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ABSTRACT

Powerful workstations have become widely available as sources of computing cycles. These stations
are brought together into networks for the distribution of mail and the sharing of servers. The networks
allow for the sharing of computing capacity among the stations. In order for capacity sharing to be effec-
tive, there must be algorithms that allocate the available capacity and long periods when owners do not use
their stations. To understand the profile of station availability, we analyzed the usage patterns of a group of
workstations. We believe the observed patterns typify workstation networks found in academic environ-
ments and research and development environments. The workstations were available approximately 70%
of the time observed. The characteristics of the system availability observed lead to the development of a
stochastic model of workstation usage. Large capacities were steadily available on an hour to hour, day to
day, and month to month basis. These capacities were available not only during the evening hours and on
weekends, but during the busiest times of normal working hours. The stochastic model was developed
based on an analysis of the relative frequency distribution and the correlation of available and non-
available interval lengths. A 3-stage hyperexponential cumulative distribution has been fitted to the
observed cumulative relative frequency of available periods. The fitted distribution closely matched the
observed relative frequency distribution. This stochastic model is important as an artificial workload gen-
erator for the performance evaluation of remote capacity sharing strategies of a network of workstations.
The model assists in the design of resource management algorithms that take advantage of knowing the
characteristics of the usage patterns.

1. Introduction

Many users now have workstations on their desks to serve their computing needs. These stations are
powerful tools that provide users available computing capacity when needed. The stations can execute
computationally intensive programs that formerly were run on mainframes. When supplied with a works-
tation, the user owns the resource. Owners can control access to these stations and configure them with
software to suit their individual needs. To improve the quality of provided service, stations are brought
together into networks to allow sharing of servers, and the distribution of mail. The network of stations pro-
vide flexibility and availability of computing service. This is an improvement to the previous times when
during peak working times of the day many users competed for computing capacity of mainframe comput-
ers. The total computing capacities of these workstation networks can be huge. As an example, in addition
to other computers, the University Of Wisconsin Computer Sciences department has 75 DEC MicroVaxII
workstations. Each workstation has a single chip processor which has roughly the capacity of a Vax

11/780.1 This capacity is a little less than 2 MIPS.2 This means the department has, from workstations
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alone, about 150 MIPS at its disposal.

An additional improvement in the quality of service can be obtained if the network of stations allows
the sharing of computing capacity. When a user needs more capacity than what his/her workstation can
supply, available capacity can be allocated from other stations. Networks where computing capacity is
shared among stations can allow a single user to expand the capacity of his/her station to that of the entire
network. The capacity of the user’s station is expanded by remotely executing background jobs. We have
observed in our department a large number of background jobs that could exploit capacity sharing if the
opportunity existed. These jobs ran for long periods of time with little interaction from users. As an exam-
ple, we have observed a user who maintained a queue of 20-30 background jobs awaiting execution for
several months. Each job executed about 1 hour on a MicroVaxll workstation. Another user maintained a
queue of more than a dozen jobs where each job consumed weeks of cpu time. One of the jobs was
observed to consume 1 month of cpu time on a MicroVaxIl. We call networks that allow the remote exe-
cution of background jobs LOcal COmputing capacity eXpanded (LOCOX) networks. LOCOX networks
can contain not only workstations, but other processors (which we call processor bank nodes) that have no
specific owners but serve exclusively as sources of extra computing cycles. Figure 1 illustrates this

environment.

Computing capacity is available to share because stations are not used by their owners continuously.

A number of studies have addressed the problem of allocating remote capacity in a distributed environ-
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ment. These include papers on the V-Kernel,? Process Server, and the NEST research project. For all of
these system, the authors recognized that workstations often are available for remote cycles. ’fhe authors
of the paper on the V-Kemel stated that many workstations are available even during the busiest times of
the day. However, these papers did not profile the availability of the workstations. They presented facili-
ties they designed to provide remote execution of jobs on workstations. To evaluate approaches of manag-
ing capacity sharing, we need to understand the characteristics of workstation usage. This means we must
properly profile the workload of workstation activity. A major component of any study is the workload
used. No system evaluation study can avoid confronting the problem of modeling a workload.® If inap-
propriate workloads models are chosen when studying scheduling policies, then inappropriate results can
occur. Performance indices to be evaluated in a study are critically dependent on the workload processed
by the system.” This paper explores the patterns of activity which owners have with their workstations, and
characterize the extent which capacity is available for sharing. A model of the workstation utilization is
developed as a stochastic process. Our work enables others the opportunity to use realistic workloads
when evaluating capacity sharing policies. Also, when usage patterns are understood, algorithms can be
designed that take advantage of the patterns. This work can enable one to estimate the expected capacity
available from a workstation network, and therefore predict the turnaround time for background jobs that

execute remotely.

