ALGORITHMS FOR THE MAXIMUM
INDUCED BIPARTITE SUBGRAPH PROBLEM
ON INTERVAL AND CIRCULAR-ARC GRAPHS

by
Rachel Manber
Giri Narasimhan

Computer Sciences Technical Report #696

April 1987

ALGORITHMS FOR
THE MAXIMUM INDUCED BIPARTITE SUBGRAPH PROBLEM
ON INTERVAL AND CIRCULAR-ARC GRAPHS

Rachel Manber* Giri Narasimhan*

Computer Sciences Department
University of Wisconsin-Madison
Madison, Wisconsin-53706.

April 1987

ABSTRACT

The Maximum Induced Bipartite Subgraph Problem (MIBS) is the problem of
finding an induced bipartite subgraph with the largest number of vertices. The problem
is known to be NP-complete for general graphs [LY80]. We present algorithms to find
the maximum induced bipartite subgraph for interval graphs and for circular-arc graphs.
These algorithms run in times O(nlogn) and O(n?®) respectively.

* Research Supported By A Grant From Wisconsin Alumni Research Foundation.

1. INTRODUCTION

Let G = (V, E) be a simple graph, i.e., a finite, undirected, loopless graph without
multiple edges. Let F be a family of nonempty sets. The graph G is called an Intersection
Graph for F if there is a one-to-one correspondence between the vertices of G and the
sets in F such that two vertices are adjacent iff their corresponding sets intersect. The set
F forms an Intersection Model for the graph. Every graph is an intersection graph for
some family of sets [Ma45]. We focus here on two special classes of intersection graphs.
One class consists of Interval Graphs which are the intersection graphs for a family of
intervals on a linearly ordered set. The other class consists of Circular-Arc Graphs
which are intersection graphs for a family of intervals that lie on a circle (circular arcs).
These two classes of graphs arise in practical applications including scheduling and compiler
optimization [Go80].

The Maximum Induced Bipartite Subgraph Problem (MIBS) is the problem
of finding an induced bipartite subgraph with the largest number of vertices. The problem
is known to be NP-complete for general graphs [LY80]. We present here algorithms to find
the maximum induced bipartite subgraph for interval graphs and for circular-arc graphs.
These algorithms run in times O(nlogn) and O(n®) respectively. The algorithms assume
that their inputs are intersection models for the given graphs. An intersection model for
interval graphs can be computed in O(n + m) time [BL76]. An intersection model for

circular-arc graphs can be found in O(n®) [Tuc80].

The maximum induced bipartite subgraph problem can be viewed as the problem
of coloring the maximum number of vertices using 2 colors. There is a wide spectrum
of problems of the same general type. These problems ask for the maximum number of
vertices of a graph that can be colored using k colors. For instance, the problem of finding
the largest independent set in a graph can be formulated as the problem of coloring the
maximum number of vertices with 1 color. At the other end of this spectrum lies the
general coloring problem. There are many variations and applications of the coloring
problem, and they are usually NP-Complete. In particular, one can ask for the largest
induced subgraph which is k-colorable for arbitrary values of k or just for small fixed

values of k. We concentrate on the case k = 2.

1

For interval graphs, many of these coloring problems are known to be solvable in
polynomial time. These include the maximum independent set problem [GLLS2], the
general coloring problem, and the problem of deciding whether, for a fixed &, the chromatic
number of G is at most k£ [GLL82]. However, for circular-arc graphs the general coloring
problem is NP-Complete, while the other problems mentioned above are known to be
solvable in polynomial time [Ga74] [GJMP80]. Sections 2 and 3 contain polynomial-time

algorithms for the Maximum Induced Bipartite Subgraph problem for Interval graphs and

for Circular-arc graphs respectively.

2. INTERVAL GRAPHS

Let I = {u; = (ai,b;) : ¢ = 1,...,n} be an intersection model for the interval graph
G(I) = (V,E). That is, there is a one-to-one correspondence between the intervals in [
and the vertices of G such that [v;, v;] € E if and only if the corresponding intervals u; and
u; have a nonempty intersection. We note that there is no loss of generality in assuming
that all intervals in I are open and share no endpoints.

