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Abstract

In this paper we present a new continuous, viewer-centered
representation for polyhedral objects called the aspect
representation or asp. The representation is viewer-centered in
the sense that it represents the appearance of the object rather
than the volume of Euclidean space that it fills and continuous in
the sense that it represents the appearance continuously from all
viewpoints. We then give some properties of asps and algorithms
for constructing and finding unions, intersections, and differences
of asps. We also name some applications for which we expect the
aspect representation to prove useful.
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1. Introduction

Representing three-dimensional objects within a computer is important to computer-aided
design, robotics, computer graphics, computer vision, and many other areas, so it is not
surprising that there are many different representations in use. Major existing methods for
representing objects in three dimensions can be divided into three main categories: volumetric
representations, boundary representations, and swept-volume representations. Volumetric
representations, such as octrees, space occupancy arrays, and constructive solid geometry
represent the volume of space that the object occupies by constructing that volume as a
combination of simpler volumes. Boundary representations such as winged-edge polyhedra
represent the surface bounding the volume. Swept-volume representations represent the
cross-sectional area of the object swept along a spine. However, all of the standard
representations have something in common: they are object-centered in the sense that they
represent in some manner the volume of Euclidean 3-space that the object occupies.

Object-centered representations have attractive properties. For example, the space taken to
describe an object is generally small, and it is relatively easy to find the union and intersection
of two objects. However, there are other desirable properties that obj ect-centered
representations do not have. For example, for some applications we may want to know how an
object appears to a viewer, but computing the appearance of an object to a viewer from an
object-centered representation is time-consuming. For these applications it is advantageous to
explicitly represent the way a three-dimensional object appears to a viewer from some or all
viewpoints. Such a representation is viewer-centered rather than object-centered.

Previous viewer-centered representations for objects generally consist of a number of images of
the object and are thus called multiview representations. Since they represent appearance from
some discrete set of viewpoints, they make it easy to determine what the object looks like from
those viewpoints. However, there are infinitely many geometrically distinct appearances of an
object, and multiview representations must choose a representative few. Is there some way to
represent appearance from a continuous range of viewpoints?

The answer lies in noting that the appearance (or aspect) changes continuously with viewpoint.
We take advantage of this fact to represent the appearance of the object over ranges of viewpoints
continuously. That is, we do not represent various individual two-dimensional views of the
object, but rather the volume of a different space that the object occupies which includes degrees
of freedom in the image plane and in viewpoint. In the aspect representation we will represent
the volume of aspect space that the object occupies, where aspect space is a four-dimensional
space consisting of two degrees of freedom in viewing direction (viewpoint space) and two degrees
of freedom in appearance (image space).

We expect the aspect representation to have application in various problems in computer
graphics and computer vision. Some of the problems for which we believe that the aspect
representation will prove useful or for which we have already completed work [Plantinga &
Dyer, 1986, 1987] are:



Constructing the aspect graph

Sequential and parallel algorithms for hidden line removal
Answering on-line point visibility queries

Determining 3D shape from a series of 2D views

3D object recognition

The term viewer-centered representation is normally used to refer to object representations
which represent the appearance of an object in some manner, typically from a discrete set of
viewpoints. We extend that notion to include representing the appearance or other properties of
the object from a continuous range of viewpoints. The aspect representation takes the idea of
viewer-centered representation to its logical end: it represents the appearance of objects from
every viewpoint as a continuous, unified whole.

In Section 2 of this paper we present an annotated bibliography of related work, first of other
major methods currently used for representing three-dimensional objects, and then of object
representations and other work related to the ideas of aspect and viewer-centered
representations. In Section 3 we define the aspect representation formally and give some
examples, and then we describe some properties of asps. We then discuss advantages and
disadvantages of asps and address Marr's objection to viewer-centered representations [Marr,
1978, 1982]. We next present algorithms for working with asps: constructing the asp and finding
the difference, intersection, and union of asps. In the last part of Section 3 we examine the size
of the asp.

2. Related Work

In this section we present an annotated bibliography of related work. We first describe current
techniques for representing solid objects. We then describe work related to viewpoint or aspect
space and our notion of viewer-centered representations.

2.1. Current Object Representation Techniques

Current techniques for representing solid objects can be separated into three major categories:
boundary representations, swept-volume representations, and volumetric representations.
Boundary representations represent a polyhedral object by the faces that bound it. They then
represent the faces by the bounding line segments and the line segments by the endpoints. The
representation is thus a data structure consisting of many points (the vertices of the polyhedron)
and adjacency information. If the only adjacency information stored in the data structure
specifies the endpoints of each line segment, then the representation is called a wire-frame
representation since the result of displaying these edges looks like a wire-frame model of the
object. It is in general not possible to construct an image of the object with hidden lines removed
from this sort of representation, since wire frames are ambiguous, that is, a wire-frame model
may correspond to several solid objects [Markowski, 1980].

If the adjacency information also specifies the edges that bound each face, then the



representation is no longer ambiguous and it is possible to draw an image of the object with
hidden lines removed. Representations with successively more adjacency information have
been introduced; for example, a popular and influential representation is the winged-edge
polyhedron representation [Baumgart, 1972], which stores all the adjacency information in
space proportional to the size of the polyhedron, and for which all adjacency relations can be
determined in time proportional to the number of items in the relation.

Boundary representations can also be used to represent non-polyhedral objects by representing
the surface curves with various types of surfaces patches. For example, Potmesil [1979] uses
bicubic patches, and Levin [1979] and Dane and Bajcsy [1981] use quadric-surface patches.
Another common method for representing curved surface patches is with B-splines [Coons,
1974].

Swept-volume representations represent a solid by representing an infinite union of cross
sections by means of a cross sectional function and an axis or spine of the object. The cross
section may be constant along the whole axis, or it may be allowed to change linearly from one
end of the axis to the other, or it may be stored as a number of samples or some other function.
This idea was first introduced as the “generalized cone” by Binford [1971]; current examples of
the use of generalized cones and cylinders include [Agin, 1977], [Brooks et al., 1979], [Marr and
Nishihara, 1976], [Shafer and Kanade, 1983], and [Sorcka and Bajcsy, 1978].