To obtain the workload usage profile, we monitored several stations at our department for a period of
5 months. We believe the profile obtained typifies workstation networks found in both academic environ-
ments and research and development environments. In order to model the workstations as a stochastic pro-
cess, workstation usage patterns were analyzed to provide insight on how workstations are used, and how
much capacity is available. The distribution of workstations’ available and non-available intervals has
been profiled. The correlation between available and non-available periods has been characterized. We

looked at how the availability on a station changes from hour to hour, day to day, and month to month.

Many studies have used exponential distributions for the interarrival times and the service demand of
jobs.8-12 A number of researchers have observed that the cpu requirements of jobs on multiuser computers

are not exponential. However, these studies profiled processes and not users. One example is of Leland



and Ott!3 who present a study from the observation of 9.5 million Unix" processes and showed that proba-
bility distribution of cpu time used is far from exponential. The distribution of cpu capacity used by
processes was approximately 1-7x™, where 1.05<c<1.25. Another example is presented by Zhou!4 who
traced Unix processes on a Vax 11/780 computer. The trace included the arrival patterns and cpu demands

of the jobs. The arrival and cpu demands were observed to have a large coefficient of variation.

Our work profiles the workload of a network of workstations and not of a multiuser computer. It
gives the characteristics of the availability of workstation for remote cycles. It is not a model of individual
job’s response times or cpu utilization. We conservatively profile how workstations can be used by other
users without compromising the owner’s control of the workstation. The workstation owner maintains con-
trol and only allows cycles to be used by others if the user load of the station is lower than a very small
threshold. We present the behavior of the user as a stochastic process with hyperexponential state time dis-

tributions.

In section 2 we describe the technique used for acquiring data on workstation usage. An analysis of
this data is presented in section 3. Section 4 includes a description of a family of stochastic models based
on the analysis of section 3. In section 5 we describe how the workload model can assist the design of

resource allocation algorithms. Conclusions and a description of continuing work are laid out in section 6.

2. Technique Of Acquiring Data

We have monitored the usage patterns of 11 DEC MicroVaxII workstations running under Berkeley
Unix 4.2BSD over a period of five months from the first of September to the end of January. The stations
observed were owned by a variety of users. They were 6 workstations owned by faculty, 3 by systems pro-
grammers, and 2 by graduate students. Two additional stations used by systems programmers that were
only available for monitoring from September through November have their traces included in the results

reported.

We have obtained the profile of available and non-available periods of each of the workstations. An
unavailable period, NA, occurs when a workstation is being used, or was recently used by its owner so that

the average user cpu usage is above a threshold (one-fourth of one percent!3 ) or was above the threshold

* Unix is a trademark of AT&T Bell Laboratories.



within the previous 5 minutes. The average cpu usage follows the method the Unix operating system uses
for the calculation of user load in a similar way as the ps(I) 16 command (process status) computes the cpu
utilization of user processes.! This load is a decaying average that includes only the user processes, and
not the system processes. Activities resulting from programs such as time of day clocks or graphical
representations of system load do not generate user loads that arise above the threshold. An available

period, AV, occurs whenever a workstation’s state is not NA.

The workstation usage patterns were obtained by having a monitoring program executing on each
workstation. The monitor on each station executes as a system job and does not affect the user load. The
monitor on each workstation looks at the user’s load every minute when the workstation is in the NA state.
If the user’s load is below the low threshold for at least 5 minutes, the workstation’s state becomes AV.
During this time the workstation’s monitor will have its "screen saver" enabled. The monitor looks at the
user’s load every 30 seconds when the workstation is in the AV state. Any user activity, even a single
stroke at the keyboard or mouse, will cause the "screen saver” to be disabled and all user windows on the
workstation’s screen to be redrawn. This activity brings the user load above the threshold, and causes the
state to become AV. If no further activity occurs, approximately seven minutes pass before the station’s
state changes to AV. This is because it takes the user load average 2-3 minutes to drop below the threshold,
and an imposed waiting time of 5 minutes. The waiting period is imposed so the users who stop working
only temporarily are not disturbed by the "screen saver" reappearing as soon as they are ready to type
another command. The waiting time is adjustable, but it has been observed that it is a good value to choose
without causing an annoyance to users.!” This éonservatively decides whether a station should be a target
for remote cycles. Stations are idle much more than what appears in the AV state. The user load with the
imposed waiting time is used as a means of detecting availability because the station should not be con-
sidered a source of remote cycles if an owner is merely doing some work, thinking for a minute, and then
doing some more work. Otherwise a station would be a source of remote cycles as soon as the owner
stopped momentarily. The workstation’s owner would suffer from the effect of swapping in and out of

his/her processes, and the starting and stopping activities of the remote processes.