Interval graphs are chordal. That is, every cycle of length greater than 3 has a chord.
It follows that every bipartite interval graph is acyclic. Moreover, since every induced
subgraph of an interval graph is an interval graph, every induced bipartite subgraph of an
interval graph is acyclic.

Algorithm A below finds a maximum induced bipartite subgraph of a given interval
graph. It first sorts the n right endpoints of the given n intervals and then scans the
intervals in that order. The scanning process repeatedly chooses the two intervals with the
leftmost right endpoints to be in the solution and deletes the two intervals as well as all
intervals which intersects both of them. The scanning process can be done in linear time
and hence the time complexity of Algorithm A is dominated by the time complexity of

sorting, i.e., O(nlogn).

Algorithm A

INPUT: A set of intervals I given as a set of ordered pairs of endpoints.
OQUTPUT: I' C I such that the subgraph G(I') induced by the intervals in I' is the largest
induced bipartite subgraph in G(I).

Sort the n right endpoints of the n intervals.

Let yo be the interval with the leftmost right endpoint.
I' — {yo}

Ie—1TI-{y}.

AN A

while I is nonempty do

6. Let y; be the interval in I with the leftmost right endpoint.

7. Add y; to I'.

8 I —1TI—{wn}

9. If yo intersects y; then remove from I all intervals that intersect both y, and y;.
10. Yo «— w1
endwhile

11. Output I'.

The main idea behind Algorithm A is that there exists an optimal solution that
contains the two intervals with the leftmost right endpoints. This fact is established in the

next two lemmas. Theorem 3 proves the correctness of Algorithm A.

Lemma 1: Let I be a family of intervals on a linearly ordered set, and let yo be the
interval in I with the leftmost right endpoint. Then there exists a solution to the MIBS
problem for G(I) that contains yq.

Proof: Let J be any solution to the MIBS problem. Suppose J does not include y,. Let

y; be the interval in J with the leftmost right endpoint. The interval y; must intersect

3

yo or else J U {yo} would be a solution of size larger than the size of J. We claim that
J' = J—{y1}U{yo} is a solution to the MIBS problem for G(I). It suffices to show
that G(J') is bipartite. Let vp and v, be the vertices corresponding to intervals yo and y;
respectively. If v is a vertex in G(J) and (v, v1) ¢ E, then the interval corresponding to v
must lie wholly to the right of y; and consequently must lie wholly to the right of y,. It
follows that (v,vy) € E, and since G(J) is bipartite so is G(J').R

Lemma 2: Let I be a family of intervals on a linearly ordered set and let yp and y; be

the two intervals with the leftmost right endpoints in I. Then there exists a solution to

the MIBS problem for G(I) that contains both yy and y;.

Proof: By Lemma 1 there exists a solution J' that includes yo. Suppose y; & J'. Let
V1 and V3 be a bipartition of the vertex set of B(J'). Let Ji and Jj} be a partition of J'
that corresponds to the vertex sets V; and V;. We may assume that yo € J;. We want
to replace an appropriate element of J' by y; thus constructing a solution that contains
both 1y and y;. Let y, be the interval with the leftmost right endpoint in J} and let
Jy = Jy —{y2} U{y1} and J; = Jj. All the intervals in J; — {y2} lie entirely to the right
of y, and hence must lie entirely to the right of y;. It follows that the intervals in Jj; do
not intersect each other and the intervals in J = J; U J; induce a bipartite subgraph of
cardinality |J’'|. Thus J is a solution to the MIBS problem for G(I) that contains both y,
and y, R

Theorem 3: Let I be a family of intervals on a linearly ordered set. The output of

Algorithm A on input I is a solution to the MIBS problem for G(I).

Proof: We use induction on the number n of intervals in I. The claim is trivially true for
n = 1. Assume that the algorithm works correctly on all sets with less than n intervals
and let |I| = n.