One type of volumetric representation is the spatial occupancy representation. In this type of
representation, the volume of space that the object occupies is represented by cutting up space up
into a number of cubes or other cells and representing the particular cells of space that the object
fills. In the most straightforward approach, a 3-dimensional array of bits represents a number
of cubes filling a volume of space. Then to represent an object one sets the bits for the cells of
space that it fills to one and the rest to zero ([March and Steadman, 1974], [Srihari, 1981]). A
more sophisticated and space-efficient approach is the octree [Jackins and Tanimoto, 1980]. In
the octree representation for an object, space is divided into eight octants. If the object fills any
of these octants or any is empty, then that is represented. If the object partially fills an octant,
then that octant is divided into eight sub-octants, and the process is repeated in a hierarchical
manner until the desired precision is achieved. The space savings over the naive approach
occurs in that it is only necessary to store a large number of small cubes at the surface of the
object rather than throughout all of space.

Another sort of volumetric representation is constructive solid geometry [Requicha, 1978]. This
technique represents the volume of space that an object fills as the union, intersection, and
difference of a fixed number of primitive solid types, such as cylinders, blocks, spheres, and
cones. The object is represented as a tree with nodes representing boolean operations and leaves
representing primitive types. This sort of representation is often used in geometric modeling
systems.

2.2. Object Representation Techniques with Viewer-centered Ideas

All of the major object representation techniques presented above are object-centered in the
sense that they represent the volume of Euclidean 3-space, E3, that the object occupies, either
directly or indirectly. Is there work of a more v1ewer—centered flavor, that is, a flavor of
representing the way the object appears from various viewpoints or making it easier to calculate
the appearance of the object?



Various techniques have been proposed for representing objects in a tree-structure of some sort
in order to simplify calculations of surface intersections or hidden-line removal. Clark [1976]
proposes using a hierarchy of bounding volumes each of which contains the lower levels. The
bottom level of the hierarchy contains a different sort of representation of the object. Rubin and
Whitted [1980] use a tree of parallelepipeds, with each level containing the levels below it. Fuchs
et al. [1980] generate a “binary space partition tree” which represents faces or parts of faces in a
tree in order to speed detection of intersection with a ray. Ponce [1985] creates a hierarchical
prism tree which also speeds intersection detection. While these techniques do not make use of
viewer-centered ideas directly, their goal is to facilitate computing different views of an object or
scene.

For the purposes of object recognition, the multiview representation has been introduced. The
idea is that in order to represent a three-dimensional object one can store a number of
silhouettes or two-dimensional images with hidden lines removed. This idea of “characteristic
views” was introduced by Lavin [1974], and Perkins [1978] and Holland et al. [1979] describe
early systems making use of multiple views. Lieberman [1979] computes silhouettes of objects
from stable orientations, assuming that there are only a few. Wallace et al. [1981] compute
properties of the silhouettes of aircraft from a number of fixed viewpoints. Fekete and Davis
[1984] introduce the idea of property spheres. The property sphere represents the silhouette of an
object from 320 discrete viewpoints spaced around the sphere. Kim et al. [1985] outline a system
for recognizing moving objects with a moving camera using multiple views of an object.

Koenderink and van Doorn [1979] made possible a more systematic approach to multiple view
representations when they introduced the ideas of aspect and the visual potential for an object.

They define aspect to be the topological appearance of an object (i.e. the topology of the image of
the object) from a particular viewpoint. From almost every viewpoint, the topological
appearance of the object remains constant over small changes in viewpoint since no faces
appear or disappear and in general the topology remains constant even though edges may change
in size and location. Thus the aspect remains constant for regions of viewpoints. Viewpoints at
which the aspect changes are called events. The visual potential graph (also called the aspect

graph) has vertices corresponding to these regions of viewpoints of constant aspect, and two
vertices are connected if the corresponding regions of viewpoints are connected by events.

Using these ideas, researchers are able to choose viewpoints for a multiview representation in a
more systematic amd efficient way, since they can avoid topologically equivalent images. They
can represent a single view from each of a number of aspects or one from every aspect.
Chakravarty and Freeman [1982] assume that objects appear only in one of a relatively small
number of stable positions corresponding to the orientations that the object would take if it were
thrown onto a plane. They represent one view of the object for each aspect corresponding to a
stable position, and for other views in an aspect they use linear transformations of the given
view. Korn and Dyer [1985] grow regions of feature equivalence, storing one representative view
of each region. Castore [1983], Castore and Crawford [1984] and Crawford [1985] encode
information about every aspect in the aspect graph.

A problem with this sort of approach is that there can be very many different views of an object
and each requires a different image. Plantinga and Dyer [1986] show that the maximum size of
the aspect graph is O(n?) in the convex case and O(n?) in the general case for an object with n faces
under orthographic projection— more under perspective projection. Since an image of such a
scene can have size O(n?) in the non-convex case, the respective worst-case sizes of a
representation are Om3) and O(n®) even under orthographic projection. Another problem with
this sort of representation is that there is no information connecting the different views of the
object; algorithms using such a representation could as well be processing views of different



objects.

Note that our use of the term aspect is different from that of Koenderink and van Doorn. They
define aspect to be the topological appearance of an object. The aspect doesn't change for most
small changes in viewpoint since the topological structure of the image doesn't change. We
define aspect as the geometric appearance of the object from some viewpoint rather than the
topological appearance. The difference is that in our definition, the aspect changes with every
change in viewpoint, no matter how small.

In other work related to aspect ideas, Werman et al. [1986] give an algorithm for constructing the
aspect graph in the case of a convex polygon. Plantinga and Dyer [1986] give algorithms for
constructing the aspect graph in both the convex and general cases under orthographic
projection. Thorpe and Shafer [1983] analyze the topological constraints on the change in
appearance of an object as the viewpoint moves. Scott [1984] presents a system which tries to
understand the topology of the projection over changing viewpoint.

The multiple view representation idea is viewer-centered in the traditional sense of the word
since the idea involves representing the way an object appears to a viewer from a number of
different viewpoints. In other work of a viewer-centered flavor, Lumia et al. [1985] present an
algorithm for answering queries about whether a feature point on an object is visible from
various viewpoints. The algorithm precomputes the regions of viewpoints at which each face
obstructs the view of the feature to enable a faster answer to the queries. This work is the most
closely related to continuous viewer-centered representation since it represents regions of
viewpoint space where a visual property holds. We know of no other work which represents the
appearance of an object from all viewpoints continuously.