The monitor keeps records of the workstation’s last 100 state changes. Every ten hours, one of the

workstations gathers the records from all other workstations and maintains a log for the entire LOCOX net-



work. When records are gathered from a workstation, the user load is not affected. This is because the
monitor on the workstation which sends the records executes as a system job. Because lesé than 9 state
changes would occur within an hour because NA states last at least 7 minutes, we will not lose records due
to our sampling rate. Some record were lost because a few stations had their monitors disabled for a short
while, and then enabled later. This happened rarely and has little significance on our traces. During inter-

vals when station monitors were disabled, the time was marked as an NA interval.

3. Analysis Of Data

We want to represent the usage patterns of the workstations as a stochastic process so it can be used
to model workstation availability. Such a model can be used in performance evaluation studies of LOCOX
networks, or to support design decisions of resource management algorithms that take advantage of know-
ing the properties of the usage pattern. A model improves the quality of the prediction of the amount of
available remote capacity. With the workload modeled as a stochastic process, we do not need to use traces

to drive simulation models.

In order to define a stochastic process we have to know the distributions of AV and NA state lengths,
and how state lengths are correlated. The data gathered from each workstation was analyzed to determine
the relative frequency distributions of the AV and NA state lengths. Individuals stations were analyzed and
the characteristics of their distributions are reported. We show how the length of AV intervals was corre-
lated to the length of subsequent NA intervals, and vice versa. We report how the availability of remote

capacity varied from hour to hour, day to day, and month to month.

3.1. Distribution Of Usage Patterns

A graph of the cumulative relative frequency of the AV states for all of the stations during the entire
time monitored is shown in figure 2 (the solid line). For each time ¢ on the horizontal axis, the correspond-
ing percentage on the vertical axis is the percentage of AV intervals that were less than ¢+1 minutes. The
figure shows that there were many short AV intervals of less than a few minutes and many very long inter-
vals of an hour or longer. The solid line curve in figure 3 shows the cumulative relative frequency of NA
state lengths. As in figure 2, for each time ¢ on the horizontal axis of figure 3, the corresponding percen-

tage on the vertical axis was the percentage of NA intervals less than £+1 minutes.

-6-



100 - 100 - —

90 4

80 4

70 4

£ o c
iy T
[ C
e 504 e
n . n .
5 40 S M,omtore}d ].)ata’ a 4] — Monitored Data
g | Fitted Distribution £ N Fitted Distribution
30 4 N
20 20 4
10 104
0 . . . . . . . T . \ [} v v Y Y . . . . Y Y
0 60 120 180 240 300 360 420 480 540 600 0 60 120 180 240 300 360 420 480 540 600
Minutes Minutes
Figure 2. Figure 3.
Distribution Of AV Distribution Of NA
State Lengths Of All Stations State Lengths Of All Stations

When we look at figures 2 and 3, we notice that there were many short intervals for both the AV and
NA graphs. This leads us to believe that a significant component in the relative frequency was from short
intervals. However, there were more long intervals than what one would expect to see in an exponential
distribution. The graphs show that the percentage of intervals larger than one hour is greater for AV inter-
vals than for NA intervals. In figure 2 we see that there was a large number of AV intervals beyond 5 hours
long (300 minutes). This leads us to the belief that the AV periods were dominated by three types of
periods: short, medium, and long. For the NA periods we have identified two types of periods: short and
long. With this intuition, we seek to match a distribution to each of the relative frequencies observed. Fig-
ures 2 and 3 appear to have exponential components because they increase similarly to an exponential dis-
tribution and have long tails. A mixture distribution of exponentials seems to be a good candidate to fit the
observed data.!8 This distribution is sometimes referred to as a k-stage hyperexponential distributions,
when the distribution has £ components.!® The k-stage hyperexponential distribution function of a random

variable T is defined as

i=k i=k
F(T)=Y o,F;(t), where F;(t)=1-¢ ™, and ¥ o;=1. (1)
i=0 i=0
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We look for a k-stage distribution that fits our monitored data well and has a small number of components.
Each component i of a k-stage distribution introduces two parameters that must be adjusted: A; and o;.
On one hand, the more components introduced the better the fit is, but on the other hand it is more complex
to assign values to a large number of parameters. It is important to capture the characteristics of a relative
frequency distribution with as few components as possible. For the AV relative frequency distribution, a
good match was achieved by using a 3-stage hyperexponential distribution. The stages represent the small,
medium, and large AV intervals. The components were assigned the expected values of 3, 25, and 300
minutes. Short intervals occurred when users did some work, and then stopped to think for a while before
resuming the use of their workstations. Medium intervals were the result of users leaving their desk for
short intervals, or stopping to do other work during the day. Since users left their offices in the evening and
weekends, scheduled long meeting, and taught or attended classes, long available intervals occurred.

