both its row sentinel and its column sentinel, it determines the product of the two images it received by
looking it up in the multiplication table of H,. It then passes its identity and its image on to the group of sentinels
waiting at the next level. After the the last level the sentinels verify that each has exactly one image, and that once a

sentinel has received an image all subsequent images received by that sentinel are identical.

In the more detailed description of the isomorphism tester described below, we see the general structure and
relationship of the multipliers and the sentinels is the same as before, although the task of testing whether the map-
ping is an isomorphism is somewhat more complex than testing whether the generators did generate the quasigroup.

For the isomorphism testing phase the sentinels will be called ¢/ and the multipliers will be called iso} e

The general sentinel is more complex than the sentinel at the zeroth level, so only the general sentinel will be
described. Each sentinel circuit ¢/ takes as input &;, the image of h; (if it is known), the product generated by each

isof;, and the images associated with each of those products. The sentinel tests to see if #; is equal to any of the n?

CUE SS

First Level of Circuit to Test Whether 6,
generates H,

products. Since one log n bit number is tested against n2 log n bit numbers, this can be done in parallel with a
depth of O(loglog n). If h; equals one of the products, the image of #; and the image of the product are tested, if
they are equal the sentinel outputs the image of 4; to all multipliers on the next level iso,{ ! and iso[}l for all £ and
outputs a 1 to a special verifier subcircuit, otherwise it sends a zero to the verifier subcircuit. This can be imple-
mented in O(log n) depth. The sentinel also sends a bit along indicating whether it knows the image of 4;. The spe-
cial verifier subcircuit takes as input a single bit from each of the n (1 + 2log n) sentinels (n from each level and
there are 1 + 2log n levels) and AND’s them all together. If one of them is a zero, this shows the mapping was not

well defined.

Multiplier iso}; gets input from sentinels #f~" and #f!. From each it receives a bit indicating if the sentinel
knows its image as well as the image of the element the sentinel represents (if it is known). From the input iso,-’f ;
knows which element in the multiplication table for H, it represents, and it also receives the entire multiplication
table for H,. If one of the sentinels does not know its image, iso{f ; does nothing, otherwise it finds the product of
the two images it received in the multiplication table for H,. The table can be fed to iso,-’fj as ordered triples
<hy ,hs 1, *hs>, then using an equality tester, the product A, *h; can be extracted from the table in depth O(log n).
Next isof ; passes the product and the image of the product on to the sentinels on level k. This requires depth O(log
n) to make the n copies of the product and its image needed at the next level. Again the construction of the multi-

pliers and sentinels is left to the reader.

If it is verified that the generators guessed do generate H and H ,, we are guaranteed in the isomorphism test-
ing phase that image of every element of H; will be tested, and the special verifier subcircuit is used to insure the
mapping is well defined. We are left to show that if the guessed set of generators does generate the quasigroup, then
the first subcircuit will verify this. Note that every word in a quasigroup can be represented as a binary tree where
the internal nodes represent multiplications and the leaves are labeled with generators. The next lemma shows

every word in a quasigroup can be represented by a tree of small depth.

Lemma 2.2: If H is a quasigroup of order n and g, g5, ..., 8¢ generate H , then for every h € H there is a tree of

depth < 2log n that represents it.

Proof. Letdepth, = (h € H |the shallowest tree representing h has depth 2k }. Note that depthy = H. Let
0% = {(,j)e HxH iorj e depth,_;}. Since H is finite, there is a d such that depth,,; is empty for all i >0.

LetP@=H xH,and let P® = P& . 9+ for k<4, Thus a pair (i,j) is in P® if and only if both i and j have

shallowest tree depth less than k. A pair (i /) is said to represent an element b if i*j=h. We show by reverse in-

. 2 (d-1) (d-3)
duction that IP@) < 2=, -9 < —'f—“——ln, pa-sy ¢ 1P

» ., and that the sets depthy_;, depthy_,,

depthgy_s, ..., depth are nonempty.

The basis is k =d. Let h € depthy. Let D = (i, j)1i*j = h). For each 1<i<n there is exactly one pair

(i.j) that represents h, thus D has exactly n members. Since at least one element of every pair in D must be
in depthy.,, there are at least % elements in depth,_;. Each element in depthy_, appears as the first element of n

L

pairs, and as the second element in n pairs and there are D)

pairs with both elements from depth,.,, thus there
3”2 ..) n2 o . (d-1)
areatleast—z—palrst ,andnomoremanTpausmP .

Now there is at least one element, k, in depth,;_, and not in depth, such that there is a pair in P @~V that
represents it. If such a k does not exist then the elements of depth,_; could not be generated since all pairs (g;, g;)

where g; and g; are generators are in P @1

For the inductive step, assume k22, let k € depth; and k ¢ depth;,; and P be given inductively. Let m be
the number of elements in H that are not in depth,;. Thus there are m? in P, We will show there exists a kK’ €
depth; 5 such that k' is represented by a pair (i ,j) not in P“~? which implies either i or j is in depth;_3 and not in

depth_.