3. The Aspect Representation

In this section we will define a particular continuous viewer-centered object representation for
three-dimensional objects, namely the aspect representation, or asp for short. We will present
some properties of the asp and describe how to work with asps. We will also present algorithms
for constructing the aspect representation for a polyhedral object and finding the union,
intersection, and difference of asps. Finally, we examine the size of the asp in various cases.

3.1. Definition and Examples

The aspect representation represents the appearance of an object over all viewpoints, that is,
image space for all viewpoints. Thus, it represents the volume of a different space that the object
fills, image space cross the space of viewpoints, which we call aspect space. One can picture this
by picturing a video camera and a TV monitor. The coordinates of a point in image space are its
coordinates on the TV monitor. Viewpoint space is the space of directions in which the camera
can point. The cross product of these spaces is aspect space. The aspect representation for an
object is the set of all points in aspect space that the object occupies— every point in the image of
the object on the TV monitor for each camera direction.

We first define formally viewpoints andviewpoint space. In this paper we will use orthographic
projection in constructing images from three-dimensional objects or scenes. Since under
orthographic projection the distance from the camera to the scene is not significant, we can



define viewpoints as points on a unit sphere centered on the object. A vector from a point on the
sphere (i.e. a viewpoint) to the center of the sphere is the viewing direction corresponding to that
viewpoint. We will speak of viewpoints, points on the sphere of viewpoints, and viewing
directions interchangeably. Note that under orthographic projection one must think of sphere
as being infinitely large if one wishes to think of the viewpoints as endpoints of lines of sight.

Viewpoint space is the space of points on the unit sphere. Specifically, we define the viewpoint
(6,0) to be the point on the unit sphere as shown in Figure 1. That is, if the point (0,0,1)
corresponds to the viewing direction “straight ahead” (i.e. some reference viewing direction)
then that point rotated by 6 clockwise about the y-axis and then by ¢ clockwise about the x-axis
corresponds to the viewing direction (6,¢). For example, (6=0,¢=0) corresponds to looking
parallel to the z-axis in the -z direction; increasing 6 corresponds to points that are increasingly
“to the east” on the unit sphere and increasing ¢ corresponds to points on the sphere that are
further “south” when ¢ <180°.

z

Figure 1. The Viewpoint (6,¢) on the unit sphere

An image of an object is in effect a projection of the object onto a two-dimensional viewing
plane, with hidden lines and surfaces removed. We call this viewing plane image space and
denote it by (u1,v). The aspect representation for an object is a representation of the volume of
aspect space that the object occupies, where aspect space is defined to be (6,¢,u,v)—that is, the
object's projection into the viewing plane (u,v) for any viewpoint (8,¢). Topologically, aspect
space is the cross product of a plane and a sphere, so it is a well-understood and well-behaved
space. The aspect representation then represents every point (0,,¢,,u,,v,) of aspect space that the
object occupies— that is, every point (u,,v,) in the image of the object from viewpoint 0.9).

In order to facilitate understanding the aspect representation, we will present some examples of
asps for various objects. The first example is the asp for a point at location (x,,y,.2,) in some
fixed coordinate system. At (6=0,0=0) the point appears at the position (x,.y,) in the image; as 6
and ¢ vary, the point moves in the image according to the equations for rotation and projection
into the image plane:
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Thus, the aspect representation of a point in 3-space is the 2-dimensional surface in aspect space
given by

u=x,cos 0 -z,sino (1)
v =X, sin 0 sin ¢ +y, cos ¢ +z, cos 0 sin ¢ (2)

Note that in order to represent this surface, it is only necessary to store the three coordinates of
the point, (x,,y,.2), since the equation of the surface is known a priori to within those three
constants.

The asp for a line segment is a 3-dimensional surface in aspect space bounded by 2-surfaces.
Alternatively, it can be written down directly by substituting parametric equations for a line
segment into the point equations. Here we use a parametric representation for the line segment
from (x4,¥.20) to (x;,y,,2,), with parameter s varying from O to 1. We leta, = x,-x,, b, =y,-y,, and
C, =2,Zy

x(s)=x;+a;s
yls)=y,+b; s 3)
Zs) =Z,+C; S

The point equations then become

u=(x,+a;s)cosb-(z,+c,s)sinb (4)
v=(x1+als)sinesin¢+(vl+bls)cos¢+(zl+cls)cosesinq) (5)

This is a 3-dimensional surface in aspect space. The bounding 2-faces are given by Egs. (1) and
(2) above for the points (x,,y,.2g) and (x;,y;,2;). Note that in order to represent this surface it is
only necessary to store the the coordinates of the endpoints of the line segment, (x,,y,.z,) and
(x,,¥1,21), since the equation for the surface is known.

The asp for a triangle consists of the asps for the bounding sides and vertices as above together
with connectivity information, i.e., links from the asps for bounding sides to the asps for the
adjacent vertices, and so on. Figure 2 shows the asp for the triangle (1,1,0), (2,1,0), (1,2,0) in
object space. Since it is difficult to represent a four-dimensional manifold in a
two-dimensional figure, the figure shows several different three-dimensional cross-sections of
the asp at various fixed values of ¢. The two-dimensional cross-sections of the asp in each
three-dimensional cross-section are the images of the triangle for the corresponding values of 6
and ¢. The asp represents all of these cross-sections continuously by representing the equations
of the bounding surfaces.
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Figure 2a. The triangle (1,1,0), (2,1,0), (1,2,0) in object space.
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Figure 2b. A cross-section of the asp for the triangle for ¢ = 0.
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Figure 2c. A cross-section of the asp for the triangle for ¢ = 15°.
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Figure 2d. A cross-section of the asp for the triangle for ¢ = 30°.

Figure 2e. A cross-section of the asp for the triangle for ¢ = 45°.
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Figure 2f. A cross-section of the asp for the triangle for ¢ = 60°.
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Figure 2g. A cross-section of the asp for the triangle for ¢ = 75°.
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Figure 2h. A cross-section of the asp for the triangle for ¢ = 90°.