Weights were assigned to the different components to obtain the following 3-stage distribution

- -~ ~f

F(T4)=0.33(1~¢ 3 )+0.4(1—¢ 5 )+0.27(1~e ®), @)
The small component contributes to 1/3 of the distribution. The larger components account for 2/3 of the
distribution of which a little less than 2/3 is the medium component, and the remainder is the largest com-

ponent.

Figure 4 shows the match of the cumulative distribution to the monitored traces for AV intervals
smaller than 60 minutes. The curve derived analytically for figure 4 was generated from equation 2. The
distribution of intervals that were less than 60 minutes is an important portion of the distribution to match.
This is the region where one must study to determine whether it is worthwhile to use workstations as a
source for remote execution of jobs. Intervals that were several hours long could be broken into two inter-
vals which are both longer than an hour and it would not greatly affect any remote capacity allocation stra-
tegies. We see that the match is excellent between the two curves. Figure 2 shows the match for AV inter-
vals that were up to 600 minutes in length. The overall difference between the fitted distribution and the

relative frequency distribution is very small.

Less complexity is introduced when matching the NA intervals because its relative frequency distri-
bution has fewer long intervals. A good match for the NA intervals, Ty, , is obtained if we use a 2-stage

hyperexponential distribution. The two components have the expected values of 7 and 55 minutes. The
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short component is the result of frequent short activities. The user typed a few simple commands and then
stopped to do something else. The user might have had some jobs that executed for short intervals even
when he/she was not at the station. These short jobs contributed to the user load which briefly made the sta-
tion unavailable. The long components are the result of prolonged activity by the user. Long intervals
occurred if the user had long running jobs to execute, which continued to execute even when the user was
away from the station. Since each NA interval lasted at least 7 minutes, the distribution is modified so that

the probability that an interval is less than 7 minutes is zero. The distribution of NA intervals is defined as

-t -

=t
0.7(1-e 7 }+0.3(1-e °), if £>7
F(Tna) =1, if 0<<7. 3)
Figure 5 shows the match between the cumulative distributions of Ty, and the monitored relative fre-
quency for NA intervals less than 60 minutes. The curve derived analytically for figure 5 is generated from
equation 3. The match in figure 5 is very good. Figure 3 shows the match for NA intervals that were up to

600 minutes in length.

Beyond the first five minutes, the greatest amount the fitted curve in figure 2 deviates from the curve
of the monitored data at any point is approximately 2.5% from below and 1.0% from above the monitored
data. For figure 3, the greatest the fitted curve deviates beyond the seven minute interval from the observed
data is 1.0% from below and 1.5% from above. By using the Kolmogorov-Smimov test (KS test) for curve
matching,20 we calculate the likeliness that our observed data could be generated from a random sequence
of our fitted distribution. If random sequences were generated from the distribution of equation 2, it would
have approximately an 45% chance of deviating from below as much as our monitored data, and an 85%
chance from above. Random sequences generated from a distribution like equation 3 would have approxi-
mately an 85% chance of deviating from below, and an 80% chance from above as much as our observed
data. These ranges mean that random sequences with distributions of equations 2 and 3 are likely to devi-
ate as much as our monitored data. This gives added confidence in using equations 2 and 3 as matches for
our observed data. We believe that equations 2 and 3 can serve as means of artificially describing AV and

NA interval characteristics for studies involving remote allocation strategies of workstations.