Let S' be the solution found by Algorithm A on input I. Then S’ is clearly bipartite.
Denote by vy and y; the two intervals in I with the leftmost right endpoints. If yo and y;

4

intersect, we define A as the set of intervals that intersect both of them, otherwise A = 0.
Clearly yo,y1 € S'. Moreover, Algorithm A will return the solution S’ — {ys} on the input

I' =T - {yo} — A. By the inductive assumption S’ — {yo} is a correct solution for I'.

Let S be any solution on input I containing yo and y;. By Lemma 2 such a solution
exists. Next we show that S — {yo} is a solution on input I'. This would complete the

proof of the Theorem since it implies that |S| = |S'|.

Clearly S — {yo} induces a bipartite subgraph in G(I'). Assume that S — {yo} is
not a maximum size solution on input I'. Let T’ be a solution on input I' such that
|T'| > |S — {yo}|- By Lemma 1, we can assume that y; € T'. Let T = T"U{yo}. We claim
that the intervals in T' correspond to a bipartite subgraph of G(I). Indeed, if any triangle
is formed in G(T'), it must have yo as one of its vertices. But, if an interval intersects yq,
it also intersects y;, because the right endpoint of yp lies to the left of the right endpoint
of y;. Hence any triangles in G(T') must be formed by the vertices corresponding to yo,
y; and one other interval. But all such intervals are in A, and AN I' = 0. It follows that
T is a solution on input I. The fact that |T| > |S| contradicts the assumption that S is a

solution on input I. B

We conclude this section with the following simple observation on the nature of Algo-

rithm A. The rightmost right endpoint of a set of intervals S is called Right-end(S).

Lemma 4: Let I be a set of intervals on a straight line. When Algorithm A is applied to
input I it returns a solution S such that Right-end(S) is the least (i.e., leftmost) among
all solutions.

Proof: Let u; = (27, y1) be the interval in S with the rightmost right endpoint. Consider
any solution S’ on input I. Let uj = (z},y;) be the interval with the rightmost right
endpoint in S’. Since Algorithm A is correct, |S| = |S'|. Suppose y; < y;. Now let R
be the set of all intervals in I with right endpoints to the right of y;. Then u; € R and
RNS =0. Also, let T'= RN S. Since u; € T, we have |T| > 1. Clearly, S’ is a solution
on input I — R. However, on input I — R Algorithm A will find the solution S — T, which

is of suboptimal cardinality (< |S'|), thus contradicting the correctness of Algorithm A. B

5

3. CIRCULAR-ARC GRAPHS

In this section we present an algorithm for solving the maximum induced bipartite problem
for circular-arc graphs. The input for the algorithm is a collection M = {u; = (z;,y;) : i =
1,...,n} of intervals on a circle (taken in the clockwise direction). The circular-arc graph
corresponding to M is denoted by G(M). Let hy, ha,..., hon, hant1 = by, be an ordering
of the endpoints of the circular arcs in the clockwise direction on the circle. Denote the
interval (h;, hit1) by a; for 1 < i < 2n, Let W; be the set of all arcs in M that contain
interval a; and let M; = M — W;. See Figure 1.

Let S be a collection of circular arcs such that G(S) is a solution to the MIBS Problem
for G(M). Since the intervals corresponding to an independent set in G(M) cannot cover
the entire circle, there exists an interval a;, such that W;, has at most one interval from
S. If there exists an interval a;, such that W;, NS = 0, then finding a maximum bipartite
subgraph for G(I) is equivalent to finding one for the interval graph G(M;,). Otherwise,
there exists an interval a;, such that |W; N S| = 1. In that case, finding a maximum
bipartite subgraph for G(I) is equivalent to finding one for G(J), where J = M;, U {w}
for some w € W;,. Note that G(J) is a special kind of circular-arc graph which we call an
Elementary Circular-Arc Graph. More precisely, an elementary circular-arc graph is
a pair [G(J),w] such that G(J) is a circular-arc graph, w is in J, and G(J — {w}) is an
interval graph. The arc w is called here the Circular Interval. See Figure 2.