3.2. Asps as Polytopes

We represent an asp by representing the volume of aspect space that the it occupies; specifically,
by representing the 3-surfaces that bound the four-dimensional cells of aspect space.
Unfortunately, the surfaces are not in general planar, so the object is not a polytope. However,
every (u,v)-cross section of the object is made up of polygons since the appearance of a
polyhedron from any viewpoint is polygonal. Also, every arc in the projection of an asp onto
viewpoint space, (0,0), is an arc of a great circle. To see this, imagine the shadow of an edge cast
on a large sphere by some point light source. The shadow gets closer to the arc of a great circle as
the sphere becomes larger. Thus, in the limit, the shadow is an arc of a great circle, and the
projection of the asp onto (6,¢) or any (6,¢)-cross section of the asp is spherical polygonal.

For these and other reasons, the surfaces that arise in the aspect representation for a polyhedon
are well-behaved, and we can work with them in much the same manner as we would work with
lines and planes in a polyhedron. For example, there is only one surface of intersection of two
aspect surfaces in which we are interested (and its polar opposite), and we can easily calculate
what it is. We show how to work with these surfaces below. Thus, while the asp is not a polytope,
we will speak of it as if it were. Specifically, we will refer to the 3-surfaces that bound the asp as
“facets,” a term one would normally use for the 3-dimensional faces bounding a 4-polytope. We
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will refer to the 2-surfaces that bound the facets as “ridges” and the 1-surfaces or curves as
“edges.” A 4-dimensional volume of aspect space bounded by facets will be referred to as a “cell.”
In general, the asp will consist of a region or regions of aspect space partitioned into cells; these
cells correspond to polygons in the image of the object and the facets bounding the cells
correspond to edges.

Thus, the aspect representation is very much like a polyhedral representation except that we
must store the equation for each “face,” since it is a curved surface. We will show below how to
represent the asp with a data structure similar to that of a polyhedron, except of course that the
asp is four-dimensional rather than three and the four-dimensional volume of the asp is
partitioned into four-dimensional cells. In this manner, we can work with asps much as we
would with polyhedra. For example, we can determine whether two asps intersect by
determining whether some face of one intersects some face of the other, and if not, whether one
is completely inside the other.

3.3. Asps and Visibility

Consider again the asp for a point. Egs. (1) and (2) for the asp for that point are defined for all
values of 6 and ¢, as one would expect, since a point is normally visible from any viewing
direction. But we can also represent a point which is not visible from every viewing direction,
say a point which is occluded from some directions by a polygon, by putting bounds on the values
of 8 and ¢ for Egs. (1) and (2) above. That is, if we represent only a part of the surface for the point
in aspect space, rather than the whole surface, we have the aspect representation for a point
which is visible from only some viewpoints.

In fact, since the aspect representation for an object represents the volume of aspect space that
the object occupies, if a polygon p,, is in front of the plane containing another polygon p,, the set
subtraction of the asp for p, from the asp for p, represents the volume of aspect space where p, is
visible, i.e. not occluded by p,. That is, the point (91’¢1'u1*vl) is in the asp whenever (u,,v,) is a
point in the image of p, from viewpoint (6,,9,) but not in the image of p,. We will call this the asp
forp, as obstructed by p,. In Figure 3 we show the asps for two triangles in object space, p; and p,.
The difference between p; and p, is that p, (on the left) is in the z=0-plane, while p, is in the
z=1-plane. Figure 4 shows the subtraction of the asp for p, from the asp for p,, which is the asp
forp, as obstructed by p,,.

v v

Figure 3. Asps for triangles p, and p,,.
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Figure 4. The subtraction of the asp for p, from the asp for p,, which is the asp forp, as
obstructed by p,,

Note that if we take the cross-section of the asp for p, as obstructed by p,, for a fixed value of (0,9),
we get the image of p, as obstructed by p, at that viewpoint— namely, that part of p, which is not
behind p,. Therefore the cross sections of the asp in Figure 4 are the visible parts of p;. Also, if
we take the projection of the asp for p, as obstructed by p, onto viewpoint space, we get exactly
the region of viewpoint space in which some point of p, is visible. Thus, given a polyhedron, we
can find the region of viewpoint space in which some face f of the polyhedron is visible by
subtracting the asp for every other face from the asp for f and taking the projection of that asp
onto (8,0).

Thus, occlusion in object space corresponds to set subtraction in aspect space. This is an
important and interesting property of aspect space, which has many implications. For example,
if we construct the aspect representation for a polyhedral scene in the proper manner, any
cross-section of the asp from some viewpoint is an image of the scene from that viewpoint with
hidden surfaces removed. In that sense we can pre-compute hidden-line removal information
for a scene from all viewpoints.

In order to better understand the aspect representation, we will point out some relationships
between features of the appearance of the object and features of the asp. Imagine looking at a
feature of the object and varying the viewpoint slightly, noting what happens to the feature in
the image of the object. By noting what happens to the feature we can determine the dimension
of the corresponding asp feature. For example, suppose two vertices of a polyhedron appear at
the same point in the image from some particular viewpoint. If the viewpoint is changed
slightly in any direction, the “feature” will disappear, that is, the two vertices will no longer
appear at the same image point. Thus the asp feature that corresponds to a pair of coincident
points in an image is zero-dimensional— it has no extent in viewpoint space. Since the feature is
also zero-dimensional in the image, the resulting feature of the asp is zero-dimensional, i.e. a
vertex.

Suppose that from some viewpoint two edges of the polyhedron appear to intersect. If the
viewpoint changes in any direction by a small amount, the edges will still appear to intersect in
general, although perhaps at a different location in the image. Then the feature (the point of
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intersection in the image of the two lines) has extent in both 6 and ¢. The feature is
zero-dimensional in the image, so the corresponding feature of the asp is a 2-dimensional
surface or a ridge.

With considerations such as this in mind, we present a table of features in the image of the object
and corresponding features in the asp (see Table 1). For example, if four edges of the object
appear to intersect in some image, then there is a corresponding vertex in the asp.

Image feature Asp feature
point ridge (2D)
edge facet (3D)
polygon cell (4D)
apparent intersection point of two edges ridge
apparent intersection of edge and vertex edge (1D)
apparent intersection of three edges edge
apparent intersection of two vertices vertex
apparent intersection of two edges and a vertex vertex
apparent intersection of four edges vertex

Table 1. Image features and corresponding asp features

3.4. Representing Asps

We have shown above that the surfaces bounding an asp are not hyperplanar; in this section we
characterize those surfaces and show how to represent them and find intersections of pairs of
them. We then present a data structure for representing asps.