Each individual workstation had its own usage patterns. The pattern of some stations varied greatly

from the others. Nevertheless, each workstation can be characterized by its own mixture distribution as
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defined by equation 1. Each workstation had three components for its AV interval characteristics, and two
components for its NA intervals. A good fit was obtained for each station taken individually. Although the
magnitude and contribution of each component varied, each station had a AV short component with
expected values that ranged from 3-5 minutes, a medium component that ranged from 25-60 minutes, and a
large component that ranged from 150-600 minutes. All stations followed these chz;racteristics except one,
which was station 5. Station 5 was available very little, and did not match well with these ranges. Iis com-
ponents were much smaller than those of the other stations. For the NA components, all stations had short
components ranging from 7-11 minutes, and long components from 45-95 minutes. All but two of the

station’s long NA components were between 45-55 minutes,

3.2. Correlation Of Available And Non-Available States

When we build an artificial workload generator, information beyond the distribution of the states is
needed. Given that distributions that closely match the observed distributions of the two types of intervals

can be generated, we need to know how the length of AV and NA intervals correlate. What can the length of

the current interval tell us about the length of the next interval?
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Pairs of NA and AV periods were analyzed to determine whether such a correlation exists. We
looked at the traces and labeled AV intervals as short, medium, or long samples. All samples that were less
than 9 minutes were labeled short samples. (Ninety-five percent of intervals of an exponential distribution
with mean of 3 minutes are less than 9 minutes.) Intervals greater than 9 minutes and less than 75 minutes
(which is the 95 percentile of an exponential of the medium distribution with mean 35 minutes) were called
medium samples. The remaining available AV samples were labeled large samples. We similarly
classified NA samples less than 21 minutes (the 95 percentile of an exponential distribution with mean of 7

minutes ) to be short samples, and the remaining samples long.

With this labeling method, we show a conditional probability graph in figure 6. It shows that 41% of
all AV samples were short, 36% were medium, and 23% were long. Equation 2 weighted the components
as 33% short, 40% medium, and 27% long. Our labeling gave a greater percentage of short intervals than
what appears in equation 2. This was expected since some intervals from the medium and long com-
ponents are less than 9 minutes in length and therefore counted as short. This is demonstrated in figure 4
by the curve generated by the distribution function of equation 2. About 41% of its intervals shown in
figure 4 are less than 9 minutes. Of the NA samples, figure 6 shows that 74% were short, and 26% were

long.

We show how NA periods followed AV periods in figure 6. The conditional probability distribution
is very close to the unconditional probability distribution. Short, medium, and long AV periods followed
NA intervals in approximately the same proportion that they occurred. From this graph there does not
appear to be a correlation between the length of the AV and NA periods. This observation was verified by

computing the correlation coefficient 20 of NA and AV periods. It was a very small positive value.

Although the AV and NA intervals were uncorrelated, pairs of AV intervals, and pairs of NA intervals
were correlated. An AV pair is two AV periods that are separated by a single NA period. Likewise, an NA
pair is two NA periods that are separated by a single AV period. A correlation was expected because of the
way individuals use their workstations. Users tend to have a cluster of short idle periods, or a cluster of
several long idle periods. Some users work on their workstations infrequently, so they have mostly long
AV intervals separated by long or short NA intervals. Figure 7 shows the conditional probability graph of

AV pairs. Short AV intervals were more likely (64%) to be followed by short AV intervals. Medium AV

-11-



|
AVAILABLE | NOT-AVAILABLE | AVAILABLE
|
Short 1% : Short
41% \\\\\\\\h\\\* 41%
9% | Short
T4%
Medium Medium
36% 36%
Lon
26”/5
Long Long
23% 23%

Figure 6.
Conditional Probability of AV, NA State Changes

intervals were more likely (52%) to be followed bsl medium AV intervals. Similarly, long AV intervals
were more likely (48%) to be followed by long AV intervals. Furthermore, if a long interval was not fol-
lowed by a long interval, then it was more likely to be followed by a medium interval instead of a short
interval. Short, medium, and long AV intervals were nearly twice as likely to follow the corresponding
short, medium, or long AV interval than any other kind of AV interval. A correlation also existed for the
NA intervals as shown in figure 8. However, it was much less significant. Short NA intervals followed

short NA intervals only slightly more than they followed long NA intervals.

3.3. Monthly And Daily Variation Of Availability Of Workstations

The availability of remote cycles of individual stations varied from month to month, but the total sys-
tem availability of remote cycles remained steady for the entire 5 months. Table 1 shows the percentage of
time each station was available for remote cycles from month to month. The row labeled as system gives
the system availability of cycles. Notice how the system availability remained steady in the range 69-74%.
This means that there was a large steady amount of available cycles. The column and row labeled "COV"
represent the coefficient of variation, which is the standard deviation of the availability divided by the aver-
age. The coefficient of variation was computed for each station and for each month. There was a small
variation in most cases. Overall, the stations’ availability was stable. Figure 9 graphically shows how

some individual stations varied their availability, while the system availability remained steady. We
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emphasize that the actual idle time of the workstations was much larger than the available time reported.
Our available time value was conservative. Any user activity causes a workstation to be unavailable for at
least seven minutes. If the seven minute interval for each busy period did not occur, the system availability

would increase approximately 4%. Therefore, if we were less conservative, there would have been greater