Thus the MIBS problem for circular-arc graphs can be reduced to a set of sub-problems
for interval graphs and for elementary circular-arc graphs.

Algorithm B below extends Algorithm A to work on elementary circular-arc graphs.
It takes as input an intersection model of an elementary circular-arc graph [G(I), w] and
finds a solution S of maximum cardinality such that G(S) is an induced bipartite subgraph
and w € S.

When the circular interval w of an elementary circular-arc graph [G(J), w] is removed
from J, we are left with a set of intervals which correspond to an interval graph. This
implies that within interval w, there is a subinterval y = (y1, y2) such that no interval from
J =1 — {w} intersects y. Hence all intervals in J lie in the interval (ys,y;). Without loss

of generality, we assume that (yo,y;) lies on a straight line and we apply our usual notions

6

2

e ——— k.

i
[}
+
[}
-

Circular-Arc Graph
a].:(hi’hi+l); Wi= { W7X9Y}
FIGURE 1

Elementary Circular-Arc Graph
With Circular Interval w

FIGURE 2

of ‘left’ and ‘right’ to the intervals in J. When we make an ‘ordered scan’ of the intervals

we mean a clockwise scan of the right endpoints of the intervals starting from y,.

Algorithm B

INPUT: A set of intervals, I and an interval w in I such that [G(]), w] is an elementary
circular-arc graph.

QUTPUT: A set of intervals S C I with the property that S is the largest subset such
that G(S) is bipartite and w € S.

1. Sort the intervals in J = I — {w} according to the order in which the right endpoints

appear in an ordered scan.
Let ug be the interval in J with the leftmost right endpoint.
S — {wa uO}'

Remove w and ug from I and also all the intervals that form triangles with them.

g o W N

while I is nonempty do
6. Let v be the interval in I with the leftmost right endpoint.
7. Put v in S and remove it from I.
8. Remove from I all intervals that form triangles with v and one other interval
from S.
endwhile

9. Return S as the solution.

In step 8, we remove all intervals in I which form triangles with v and one other interval
y € S. In fact, we only need to consider y € {w,u}, where w is the circular interval and u
is the interval added to S in the previous iteration. The algorithm runs in time O(n logn).
Note that if the input is already sorted according to the right endpoints of the intervals

then the algorithm will run in time O(n).

Lemma 5: Let I be the set of circular intervals corresponding to an elementary circular-arc
graph [G(]), w]. Let ug be the interval in J = I — {w} whose right endpoint is encountered
first. Then among the solutions which include w, there exists a solution S’ which includes

Ug.

Proof: Let S be any solution for input I which includes w. Suppose uy € S. Denote the
two bipartitions of G(S) by V; and V; and denote their corresponding interval sets by J;
and Jp. Without loss of generality we assume that w € J;. Let v be the interval in J,
with the leftmost right endpoint. Let S’ = S —{v}U{up}. If z € Jo — {v} then z does not
intersect v and hence z lies completely to the right of v. Consequently, it lies completely
to the right of ug. This implies that G(S') is bipartite and hence S’ is a solution which

includes both w and uy. R

Theorem 6: Algorithm B is correct.

Proof: We give only a rough sketch of the proof since it is similar to the proof of correctness
of Algorithm A (Theorem 3). We use induction on the number of intervals in input J. Let
S’ be the solution returned by the algorithm and let S be any solution which includes the
circular interval w and the interval with the leftmost right endpoint, ug. Let A be the set
of intervals in J which form triangles in G(J) with w and wy.

Following the lines of the proof of Theorem 3, we can show that S’ —{ug} and S —{ug}
are both solutions on input J — A — {ug} and hence must be of the same size. This implies

that S and S’ are also of same size, thus proving the correctness of Algorithm 5. R

Algorithm C

INPUT: A set of intervals, M, lying on a circle.
QUTPUT: S C M such that the subgraph G(S) is the largest induced bipartite subgraph

10

in the circular-arc graph, G(M).