3.4.1. Aspect Surfaces

We derived in Section 3.1 the equations for a 3-dimensional aspect surface corresponding to an
edge in the polyhedron. With t, substituted for s, they are:

u=(x,+a;t)cos®-(z +c,t))sinbd (6)
v=(x; +a;t)) sin sin¢ + (y; + b, t;) cos ¢ + (z; +c¢;t;) cosOsin¢ (7)

This is the general form of the 3-surfaces that arise in aspect representations for polyhedral
objects. Note that since the form of the surface is known a priori, in order to represent the
surface it is only necessary to store the six constants in the equations—x,, y;, z;, a,, b;, and c;.
Also, since a; =X, - Xy, by =y, - Vs and ¢, = z, -z, it is in fact only necessary to store the
endpoints of a line segment in order to characterize the corresponding aspect 3-surface.

Thus, we can represent a line in object space and a corresponding 3-surface in aspect space with
the same six constants; however, a facet of the asp is only a subset of that 3-surface bounded by
2-surfaces just as a polygon is a portion of a plane bounded by edges. In order to represent a facet,
we must represent the 3-surface on which it lies and the 2-surfaces that bound it. The boundaries
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of a facet occur at the intersection of two 3-surfaces, so in order to store a facet we must store the
ridges that bound it, and in order to do that, we must characterize the types of 2-surfaces that
arise.

Since 2-surfaces arise as the intersection of two 3-surfaces, we must determine the intersection
of two general 3-dimensional aspect surfaces. Let the first be given by Egs. (6) and (7) above and
the second by

u= (X, +a,t,) cos 0 - (z, + ¢y t,y) sin @ (8)
v= (X, +a,t,) sin 0sin¢ + (y, + by t,) cos ¢ + (2, + ¢, ty) cos O sin ¢ 9)

Solving these four equations for t, and eliminating u, v, and t,,, we get:
d,; sin6+d, cos6+d;tan ¢

ty = e e (10)
d, sin 6 + d cos 6 + dg tan ¢

where

dl =c2 (y2 -yl) -b2 (22 ~z1)
d2=b2 x2 -x1) -a2 (y2 -yl)
d3 =c2 x2 ~x1) ~a2 (22 -z1)
d4=blc2-bh2cl
db=alb2-a2bl
dé6=alc2-a2cl

Now we can get the equations for a general 2-surface in the aspect representation of a polyhedron
by substituting Eq. (10) into Egs. (6) and (7). Note that twelve constants characterize a general
2-surface of the aspect representation for a polyhedron. A sufficient set of twelve constants to
characterize an asp 2-surface is x,, y,, 2, a;, b}, ¢;, dy, . . ., dg. However, we can get all of these
constants from the endpoints of the two line segments that gave rise to the asp, so in order to
represent an asp 2-surface we need only store pointers to the two object edges that give rise to the
2-surface.

One-dimensional surfaces or curves in the aspect representation arise as the intersection of
three 3-surfaces or a 3-surface and a 2-surface. Since a 2-surface arises as the intersection of two
3-surfaces, these cases are equivalent. In order to characterize the types of 1-surfaces that arise,
then, it is sufficient to find the intersection of a general 3-surface and 2-surface. Again, the three
object edges that give rise to the 1-surface characterize it; it is sufficient to store pointers to the
three edges. However, in order to find unions and intersections of asps, we will need to
determine things like whether a point is in an edge on a curve; to solve problems like this we
need an explicit parametric representation of the curve. We can calculate this representation for
a general aspect curve in closed form, but the result is somewhat long and complicated. Instead,
we present a procedure for obtaining this representation in specific cases.

In order to derive a procedure for finding a parametric representation of an aspect 1-surface or
curve, recall that they arise as the intersection of three 3-surfaces in aspect space. The
intersection of three 3-surfaces in aspect space is equivalent to the apparent intersection of
three line segments in image space, which in turn is equivalent to being able to draw a line
through three line segments in object space. Thus we can characterize a 1-surface in aspect space
by characterizing all of the lines through three edges in the object, e, e,, and e;. We calculate this
by postulating a viewing line 1 through the three object edges. We will assume that 1is
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represented parametrically in a parameter s and that 1 intersects e, at s=0 and e, at s=1. The
result is a set of 9 equations in 10 unknowns. From there it is easy to solve for 1in terms of the
parameter of e, using the quadratic equation. From 1 it is easy to calculate (6,¢,1,v) in terms of
that parameter.

Finally, a vertex in the asp results from the intersection of four 3-surfaces, two 3-surfaces and a
2-surface, two 2-surfaces, or a 3-surface and a 1-surface. Again, it is sufficient to represent the
vertex with pointers to the generating edges of the object. We can calculate the vertex explicitly
using a procedure similar to that for the curve case above; the only difference is that we must
find a line through four object edges instead of three. The result is a point of aspect space, and
the solution requires the use of the cubic equation.

In summary, we can represent the surfaces in the aspect representation for an object according
to how they arise. For example, asp 3-surfaces arise from edges of the object; thus, we can
represent them with pointers to the appropriate edge. Similarly, a 2-surface arises as the
intersection of two 3-surfaces; thus we can represent a 2-surface by pointers to the two object
edges. In working with faces of asps, we will need explicit parametric representations of the
surfaces. We have presented these for 3- and 2-surfaces, and we have presented procedures for
calculating explicit representations of curves and surfaces.

Note that the surfaces characterized here can be calculated by solving polynomials of at most
third order, without any transcendental functions. The transcendental functions arise in
converting from a parametric set of lines which represent viewing directions to the (6,0,u,v)
representation. This is desirable because polynomials are easier to work with than complicated
transcendental functions.

3.4.2. A Data Structure for Asps

We can represent an asp in a hierarchical structure similar to a polyhedron or polytope. We can
represent a polyhedral subdivision of E® as a list of cells or polyhedra, each polyhedron as
pointers to bounding faces, each face as pointers to bounding edges, and each edge as a pair of
bounding points. In a similar way, we can represent an asp as a list of cells of aspect space, each
cell by pointers to the bounding facets, each facet by pointers to the bounding ridges, each ridge
by pointers to the bounding edges, and each edge by the two bounding vertices.