The avaiiability of remote cycles varied during the course of a day. It varied during the work week
and the weekend. It is assumed that there would be a lot of available capacities during the evenings, and
on the weekends when most people were not working. One might wonder if there was large available
capacity during normal working times. Figure 10 shows how the availability of remote cycles varied dur-

ing the week from Monday through Friday between 8am and 5pm (8-17 hour). It shows how some
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Machine Specific Months Monitored, Percent of Time In Available State
Name September | October | November | December | January | Average | COV
Station 1 89 80 81 88 84 84 0.1
Station 2 86 89 91 94 90 90 0.0
Station 3 73 28 26 63 67 51 0.4
Station 4 87 84 85 86 81 85 0.1
Station 5 21 0 45 45 32 29 0.6
Station 6 78 81 74 63 69 73 0.1
Station 7 67 27 87 57 91 66 0.3
Station 8 85 72 70 70 47 69 0.2
Station 9 79 88 83 85 80 83 0.0
Station 10 82 89 82 80 78 82 0.1
Station 11 81 84 86 81 86 84 0.0
Station 12 3 96 17 - - 39 -
Station 13 80 86 75 - - 80 -
System 70 70 69 74 73 71

cov 04 04 04 0.2 0.3 03

individual stations’ availability changed during the day. Early in the morning the system availability was
large, and then dropped to about 50% between 2-4 in the afternoon (14-16 hour). Even at the busiest time
of the day there was a large amount of capacity to use. Figure 11 shows the system availability of capacity
on the weekends between midnight and 11pm (0-23 hour). It confirms the intuition that there was a larger

amount of capacity available at those times. The availability on weekends was between 70-80%. The

Table 1: Availability Of Stations From Month To Month.
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busiest time for the workstations on weekends is shown to be between 2pm and 5pm (14-17 hour).

A remote capacity scheduler is likely to want to know on an hourly basis how individual stations are
used. It might wish to know the likelyhood that a job placed at a station will be preempted in the next hour.
Table 2 gives a profile of the utilization of individual workstations over one hour intervals. A station’s util-
ization of an hour is the percentage of the hour the station was in the NA state. It shows that overall, 53%
of all individual hours were NA for less than 6 minutes (0-10% of the hour). Twenty-one percent of all
hours were NA for more than 54 minutes (90-100% of the hour). This information means that if each hour
was observed individually, a station was likely to be available for almost the entire 60 minutes, or was busy

for the whole hour.

As in Table 1, the row labeled "COV" is the coefficient of variation. Across all the stations, the vari-
ation of the utilization of the hours was small with the exception of the hours that were 10-20% and 90-
100% utilized. Although most stations were often busy for the entire hour if they were busy at all, the
larger variation in the 90-100% utilization occurred because some infrequently used stations such as sta-

tions 1 and 2 were rarely kept busy for an entire hour at a time. The large variation in the 10-20% category
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occurred because some stations, such as station 3, automatically ran short programs periodically even when
the owner was not at the console. These programs kept the station unavailable for at least 7 minutes of an
hour so that the utilization was 10-20%. Most stations do not have these program, and therefore we

observe a greater variation for this utilization category.

In addition to the utilization of individual stations, the utilization of the entire system is of interest to
a remote capacity scheduler. It would be beneficial to know the relative frequency distribution of the sys-
tem utilization, SU;, of all intervals of length /. The system utilization during an interval is the average
number of stations in the NA state during the interval divided by the total number of stations. The SU,
would help a scheduler estimate the fraction of the system capacity that is available for the next / minutes.
Of special interest, the SU; would help a scheduler know how likely all stations would be in the NA state
simultaneously. Our analysis of the traces of the stations shows that it was highly unlikely that all stations
were in the NA state at the same time. The 11 stations that were monitored for the entire measurement
period were examined. We observed that during the five months the system was monitored, the longest
period in which no station was available was 10 minutes. This means that from a practical point of view,
there was always one or more stations available. The longest period that one would have to wait for 2 sta-
tions to become available was 25 minutes. The longest period that one would have to wait for 3 stations to

become available was 2 hours.