For the following sublemmas, recall that H = {1,2,3, ..., n}, and since we can assume that the elements of H

are sorted by depth, depthy = {m+1,m+2, ..., n}.
Lemma 2.2.1: For every i <m, there is a pair (i,j) € P® such thati*j € depth;_;.

Proof. Since k € depth; and k ¢ depth, ,,, and since there is a pair (k' ,¥’) € P® such that K’ *k” =k, either
k" or k” is in depth;_, and not in depth;. Without loss of generality assume it is k". Assume the lemma does not
hold. Let i’ be such that for all pairs (i',j) € P©, " *j ¢ depth,_,. Now each element of depth; as well as k¥’ must
be represented by a pair of the form (i’,j). Since there are only n - m pairs of this type that are not in P, at least

one pair of the form (i’,j) is in P, This is a contradiction. [

Lemma 2.2.2: For every j<m, there is a pair (i,j) € P") such thati*j e depth,_,.
Proof. The proof is the same as Lemma 2.2.1. [
Lemmas 2.2.1 and 2.2.2 imply at least one element of every pair in DY = {(i,j) | i*j € depth,) is in

depth;_,. Then using arguments similar to those used in the base case we find depth,_, has at least 1—;—- elements that

3m>

2
4~ pairs, and there are no more than mT pairs in P2, Therefore, as

are not in depth;, and Q2 has at least
before, there must exista k” € depth;_, such that X’ ¢ depth,_; and there is a pair in P ¢~ that represents it.

Considering the sequence of sets depth,_y, depthy._s, ..., deptho, we find that if d>2log n, depthy,, is empty.
O

Lemma 2.3: If H is a quasigroup of order n and g4, g, ... , & generate H, then the circuit defined above will gen-

erate every possible tree of depth less than or equal to 7 in these generators after the m™ level of the circuit.

Proof. The proof is by induction on m. The base case is when m = 0, namely after the generators have been

guessed. Certainly all the trees of depth one have been generated.

Now assume that after the (m—1)*" level all the trees of depth less than or equal to m—1 have been generated.
Let w be a tree of depth less than or equal to m. Certainly w can be composed of two trees of depth less than or
equal to m—1, and the elements represented by these trees, by induction, will be available at level m - 1. Hence w

will appear at level m. [

Combining Lemma 2.2 and Lemma 2.3, with k = log n and m = 2log n, we are guaranteed that if the guessed
set of generators does generate the quasigroup, then the first subcircuit will verify it. Thus quasigroup isomorphism

is in NNC(polylog). [1
SECTION 3. Conclusion and open questions.

In the development of traditional complexity classes, time and space are the resources used quantitatively to
define specific classes. By looking at various values for f(n), NNC(f(n)) offers another resource, nondeterminism,
to use quantitatively to study the relationship between problems in NP. The results above suggest that the class
NNC(polylog) may offer a hierarchy to classify the problems in NP that are not known to be in P and are not known
to be NP complete. The hierarchy can be subdivided on either the degree of the log term, the depth of the NC cir-

cuit or on a combination of the two. For example, closer inspection of the circuit used in Theorem 2.1 shows it is an

NC?3 circuit with O(log? n) guess gates, thus quasigroup isomorphism is in NNC3(log? n). Since quasigroup isomor-
phism has a subexponential algorithm, it seems reasonable that other problems with this property may be contained

in NNC*(log’ n) for some j and k.

The following is a list of open questions that are related to these results and to the idea of nondeterministic

circuits in general.
(1) Are there other natural problems in NNC(polylog)? Where in the hierarchy do they sit?
(2) What is the relationship between P and NNC(polylog)? Is P contained in NNC(polylog)?

(3) What is the relationship between RNC and NNC(polylog)? Can the nondeterminism used in the NNC cir-

cuit be used to simulate the randomness of the RNC circuit?

Acknowledgements:

I extend a special thanks to Eric Bach for suggesting the study of this area to me and for all the insightful dis-
cussions and guidance.

REFERENCES

[Co] Cook, S.A., ““The Classification of Problems which have Fast Parallel Algorithms,”” Lecture Notes in Com-
puter Science, V. 158, Springer-Verlag, New York, (1983), 78-93.

[Dy] Dymond, P.W., “‘On Nondeterminism in Parallel Computation,”” Theoretical Computer Science 47, (1986),
111-120.

[FW] Fortune, S. and Wyllie, J., ‘‘Parallelism in Random Access Machines,’” Proceedings of the Tenth ACM Sym-
posium on the Theory of Computing (1978), 114-118.

[HU] Hopcroft, J.E. and Ullman, J.D., Introduction to Automata Theory, Languages and Computation, Addison-
Wesley, Reading, Mass. (1979).

[Mi] Miller, G.L., ““On the n'°8" Isomorphism Technique,”” Proceedings of the Tenth ACM Symposium on the
Theory of Computing (1978), 51-58.

[Ru] Ruzzo, W L., “‘On uniform circuit complexity,”” Journal of Computer and System Sciences 22, 3(June 1981),
365-383.