In the case of the polyhedron, the line on which a line segment lies is stored implicitly. It is the
line which intersects both endpoints. Similarly, it is not necessary to represent the plane on
which a face lies since it is the plane defined by any three endpoints of edges bounding the face.
This is also true of the aspect representation when aspect surfaces are represented by pointers to
the edges of the object which give rise to the aspect surfaces. For example, suppose two endpoints
of an edge of an asp are each represented by pointers to the four object edges which give rise to
that point. The two points must have three of their four generating object edges in common if
they lie on the same 1-surface, and these three edges define the 1-surface on which the curve lies.
Similarly, two edges bounding a ridge have two of their three generating object-edges in
common; these two edges define the surface that the ridge lies on.

In order to construct efficient algorithms for dealing with asps, however, we want quicker access
to adjacency information in the asp than that possible in the data structure defined so far. For
example, we want to be able to find the two cells separated by a facet in constant time. In order to
be able to retrieve adjacency information efficiently, we make the pointers in the data structure



16

bidirectional. Cells have pointers to the bounding facets and facets have pointers to the cells
they separate. Facets have pointers to the bounding ridges and ridges have pointers to the
incident facets. Ridges have pointers to bounding edges, edges to bounding vertices, and vice
versa.

In a four dimensional space, a data structure like this is not necessarily of linear size in the
number of faces of a polytope as it would be in three dimensions, since a four-dimensional
polytope can have asymptotically more facet-ridge and ridge-edge incidences than faces.
However, in the case of the aspect representation, it turns out that this data structure does have
linear size because of the close connection with a polyhedron. We show this in the next section.

3.5. Size of Asps

In the case of a convex polyhedron, the asp has size O(n) for an object with n faces since there is a
face in the polyhedron for every facet in the asp and the size of the facets in the asp correspond
directly to the size of the faces in the polyhedron. However, in the non-convex case the cross
section of an asp at any value of (8,9) is a view of the corresponding object with hidden lines
removed. Thus we have an immediate lower bound of Q(n?) size, since the image of a scene (or
polyhedron) with hidden lines removed can have Q(n?) line segments. Just how much bigger
than Om?) can the asp he?

In order to bound the size of a general four-dimensional polytope, it is not sufficient to bound the
number of vertices or facets. 4-polytopes that have n vertices can have O(n?) 2-faces. However,
the asp is not a general 4-polytope, and it turns out that the size of an asp {i.e. the total number of
faces) is linear in the number of vertices of the asp in the absence of degeneracy of the sort where
five or more object edges appear to intersect in a single point in an image. This is because in the
absence of such degeneracy, four asp edges meet in a vertex, three ridges in an edge, and so on.
Thus, a bound on the number of vertices is a bound on the asymptotic size of the asp.

Each vertex arises as the apparent intersection of four object edges in an image. In the absence of
degeneracy, every set of four lines can be intersected by a unique fifth line or no fifth line at all,
so there is at most a single viewpoint (and its polar opposite) from which the four edges appear to
intersect. Since the number of 4-tuples of lines from a set of n is C(n,4), the number of vertices is
bounded by On?%). In fact, the size of the asp is bounded by 0% even with degeneracy of the sort
where more than four edges appear to intersect in a single point in an image. In this case the
effect is to cause some vertices to coincide. This effectively reduces the number of vertices
without increasing the number of edges, ridges, and so on. Therefore with degeneracy, the size of
the asp is no longer linear in the number of vertices, but the upper bound of O(n¥ still holds.

We can find better bounds on the size of the asp given various restrictions on the object for which
the asp is constructed. These restrictions are on the number of vertices of the asp and as we
showed above, they are also restrictions on the size of the whole asp in the absence of
degeneracy. They are also restrictions on the size of the asp with degeneracy, if we count the
“separate” vertices that have been collapsed into one by degeneracy. In other words, they are
restrictions on the size of the asp if we count a vertex for every four object edges that appear to
intersect in a point in an image.

These bounds can be determined by examining Table 1 above. In Table 1 we see that there are
actually three different ways in which a vertex in the asp can occur, i.e. when four different edges
appear to intersect in the same point: when two vertices in the polyhedron appear at the same
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point in the image, when a vertex and two unconnected edges appear at the same point in an
image, and when four unconnected edges appear to intersect in the same point. Observe that the
number of ways two different vertices in the object can appear at the same point is Om?), the
number of ways a vertex and two edges can appear to intersect in the same point is Om?), and the
number of ways four edges can appear to intersect in the same point is O(m%). Thus, if the object is
simple enough that the number of ways four unconnected edges can appear to intersect in the
same point is bounded by On?), then we can immediately say that the size of the asp for that
object is bounded by 0O(n3). Also, if the number of ways two edges and a point can appear to
intersect in a point is bounded by O(n?), then the size of the asp for that object is bounded by O(n?).
These bounds are summarized in Table 2.

type of polyhedron bound on size of asp
general Oom%
number of ways four edges can appear to intersect in On?)

a point is bounded by Om?® (e.g. no grid behind a grid,
but a picket fence behind a grid is acceptable)

number of ways two edges and a vertex can appear to On?
intersect in a point is bounded by Om?) (e.g. no picket
fence behind a grid, but a grid is acceptable)

convex O(n)

Table 2. Bounds on the size of the asp

Some of these restrictions are not at all unrealistic. For example, the only way to get an asp of
size Q(n?) is to have that many cases where four edges overlap in an image. An example of such a
situation is a pair of grids, one behind the other (see Figure 5).

T
Figure 5. An example of an object for which the asp has size Om?).

This sort of situation doesn't occur often in natural scenes. Note also that in images with many
faces, the reason for the large number of faces is often that they are simulating some sort of
smooth surface. In this case, the complexity of the asp is much less than the worst case, since
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large numbers of faces are on convex surfaces and the number of ways that four object edges can
appear to intersect in the image is relatively small.

The example in Figure 5 shows that ©(n? is also a lower bound on the maximum size of the asp.
The object consists of two grids, one behind the other, each of which consists of n strips laid in
one direction and n in an orthogonal direction. We can choose an appropriate viewpoint so that
any four of the strips have edges that appear to intersect in a single point. Thus, the asp for that
object has Q(n* vertices.