Table 3 shows the relative frequency distribution of the system utilization for intervals lengths of 60

minutes, 30 minutes, 10 minutes, and 1 minute, Notice that the system utilization was less than 40% for

Machine Specific Percentage Of Hours With This Utilization

Name 0-10 10-20 20 -30 30-40 40-50 50 - 60 60 - 70 70-80 80-90 90-100
station 1 72 8 3 3 2 2 2 2 3 4
station 2 72 8 3 3 2 2 2 2 2 3
station 3 8 44 2 2 2 2 2 1 2 36
station 4 73 7 3 2 2 2 2 2 2 7
station 5 10 4 8 5 4 3 3 2 4 58
station 6 46 17 7 4 2 2 4 2 3 11
station 7 59 3 2 1 1 1 1 1 1 31
station 8 41 13 6 5 3 3 4 3 3 18
station 9 69 5 3 2 2 2 1 1 2 14
station 10 59 14 5 3 2 2 2 1 2 9
station 11 67 5 1 1 1 1 2 1 2 19
station 12 55 2 1 1 1 1 1 1 1 37
stations 13 58 3 2 1 1 1 1 1 1 31
Average 53 10 4 3 2 2 2 1 2 21
cov 04 1.1 0.3 0.5 0.3 0.4 0.5 0.4 0.1 0.8

Table 2: Utilization Of Individual Stations For One Hour Periods.

- 16 -




almost 80% of all hour intervals. This means that the probability that at least 6 stations were available is
almost 80%. There was never an hour where the average number of NA stations was greater than 9 sta-

tions.

Figure 12 shows how on an hourly basis the system utilization and individual station utilization com-
pare. The solid curve in the figure comes from data in Table 3 and the dashed line comes from data in
Table 2. Individual stations were likely to be AV or NA for entire hours, while the system was likely to

have a total of 2-4 stations in the NA state. Because individual stations are likely to be either AV or NA for

Utilization,p | SUg | SU3g | SUy | SU,
0<p<10 6.0 84 | 13.0 | 180
10 <p< 20 28.1 | 252 | 244 | 246
20 <p< 30 282 | 290 | 247 | 227
0<p<d0 | 162 | 153 | 154 | 134
40 <p< 50 8.7 8.8 8.9 7.8
50<p<60 | 65| 67| 64 | 57
60 <p< 70 44 44 4.3 4.0
70 <p< 80 1.6 1.7 2.1 2.3
80 <p< 90 0.3 04 0.8 1.1
90 <p<100 0.0 0.1 0.1 0.4

Table 3: Relative Frequency Distribution Of System Utilization, SU
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the entire hour, the prediction of whether a station is available for an entire hour can be approximated by a
Bemnoulli distribution. We can view the station as having a probability p that it is in the NA state, and 1-p
that it is in the AV state. If we assume that the behavior of each station is independent, then the probability

that k stations are in the NA state, n;, can be approximated by the binomial distribution

_ 11 oy yl1k
”""{k!(ll-k)!}” (I-p)™.

The dashed line in figure 13 is the Bernoulli density function for p=0.3 and the solid line is the correspond-
ing binomial density function. This Bernoulli density function with p=0.3 is shown because the utilization
of the individual stations was more than 50% for approximately 30% of the hour intervals observed.
Notice the similarity of the shapes of the curves in figures 12 and 13. This indicates that the stations can be

viewed as independent and the system utilization can be approximated by a binomial distribution.

Large availability of system capacity means that if a long running sequential job can be distributed,
several stations are likely to be available to serve it. Suppose a user has a job that would execute on a sta-
tion for 5 hours. Because it is very likely that more than 6 stations are available simultaneously for an hour
interval, a version of the long running job distributed into 6 or more processes is likely to be able to acquire

enough available processing cycles to complete within an hour.

4. Development Of Stochastic Models

From the results we can define a family of models that describe the behavior of the users at different
levels of accuracy. A first approximation is a model where state times are independent random variables.
In this model, the state lengths are distributed exponentially. The expected value of the distribution is the

mean of the observed AV and NA state lengths.

A better model includes the observations that 3-stage and 2-stage hyperexponential distributions
closely fit the relative frequency distributions of the AV and NA state lengths. In this model the distribution
of the state lengths of the first approximation are replaced by the 3-stage and 2-stage hyperexponential dis-

tributions.

A more accurate model takes into account the correlation of the state lengths. This leads to our sto-
chastic model of workstation usage. The length of the next AV period depends on the length of the current

AV period. Likewise, the length of the next NA period depends on the length of the current NA period. In
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this model, the type of next interval, whether it is small, medium, or large, is based on the conditional pro-
babilities described in the conditional probability diagrams of figures 7 and 8. When the next interval’s
type is known (small, medium, or large), the next sample’s length is specified as a random sample from an
exponential distribution that is a component of equations 2 or 3 that represent the sample’s type. For exam-
ple, long AV samples are chosen from an exponential distribution that has an expected value of 300

minutes.