1. Forz,1 <:<2ndo
2. Run Algorithm A on M; to obtain solution S;.
3. Let W; = {w;1,..., Wt}
4. For Each w;; € W; run Algorithm B on the elementary circular-arc graph
[G(M; U {w;;}), wi;]. Denote its output by S;;.
5. Pick S; to be the largest of the solutions S;, Si1,. .., Sik.
endfor

6. Return S, the largest of the solutions Sy,..., Say,.

Theorem 7: Algorithm C is correct.

Proof: As noted earlier, for every solution, S, to the MIBS problem for a circular-arc
graph, there exists an m, 1 < m < 2n such that S has at most one interval from W,.

If there exists a solution S and an integer m, 1 < m < 2n such that S contains no
interval from W,,, then S is also a solution to G(M,,). Hence, Algorithm C will find a
solution of size | S| after executing step 2 in the m®"* iteration. Otherwise, Vm, 1 < m < 2n
and for every solution S, |S N W,,| > 1. It follows that there exists an m, 1 < m < 2n
such that W,, NS = {wm;}, for some w,,; € W,,,. This implies that S is also a solution for
Mp; = My U {wn;}. Since My, corresponds to an interval graph, the intervals in Mp,;
correspond to an elementary circular-arc graph with wy,; as its circular interval. Hence,
Algorithm C would correctly find a solution of size |S| after the execution of step 4 during
its m** iteration. W

Each of W; can be of size O(n). Hence, there are O(n) calls to Algorithm A and
O(n?) calls to Algorithm B. Since we need to sort only once, the total time complexity is
O(n?).

We conclude with an observation about the existence of a “good” approximation
algorithm for the MIBS problem for general graphs. The Absolute Performance Ratio

of an approximation algorithm A for a maximization problem P is the infimum of the

11

ratio between the size of the optimal solution and the size of the approximate solution
over all instances of P. It is denoted by R4(P). Theorem 8 below provides a negative

result regarding the existence of a “good” approximation algorithm for the Maximum

Independent Set problem (MIS).

Theorem 8 [GJ79]: If R4(MIS) < k for some k > 1, then for any k > 1, there is an
approximation algorithm Cy with R, (MIS) < k.

It has been conjectured that there does not exist an algorithm A for which R4(MIS) < k
for some k > 1. Using a reduction from the MIS problem it is easy to see that a similar
result holds for the MIBS problem. More precisely, if Rg(MIBS) < k for some k > 1,
then for any k > 1 there is an algorithm Dy with Rp, (MIBS) < k. This leads us to
conjecture that there does not exist an an algorithm A to solve the MIBS problem with

R4(MIBS) < k for some integer k > 1.

5. REFERENCES

[BL76]

K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci. 13
(1976), 335-379.

[GI79]

M. R. Garey and D. S. Johnson, Computers And Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman And Company, New York, 1979.

[GIMPS80]

M. R. Garey, D. S. Johnson, G. L. Miller and C. H. Papadimitriou, The complexity
of coloring circular-arcs and chords, SIAM J. Alg. and Disc. Methods, 1 (1980),
216-227.

12

[GaT4]
F. Gavril, Algorithms on Circular-Arc Graphs, Networks, 4 (1974), 357-369.

[Go80]
M. C. Golumbic, “Algorithmic Graph Theory And Perfect Graphs”, Academic Press,
New York, 1980.

[GLL82]
U. I. Gupta, D. T. Lee and Y. -T. Leung, Efficient algorithms for interval graphs and
circular-arc graphs, Networks, 12 (1982), 459-467.

[LY80]
J. M. Lewis and M. Yannakakis, The node-deletion problem for hereditary properties
is NP-Complete, J. of Comp. System Sci., 20 (1980).-

[Ma45]
E. Marczewski, Sur seux propriétés des classes d’ensembles, Fund. Math., 33 (1945),
303-307.

[Tuc80]
A. Tucker, An efficient test for circular-arc graphs, SIAM J. Comput., 9 (1980), 1-24.

13