In the previous section we constructed a data structure representing incidences of the asp, and we
noted that it remains to be proved that the data structure has size of the order of the size of the
asp. The data structure consists of pointers from faces to incident faces of one degree higher or
lower dimension. For example, from edges there are pointers to incident ridges and vertices.
Thus the number of pointers is proportional to the number of cell-facet, facet-ridge, ridge-edge,
and edge-vertex incidences.

The number of cell-facet incidences is twice the number of facets, since each separates two cells
(counting the exterior as a cell). Similarly, the number of edge-vertex incidences is twice the
number of edges. Since ridges are the aspect feature corresponding to the apparent intersection
of two object edges in an image and facets correspond to single object edges, the number of
ridge-facet incidences is proportional to the number of times an image edge is adjacent to the
intersection of two image edges. This is proportional to the number of intersections of two
image edges, i.e. the number of ridges of the asp, since at most four facets can be incident upon
the ridge. The remaining case, edge-ridge incidences, is similar. Edge-ridge incidences occur
when two intersecting image edges are adjacent to three intersecting image edges. But this is
proportional to the number of cases where three image edges intersect, i.e. the number of asp
edges. Thus the number of face-face incidences is proportional to the number of faces and the
data structure has linear size in the size of the asp.

3.6. Algorithms for Asps

In this section we present algorithms for working with asps. The first algorithm constructs the
aspect representation for polyhedral objects. Then we present algorithms for the intersection,
union, and difference of asps, which are useful for constructing the volume of aspect space in
which two features of an object are both visible at the same point, one or the other is visible at
some point, or one in particular is visible.

3.6.1. Constructing the Asp

We have already shown the aspect representation for a line segment in Egs. (4) and (5) above. In
order to construct the asp for a polygonal face, we need only construct the asps for the edges of
the face and the vertices, and add connectivity information. That is, we use a data structure of
asps for line segments which specifies adjacency relationships.

We construct the aspect representation for more complex objects, such as polyhedra or
polyhedral scenes, out of the asps for the faces. However, we must be careful about faces which
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overlap in the image plane from some viewpoint. One of these faces will be in front of the other
one and thus occlude it; therefore the asp for the other one should be reduced in aspect volume
appropriately to reflect the fact that parts of the face are not visible from some viewpoints.

We do this for each face individually. For some face f of the polyhedron we first find all of the
faces that are in front of it. That is, we find the faces that are on the outside of the plane
containing f. Some faces may cut the plane of f, and these we cut into two pieces (or as many
pieces as necessary) at the intersection line with the plane of f. Each of these faces and face
pieces obstructs the view of f from some viewpoints; the faces behind the plane containing f do
not obstruct the view of f from any viewpoint.

We find the asp for the face f as obstructed by the other faces by taking the volume of aspect space
occupied by the asp for f and subtracting the volume of aspect space occupied by the asps for the
faces in front of f Subtraction is the appropriate operation here since for the viewpoints in
which the images of the object overlap, the other faces will be in front of £ and will thus be
obstructing the view of f. We present the algorithm for subtracting one asp from another below.

The asp for a polyhedron or a set of polyhedra is the union of the asps for the faces. In other
words, we construct the asp for a face by subtracting the asps for all of the faces in front of it, and
we construct the asp for a polyhedron by taking the union of the asps for the faces.

3.6.2. Finding the Difference of Asps

Given the asp for two objects, the difference of these asps is the region of aspect space where the
second asp does not intersect the first. For any cross section for a given value of (0,¢), then, the
difference is the region of the image plane where the image of the second object does not overlap
the image of the first. If we knew that the second object were in front of the first, so that it would
occlude the first at any point where they overlapped, then the difference would be the region of
aspect space where the first object is visible (i.e. not occluded by the second). This operation is
important in the construction of the asp for polyhedral objects since constructing the asp
involves subtracting the asps for all of the faces in front of a given face f from the asp for f.

We find the difference of two asps by taking the intersection of the first asp with the complement
of the second. The complement of an asp is the asp with inside/outside information reversed.
We give an algorithm for finding the intersection of asps below.

3.6.3. Finding the Intersection of Asps

The intersection of two asps corresponds to the region of aspect space where both objects occur at
the same point in the image. For example, if we construct the aspect representations for two
features of an object and take their intersection, we are left with the region of aspect space where
they appear to overlap. All of the algorithms we describe for working with asps are based on the
intersection algorithm described here. Note that this algorithm is defined for “polytopes” in
aspect space, not subdivisions, i.e. a single cell (possibly with holes).

The algorithm for constructing the intersection of two asps is essentially the standard naive
algorithm for constructing intersections. It involves testing every facet from one of the asps for
intersection with the other asp. Whenever we find an intersection, we cut the facet into pieces
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along the surface of intersection so that we are left with two faces connected by ridges. We repeat
this procedure for every facet of one of the asps and then for every facet of the other asp. When we
have finished, we join equal faces in the two asps. That is, we modify our data structures so that
the faces are shared by both asps. See Figures 6 and 7 for the two-dimensional analog.

Figure 6. Overlapping polygons

Figure 7. Finding the intersection points

When we are done with this step, we are left with an asp-like data structure which contains both
asps and the common intersection points, edges, and ridges. We then “cut away the outer faces”
from this data structure. That is, whenever facets of both asps meet at a ridge, we cut away the
outer ones and leave the inner ones. We can determine which are the outer ones and which are
the inner ones since we know which side of each facet was outside the asp and which was inside.
What remains after cutting away the outer faces is the intersection of the two asps. See Figure 8
for the two-dimensional analog.

Figure 8. Cutting away the outer structure leaves the intersection

This discussion assumes that we know how to find the intersection of pairs of faces of the asps in
order to find the intersection of the whole asps. It is not immediately obvious how to find these
intersections, however. In fact, the problem is very similar to the original problem, except that
the dimension of the problem is less. Therefore, we will consider how to solve lower-
dimensional intersection problems first.
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In any intersection problem, we first find the intersection of the spaces in which the faces lie.
For example, if we want to find the intersection of a ridge and a facet in aspect space, we first find
the intersection of the 2-surface and 3-surface containing the respective faces, since the
intersection must lie in that subspace. Once we have found the intersection, we must find the
part of each face that lies in it. Finding the part of a face in a subspace is a lower-dimensional
intersection problem and can be handled recursively. In the example above, the intersection
will be a 1-surface in general.