Further accuracy can be introduced into the model by giving each workstation its own distributions
and correlations of state lengths. A workstation’s availability depended on the time of day, and the day of
the week. A model which includes this information is more complex, and more precise. We plan to con-
tinue our study to understand if further complexity is necessary in order to capture the characteristics of

workstation availability.

5. Applying The Workload Model To The Design Of Resource Management Algorithms

Design strategies can take advantage of our observations of workstation behavior. Our model
describes when, how much, and for how long remote capacity is available. This information is important
because there must be long periods of time where owners are not using their stations in order for capacity
sharing to be feasible. This is because a remotely placed job using shared capacity is preempted whenever
the station’s owner resumes with local usage of his/her station. The remotely placed job can remain at the
same location until the workstation becomes available again, or can be moved elsewhere. Our observations
indicate that workstations monitored for a particular hour tend to remain either available or non-available
for the entire hour. This information is ideal for designing schedulers. A scheduler can remotely place a
job at a location and know there is a high probability that the job will stay there for most of an hour without
being preempted. Another important observation was that a workstation with a long AV interval was likely
to have its next AV interval to be long. This information provides an important heuristic for a scheduler to
use when when deciding which available stations to allocate as sources of remote capacity. Those worksta-
tions with recent long available intervals should be considered before workstations with recent short avail-

able intervals when targeting stations as sources of remote cycles.
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The results of this paper are useful for the development and evaluation of algorithms that schedule
and predict completion times of long running background jobs that execute in a LOCOX network. Algo-
rithms can be developed that schedule jobs based upon the priority for completion that a user gives to the
jobs, and predict for the user when the jobs complete. In order to predict completion, an algorithm needs to
know the expected availability patterns of remote capacity in the system. This paper gives insight of this
information. The scheduling algorithm can internally reserve expected future capacity of the system to
jobs based both upon the priority that the user assigns to jobs, and the global priority the user has in relation
to other users. From this information, an algorithm could give good estimates of when submitted back-
ground jobs are expected to complete. A user could use this information interactively with the scheduler to

decide how to give priority to jobs.

Other applications of the workload characteristics and results presented in this paper are possible.
These examples only serve to give insight on the benefits of knowing the characteristics of workstation

workloads.

6. Conclusions

Networks of powerful workstations have become prevalent in modern computing environments.
These networks of workstations provide the possibility of expanding the capacity available to a user
beyond his/her local workstation to that of the entire network. With the advent of the LOCOX networks,
large computing capacity can be available for general computing usage. However, special attention is par-
ticularly important due to the fact that workstations are private resources under the control of their owners
and only become sources of remote cycles when the owners of the workstations make them available. In
this paper, we have presented the profile of the workload of a LOCOX network and a stochastic model that
matches it very closely. Since performance evaluation studies are critically dependent on the workload

processed by a system, the workload description is especially important.

The model of workstation activity presented is based on the observed distributions of AV and NA
intervals, and their correlation. An exponential distribution does not adequately represent the relative fre-
quency distributions of AV and NA state lengths. Observations presented in this paper show that a 2-stage

and 3-stage hyperexponential distribution fits the relative frequency distribution extremely well. The com-
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ponents that characterize the workstations” AV intervals have expected values of 3, 35, and 300 minutes.
NA intervals are derived from short and long exponential distributions with expected values of 7 and 55
minutes. The length of AV intervals was not correlated with the length of NA intervals, but the length of
pairs of AV and pairs of NA intervals were correlated. The stochastic model presented captured this corre-
lation of interval lengths of the workstations. Additional observations in the paper show that each worksta-
tion has its own distributions of AV and NA patterns. The complexity of a stochastic model depends on the
level of details of observed behavior included in the model. A more complicated model would include
these observations. However, the choice of a model should be one that captures the characteristics of the

observed behavior with the least amount of complexity.

The LOCOX network has huge capacities to share. The system availability was approximately 70%
for the time observed. Although availability varied from station to station, the variation of each station was
typically small. The system availability was stable from month to month. Not only during evenings and
weekends was the availability large, but also during the busiest times of weekdays. When stations were
observed for hour intervals, they typically were available for most of the hour, or unavailable for the entire

hour.

Work has started which uses the workload described in this paper as input to performance evaluation
studies of resource management algorithms. We plan to continue our work of developing algorithms for
remote capacity scheduling and performance prediction in a LOCOX network. Since a stochastic model of
the system can depend on the detail of observations included in the model, we intend to continue to explore

the amount of complexity needed to capture the characteristics of workstation availability.
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