Next, we determine the intersection of the faces according to the dimension of the problem. If
the resulting space is 1-dimensional, we have one of three cases: two points on a curve, a point
and a segment on a curve, and two segments on a curve. In order to determine the intersection,
we need to be able to determine ordering on the curve. We do this by calculating the parametric
representation for the curve as discussed in Section 3.3 and finding the value of the parameter
for the points in question. The solutions are then obvious.

If intersection of the spaces containing the faces is 2-dimensional, we then have an intersection
of two 0-, 1-, or 2-dimensional faces. If the faces are not both 2-dimensional, we again find the
intersections of the surfaces containing the faces and solve the lower-dimensional intersection
problem. If they are both 2-dimenisonal, we find the intersection of every pair of edges of the
faces, and where faces intersect we split the edges and add vertices as in Figures 5-7 above. We
find the resulting intersection by “cutting away the outer structure,” that is, looking for vertices
with four adjacent edges and removing the outer ones.

If the intersection of the spaces containing the faces is 3-dimensional, we again check to make
sure that both faces are 3-dimensional; if not, we find the intersection of the new containing
spaces and solve the lower-dimensional problem. If both faces are 3-dimensional, we find the
intersection of each 2-face bounding one of the 3-faces with the other 3-face and split the 2-faces
accordingly. We repeat the procedure for all of the 2-faces of both 3-faces, and then join equal
faces of the two 3-faces. We then cut away the outer faces; what results is the intersection.

3.6.4. Finding the Union of Asps

The union of two asps corresponds to the region of aspect space where either one or both of the
objects are visible at some point in the image. For example, if we construct the aspect
representations for two features of an object and take their union, we are left with the region of
aspect space where at least one of the features appears.

Figure 9. Cutting away the inner structure leaves the union
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The union of two asps is constructed exactly the same way that the intersection is constructed,
except that during the “cutting away” step we discard the inner faces rather than the outer ones.
See Figure 9 for the two-dimensional analog.

3.6.5. Algorithm Runtimes

All of these algorithms are based on the intersection algorithm and require the same runtime.
In the case of the intersection algorithm, the first step involves finding the intersection of each
face of one asp with all of the faces of the other asp. This requires a total of O(nm) time for two
asps with n and m faces respectively. The second step is the “cutting away process,” which
involves counting the number of facets at each ridge and deleting the external ones. Since this
involves checking each ridge-facet incidence at most once, and since the number of facets at a
ridge is constant, this step takes time linear in the size of the intersection. Therefore, the
algorithms take time O(nm), as one would expect for a naive intersection algorithm.

3.7. Discussion

The aspect representation has something in common with multiview object representations,
since any appropriate cross-section of the asp is a view of the object. However, it clearly goes
beyond the multiview idea since it represents the appearance of the object from all viewpoints
continuously. Another difference is that multiview representations do not store any
information about how different views relate to one another. The aspect representation makes
clear exactly how “different views” of an object from different viewpoints (i.e. cross-sections of
the asp) relate to one another.

Another significant advantage of the aspect representation is that it makes it easier to answer
queries asking at which viewpoints a particular event occurs, for example, at which viewpoints
a certain feature is visible. Using standard representations such queries involve computing the
rotation of the object necessary for the event to occur. However, using the aspect representation,
answering the query reduces to searching the asp for the feature in question. Resulting
algorithms may even turn out the same using both approaches, but the algorithms for the asp are
easier to write and to understand.

The aspect representation is large, since in some sense it contains every hidden-lines-removed
image of the object. In return for the space requirements, though, the asp makes explicit a great
deal of information about the object or the scene. For that reason, the asp is a natural choice for
use in parallel algorithms and algorithms for problems which are difficult to compute.

Marr [1978, 1982] has argued that object-centered representations are to be preferred over
viewer-centered representations. By viewer-centered representations he means multiple-view
representations of objects. His argument is essentially that object-centered representations are
more concise, and humans can recognize objects from a wide variety of views and against a wide
variety of backgrounds. However, the aspect representation is quite different from
multiple-view representations and has significant advantages over them. First, the asp is not
really any more “viewer-centered” than volumetric representations in his sense of the word-it
doesn't depend on the location of the viewer. Second, it represents the object from all
viewpoints, not just a discrete few. Furthermore, Marr's argument does not take into account the
advent of plentiful memory. If we have precomputing time and plentiful space available,
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representations which have many different parts but the processing for each part is easier may
be just what we are looking for, especially if we can design efficient parallel algorithms to
process the representation.

4, Conclusion

In this paper we have introduced the asp—a new, continuous viewer-centered representation for
polyhedral objects— and presented algorithms for manipulating the representation. We have
also named some applications for which we expect the asp to prove useful. The aspect
representation is of interest for reasons other than just the applications, however. It is also the
first example of a continuous viewer-centered object representation, and one of the results of
this work is a bhetter understanding of the sorts of properties that viewer-centered
representations have and the sorts of problems for which they are useful.

This work also elucidates the idea of aspect itself and answers basic questions relating to it. The
following are some of the questions we have answered about aspect:

e What are the connections between different views of the same object? How can we
represent them?

e How can one calculate and represent appearance over a range of viewpoints?

* How can one calculate and represent the range viewpoints over which a certain property
holds?

The aspect representation is large for complex objects with a large number of concavities, so the
objects for which it is most useful have relatively few concavities or small size. The large size
of the asp and the amount of information made explicit make it a natural representation for
parallel algorithms. The viewpoint-space partition representation is useful for problems that
inquire about which viewpoints a particular property holds for. It has smaller size than the
aspect representation, but it stores in effect one bit of information for each viewpoint (yes or
no), rather than the appearance of the object.

Some open problems relating to the aspect representation are the following: what happens to
aspect space and the aspect representation under perspective rather than orthographic
projection? Is it possible to define an approximation to the asp which has smaller size, perhaps
by constructing the asp for various levels of a hierarchical representation of an object? How
does the asp generalize to objects with curved surfaces, for example, generalized cylinders? Can
we represent the effect of a point light source in aspect space, so that shadows in an image are
explicitly stored? Can we define the asp procedurally, as we can represent an object in E®
procedurally through something similar to a constructive solid geometry representation?
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